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 20 

Abstract 21 

It is known that rock fracture includes inelastic straining or damage that should localize at a 22 

certain loading stage and result in fracture initiation. The details of this process are not clear, 23 

and it is frequently omitted in the models by imposing the initial microcracks (seeds) with 24 

certain lengths and orientations. Here we investigate 2-D systems of three layers in finite-25 

difference models. The layers subjected to the horizontal extension are separated by cohesive-26 

frictional interfaces and have contrasted properties typical of sedimentary piles. Fractures are 27 

initiated in a more brittle central layer in the vicinity of the interfaces with the adjacent layers. 28 

It starts with the initially distributed inelastic straining, which then localized into narrow 29 

bands. The damage within these bands is strongly accelerated, resulting in complete material 30 

failure locally. Short initial fractures corresponding to narrow bands of failed material are 31 

normal to the least local stress. They then propagate from the interfaces to the layer center 32 

with further extension. We carefully investigate the impact of different regularization 33 

procedures, the grid geometry, and structure on all stages of the fracture process and define 34 

the optimal conditions that can be applied for fracture modeling in different structural and 35 

loading configurations. 36 

Keywords 37 

Strain localization, pure dilation bands, fracture initiation and propagation, elastoplastic 38 

modeling, regularization, layered rocks 39 

 40 

 41 
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1 Introduction 43 

The so-called opening mode (mode I) fractures or joints are the most common in the Earth's 44 

crust, notably in sedimentary basins, and frequently form regular sets of vertical (bed-normal) 45 

parallel, orthogonal, or more complex fracture networks. They strongly impact the mechanical 46 

properties and permeability of rock masses and thereby play an essential role in the stability 47 

of geological or man-made structures, production of water and hydrocarbons, storage of CO2, 48 

etc. For this reason, joints have been extensively studied for more than a century (e.g., Pollard 49 

& Aydin, 1988) with a particular focus on their spatial distribution in relation to the thickness 50 

and mechanical proprieties of fractured sedimentary beds, fracture microstructure, and 51 

loading conditions (Price, 1966; Hobbs, 1967; Ji et al., 1998; Huang & Angelier, 1989; Narr 52 

& Suppe, 1991; Gross, 1993; Engelder et al., 1997; Bai & Pollard, 2000; Gross et al., 1995; 53 

Cherepanov, 1997; Tang et al., 2008; Schöpfer et al., 2011; Li et al., 2012; Guo et al., 2017; 54 

Ruf et al., 1998; Rustichelli et al., 2013; Cilona et al., 2016; Levi et al., 2019; Bao et al., 2019; 55 

Ji et al., 2021).  56 

The origin of most joints is believed to be related to the mechanical interaction between 57 

sedimentary beds that have contrasted lithological and hence mechanical properties and 58 

different thickneses (Fig. 1). The conceptual scheme typically used to address and predict the 59 

formation of these fractures is shown in Fig. 2. A sedimentary pile (Fig. 2a) is subjected to the 60 

horizontal extension, which leads to progressive fracturing (sequential fracture infill) of more 61 

brittle (competent) layers and non-localized elastic and/or ductile extension of other 62 

(incompetent) layers. The setup of numerical models usually includes only three layers, one 63 

competent layer sandwiched between two incompetent ones (Fig. 2b).  64 
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Figure 1. Field examples of layered and fractured sedimentary rocks. (a) Alternating 65 

incompetent (mudrocks) and fractured competent (limestone) layers in Lilstock Bay, 66 

Somerset, UK (rock hammer for scale) from Schöpfer et al. (2011). (b) Thick densely 67 

fractured Urgonian limestone layers; Cassis, Provence, SE France from Chemenda et al. 68 

(2021). 69 

 70 

In the initial models, the competent layer was elastic, and fracture modeling was based on 71 

Linear Elastic Fracture Mechanics (LEFM) (e.g., Gross et al., 1995; Bai & Pollard, 2000). 72 

Although LEFM is still dominating in the analysis and modeling of natural fracturing (Bai & 73 

Pollard, 2000; Olson et al., 2009; Pollard & Aydin, 1988; Savalli & Engelder, 2005; Segall & 74 

Pollard, 1983; Gross et al., 1995; de Joussineau & Petit 2021), it is evident that inelastic 75 

deformation is involved in and affects this process. The degree of this involvement depends 76 

on the ductility of a fractured material, which in turn depends on its composition, loading 77 

conditions (effective pressure), and lithification stage of sedimentary rocks at fracturing (e.g., 78 

Paterson & Wong, 2005; Lavenu & Lamarche, 2018; Chemenda, 2019; La Bruna et al., 79 

2020). The elastic-plastic modeling of fracturing was conducted using different numerical 80 
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methods (Schöpfer et al., 2011; Tang et al., 2008; Li et al., 2012; Guo et al., 2017; Chemenda 81 

et al., 2021). The layers in these models were either totally coupled or separated by frictional 82 

and/or cohesive interfaces.  83 

A linear relation between the thickness � of the fractured layer and the fracture spacing � has 84 

resulted from most modeling studies. The geological data confirm such a relational for � =85 

��~ < 1 m (Engelder et al., 1997; Gross, 1993; Huang & Angelier, 1989; Ji et al., 1998; Narr 86 

& Suppe, 1991; Ruf et al., 1998; Rustichelli et al., 2013; Cilona et al., 2016; Levi et al., 2019; 87 

Bao et al., 2019). However, for larger �, the �(�) relation becomes very nonlinear so that � 88 

practically does not grow with � increase for � > �� (McQuillan, 1973; Ladeira & Price, 89 

1981; Sagy & Reches, 2006; Ji et al., 2021). This �(�) relation was recently obtained in 90 

elastoplastic numerical models (Chemenda et al., 2021), where a progressive fracturing in the 91 

initially homogeneous models resulted from inelastic straining or damage of the material. At a 92 

certain stage, the damage localizes into narrow pure dilation deformation bands, leading to 93 

complete material failure that is fracture initiation. This process can involve the whole layer if 94 

� is sufficiently small, or only the parts near the interfaces with the adjacent layers if � is 95 

large. In the latter case, the fracture develops in two stages. The first one includes distributed 96 

layer damage in the vicinity of its horizontal boundaries, localization of this damage in bands, 97 

and fracture initiation. At the second stage, the initiated fracture propagates quasi-statically 98 

across the layer. These processes are the subject of a detailed study in this paper.  99 

Figure 2. Setup of 3-layer models. (a) Series of alternating incompetent (pink) and competent 100 

