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We introduce and study the Red-Blue Separation problem for graphs. Separation problems for discrete structures have been studied extensively from various perspectives. In the 1960s, Rényi [24] introduced the Separation problem for set systems (a set system is a collection of sets over a set of vertices), which has been rediscovered by various authors in dierent contexts, see e.g. [2,6,17,23].

In this problem, one aims at selecting a solution subset S of sets from the input set system to separate every pair of vertices, in the sense that the subset of S corresponding to those sets to which each vertex belongs to, is unique. The graph version of this problem (where the sets of the input set system are the closed neighborhoods of a graph), called Identifying Code [18], is also extensively studied. These problems have numerous applications in areas such as monitoring and fault-detection in networks [26], biological testing [23], and machine learning [20]. The Red-Blue Separation problem which we study here is a red-blue colored version of Separation, where instead of all pairs we only need to separate red vertices from blue vertices.

In the general version of the Red-Blue Separation problem, one is given a set system (V, S) consisting of a set S of subsets of a set V of vertices which are either blue or red; one wishes to separate every blue from every red vertex using a Problem denition. In the graph setting, we are given a graph G and a red-blue coloring c : V (G) → {red, blue} of its vertices, and we want to select a (small) subset S of vertices, called red-blue separating set, such that for every red-blue pair r, b of vertices, there is a vertex from S whose closed neighborhood contains exactly one of r and b.

Equivalently, N [r] ∩ S = N [b] ∩ S, where N [x] denotes the closed neighborhood of vertex x; the set N [x] ∩ S is called the code of x
(with respect to S), and thus all codes of blue vertices are dierent from all codes of red vertices. The smallest size of a red-blue separating set of (G, c) is denoted by sep RB (G, c). Note that if a red and a blue vertex have the same closed neighborhood, they cannot be separated. Thus, for simplicity, we will consider only twin-free graphs, that is, graphs where no two vertices have the same closed neighborhood. Also, for a twin-free graph, the vertex set V (G) is always a redblue separating set as all the vertices have a unique subset of neighbors. We have the following associated computational problem.

he Red-Blue Separation prolem on grphs Q Red-Blue Separation Input: A red-blue colored twin-free graph (G, c) and an integer k. Question: Do we have sep RB (G, c) ≤ k?

It is also interesting to study the problem when the red-blue coloring is not part of the input. For a given graph G, we thus dene the parameter max-sep RB (G) which denotes the largest size, over each possible red-blue coloring c of G, of a smallest red-blue separating set of (G, c). The associated decision problem is stated as follows.

Max Red-Blue Separation

Input: A twin-free graph G and an integer k.

Question: Do we have max-sep RB (G) ≤ k?

In Fig. 1, to note the dierence between sep RB and max-sep RB , a path of 6 vertices P 6 is shown, where the vertices are colored red or blue.

