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Abstract. We introduce theRed-Blue Separation problem on graphs,
where we are given a graph G = (V,E) whose vertices are colored either
red or blue, and we want to select a (small) subset S ⊆ V , called red-

blue separating set, such that for every red-blue pair of vertices, there
is a vertex s ∈ S whose closed neighborhood contains exactly one of
the two vertices of the pair. We study the computational complexity
of Red-Blue Separation, in which one asks whether a given red-blue
colored graph has a red-blue separating set of size at most a given inte-
ger. We prove that the problem is NP-complete even for restricted graph
classes. We also show that it is always approximable in polynomial time
within a factor of 2 lnn, where n is the input graph's order. In contrast,
for triangle-free graphs and for graphs of bounded maximum degree, we
show that Red-Blue Separation is solvable in polynomial time when
the size of the smaller color class is bounded by a constant. However, on
general graphs, we show that the problem is W [2]-hard even when pa-
rameterized by the solution size plus the size of the smaller color class.
We also consider the problem Max Red-Blue Separation where the
coloring is not part of the input. Here, given an input graph G, we want
to determine the smallest integer k such that, for every possible red-blue-
coloring of G, there is a red-blue separating set of size at most k. We
derive tight bounds on the cardinality of an optimal solution of Max

Red-Blue Separation, showing that it can range from logarithmic in
the graph order, up to the order minus one. We also give bounds with re-
spect to related parameters. For trees however we prove an upper bound
of two-thirds the order. We then show that Max Red-Blue Separa-

tion is NP-hard, even for graphs of bounded maximum degree, but can
be approximated in polynomial time within a factor of O(ln2 n).
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1 Introduction

We introduce and study the Red-Blue Separation problem for graphs. Sepa-
ration problems for discrete structures have been studied extensively from vari-
ous perspectives. In the 1960s, Rényi [24] introduced the Separation problem
for set systems (a set system is a collection of sets over a set of vertices), which
has been rediscovered by various authors in di�erent contexts, see e.g. [2,6,17,23].
In this problem, one aims at selecting a solution subset S of sets from the input
set system to separate every pair of vertices, in the sense that the subset of
S corresponding to those sets to which each vertex belongs to, is unique. The
graph version of this problem (where the sets of the input set system are the
closed neighborhoods of a graph), called Identifying Code [18], is also ex-
tensively studied. These problems have numerous applications in areas such as
monitoring and fault-detection in networks [26], biological testing [23], and ma-
chine learning [20]. The Red-Blue Separation problem which we study here
is a red-blue colored version of Separation, where instead of all pairs we only
need to separate red vertices from blue vertices.

In the general version of the Red-Blue Separation problem, one is given a
set system (V,S) consisting of a set S of subsets of a set V of vertices which are
either blue or red; one wishes to separate every blue from every red vertex using a
solution subset C of S (here a set of C separates two vertices if it contains exactly
one of them). Motivated by machine learning applications, a geometric-based
special case of Red-Blue Separation has been studied in the literature, where
the vertices of V are points in the plane and the sets of S are half-planes [7]. The
classic problem Set Cover over set systems generalizes both Geometric Set
Cover problems and graph problemDominating Set (similarly, the set system
problem Separation generalizes bothGeometric Discriminating Code and
the graph problem Identifying Code). It thus seems natural to study the
graph version of Red-Blue Separation.

Problem de�nition. In the graph setting, we are given a graph G and a red-blue
coloring c : V (G) → {red, blue} of its vertices, and we want to select a (small)
subset S of vertices, called red-blue separating set, such that for every red-blue
pair r, b of vertices, there is a vertex from S whose closed neighborhood contains
exactly one of r and b. Equivalently, N [r] ∩ S 6= N [b] ∩ S, where N [x] denotes
the closed neighborhood of vertex x; the set N [x] ∩ S is called the code of x
(with respect to S), and thus all codes of blue vertices are di�erent from all
codes of red vertices. The smallest size of a red-blue separating set of (G, c) is
denoted by sepRB(G, c). Note that if a red and a blue vertex have the same closed
neighborhood, they cannot be separated. Thus, for simplicity, we will consider
only twin-free graphs, that is, graphs where no two vertices have the same closed
neighborhood. Also, for a twin-free graph, the vertex set V (G) is always a red-
blue separating set as all the vertices have a unique subset of neighbors. We have
the following associated computational problem.
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Red-Blue Separation

Input: A red-blue colored twin-free graph (G, c) and an integer k.
Question: Do we have sepRB(G, c) ≤ k?