(blue) layers. (b) An elementary (repeating) element of this series which corresponds to the 101 
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complete three-layer modeling setup. (c) A half-symmetry modeling setup, with thicknesses 102 

of layers 1 and 2 being ��/2 and �/2, respectively. �� and �� are the velocities applied in the 103 

corresponding directions to layers 1 and 3. �� causes deformation and fracturing of layer 2 104 

and �� is to maintain constant average vertical (lithostatic) stress at the horizontal model 105 

boundaries. The �-normal model boundaries are fixed in the �-direction. The layers are 106 

separated by cohesive-frictional interfaces. The models are pre-stressed in the �- and �-107 

directions as indicated below. Layers 1 and 3 are purely elastic and layer 2 is elastoplastic. 108 �� = �� = 0.2 m, � = 1 m, and � = 0.6 m. 109 

 110 

Since fractures emanate from dilation localization bands, strain localization is a fundamental 111 

element of fracture formation and should be accurately modeled. This process, resulting from 112 

a constitutive instability and deformation bifurcation (Rice, 1976; Rudnicki & Rice, 1975), is 113 

known to be strongly mesh-dependent in continuum numerical models (e.g., Needleman, 114 

1988; Pijaudier‐Cabot & Bažant, 1987), and therefore requires their regularization to reduce 115 

the mesh dependence. In Chemenda et al. (2021), the reduction of mesh-dependence of the 116 

modeling results was achieved by integrating the mesh size Δ� into the constitutive 117 

formulation so that the energy dissipation within the deformation/fracture bands is 118 

independent on Δ�. Since this procedure does not eliminate the ill-posedness of the initial 119 

value problem during strain localization, the numerical scheme used might not be robust 120 

enough to capture correctly the deformation banding that affects the following fracture 121 

process. Different regularization techniques have been applied to deal with this issue, 122 

including nonlocal/gradient (e.g., Chen & Schreyer, 1987; Needleman, 1988; Nguyen & 123 

Korsunsky, 2008; Pijaudier‐Cabot & Bažant, 1987; Poh & Swaddiwudhipong, 2009; 124 

Vardoulakis, 1989) or viscous (Duvaut and Lions, 1972; Perzyna, 1996; Needleman, 1988; 125 

Simo et al., 1988; Wang et al., 1997; Loret and Prevost, 1990) elastoplastic models. Viscous 126 

regularization is the simplest, not expensive numerically, and widely used approach (e.g., Das 127 

et al., 2013; Carosio et al., 2000; Heeres et al., 2002; Shahin, et al., 2019; Duretz et al., 2019), 128 

which is also applied here. 129 
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Below we describe the constitutive model and the regularization aphorisms used. We then 130 

present the mentioned above main three-layer (Fig. 2) and subsidiary, one-layer modeling 131 

setups. The latter is designed to investigate the details of dilation banding for different model 132 

parameters. We then present and discuss the modeling results obtained and give our 133 

conclusions.  134 

2 Constitutive model 135 

To model inelastic straining and fracture of layer 2 (Fig. 2), we use the constitutive model 136 

from Chemenda et al. (2021) summarized here. The model includes the following composite 137 

yield function 138 

   � = ��� = �� + ��                �  �� ≤ �"#�
�$ = %&�� + �& − ��  �  �� > �"#�

    (1) 139 

where �� and �$ are the yield functions for the tensile and shear failure mechanisms, 140 

respectively; �� and �& are the tensile and unconfined compression strengths, respectively; 141 

�"#� is the abscise of the intersection point of the envelopes �� = 0 and �$ = 0 in the 142 

(��, ��, )*) coordinates (Fig. 3), where )* is the accumulated inelastic volume strain tracking 143 

the history of inelastic strain. A rock mechanics convention is used for stresses: �� ≥ �, ≥ ��, 144 

where the compressive stress is positive, and tension is negative. All stresses are effective. 145 

The parameters ��, �&, and �"#� are functions of )*  146 

  ��()*) = ���-()*),   �&()*) = �&�-()*),   �"#�()*) = �"#�� -()*)  (2) 147 

where )� is the )* value at which both tensile and compression strengths reach zero during 148 

failure; -()*) = max (0, (1 − )*/)�)); ���, �&�, and �"#��  are the initial (at )* = 0) values of 149 

��, �&, and �"#�; %& is the dimensionless material (friction) parameter related to the Coulomb 150 

internal friction angle 1 as 151 
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     %& = �2345 (6)�7345 (6).      (3) 152 

 153 

Figure 3. Composite yield surface ��(��, )*). (1) Tensile failure. (2) Shear failure. (3) Post 154 

failure (after complete failure). (4) Shows a zero-level of ��. The red point (circle) 155 

corresponds to the initial stresses �� = ���"#" and �� = 0 applied to the models. 156 

 157 

The tensile and shear failure mechanisms are thus coupled in this model by synchronous 158 

evolution of the strengths �� and �& during the inelastic straining; both reach zero at the same 159 

)*, )* = )� (Fig. 3). 160 

The plastic potential function Φ reads 161 

    Φ = �Φ� = ��                �  �� ≤ �"#�
Φ$ = 9&�� − ��  �  �� > �"#�

    (4) 162 
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where Φ� and Φ$ are the plastic potentials for the tensile and shear failure mechanisms, 163 

respectively; 9& is the material coefficient depending on )* and linearly decreasing from its 164 

initial value 9&� to 1 with )*  165 

    9&  = 9&� + (1 − 9&�)(1 − -)     (5) 166 

This coefficient defines the dilatancy factor 9 = :)*/:;̅*, where :;̅* is the increment of 167 

inelastic equivalent or maximum shear strain. For the latter case 168 

     9 = =>7�=>2�.      (6) 169 

as can be obtained from (4, 5) and the flow rule  170 

     :)"* = :? @AB@CD ,      (7) 171 

where :? is the nonzero scalar function (:? is different for the different failure mechanisms 172 

introduced), � = 1,2,3. It follows from (6) that when 9& = 1, 9 = 0. We assume here that 173 

9&� = 1, meaning no inelastic volume increase (change) during inelastic shear deformation. 174 

This increase can occur only when the tensile failure/damage mechanism is activated. 175 

2.1 Integration of the mesh size into the constitutive formulation 176 

To deal with the mesh-dependence of the results of fracture modeling, the mesh (numerical 177 

zone) size Δ� is related to )� as (Chemenda et al., 2021) 178 

     )� = )̃�( GH�)      (8) 179 

where I is a constant coefficient, and )̃� is equal to )� when Δ� = I. This relation allows 180 

reducing the dependence on Δ� of the rate of inelastic energy dissipation J within the 181 

deformation/fracture band during its extension. Indeed, as follows from (Eqs. 4 and 7), only 182 

the ��-parallel component of inelastic strain is nonzero and is equal to )* during the tensile 183 
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failure. Assuming that inelastic straining within the band is uniform, that the band width :� is 184 

proportional to Δ� (:�~Δ�), and )* = Δ:/:�~Δ:/Δ�, the energy dissipation rate J per unit 185 

height and thickness of the band can be written as  186 

  J = KLHK M ��( )*):)*~NO� H�HK M �� P HKH�Q R(HK)H� = ��� S1 − HK,H�NLTHK�   (9) 187 

J will be constant for a given Δ: when Δ�)� is constant, which is equivalent to (8). 188 