(a) 1. e pth of T verties where @A sepRB(P6, c) = 1 nd @A max-sepRB(P6) = 3Y the memers of the redElue seprting set re irledF Our results. We show that Red-Blue Separation is NP-complete even for restricted graph classes such as planar bipartite sub-cubic graphs, in the setting where the two color classes 1 have equal size. We also show that the problem is NP-hard to approximate within a factor of (1 -) ln n for every > 0, even for split graphs 2 of order n, and when one color class has size 1. On the other hand, we show that Red-Blue Separation is always approximable in polynomial time within a factor of 2 ln n. In contrast, for triangle-free graphs and for graphs of bounded maximum degree, we prove that Red-Blue Separation is solvable in polynomial time when the smaller color class is bounded by a constant (using algorithms that are in the parameterized class XP, with the size of the smaller color class as parameter). However, on general graphs, the problem is shown to be W [2]-hard even when parameterized by the solution size plus the size of the smaller color class. (This is in contrast with the geometric version of separating points by half-planes, for which both parameterizations are known to be xedparameter tractable [3,19].) As the coloring is not specied, max-sep RB (G) is a parameter that is worth studying from a structural viewpoint. In particular, we study the possible values 1 yne lss onsists of verties olored red nd the other lss onsists of verties olored blueF 2 e grph G = (V, E) is lled split graph when the verties in V n e e prtiE tioned into n independent set nd liqueF for max-sep RB (G). We show the existence of tight bounds on max-sep RB (G) in terms of the order n of the graph G, proving that it can range from log 2 n up to n -1 (both bounds are tight). For trees however we prove bounds involving the number of support vertices (i.e. which have a leaf neighbor), which imply that max-sep RB (G) ≤ 2n 3 . We also give bounds in terms of the (non-colored) separation number. We then show that the associated decision problem Max Red-Blue Separation is NP-hard, even for graphs of bounded maximum degree, but can be approximated in polynomial time within a factor of O(ln 2 n).
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Related work. Red-Blue Separation has been studied in the geometric setting of red and blue points in the Euclidean plane [3,5,22]. In this problem, one wishes to select a small set of (axis-parallel) lines such that any two red and blue points lie on the two sides of one of the solution lines. The motivation stems from the Discretization problem for two classes and two features in machine learning, where each point represents a data point whose coordinates correspond to the values of the two features, and each color is a data class. The problem is useful in a preprocessing step to transform the continuous features into discrete ones, with the aim of classifying the data points [7,19,20]. This problem was shown to be NP-hard [7] but 2-approximable [5] and xed-parameter tractable when parameterized by the size of a smallest color class [3] and by the solution size [19].

A polynomial time algorithm for a special case was recently given in [22].

The Separation problem for set systems (also known as Test Cover and Discriminating Code) was introduced in the 1960s [24] and widely studied from a combinatorial point of view [1,2,6,17] as well as from the algorithmic perspective for the settings of classical, approximation and parameterized algorithms [8,10,23]. The associated graph problem is called Identifying Code [18] and is also extensively studied (see [21] for an online bibliography with almost 500 references as of January 2022); geometric versions of Separation have been studied as well [9,15,16]. The Separation problem is also closely related to the VC Dimension problem [27] which is very important in the context of machine learning. In VC Dimension, for a given set system (V, S), one is looking for a (large) set X of vertices that is shattered, that is, for every possible subset of X, there is a set of S whose trace on X is the subset. This can be seen as perfectly separating a subset of S using X; see [4] for more details on this connection.

Structure of the paper. We start with the algorithmic results on Red-Blue Separation in Section 2. We then present the bounds on max-sep RB in Section 3 and the hardness result for Max Red-Blue Separation in Section 4. Due to space constraints, we have omitted some proofs or parts of proofs.

Complexity and algorithms for Red-Blue Separation

We will prove some algorithmic results for Red-Blue Separation by reducing to or from the following problems.

he Red-Blue Separation prolem on grphs

S Set Cover

Input: A set of elements U , a family S of subsets of U and an integer k. Question: Does their exist a cover C ⊆ S, with |C| ≤ k such that C∈C C = U ?

Dominating Set

Input: A graph G = (V, E) and an integer k.

Question: Does there exist a set D ⊆ V of size k with ∀v ∈ V, N [v] ∩ D = ∅?
2.1 Hardness Theorem 1. Red-Blue Separation cannot be approximated within a factor of (1 -) • ln n for any > 0 even when the smallest color class has size 1 and the input is a split graph of order n, unless P = NP. Moreover, Red-Blue Separation is W[2]-hard when parameterized by the solution size together with the size of the smallest color class, even on split graphs.

Proof. For an instance ((U, S), k) of Set-Cover, we construct in polynomial time an instance ((G, c), k) of Red-Blue Separation where G is a split graph and one color class has size 1. The statement will follow from the hardness of approximating Min Set Cover proved in [11], and from the fact that Set Cover is W[2]-hard when parameterised by the solution size [12].