It is also interesting to study the problem when the red-blue coloring is
not part of the input. For a given graph G, we thus de�ne the parameter
max-sepRB(G) which denotes the largest size, over each possible red-blue col-
oring c of G, of a smallest red-blue separating set of (G, c). The associated
decision problem is stated as follows.

Max Red-Blue Separation

Input: A twin-free graph G and an integer k.
Question: Do we have max-sepRB(G) ≤ k?
In Fig. 1, to note the di�erence between sepRB and max-sepRB, a path of 6 ver-
tices P6 is shown, where the vertices are colored red or blue.

(a)

v1 v2 v3 v4 v5 v6

(b)

v1 v2 v3 v4 v5 v6

Fig. 1. A path of 6 vertices where (a) sepRB(P6, c) = 1 and (b) max-sepRB(P6) = 3;
the members of the red-blue separating set are circled.

Our results. We show that Red-Blue Separation is NP-complete even for
restricted graph classes such as planar bipartite sub-cubic graphs, in the setting
where the two color classes1 have equal size. We also show that the problem is
NP-hard to approximate within a factor of (1− ε) lnn for every ε > 0, even for
split graphs2 of order n, and when one color class has size 1. On the other hand,
we show that Red-Blue Separation is always approximable in polynomial
time within a factor of 2 lnn. In contrast, for triangle-free graphs and for graphs
of bounded maximum degree, we prove that Red-Blue Separation is solvable
in polynomial time when the smaller color class is bounded by a constant (using
algorithms that are in the parameterized class XP, with the size of the smaller
color class as parameter). However, on general graphs, the problem is shown to
be W [2]-hard even when parameterized by the solution size plus the size of the
smaller color class. (This is in contrast with the geometric version of separating
points by half-planes, for which both parameterizations are known to be �xed-
parameter tractable [3,19].)

As the coloring is not speci�ed, max-sepRB(G) is a parameter that is worth
studying from a structural viewpoint. In particular, we study the possible values

1 One class consists of vertices colored red and the other class consists of vertices
colored blue.

2 A graph G = (V,E) is called a split graph when the vertices in V can be be parti-
tioned into an independent set and a clique.
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for max-sepRB(G). We show the existence of tight bounds on max-sepRB(G) in
terms of the order n of the graph G, proving that it can range from blog2 nc up
to n − 1 (both bounds are tight). For trees however we prove bounds involving
the number of support vertices (i.e. which have a leaf neighbor), which imply
that max-sepRB(G) ≤ 2n

3 . We also give bounds in terms of the (non-colored)
separation number. We then show that the associated decision problem Max

Red-Blue Separation is NP-hard, even for graphs of bounded maximum de-
gree, but can be approximated in polynomial time within a factor of O(ln2 n).

Related work. Red-Blue Separation has been studied in the geometric setting
of red and blue points in the Euclidean plane [3,5,22]. In this problem, one wishes
to select a small set of (axis-parallel) lines such that any two red and blue points
lie on the two sides of one of the solution lines. The motivation stems from the
Discretization problem for two classes and two features in machine learning,
where each point represents a data point whose coordinates correspond to the
values of the two features, and each color is a data class. The problem is useful
in a preprocessing step to transform the continuous features into discrete ones,
with the aim of classifying the data points [7,19,20]. This problem was shown
to be NP-hard [7] but 2-approximable [5] and �xed-parameter tractable when
parameterized by the size of a smallest color class [3] and by the solution size [19].
A polynomial time algorithm for a special case was recently given in [22].