2.2 Viscous regularization 189 

The procedure described above does not eliminate the loss of hyperbolicity or ellipticity of the 190 

field equations in dynamic or static regimes, respectively, which results in the ill-posedness of 191 

the initial value problem during instability leading to strain localization. To tackle this 192 

problem, we introduce viscosity into the constitutive formulation using Duvaut-Lions scheme 193 

(Duvaut and Lions, 1972) investigated notably by Loret and Prevost (1990). The resulting 194 

constitutive relations in small strain formalism read 195 

  �U"V = 2W)U"V + PX − ,� WQ )UYYZ"V − �[ \�"V − �]"V^_ P�\�"V , )*^Q 196 

            (10) 197 

  )U* = − �[ ()* − )*̅)_ P�\�"V, )*^Q  198 

where �"V and )"V are the stress and strain tensors, respectively; \ U ^ and \ ` ^ denote 199 

respectively the time derivative and the solutions of the inviscid problem; W and X are the 200 

shear and bulk elastic moduli, respectively; _ is the Heaviside step function, and a ≥ 0 is the 201 

nonnegative parameter with the dimension of time, called the relaxation time; �, b, c = 1,2,3. 202 

For a = 0, the rate-independent plasticity model is recovered \�"V , )*^ = \�]"V, )*̅^. 203 

We have implemented the constitutive model (1, 2, 4, 5, 8, 10) into the finite-difference 204 

dynamic time-marching explicit code FLAC3D (Itasca, 2021), used in a quasi-static mode 205 
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(i.e., the steady-state solution of a fully dynamic problem is obtained by a dynamic relaxation 206 

method). In our implementation, we use the discrete approximation given by Simo et al. 207 

(1988), which can be summarized in the following steps. Assuming a constant strain 208 

increment ∆)"V = )"V∆e over the time interval [e#, e# + ∆e] between steps h and h + 1, we 209 

compute the elastic trial stress  210 

   �"V�i = �"V# + 2W∆)"V + PX − ,� WQ ∆)YYZ"V    (11) 211 

If �(��i , )*#) < 0, \�"V#2� , )*#2�^ = \�"V�i , )*#^, otherwise the inviscid back-bone solution 212 

\�]"V#2�, )*̅#2�^ is first computed by projecting the stress state onto the current yield surface. 213 

Then (10) is integrated using the Euler backward scheme to obtain the visco-elastoplastic 214 

solution (update/correction of �"V and )*). 215 

  �"V#2� = ��2j \�"V�i + ;�]"V#2�^,    )*#2� = ��2j \)*# + ;)*̅#2�^  (12) 216 

where the only new parameter is ; = ∆e a⁄ . This dimensionless nonnegative parameter 217 

influences the inelastic deformation in an opposite way to the classical viscosity coefficient. 218 

The viscosity effect is maximum when ; → 0, and ; = 0 corresponds to purely elastic 219 

behavior. The viscosity effect is inexistent when ; = ∞, which corresponds to a purely 220 

elastoplastic or inviscid model. 221 

2 Modeling setup 222 

2.1 Three-layer models 223 

As in the previous studies cited in the Introduction, we investigate a three-layer model shown 224 

in Fig. 2b. Layers 1 and 3 are subjected to the horizontal extension, generating shear stresses 225 

at the layer interfaces driving the extension and fracturing of the central layer 2. This layer has 226 

free vertical boundaries that can be considered preexisting, previously formed fractures. The 227 



12 

 

whole model is pre-stressed to the initial stresses ���"#", �nn"#", and ���"#". The horizontal 228 

extension applied to the model causes its vertical shortening. To maintain the average vertical 229 

stress constant and equal to ���"#", we apply servo-controlled vertical velocities �� to the 230 

horizontal boundaries of the models (Fig. 2b).  231 

The layers are connected by frictional and cohesive interfaces whose shear strength o�"#� is 232 

defined by the interface friction coefficient p"#� and cohesion q"#� 233 

     o�"#� = p"#��# + q"#�     (13) 234 

where �# is the effective normal to interface stress which is equal to the normal vertical stress 235 

���. The normal (c5) and shear (c3) stiffnesses of the interfaces are set to (Itasca, 2021) 236 

    c# = c$ = 10max Srs2�t�∆� T     (14) 237 

where "max" means that the maximum value over all zones adjacent to the interface is to be 238 

used.  239 

Fig. 2b shows the complete modeled structure, but to reduce the calculation time, the 240 

simulations have been carried out with the half-symmetry setup in Fig. 2c. 241 

2.2 One-layer models  242 

Before three-layer modeling, we investigate the setup in Fig. 4a with one elastoplastic layer 243 

subjected to the uniaxial extension. These models with simple geometry and uniform loading 244 

and straining conditions correspond to the theoretical framework of the analysis of 245 

deformation localization (bifurcation) that results from a constitutive (or material) instability 246 

(Rice, 1976). They are designed to investigate this phenomenon in a specific regime 247 

corresponding to pure dilation banding and to compare the results against the relevant 248 

theoretical predictions (Ottosen & Runesson, 1991). Particular attention is given to 249 
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understanding the impact of the regularization algorithms presented on strain localization and 250 

studying the influence of the numerical grid geometry and structure shown in Figs. 4b–4d on 251 

the localization. The double sheet brick-wedge grid in Fig. 4d consists of the attached brick- 252 

and wedge-shaped grids shown in Figs. 4b and 4c. The attachment procedure consists of a 253 

rigid attachment (or slaving) of the gridpoints of one zone to the opposite, master gridpoints, 254 

faces, or edges by imposing to the slave gridpoints of velocities/displacements obtained from 255 

those in the three or four grid points that make up the master face. Forces are distributed from 256 

the slave to the master gridpoints. The velocities obtained from the equations of motion at 257 

each step are transferred from the master to the slave gridpoints using weighting values 258 

(Itasca, 2021). 259 

When the layer model has a strictly rectangular (parallelepipedal) shape and uniform 260 

properties, its extension leads to the formation of pure dilation deformation bands along one 261 

or both vertical borders. A small zone of a very small weakness is usually imposed at the 262 

model center to avoid these boundary effects. Another way, which we preferred in this study, 263 

is a very small progressive (sinusoidal) thinning of the model (plate) with the maximum 264 

amplitude of 1 µm in its central part.  265 

Figure 4. Setup of one-layer models (a) and grid geometries used (b to d). (b and c) Brick- 266 

and wedge-shaped grids, respectively. (d) Double-layer sheet grid, with the attached brick and 267 

wedge-shaped grids. � = 0.1 m, and � = 0.2 m. 268 

 269 

3 Modeling results  270 
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The results are organized below into five groups addressing different aspects of strain 271 

localization and fracture. The first four groups include one-layer models (setup in Fig. 4a), 272 

and the two next ones present three-layer models (Fig. 2b) run using a half-symmetry setup in 273 