We create the graph (G, c) by rst creating vertices corresponding to all the sets and the elements. We connect a vertex u i corresponding to an element i ∈ U to a vertex v j corresponding to a set S j ∈ S if u i ∈ S j . We color all these vertices blue. We add two isolated blue vertices b and b . We connect all the vertices of type u i ∈ U to each other. Also, we add a red vertex r and connect all vertices u i ∈ U to r. Now, note that the vertices U ∪ {r} form a clique whereas the vertices v j along with b and b form an independent set. Thus, our constructed graph (G, c) with the coloring c is a split graph. See Fig. 2.

Sets

Elements Theorem 2. Red-Blue Separation is NP-hard for bipartite planar sub-cubic graphs of girth at least 12 when the color classes have almost the same size.
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Proof. We reduce from Dominating Set, which is NP-hard for bipartite planar sub-cubic graphs with girth at least 12 that contain some degree-2 vertices [28].

We reduce any instance (G, k) of Dominating Set to an instance ((H, c), k ) of Red-Blue Separation, where k = k + 1 and the number of red and blue vertices in c dier by at most 2.
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Fig. 3. edution from Dominating Set to Red-Blue Separation of heorem PF Construction. We create two disjoint copies of G namely H B and H R and color all vertices of H B blue and all vertices of H R red. Select an arbitrary vertex v of degree-2 in G (we may assume such a vertex exists in G by the reduction of [28]) and look at its corresponding vertices v R ∈ V (H R ) and v B ∈ V (H B ). We connect v R and v B with the head of the path u 1 , u 2 , u 3 , u 4 as shown in Fig. 3. The tail of the path, i.e. the vertex u 4 , is colored blue and the remaining three vertices u 1 , u 2 and u 3 are colored red. Our nal graph H is the union of H R , H B and the path u 1 , u 2 , u 3 , u 4 and the coloring c as described. Note that if G is a connected bipartite planar sub-cubic graph of girth at least g, then so is H (since v was selected as a vertex of degree-2). We make the following claim.

Claim 2. The instance (G, k) is a YES-instance of Dominating Set if and only

if sep RB (H, c) ≤ k = k + 1.
In the previous reduction, we could choose any class of instances for which Dominating Set is known to be NP-hard. We could also simply take two copies of the original graph and obtain a coloring with two equal color class sizes (but then we obtain a disconnected instance). In contrast, in the geometric setting, the problem is xed-parameter-tractable when parameterised by the size of the smallest color class [3], and by the solution size [19]. It is also 2-approximable [5].

Positive algorithmic results

We start with a reduction to Set Cover implying an approximation algorithm.

Proposition 3. Red-Blue Separation has a polynomial time (2 ln n)-factor approximation algorithm. Proof. Without loss of generality, we assume |R| ≤ |B|. We construct a redblue separating set S of (G, c). First, we add all red vertices to S. It remains to separate every red vertex from its blue neighbors. If a red vertex v has at least two neighbors, we add (any) two such neighbors to S. Since G is triangle-free, no blue neighbor of v is in the closed neighborhood of both these neighbors of v, and thus v is separated from all its neighbors. If v had only one neighbor w, and it was blue, then we separate w from v by adding one arbitrary neighbor of w (other than v) to S. Since G is triangle-free, v and w are separated. Thus, we have built a red-blue separating set S of size at most 3|R|.

Proposition 5. Let (G, c) be a red-blue colored twin-free graph with maximum

degree ∆ ≥ 3. Then, sep RB (G, c) ≤ ∆ min{|R|, |B|}.
Proof. Without loss of generality, let us assume |R| ≤ |B|. We construct a redblue separating set S of (G, c). Let v be any red vertex. If there is a blue vertex w whose closed neighborhood contains all neighbors of v (w could be a neighbor of v), we add both v and w to S. If v is adjacent to w, since they cannot be twins, there must be a vertex z that can separate v and w; we add z to S. Now, v is separated from every blue vertex in G.

If such a vertex w does not exist, then we add all neighbors of v to S. Now again, v is separated from every vertex of G. Thus, we have built a red-blue separating set S of size at most ∆|R|.