The Separation problem for set systems (also known as Test Cover and
Discriminating Code) was introduced in the 1960s [24] and widely studied
from a combinatorial point of view [1,2,6,17] as well as from the algorithmic
perspective for the settings of classical, approximation and parameterized algo-
rithms [8,10,23]. The associated graph problem is called Identifying Code [18]
and is also extensively studied (see [21] for an online bibliography with almost
500 references as of January 2022); geometric versions of Separation have been
studied as well [9,15,16]. The Separation problem is also closely related to the
VC Dimension problem [27] which is very important in the context of machine
learning. In VC Dimension, for a given set system (V,S), one is looking for a
(large) set X of vertices that is shattered, that is, for every possible subset of X,
there is a set of S whose trace on X is the subset. This can be seen as �perfectly
separating� a subset of S using X; see [4] for more details on this connection.

Structure of the paper. We start with the algorithmic results on Red-Blue

Separation in Section 2. We then present the bounds onmax-sepRB in Section 3
and the hardness result for Max Red-Blue Separation in Section 4. Due to
space constraints, we have omitted some proofs or parts of proofs.

2 Complexity and algorithms for Red-Blue Separation

We will prove some algorithmic results for Red-Blue Separation by reducing
to or from the following problems.
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Set Cover

Input: A set of elements U , a family S of subsets of U and an integer k.
Question: Does their exist a cover C ⊆ S, with |C| ≤ k such that

⋃
C∈C C = U?

Dominating Set

Input: A graph G = (V,E) and an integer k.
Question: Does there exist a set D ⊆ V of size k with ∀v ∈ V,N [v] ∩D 6= ∅?

2.1 Hardness

Theorem 1. Red-Blue Separation cannot be approximated within a factor
of (1 − ε) · lnn for any ε > 0 even when the smallest color class has size 1
and the input is a split graph of order n, unless P = NP. Moreover, Red-Blue
Separation is W[2]-hard when parameterized by the solution size together with
the size of the smallest color class, even on split graphs.

Proof. For an instance ((U,S), k) of Set-Cover, we construct in polynomial
time an instance ((G, c), k) of Red-Blue Separation where G is a split graph
and one color class has size 1. The statement will follow from the hardness of
approximating Min Set Cover proved in [11], and from the fact that Set
Cover is W[2]-hard when parameterised by the solution size [12].

We create the graph (G, c) by �rst creating vertices corresponding to all the
sets and the elements. We connect a vertex ui corresponding to an element i ∈ U
to a vertex vj corresponding to a set Sj ∈ S if ui ∈ Sj . We color all these vertices
blue. We add two isolated blue vertices b and b′. We connect all the vertices of
type ui ∈ U to each other. Also, we add a red vertex r and connect all vertices
ui ∈ U to r. Now, note that the vertices U ∪ {r} form a clique whereas the
vertices vj along with b and b′ form an independent set. Thus, our constructed
graph (G, c) with the coloring c is a split graph. See Fig. 2.

Sets Elements

{}

{}

r

u1

un

ui

v1

vj

vm

b
b’

Fig. 2. Reduction from Set Cover to Red-Blue Separation of Theorem 1.

Claim 1. S has a set cover of size k if and only if G has a red-blue separating
set of size at most k + 1. ut
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Theorem 2. Red-Blue Separation is NP-hard for bipartite planar sub-cubic
graphs of girth at least 12 when the color classes have almost the same size.

Proof. We reduce from Dominating Set, which is NP-hard for bipartite planar
sub-cubic graphs with girth at least 12 that contain some degree-2 vertices [28].
We reduce any instance (G, k) of Dominating Set to an instance ((H, c), k′)
of Red-Blue Separation, where k′ = k + 1 and the number of red and blue
vertices in c di�er by at most 2.

HRG HB

construction

v vB vR

u1

u2

u3

u4

Fig. 3. Reduction from Dominating Set to Red-Blue Separation of Theorem 2.