Fig. 2c.  274 

The deformation localization and fracture patterns are shown in terms of the tensile strength 275 

��. When �� is equal to its initial value ��� = 7 MPa, there is no material damage, and when 276 

�� = 0, the material is wholly fractured/failed. The case 0 < �� < ��� corresponds to the 277 

dilatant damage of the material. Localization of such damage within a narrow band 278 

corresponds to pure dilation banding, which can evolve to fracture with the following damage 279 

accumulation. Since the only elastoplastic layer (layer 2 in Fig. 2) can fracture, only this layer 280 

is shown in the figures presenting the results from 3-layer models. 281 

The deformation stages are characterized by the nominal normal horizontal extension strain 282 

)�� = −Δ�/�, where � is the model length, and Δ� is its horizontal lengthening. In 1-layer 283 

models, )�� (or more precisely, ��) is applied to the vertical borders of the layer (Fig. 4a), and 284 

in 3-layer models, only to layers 1 and 3 (Fig. 2b). The nominal horizontal stress ��� in the 285 

stress-strain curves presented below for 1-layer models is the average over the layer thickness 286 

normal stress in the v-direction. 287 

We use here the model parameter values assumed and justified in Chemenda (2019) and 288 

Chemenda et al. (2021). The parameter values common for all models are w = 20 GPa; { =289 

0.25; �&� = 60 MPa,  ��� = 7 MPa,  %& = 3,  9&� = 1, I = 0.1 m, ~ = 2600 kg/��,  ���"#" =290 

10 MPa, �nn"#" = ���"#"/2. In 1-layer models: � = 0.2 m, � = 0.1 m, �� = 1 × 107�� m/s, and 291 

���"#" = −6.97 MPa, which is set close to −��� to approach the failure point and reduce the 292 

time for the purely elastic loading. For 3-layer models: �� = �� = 0.2 m, � = 1 m, � = 0.6 m 293 

(see Fig. 2a for definitions), q"#� = o�"#� = 4 MPa, c5 = c3 = 9.6 × 10�, Pa/m (calculated 294 
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from (14)), ���"#" = 0, �� = 5 × 107� m/s. Other parameters: Δ�, )�, and ;, are varied in the 295 

models of different groups and are given in the captions of corresponding figures. For the 296 

chosen ���"#" = �� value, inelastic straining starts in the tensile failure domain, as can be seen 297 

in Fig. 3 (red circle). Therefore, the localization of strain (damage) should occur at negative 298 

hardening modulus (which is the case in our models) in the form of pure dilation bands 299 

oriented normal to �� (Ottosen & Runesson, 1991; Chemenda, 2019).  300 

Given that stresses are effective and assuming that the pore pressure is equal to the hydrostatic 301 

pressure, the lithostatic stress ���"#" is related to the depth � as  302 

    ���"#" = (~ − ~�)�� = 640 m    (15) 303 

where ���"#" = 10 MPa, ~� = 10� kg/�� is the water density, and � is the acceleration of 304 

gravity. 305 

 306 

3.1 Pure dilation banding in a layer under uniaxial horizontal extension 307 

Group 1: Impact of the viscosity parameter ; on the initiation and evolution of strain 308 

localization.  309 

Fig. 5 shows five deformation stages (columns 1 to 5) in three models (lines a to c) for 310 

different ;, decreasing from a to c. One can see that the higher the viscosity (the lower the ; 311 

value), the slower the strain localization and the wider the dilation bands at the initial stages 312 

of their evolution. There is, however, no fundamental difference between the models and the 313 

width :� of final band/fracture zones (column 5): it is practically the same and equal to ~Δ�. 314 

As expected, the deformation bands are normal �� (horizontal in Fig. 5) and hence parallel to 315 

��, which is vertical in the figure. Therefore, the obtained deformation bands are pure dilation 316 

bands, which is also confirmed by the orientation of the velocity field within them. 317 
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 318 

Figure 5. Group 1. Evolution of strain localization and fracture (stages/columns 1 to 5) in 319 

three models (a to c) differing only by the ; value: in (a), ; = ∞; in (b), ; = 0.1, and in (c), 320 ; = 0.01. Deformation stages 1 to 5 correspond to )�� equal to −5 × 107�, −1.5 × 107�, 321 −6 × 107�, −4.5 × 107r, and −7.8 × 107r, respectively. ∆� = 5 mm and )� = 0.02. All the 322 

models have wedge-shaped grids shown in Fig. 4c.  323 

 324 

Group 2: Dependence of the dilation banding and fracture on the grid geometry and resolution 325 

in the inviscid and viscous models 326 

Fig. 6 shows the final stages of strain localization corresponding to the complete failure of the 327 

material in ten models with brick- (Figs. 6a) and wedge- (Figs. 6b) shaped meshes with 328 

different resolutions specified in the figure caption. The models in columns 1 and 2 are 329 

inviscid (; = ∞), and in the models in columns 3 to 5, ; = 1 × 107�. In the inviscid models, 330 

the deformation/fracture band width :� is equal to ~Δ�. In the viscous models (columns 3–5), 331 

:� includes several grid elements. Their number increases with the Δ� reduction so that :� 332 

remains constant (Δ� −independent) for sufficiently small Δ�, Δ� < ~4 mm. Therefore, the 333 

introduction of sufficiently small ; (large viscosity) regularizes the problem in the sense that 334 

:� becomes independent of both the grid resolution and geometry. This is true not only for the 335 

brick- and wedge- (compare images in columns 4 and 5), but also for double brick-wedge 336 

grids shown in Fig. 4d. The structural stress-strain responses also converge with Δ� reduction 337 
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(Fig. 6g), although they are different for different grids (Figs. 6h). The ���()��) curves for the 338 

inviscid models are different (Figs. 6c to 6e) and attest to more brittle behavior, with the 339 

brittleness increasing as Δ� decreases (compare Figs. 6d and 6e). 340 

 341 

Figure 6. Group 2. Impact of the grid geometry, resolution, and the regularization parameter 342 ; on the dilation banding and structural stress-strain response. Final stages of strain 343 

localization and fracture are shown for five models with brick- (a) and wedge-shaped (b) 344 

meshes, respectively. The resolution of the models in columns 1 and 3 is ∆� = 5 mm, in 345 

columns 2 and 4, 2.5 mm, and in column 5, 1.25 mm. In columns 1 and 2, ; = ∞, and in 346 

columns 3 to 5, ; = 1 × 107�. (c to h) Nominal stress-strain curves ���()��) in the presented 347 

models. Since the models are prestressed to ��� close to −���, the curves start near the initial 348 

failure (yield) point except in (c), where the elastic loading stage (segment) is added to the 349 

curves in (d). The curves in (d and e) are respectively for the models in columns 1 and 2 350 