The previous propositions imply that Red-Blue Separation can be solved in XP time for the parameter size of a smallest color class on triangle-free graphs and on graphs of bounded degree (by a brute-force search algorithm). This is in contrast with the fact that in general graphs, it remains hard even when the smallest color class has size 1 by Theorem 1. Theorem 6. Red-Blue Separation on graphs whose vertices belong to the color classes R and B can be solved in time O(n 3 min{|R|,|B|} ) on triangle-free graphs and in time O(n ∆ min{|R|,|B|} ) on graphs of maximum degree ∆.

Extremal values and bounds for max-sep RB

We denote by sep(G) the smallest size of a (non-colored) separating set of G, that is, a set that separates all pairs of vertices. We will use the relation max-sep RB (G) ≤ sep(G), which clearly holds for every twin-free graph G.

Lower bounds for general graphs

We can have a large twin-free colored graph with solution size 2 (for example, in a large blue path with a single red vertex, two vertices suce). We show that in every twin-free graph, there is always a coloring that requires a large solution.

Theorem 7. For any twin-free graph G of order n ≥ 1 and n ∈ {8, 9, 16, 17}, we have max-sep RB (G) ≥ log 2 (n) .

Proof. Let G be a twin-free graph of order n with max-sep RB (G) = k. There are 2 n dierent red-blue colorings of G. For each such coloring c, we have sep RB (G, c) ≤ k. Consider the set of vertex subsets of G which are separating sets of size k for some red-blue colorings of G. Notice that each red-blue coloring has a separating set of cardinality k. There are at most n k ≤ n k such sets.

Consider such a separating set S and consider the set I(S) of subsets S of S for which there exists a vertex v of G with N [v] ∩ S = S . Let i S be the number of these subsets: we have i S ≤ 2 |S| ≤ 2 k . If S is a separating set for (G, c), then all vertices having the same intersection between their closed neighborhood and S must receive the same color by c. Thus, there are at most 2 i S ≤ 2 2 k red-blue colorings of G for which S is a separating set. Overall, we thus have

2 n ≤ n k 2 2 k ≤ n k 2 2 k
, and thus n ≤ k log 2 (n) + 2 k . We now claim that this implies that k ≥ log 2 (n -log 2 (n) log 2 (n)). Suppose to the contrary that this is not the case, then we would obtain:

n < log 2 (n -log 2 (n) log 2 (n)) log 2 (n) + n -log 2 (n) log 2 (n) n < log 2 (n) log 2 (n) + n -log 2 (n) log 2 (n)
And thus n < n, a contradiction. Since k is an integer, we actually have k ≥ log 2 (n -log 2 (n) log 2 (n)) . To conclude, one can check that whenever n ≥ 70, we have log 2 (n -log 2 (n) log 2 (n)) ≥ log 2 (n) . Moreover, if we compute values for 2 nn k 2 2 k when 1 ≤ n ≤ 69 and k = log 2 (n) -1, then we observe that this is negative only when n ∈ {8, 9, 16, 17}. Thus, log 2 (n) is a lower bound for max-sep RB (G) as long as n ∈ {8, 9, 16, 17}.

The bound of Theorem 7 is tight for innitely many values of n.

Proposition 8. For any integers k ≥ 1 and n = 2 k , there exists a graph G of order n with max-sep RB (G) = k.

We next relate parameter max-sep RB to other graph parameters.

Theorem 9. Let G be a graph on n vertices. Then, sep(G) ≤ min{ log 2 (n) • max-sep RB (G), log 2 (∆(G) + 1) • max-sep RB (G) + γ(G)}, where γ(G) is the domination number of G and ∆(G) its maximum degree.