Construction. We create two disjoint copies of G namely HB and HR and color
all vertices of HB blue and all vertices of HR red. Select an arbitrary vertex v
of degree-2 in G (we may assume such a vertex exists in G by the reduction of
[28]) and look at its corresponding vertices vR ∈ V (HR) and vB ∈ V (HB). We
connect vR and vB with the head of the path u1, u2, u3, u4 as shown in Fig. 3.
The tail of the path, i.e. the vertex u4, is colored blue and the remaining three
vertices u1, u2 and u3 are colored red. Our �nal graph H is the union of HR, HB

and the path u1, u2, u3, u4 and the coloring c as described. Note that if G is a
connected bipartite planar sub-cubic graph of girth at least g, then so is H (since
v was selected as a vertex of degree-2). We make the following claim.

Claim 2. The instance (G, k) is a YES-instance of Dominating Set if and only
if sepRB(H, c) ≤ k′ = k + 1. ut

In the previous reduction, we could choose any class of instances for which
Dominating Set is known to be NP-hard. We could also simply take two copies
of the original graph and obtain a coloring with two equal color class sizes (but
then we obtain a disconnected instance). In contrast, in the geometric setting,
the problem is �xed-parameter-tractable when parameterised by the size of the
smallest color class [3], and by the solution size [19]. It is also 2-approximable [5].

2.2 Positive algorithmic results

We start with a reduction to Set Cover implying an approximation algorithm.

Proposition 3. Red-Blue Separation has a polynomial time (2 lnn)-factor
approximation algorithm.
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Proposition 4. Let (G, c) be a red-blue colored triangle-free and twin-free graph
with R,B the two color classes. Then, sepRB(G, c) ≤ 3min{|R|, |B|}.

Proof. Without loss of generality, we assume |R| ≤ |B|. We construct a red-
blue separating set S of (G, c). First, we add all red vertices to S. It remains to
separate every red vertex from its blue neighbors. If a red vertex v has at least
two neighbors, we add (any) two such neighbors to S. Since G is triangle-free,
no blue neighbor of v is in the closed neighborhood of both these neighbors of
v, and thus v is separated from all its neighbors. If v had only one neighbor w,
and it was blue, then we separate w from v by adding one arbitrary neighbor of
w (other than v) to S. Since G is triangle-free, v and w are separated. Thus, we
have built a red-blue separating set S of size at most 3|R|. ut

Proposition 5. Let (G, c) be a red-blue colored twin-free graph with maximum
degree ∆ ≥ 3. Then, sepRB(G, c) ≤ ∆min{|R|, |B|}.

Proof. Without loss of generality, let us assume |R| ≤ |B|. We construct a red-
blue separating set S of (G, c). Let v be any red vertex. If there is a blue vertex
w whose closed neighborhood contains all neighbors of v (w could be a neighbor
of v), we add both v and w to S. If v is adjacent to w, since they cannot be
twins, there must be a vertex z that can separate v and w; we add z to S. Now,
v is separated from every blue vertex in G.

If such a vertex w does not exist, then we add all neighbors of v to S. Now
again, v is separated from every vertex of G. Thus, we have built a red-blue
separating set S of size at most ∆|R|. ut

The previous propositions imply that Red-Blue Separation can be solved
in XP time for the parameter �size of a smallest color class� on triangle-free
graphs and on graphs of bounded degree (by a brute-force search algorithm).
This is in contrast with the fact that in general graphs, it remains hard even
when the smallest color class has size 1 by Theorem 1.

Theorem 6. Red-Blue Separation on graphs whose vertices belong to the
color classes R and B can be solved in time O(n3min{|R|,|B|}) on triangle-free
graphs and in time O(n∆min{|R|,|B|}) on graphs of maximum degree ∆.

3 Extremal values and bounds for max-sepRB

We denote by sep(G) the smallest size of a (non-colored) separating set of
G, that is, a set that separates all pairs of vertices. We will use the relation
max-sepRB(G) ≤ sep(G), which clearly holds for every twin-free graph G.