(curve (c) is for column 1 as well). Curves in (g), are for the regularized brick-shaped models 351 

in (a3 to a5) with different resolutions indicated on the plot. (h) Curves for the regularized 352 

models with the brick, wedge, and double brick-wedge grids corresponding to the curves of 353 

different colors as indicated in (h). Solid curves are for ∆� = 1.25 mm, and the dashed ones, 354 

for ∆� = 2.5 mm. 355 

 356 

Group 3: Impact of the grid geometry on the orientation of deformation bands and the 357 

resulting fractures. 358 

The pure dilation bands in our models (given the constitutive framework used and the stress 359 

values applied) should form normal to �� and parallel to �� and �,. However, the grid 360 
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geometry can also affect the band orientation (as well as its width) in the numerical models. 361 

When �� is parallel to a grid line, the band is parallel to this line as can be seen in Fig. 7a1 (all 362 

models in Fig. 7a have brick-shaped meshes shown in Fig. 4b). The dilation bands and 363 

resulting fracture bands remain parallel to the grid line (vertical in Fig. 7), even when the �� 364 

orientation deviates from this line provided that the deviation angle � does not exceed a 365 

certain value. In Fig. 7a2, � = 15°, but the final deformation/fracture band is still vertical. In 366 

Fig. 7a3, � = 30° and the band is inclined (but not parallel to ��). In this case :� is ~1.5Δ�, 367 

whereas in Figs 7a1 and Figs 7a2 where the bands are parallel to the grid lines, :� = Δ�. It 368 

was expected that in the regularized models, the orientation of the fracture bands would be 369 

closer to ��; however, this is not the case (Fig. 7a4). Similar conclusions can be drawn from 370 

the models in Figs. 7b with wedge-shaped grids. On the contrary, the models with the double-371 

layer grids provide more satisfactory results (Fig. 7c) both in terms of the band thickness 372 

(which is practically the same, :� � 1.5Δ�, for different �) and orientation. This orientation 373 

further approaches that of �� with the mesh refinement. 374 

 375 

Figure 7. Group 3. Final stages of strain localization and fracture in the models with brick (a), 376 

wedge (b), and double brick-wedge (c) grids. The columns 1 to 3 correspond to different 377 

orientations of the initial stress axes defined by angle � between �� (shown by the white 378 

dashed lines) and the vertical; � is 0°, 15°, and 30° in columns 1, 2, and 3, correspondingly. 379 

In column 4, � = 30°. The rotation of the initial stress axes is achieved by imposing the 380 
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corresponding normal and shear initial and boundary stresses. Models in columns 1 to 3 are 381 

inviscid (; = ∞), and in column 4, ; = 1 × 107�. In all models ∆� = 2.5 mm and )� = 0.02. 382 

 383 

The presented results show that although the viscous models exhibit clear regularization 384 

effects on the strain localization and band formation, they do not provide satisfactory results 385 

on the geometry and orientation of the fracture bands (Fig. 7a4 and 7b4) or the stress-state 386 

during and after the fracture formation. Indeed, the residual viscous horizontal tensile stress 387 

after the complete fracture (complete material failure) is ��� � −1.2 MPa on average in Fig. 388 

6h, whereas it should be zero in reality. The magnitude of this stress can be reduced by 389 

decreasing the viscous effect, i.e., by increasing ;. However, the increase of ; requires a rapid 390 

growth of the model resolution (reduction of Δ�) to achieve a stabilization of both :� and the 391 

stress-strain response. For example, for ; = 1 × 107� applied in the models in Figs. 6a3–6a5 392 

and b3–b5, the stabilization starts at Δ� � 4 mm, whereas for ; = 1 × 107, (still 393 

corresponding to high viscosity) it occurs at Δ� � 0.8 mm. Such resolution is too high for 394 

most real-life applications. The viscous effects become negligible at much larger ;, ; � 10 as 395 

seen hereafter (Fig. 8f). This increases the attractivity of using the double-layer grid in Fig. 4d 396 

with sufficiently large ; (low viscosity) needed only to ensure the well-posedness of the 397 

initial value problem. In this case, one has to give up the convergence of :� to a certain value 398 

that in any case cannot be realistic (very small), as will be discussed below. To ensure the 399 

independence of the energy dissipation on Δ� within deformation bands during fracture, )� 400 

should be related to Δ� by Eq. (8). This has been done in the models of the next group. 401 

Group 4: Dilation banding and fracture in a layer in the models with different )� (or 402 

hardening modulus) and Δ�. 403 
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 404 

Figure 8. Group 4. (a to d) Final stages of strain localization and fracture in the inviscid 405 

models with double brick-wedge grids and different )� and ∆� related by Eq. (8): (a) )� =406 0.01 and ∆� = 10 mm; (b) )� = 0.02 and ∆� = 5 mm; (c) )� = 0.04 and ∆� = 2.5 mm; (d) 407 )� = 0.08 and ∆� = 1.25 mm. (e) Nominal stress-strain curves from the models presented 408 

and other similar ones with different ∆� (and hence )�): for (1) ∆� = 0.625 mm; (2) ∆� =409 1.25 mm; (3) ∆� = 2 mm; (4) ∆� = 2.5 mm; (5) ∆� = 2.7 mm; (6) ∆� = 5 mm; (7) ∆� = 10 410 

mm. (f) Nominal stress-strain curves obtained from other models with ∆� = 1.25 mm, )� =411 0.08, and different ; indicated on this figure. 412 

 413 

Figs. 8a–d show the fracture bands resulting from strain localization and evolution of pure 414 

dilation deformation bands in the double brick-wedge-grid models with different Δ� and )� 415 

related by Eq. (8). As expected, the final band thickness :� decreases linearly with the Δ� 416 

decrease. On the contrary, the stress-strain curves in Fig. 8e become very close for Δ� < 2.5 417 

mm. These models are inviscid, i.e., ; = ∞. Reduction of ;, leads to the increase in the 418 

viscous stresses, reduction of the average viscoplastic hardening modulus (Fig. 8f), and 419 

increase in the dissipation energy. All these effects become negligible when ; is sufficiently 420 

large, larger than ~10 (Fig. 8f). For such ; values, the evolution of strain localization and 421 

fracture is practically the same as in the inviscid models. For smaller ;, the localization of 422 

deformation is more progressive, as can be seen in Fig. 5, and will be demonstrated below in 423 

the models of group 6. The models of this group and those of group 5 were conducted using 424 

the setup in Fig. 2c corresponding to the fracturing within layered rocks in the heterogeneous 425 