3.1 Lower bounds for general graphs

We can have a large twin-free colored graph with solution size 2 (for example, in
a large blue path with a single red vertex, two vertices su�ce). We show that in
every twin-free graph, there is always a coloring that requires a large solution.
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Theorem 7. For any twin-free graph G of order n ≥ 1 and n 6∈ {8, 9, 16, 17},
we have max-sepRB(G) ≥ blog2(n)c.

Proof. Let G be a twin-free graph of order n with max-sepRB(G) = k. There
are 2n di�erent red-blue colorings of G. For each such coloring c, we have
sepRB(G, c) ≤ k. Consider the set of vertex subsets of G which are separat-
ing sets of size k for some red-blue colorings of G. Notice that each red-blue
coloring has a separating set of cardinality k. There are at most

(
n
k

)
≤ nk such

sets.
Consider such a separating set S and consider the set I(S) of subsets S′ of S

for which there exists a vertex v of G with N [v]∩ S = S′. Let iS be the number
of these subsets: we have iS ≤ 2|S| ≤ 2k. If S is a separating set for (G, c),
then all vertices having the same intersection between their closed neighborhood

and S must receive the same color by c. Thus, there are at most 2iS ≤ 22
k

red-blue colorings of G for which S is a separating set. Overall, we thus have

2n ≤
(
n
k

)
22

k ≤ nk22k , and thus n ≤ k log2(n) + 2k.
We now claim that this implies that k ≥ log2(n − log2(n) log2(n)). Suppose

to the contrary that this is not the case, then we would obtain:

n < log2(n− log2(n) log2(n)) log2(n) + n− log2(n) log2(n)
n < log2(n) log2(n) + n− log2(n) log2(n)

And thus n < n, a contradiction. Since k is an integer, we actually have k ≥
dlog2(n − log2(n) log2(n))e. To conclude, one can check that whenever n ≥ 70,
we have dlog2(n− log2(n) log2(n))e ≥ blog2(n)c. Moreover, if we compute values

for 2n −
(
n
k

)
22

k

when 1 ≤ n ≤ 69 and k = blog2(n)c − 1, then we observe that
this is negative only when n ∈ {8, 9, 16, 17}. Thus, blog2(n)c is a lower bound
for max-sepRB(G) as long as n 6∈ {8, 9, 16, 17}. ut

The bound of Theorem 7 is tight for in�nitely many values of n.

Proposition 8. For any integers k ≥ 1 and n = 2k, there exists a graph G of
order n with max-sepRB(G) = k.

We next relate parameter max-sepRB to other graph parameters.

Theorem 9. Let G be a graph on n vertices. Then, sep(G) ≤ min{dlog2(n)e ·
max-sepRB(G), dlog2(∆(G) + 1)e · max-sepRB(G) + γ(G)}, where γ(G) is the
domination number of G and ∆(G) its maximum degree.

Proof. Let G be a graph on 2k−1 + 1 ≤ n ≤ 2k vertices for some integer k. We
denote each vertex by a di�erent k-length binary word x1x2 · · ·xk where each
xi ∈ {0, 1}. Moreover, we give k di�erent red-blue colorings c1, . . . , ck such that
vertex x1x2 · · ·xk is red in coloring ci if and only if xi = 0 and blue otherwise.
For each i, let Si be an optimal red-blue separating set of (G, ci). We have

|Si| ≤ max-sepRB(G) for each i. Let S =
⋃k
i=1 Si. Now, |S| ≤ k·max-sepRB(G) =

dlog2(n)e ·max-sepRB(G). We claim that S is a separating set of G. Assume to
the contrary that for two vertices x = x1x2 · · ·xk and y = y1y2 · · · yk, N [x]∩S =
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N [y]∩S. For some i, we have yi 6= xi. Thus, in coloring ci, vertices x and y have
di�erent colors and hence, there is a vertex s ∈ ci such that s ∈ N [y]4N [x], a
contradiction which proves the �rst bound.

Let S be an optimal red-blue separating set for such a coloring c and let
D be a minimum-size dominating set in G; S ∪D is also a red-blue separating
set for coloring c. At most ∆(G) + 1 vertices of G may have the same closed
neighborhood in D. Thus, we may again choose dlog2(∆(G) + 1)e colorings and
optimal separating sets for these colorings, each coloring (roughly) halving the
number of vertices having the same vertices in the intersection of separating
set and their closed neighborhoods. Since each of these sets has size at most
max-sepRB(G), we get the second bound. ut

We do not know whether the previous bound is reached, but as seen next,
there are graphs G such that sep(G) = 2max-sepRB(G).

Proposition 10. Let G = Kk1,...,kt be a complete t-partite graph for t ≥ 2,
ki ≥ 5 odd for each i. Then sep(G) = n− t and max-sepRB(G) = (n− t)/2.

3.2 Upper bound for general graphs

We will use the following classic theorem in combinatorics to show that we can
always spare one vertex in the solution of Max Red-Blue Separation.

Theorem 11 (Bondy's Theorem [2]). Let V be an n-set with a family A =
{A1,A2, . . . ,An} of n distinct subsets of V . There is an (n− 1)-subset X of V
such that the sets A1 ∩X,A2 ∩X,A3 ∩X, . . . ,An ∩X are still distinct.

Corollary 12. For any twin-free graph G on n vertices, we have max-sepRB(G)
≤ sep(G) ≤ n− 1.

This bound is tight for every even n for complements of half-graphs (studied
in the context of identifying codes in [14]).

De�nition 13 (Half-graph [13]). For any integer k ≥ 1, the half-graph Hk

is the bipartite graph on vertex sets {v1, . . . , vk} and {w1, . . . , wk}, with an edge
between vi and wj if and only if i ≤ j.

The complement Hk of Hk thus consists of two cliques {v1, . . . , vk} and
{w1, . . . , wk} and with an edge between vi and wj if and only if i > j.

Proposition 14. For every k ≥ 1, we have max-sepRB(Hk) = 2k − 1.

3.3 Upper bound for trees

We will now show that a much better upper bound holds for trees.
Degree-1 vertices are called leaves and the set of leaves of the tree T is L(T ).

Vertices adjacent to leaves are called support vertices, and the set of support
vertices of T is denoted S(T ). We denote `(T ) = |L(T )| and s(T ) = |S(T )|. The
set of support vertices with exactly i adjacent leaves is denoted Si(T ) and the
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set of leaves adjacent to support vertices in Si(T ) is denoted Li(T ). Observe
that |L1(T )| = |S1(T )|. Moreover, let L+(T ) = L(T ) \ L1(T ) and S+(T ) =
S(T ) \ S1(T ). We denote the sizes of these four types of sets si(T ), `i(T ), s+(T )
and `+(T ).

To prove our upper bound for trees, we need Theorems 15 and 16.

Theorem 15. For any tree T of order n ≥ 5, we have max-sepRB(T ) ≤ n+s(T )
2 .

Proof. Observe that the claim holds for stars (select the vertices of the smallest
color class among the leaves, and at least two leaves). Thus, we assume that
s(T ) ≥ 2. Let c be a coloring of T such that max-sepRB(T ) = sepRB(T, c).

We build two separating sets C1 and C2; the idea is that one of them is small.
We choose a non-leaf vertex x and add to the �rst set C ′1 every vertex at odd
distance from x and every leaf. If there is a support vertex u ∈ S1(T )∩C ′1 and an
adjacent leaf v ∈ L1(T )∩N(u), we create a separating set C1 from C ′1 by shifting
the vertex away from leaf v to some vertex w ∈ N(u) \ L(T ). We construct in a
similar manner sets C ′2 and C2, except that we add the vertices at even distance
from x to C ′2 and do the shifting when u ∈ S1(T ) has even distance to x.

Claim 3. Both C1 and C2 are separating sets.