stress and strain fields and jointing in sedimentary basins as described in the Introduction.  426 
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Group 5: Fracturing of a thick inviscid elastoplastic layer embedded between the stretching 427 

elastic layers. 428 

Figs. 9a–e show four stages (columns 1 to 4) of the evolution of strain localization and 429 

fracture within the elastoplastic layer (the elastic layer is not shown) in five models with 430 

different Δ� and )� given in the figure caption. In the models in Figs. 9a–c, Δ� and )� are 431 

related by Eq. (8). The results are therefore supposed to be the same or close. This is indeed 432 

the case for the models with higher resolution Δ� = 1.25 mm and Δ� = 2.5 mm respectively 433 

in Figs. 9a and 9b, but the model in Fig. 9c with Δ� = 5 mm shows more brittle behavior, 434 

with the fracture cutting through the entire layer at deformation stage 4 characterized by the 435 

same for all the models )�� value. This is not surprising as the response of the models 436 

becomes Δ�–independent for Δ� lower than a certain value. For the one-layer models, this 437 

value is around 2.5 mm (Fig. 8e), which is close to that following from Figs. 9a–c for the 438 

three-layer models that are characterized by different sizes and loading conditions (compared 439 

to one-layer models). For Δ� > 2.5 mm, the stress reduction with the )�� increase is more 440 

rapid than for the models with smaller Δ� as is seen in Fig. 8e. Therefore, the hardening 441 

modulus is more negative, and the fracture energy is smaller. To approach these parameters to 442 

the models with higher resolution, we increase )� from 0.02 in Fig. 9c to 0.022 in Fig. 9d. The 443 

stress-strain curve for this )� in one-layer models is closer to the curves for higher model 444 

resolution (Fig. 9f), and the strain localization and fracture processes in the three-layer model 445 

(Fig. 9d) approach those in Figs. 9a, b with higher resolution. In the lowest resolution model 446 

in Fig. 9e (Δ� = 10 mm), )� = 0.012 instead of 0.01 following from (8), for which the 447 

hardening modulus in the one-layer model is too negative (Fig. 9f). For )� = 0.012, the 448 

���()��) curve is closer to those for smaller Δ� (Fig. 9f). The result of strain localization and 449 

fracture in Fig. 9e4 is closer to that in higher resolution models in Figs. 9a4, b4, and d4 as 450 
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well. The difference between all these models is obviously in the :� values, but also in the 451 

onset of strain localization near the layer interfaces. In Fig. 9a2, one can see many (14) 452 

deformation bands, and in Fig. 9e2, none, but this has very little effect on the final result. 453 

Note that the material damage at stage 2 is very small; the �� reduction is only ~1% of its 454 

initial value ���. 455 

Group 6: Influence of the viscosity (regularization) on the evolution of strain localization and 456 

fracture in the layered models.  457 

The setup and presentation of the results in Fig 10 are the same as for the models of the 458 

previous group. All models have the same Δ� = 2.5 mm and )� = 0.04. They differ only in 459 

the ; value: in Fig. 10a, which is the same as Fig. 9b, ; = ∞ and in Figs. 10b and 10c, ; is 460 

0.15 and 0.01, respectively. One can see that in Fig. 10b2, the inelastic deformation is more 461 

diffuse, and there are fewer deformation bands than in Fig. 10a2, although the fracture 462 

evolution/propagation is practically the same at all stages. In the model in Fig. 10c, the  463 
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 464 

Figure 9. Group 5. Four evolutionary stages (columns 1 to 4) of strain localization and 465 

fracture in five 3-layer inviscid models (lines a to e) with double brick-wedge grids for layer 466 

2; only this layer (its half, Fig. 2c) is shown. The models differ only by ∆� and )�; in (a to c), 467 

they are related by Eq. (8): (a) ∆� = 1.25 mm, )� = 0.08; (b) ∆� = 2.5 mm, )� = 0.04; (c) 468 ∆� = 5 mm, )� = 0.02. In (d), ∆� = 5 mm, )� = 0.022, and in (e), ∆� = 10 mm, )� =469 0.012. The deformation stages shown (columns 1 to 4) correspond respectively to )�� of 470 −6 × 107r, −9 × 107r, −2.1 × 107�, and −6 × 107�. (f) The stress-strain curves obtained 471 

from one-layer models for the same ∆� and )� as in the models a to e in this figure (the solid-472 

line curves are the same as the corresponding curves in Fig. 8e).  473 
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viscous effect is the highest, and therefore there is no band initiation at stage 2 at all. It occurs 474 

only at stage 3, and so, the resulting fracture propagates over a much shorter distance. This 475 

fracture propagates over the same distance as in other models at larger )��. 476 

 477 

Figure 10. Group 6. Four evolutionary stages (columns 1 to 4) of strain localization and 478 

fracture in three 3-layer models (lines a to c) with double brick-wedge grids for the shown 479 

layer 2. The models differ only in the ; value: it is ∞, 0.15, and 0.01 in (a, b, and c), 480 

respectively. In all models ∆� = 2.5 mm, )� = 0.04; the deformation stages (1 to 4) 481 

correspond to the same )�� values as in the previous figure (see caption of Fig. 9). 482 

 483 

6 Discussion  484 

The width :� of deformation localization bands in rocks at the origin of the faults and 485 

fractures is typically less than a fraction of a millimeter (subscript � stands for real/natural). 486 

Numerical models of deformation banding with the numerical size of � = 10� can be 487 

qualified as large or even very large. If size � of the modeled object (rock mass or geological 488 
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structure) is 10 m, then the numerical element (zone) size is Δ� = �/√�� =4.6 cm for the 489 

indicated � value. The width of deformation bands :� in the numerical models is typically 490 

larger than Δ� and hence much larger than :�, :� >> :� (subscript � is for model). Since � 491 

can be hundreds of meters and kilometers, it is impossible to obtain deformation bands with 492 

realistic widths in most cases. Therefore, the convergence of the band thickness in numerical 493 

models like those in this study to a certain value using regularization procedures has a limited 494 

sense since this value will be very far from a realistic one anyway. On the other hand, such a 495 

convergence requires further model resolution refinement, as shown here. Therefore, one 496 

must accept that :� is larger (much larger) than :� and renounce the convergence of the band 497 

thickness with the model refinement. When using a viscous regularization like that in this 498 

paper, the introduction of a small viscosity (large ;) suffices to avoid the ill-posedness of the 499 

initial boundary value problem, although even this was not necessary for the models presented 500 

(compare, for instance, models in Figs. 10a and 10b). The effect of regularization should 501 

depend on the numerical code used and the details of numerical implementation. The dynamic 502 

relaxation procedure in FLAC3D, for example, provides a very diffusive integration scheme 503 

allowing to avoid the elastic structural snap backs during localization for any model 504 

refinement. 505 

Since :� ≠ :�, the constitutive model used in the numerical simulations cannot be exactly 506 

the same as that corresponding to natural material and defined from experimental data. It 507 

should be calibrated so that the energy dissipation during deformation localization and 508 

fracturing in the model is the same as in nature/experiment. Following Eq. (8), this means that 509 