Let us denote by NS3(T ) a smallest set of vertices in T such that for each
vertex v ∈ S3(T ) which has N(v) ∩ S+(T ) = ∅, we have at least one vertex
u ∈ N(v) \ L(T ) in NS3(T ) (such a set exists since T is not a star).

We assume that out of the two sets C ′1 and C
′
2, C

′
a (a ∈ {1, 2}) has less vertices

among the vertices in V (T )\ (L(T )∪S+(T )∪NS3(T )). In particular, it contains
at most half of those vertices and we have |C ′a \ (L(T ) ∪ S+(T ) ∪ NS3(T ))| ≤
(n− `(T )− s+(T )− |NS3(T )|)/2. Now, we will construct set C from C ′a. Let us
start by having each vertex in C ′a be in C. Let us then, for each support vertex
u ∈ S+(T ), remove from C every adjacent leaf w ∈ L+(T )∩N(u) such that w is
in the more common color class within the vertices in N(u)∩L+(T ) in coloring
c. We then add some vertices to C as follows. For u ∈ Si(T ), i ≥ 4, we add u to
C and some leaves so that there are at least two vertices in N(u) ∩ C. We have
at most |L(T ) ∩N [u]|/2 + 1 vertices in C ∩ (N [u] ∩ L(T ) ∪ {u}).

For i = 3, we add u and any v ∈ NS3(T ) ∩ N(u) \ C, depending on which
one already belongs to C. Then, if all leaves in N(u) have the same color, we
add one of them to C. Hence, we have |C ∩ (L2(T ) ∪NS3(T ))|/s3(T ) ≤ 2.

Finally, for i = 2, if the two leaves have same color and u 6∈ C ′a, we add u and
one of the two leaves to C. If the two leaves have the same color and u ∈ C ′a,
we add a non-leaf neighbor of u to C. If the leaves have di�erent colors, one of
them, say v, has the same color as u. We add u to C and shift the vertex in C
in the leaves so that v is in C. We added at most two vertices to C in this case.
Notice that now we have S+(T ) ⊆ C.

Each time, we added to C at most half the considered vertices in N(u), and
at most one additional vertex. After these changes, we shift some vertices in C
away from L1(T ) the same way we built Ca from C ′a. As |C ′a \ (L(T ) ∪ S+(T ) ∪
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NS3(T ))| ≤ (n− `(T )− s+(T )− |NS3(T )|)/2, we get:

|C| ≤ n− `(T )− s+(T )− |NS3(T )|
2

+ `1(T ) +
`+(T ) + |NS3(T )|

2
+ s+(T )

=
n+ `1(T ) + s+(T )

2
=
n+ s(T )

2
.

Claim 4. C is a red-blue separating set for coloring c. ut

The upper bound of Theorem 15 is tight. Consider, for example, a path on
eight vertices. Also, the trees presented in Proposition 18 are within 1/2 from
this upper bound. In the following theorem, we o�er another upper bound for
trees which is useful when the number of support vertices is large.

Theorem 16. For any tree T of order n ≥ 5, sep(T ) ≤ n− s(T ).

The following corollary is a direct consequence of Theorems 15 and 16. In-
deed, we have max-sepRB(T ) ≤ min{n− s(T ), (n+ s(T ))/2}.

Corollary 17. For any tree T of order n ≥ 5, we have max-sepRB(T ) ≤ 2n
3 .

We next show that Corollary 17 (and Theorem 15) is not far from tight.

Proposition 18. For any k ≥ 1, there is a tree T of order n = 5k + 1 with

max-sepRB(T ) =
3(n−1)

5 = n+s(T )−1
2 .

4 Algorithmic results for Max Red-Blue Separation

The problem Max Red-Blue Separation does not seem to be naturally in
the class NP (it is in the second level of the polynomial hierarchy). Nevertheless,
we show that it is NP-hard by reduction from a special version of 3-SAT [25].

3-SAT-2l

Input: A set of m clauses C = {c1, . . . , cm} each with at most three literals, over
n Boolean variables X = {x1, . . . , xn}, and each literal appears at most twice.
Question: Is there an assignment of X where each clause has a true literal?