)� in the model ()�� ) should be related to the corresponding value )�� for nature as )��/)�� ~:�/510 

:�. 511 
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The models in Figs. 9 and 10 correspond to a step in the sequential fracture infill in a 512 

competent layer sandwiched between incompetent layers when a new joint forms between 513 

two previously formed ones. The fracture initiation is preceded by the defused (stage 1 in 514 

Figs. 9 and 10) and then localized inelastic straining or damage within several initial pure 515 

dilation bands (stages 2 to 3), whose number depends on the model resolution (Fig. 9) and 516 

viscosity (Fig. 10). It remains unclear if these bands do form in reality and, if yes, how many 517 

they are. They can hardly be detected experimentally given a very low degree of material 518 

damage within these bands (the strength reduction there does not exceed ~1%). The number 519 

of the bands in the numerical models does not impact the following fracture initiation and 520 

propagation processes. Therefore, the inelastic strain in the central oval zones near the layer 521 

interfaces (stage 2 in Figs. 9 and 10) can be considered diffusive until its definitive 522 

localization within a propagating band (stage 3) evolving to fracture initiation and 523 

propagation from the layer interface to the layer center (stage 4). Note that both geological 524 

observations ((Helgeson and Aydin, 1991; Savalli and Engelder, 2005; de Joussineau et al., 525 

2005)) and experimental studies (Jorand et al., 2012; Chemenda, 2019) confirm that the 526 

fractures typically initiate from the interfaces of the fractured layer. 527 

The models in Figs. 9 and 10 allow us to appreciate the limits of the most common tool used 528 

to analyze and predict the jointing in the rocks, Linear Elastic Fracture Mechanics. This 529 

theory implicitly assumes inelastic straining only in a very small zone at the tip of the 530 

imposed initial crack or seed oriented in a "right" (vertical in the context of Figs. 9 and 10) 531 

direction. In the modeling approach proposed here, the initial defect or weak zone is not 532 

imposed but formed with the orientation defined by the local stress field. 533 

7 Conclusions 534 
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The fracturing of layered rocks with contrasting mechanical properties typical for sedimentary 535 

piles (basins) occurs in the brittle (competent) layers due to the tangential tractions generated 536 

at the frictional-cohesive interfaces between the adjacent layers. The fracturing process starts 537 

from inelastic straining or damage that should localize at a certain loading stage, leading to 538 

the fracture initiation. The details of this process were not clear and were frequently omitted 539 

in the models by introducing the initial microcracks (seeds) with certain lengths and 540 

orientations. Here we focus on these details and show for the first time that after initial elastic 541 

loading, the competent elastoplastic layer sandwiched between incompetent (less brittle) 542 

layers undergoes inelastic straining (damage) locally in the vicinity of the layer interfaces. 543 

This damage is first distributed and then localizes into narrow pure dilation bands where it is 544 

strongly accelerated and results in complete material failure and fracture initiation. Short 545 

initial fractures corresponding to the narrow bands of failed material are normal to the least 546 

local stress. They then propagate from the interfaces to the layer center with further extension, 547 

which agrees with geological observations and experimental studies. Since deformation 548 

localization is a bifurcation phenomenon, its numerical models are mesh-dependent and 549 

require an enrichment to eliminate or reduce this dependence. This issue is the subject of a 550 

careful study here with two regularization approaches. One is to ensure the same energy 551 

dissipation within the deformation/fracture bands for different mesh sizes Δ� (hence different 552 

band widths in the models) by integrating Δ� into the constitutive formulation. The classical 553 

viscous regularization applied allows to avoid the ill-posedness of the initial boundary value 554 

problem, although it has little effect on the results. The orientation of the deformation bands 555 

and the resulting fractures is defined by the constitutive low and stress orientation. However, 556 

in the numerical model it is also affected by the mesh geometry and notably by the grid lines. 557 

This effect was strongly reduced using double brick-wedge grids. The proposed modeling 558 

approach can be used for natural or induced fracture modeling in various contexts. 559 
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Figure captions 740 

Figure 1. Field examples of layered and fractured sedimentary rocks. (a) Alternating 741 

incompetent (mudrocks) and fractured competent (limestone) layers in Lilstock Bay, 742 

Somerset, UK (rock hammer for scale) from Schöpfer et al. (2011). (b) Thick densely 743 

fractured Urgonian limestone layers; Cassis, Provence, SE France from Chemenda et al. 744 

(2021). 745 

Figure 2. Setup of 3-layer models. (a) Series of alternating incompetent (pink) and competent 746 

(blue) layers. (b) An elementary (repeating) element of this series which corresponds to the 747 

complete three-layer modeling setup. (c) A half-symmetry modeling setup, with thicknesses 748 

of layers 1 and 2 being ��/2 and �/2, respectively. �� and �� are the velocities applied in the 749 

corresponding directions to layers 1 and 3. �� causes deformation and fracturing of layer 2 750 

and �� is to maintain constant average vertical (lithostatic) stress at the horizontal model 751 

boundaries. The �-normal model boundaries are fixed in the �-direction. The layers are 752 

separated by cohesive-frictional interfaces. The models are pre-stressed in the �- and �-753 

directions as indicated below. Layers 1 and 3 are purely elastic and layer 2 is elastoplastic. 754 

�� = �� = 0.2 m, � = 1 m, and � = 0.6 m. 755 

Figure 3. Composite yield surface ��(��, )*). (1) Tensile failure. (2) Shear failure. (3) Post 756 

failure (after complete failure). (4) Shows a zero-level of ��. The red point (circle) 757 

corresponds to the initial stresses �� = ���"#" and �� = 0 applied to the models. 758 

Figure 4. Setup of one-layer models (a) and grid geometries used (b to d). (b and c) Brick- and 759 

wedge-shaped grids, respectively. (d) Double-layer sheet grid, with the attached brick and 760 

wedge-shaped grids. � = 0.1 m, and � = 0.2 m. 761 
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Figure 5. Group 1. Evolution of strain localization and fracture (stages/columns 1 to 5) in 762 

three models (a to c) differing only by the ; value: in (a), ; = ∞; in (b), ; = 0.1, and in (c), 763 

; = 0.01. Deformation stages 1 to 5 correspond to )�� equal to −5 × 107�, −1.5 × 107�, 764 

−6 × 107�, −4.5 × 107r, and −7.8 × 107r, respectively. ∆� = 5 mm and )� = 0.02. All the 765 

models have wedge-shaped grids shown in Fig. 4c. 766 

Figure 6. Group 2. Impact of the grid geometry, resolution, and the regularization parameter ; 767 

on the dilation banding and structural stress-strain response. Final stages of strain localization 768 

and fracture are shown for five models with brick- (a) and wedge-shaped (b) meshes, 769 

respectively. The resolution of the models in columns 1 and 3 is ∆� = 5 mm, in columns 2 770 

and 4, 2.5 mm, and in column 5, 1.25 mm. In columns 1 and 2, ; = ∞, and in columns 3 to 5, 771 

; = 1 × 107�. (c to h) Nominal stress-strain curves ���()��) in the presented models. Since 772 

the models are pre-stressed to ��� close to −���, the curves start near the initial failure (yield) 773 

point except in (c), where the elastic loading stage (segment) is added to the curves in (d). The 774 

curves in (d and e) are respectively for the models in columns 1 and 2 (curve (c) is for column 775 

1 as well). Curves in (g), are for the regularized brick-shaped models in (a3 to a5) with 776 

different resolutions indicated on the plot. (h) Curves for the regularized models with the 777 

brick, wedge, and double brick-wedge grids corresponding to the curves of different colors as 778 

indicated in (h). Solid curves are for ∆� = 1.25 mm, and the dashed ones, for ∆� = 2.5 mm. 779 

Figure 7. Group 3. Final stages of strain localization and fracture in the models with brick (a), 780 

wedge (b), and double brick-wedge (c) grids. The columns 1 to 3 correspond to different 781 

orientations of the initial stress axes defined by angle � between �� (shown by the white 782 

dashed lines) and the vertical; � is 0°, 15°, and 30° in columns 1, 2, and 3, correspondingly. 783 

In column 4, � = 30°. The rotation of the initial stress axes is achieved by imposing the 784 
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corresponding normal and shear initial and boundary stresses. Models in columns 1 to 3 are 785 

inviscid (; = ∞), and in column 4, ; = 1 × 107�. In all models ∆� = 2.5 mm and )� = 0.02. 786 

Figure 8. Group 4. (a to d) Final stages of strain localization and fracture in the inviscid 787 

models with double brick-wedge grids and different )� and ∆� related by Eq. (8): (a) )� =788 

0.01 and ∆� = 10 mm; (b) )� = 0.02 and ∆� = 5 mm; (c) )� = 0.04 and ∆� = 2.5 mm; (d) 789 

)� = 0.08 and ∆� = 1.25 mm. (e) Nominal stress-strain curves from the models presented 790 

and other similar ones with different ∆� (and hence )�): for (1) ∆� = 0.625 mm; (2) ∆� =791 

1.25 mm; (3) ∆� = 2 mm; (4) ∆� = 2.5 mm; (5) ∆� = 2.7 mm; (6) ∆� = 5 mm; (7) ∆� = 10 792 

mm. (f) Nominal stress-strain curves obtained from other models with ∆� = 1.25 mm, )� =793 

0.08, and different ; indicated on this figure. 794 

Figure 9. Group 5. Four evolutionary stages (columns 1 to 4) of strain localization and 795 

fracture in five 3-layer inviscid models (lines a to e) with double brick-wedge grids for layer 796 

2; only this layer (its half, Fig. 2c) is shown. The models differ only by ∆� and )�; in (a to c), 797 

they are related by Eq. (8): (a) ∆� = 1.25 mm, )� = 0.08; (b) ∆� = 2.5 mm, )� = 0.04; (c) 798 

∆� = 5 mm, )� = 0.02. In (d), ∆� = 5 mm, )� = 0.022, and in (e), ∆� = 10 mm, )� =799 

0.012. The deformation stages shown (columns 1 to 4) correspond respectively to )�� of 800 

−6 × 107r, −9 × 107r, −2.1 × 107�, and −6 × 107�. (f) The stress-strain curves obtained 801 

from one-layer models for the same ∆� and )� as in the models a to e in this figure (the solid-802 

line curves are the same as the corresponding curves in Fig. 8e). 803 

Figure 10. Group 6. Four evolutionary stages (columns 1 to 4) of strain localization and 804 

fracture in three 3-layer models (lines a to c) with double brick-wedge grids for the shown 805 

layer 2. The models differ only in the ; value: it is ∞, 0.15, and 0.01 in (a, b, and c), 806 

respectively. In all models ∆� = 2.5 mm, )� = 0.04; the deformation stages (1 to 4) 807 

correspond to the same )�� values as in the previous figure (see caption of Fig. 9). 808 
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Nomenclature 809 

w   Young's modulus 810 

{   Poisson's ratio 811 

W   Shear modulus 812 

X   Bulk modulus 813 

)*   Accumulated inelastic (plastic) volume strain 814 

��( )*)  Tensile strength which is function of )* 815 

���   Initial (at )* = 0) tensile strength 816 

�&()*)   Unconfined (uniaxial) compression strength 817 

�&�   Initial value of �& 818 

%&, 9&   Material parameters in equations (1) and (4) 819 

9&�   Initial value of 9& 820 

�"V   Stress tensor, �, b = 1,2,3 821 

)"V   Strain tensor 822 

�"   Principal effective stresses, compression positive, � = 1,2,3 823 

�"#�()*) Equal to the major stress �� at the intersection of tensile and shear yield 824 

envelopes in the (��, ��) space (equation (2)) 825 

�"#��   Initial value of �"#� 826 

9   Dilatancy factor (equation (6)) 827 

)�   Inelastic volume strain at which ��, �&, �"#�, and 9 reach zero 828 

~ Density 829 

c5  and c3  Normal and shear stiffnesses of the interfaces 830 

v, �, �  Axes defined in Fig. 2 831 

���, �nn, ���  Horizontal and vertical (lithostatic) effective normal stresses 832 
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���"#", �nn"#", ���"#"  Initial effective stresses in the numerical models 833 

�� and ��  Rates applied to the model boundaries in the corresponding directions 834 

o"#�   Shear stress along the interfaces between the layers 835 

o�"#�   Interface shear strength 836 

q"#�   Interface cohesion 837 

p"#�   Interface friction coefficient 838 

��, �,, and �  Thicknesses of the layers defined in Figure 2a 839 

�   Length of the models 840 

�   Fracture spacing 841 

�   angle between �� and the vertical 842 

��� and )��  Nominal horizontal tension stresses and extension strains, respectively 843 

�, ��, �$  Yield functions defined in equations (1) 844 

Φ, Φ�, Φ$  Plastic potential functions defined in equations (4) 845 

a   Relaxation time, equation (10) 846 

;   Regularization (viscous) parameter, equation (12) 847 

Δ�   Numerical grid element (zone) size 848 

:�   Thickness of the deformation or fracture band in numerical models 849 

∆:   Change of the width of dilation bands during extension of the models 850 

I, )̃�   Defined in equation (8) 851 

 852 