Theorem 19. Max Red-Blue Separation is NP-hard even for graphs of
maximum degree 12.

Proof. To show hardness we reduce from the 3-SAT-2l problem. Given an in-
stance σ of 3-SAT-2l with m clauses and n variables, we create an instance
(G, k) of Max Red-Blue Separation as follows.

First let us explain the construction of a domination gadget and its properties.
A domination gadget on vertices v1 and v2 is represented in Fig. 4. The vertices
v1 and v2 may be connected to each other or to some other vertices which
is represented by the dashed edges. Both v1 and v2 are also connected to the
vertices u1, u2, u3 and u4 as shown in the �gure. Next we have a clique K10



12 S. R. Dev, S. Dey, F. Foucaud, R. Klasing, T. Lehtilä

domination gadget

v1

v2

x x

x1

x2

y y

y1

y2

z1

z2

z z

c1

c2

variable gadget

clause gadget

u1

u2

u3

u4

v1

v2

p4

q3

Fig. 4. Reduction from 3-SAT-2l to Max Red-Blue Separation.

consisting of the vertices {p1, . . . , p6, q1, . . . , q4}. Every vertex pi is connected to
a unique pair of vertices from {u1, u2, u3, u4} and every vertex qj is connected
to a unique triple of vertices from {u1, u2, u3, u4}. For example in the �gure we
have p4 connected with the pair of vertices u2 and u3 and q3 connected with the
triplet of vertices u1, u3 and u4.

Let H(v1, v2) be a subgraph of some graph G such that H is connected to
the rest of G only by the vertices v1 and v2. We de�ne a worst-coloring of G as
any red-blue coloring of G where sepRB(G, c) = max-sepRB(G). We make the
following claim.

Claim 5. For any worst-coloring c of G the optimal red-blue separating code of
(G, c) will always contain the vertices u1, u2, u3 and u4.

The variable gadget for a variable x consists of the graph H(x1, x2) and
H(x, x) with additional edges (x1, x2), (x1, x) and (x1, x). If x1 and x2 are colored
di�erently, then either x or x needs to be in the red-blue separating set. Selecting
at least one of x or x also separates x and x themselves. The clause gadget for a
clause c = (x∨ y ∨ z) is H(c1, c2), where c1 is connected to the vertices x, y and
z. If c1 and c2 are colored di�erently, then the red-blue separating set should
contain at least one of x, y or z in order to separate them. This is used to show
the following, and complete the proof.

Claim 6. σ is satis�able if and only if max-sepRB(G) ≤ k = 4m+ 9n. ut

We can use Theorem 9 and a reduction to Set Cover to show the following.

Theorem 20. Max Red-Blue Separation can be approximated within a fac-
tor of O((lnn)2) on graphs of order n in polynomial time.
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5 Conclusion

We have initiated the study of Red-Blue Separation and Max Red-Blue

Separation on graphs, problems which seem natural given the interest that
their geometric version has gathered, and the popularity of its �non-colored�
variants Identifying Code on graphs or Test Cover on set systems.

When the coloring is part of the input, the solution size of Red-Blue Sep-
aration can be as small as 2, even for large instances; however, we have seen
that this is not possible forMax Red-Blue Separation sincemax-sepRB(G) ≥
blog2(n)c for twin-free graphs of order n. max-sepRB(G) can be as large as n−1
in general graphs, yet, on trees, it is at most 2n/3 (we do not know if this is
tight, or if the upper bound of 3n/5, which would be best possible, holds). It
would also be interesting to see if other interesting upper or lower bounds can
be shown for other graph classes.

We have shown that sep(G) ≤ dlog2(n)e · max-sepRB(G). Is it true that
sep(G) ≤ 2max-sepRB(G)? As we have seen, this would be tight.

We have also shown that Max Red-Blue Separation is NP-hard, yet it
does not naturally belong to NP. Is the problem actually hard for the second
level of the polynomial hierarchy?
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