Proof. Let G be a graph on 2 k-1 + 1 ≤ n ≤ 2 k vertices for some integer k. We denote each vertex by a dierent k-length binary word x 1 x 2 • • • x k where each x i ∈ {0, 1}. Moreover, we give k dierent red-blue colorings c 1 , . . . , c k such that vertex x 1 x 2 • • • x k is red in coloring c i if and only if x i = 0 and blue otherwise. For each i, let S i be an optimal red-blue separating set of (G, c i ). We have

|S i | ≤ max-sep RB (G) for each i. Let S = k i=1 S i . Now, |S| ≤ k•max-sep RB (G) = log 2 (n) • max-sep RB (G).
We claim that S is a separating set of G. Assume to the contrary that for two vertices

x = x 1 x 2 • • • x k and y = y 1 y 2 • • • y k , N [x] ∩ S = N [y] ∩ S.
For some i, we have y i = x i . Thus, in coloring c i , vertices x and y have dierent colors and hence, there is a vertex s ∈ c i such that s ∈ N [y] N [x], a contradiction which proves the rst bound.

Let S be an optimal red-blue separating set for such a coloring c and let D be a minimum-size dominating set in G; S ∪ D is also a red-blue separating set for coloring c. At most ∆(G) + 1 vertices of G may have the same closed neighborhood in D. Thus, we may again choose log 2 (∆(G) + 1) colorings and optimal separating sets for these colorings, each coloring (roughly) halving the number of vertices having the same vertices in the intersection of separating set and their closed neighborhoods. Since each of these sets has size at most max-sep RB (G), we get the second bound.

We do not know whether the previous bound is reached, but as seen next, there are graphs G such that sep(G) = 2 max-sep RB (G).

Proposition 10. Let G = K k1,...,kt be a complete t-partite graph for t ≥ 2,

k i ≥ 5 odd for each i. Then sep(G) = n -t and max-sep RB (G) = (n -t)/2.

Upper bound for general graphs

We will use the following classic theorem in combinatorics to show that we can always spare one vertex in the solution of Max Red-Blue Separation.

Theorem 11 (Bondy's Theorem [2]). Let V be an n-set with a family

A = {A 1 , A 2 , . . . , A n } of n distinct subsets of V . There is an (n -1)-subset X of V such that the sets A 1 ∩ X, A 2 ∩ X, A 3 ∩ X, . . . , A n ∩ X are still distinct.
Corollary 12. For any twin-free graph G on n vertices, we have max-sep RB (G)

≤ sep(G) ≤ n -1.
This bound is tight for every even n for complements of half-graphs (studied in the context of identifying codes in [14]).

Denition 13 ). For any integer k ≥ 1, the half-graph H k is the bipartite graph on vertex sets {v 1 , . . . , v k } and {w 1 , . . . , w k }, with an edge between v i and w j if and only if i ≤ j.

The complement H k of H k thus consists of two cliques {v 1 , . . . , v k } and {w 1 , . . . , w k } and with an edge between v i and w j if and only if i > j.

Proposition 14. For every k ≥ 1, we have max-sep RB (H k ) = 2k -1.

Upper bound for trees

We will now show that a much better upper bound holds for trees.

Degree-1 vertices are called leaves and the set of leaves of the tree T is L(T ). Vertices adjacent to leaves are called support vertices, and the set of support vertices of T is denoted S(T ). We denote (T ) = |L(T )| and s(T ) = |S(T )|. The set of support vertices with exactly i adjacent leaves is denoted S i (T ) and the set of leaves adjacent to support vertices in S i (T ) is denoted L i (T ). Observe that |L 1 (T )| = |S 1 (T )|. Moreover, let L + (T ) = L(T ) \ L 1 (T ) and S + (T ) = S(T ) \ S 1 (T ). We denote the sizes of these four types of sets s i (T ), i (T ), s + (T ) and + (T ).

To prove our upper bound for trees, we need Theorems 15 and 16.

Theorem 15. For any tree T of order n ≥ 5, we have max-sep RB (T ) ≤ n+s(T ) 2 .

Proof. Observe that the claim holds for stars (select the vertices of the smallest color class among the leaves, and at least two leaves). Thus, we assume that s(T ) ≥ 2. Let c be a coloring of T such that max-sep RB (T ) = sep RB (T, c).

We build two separating sets C 1 and C 2 ; the idea is that one of them is small. We choose a non-leaf vertex x and add to the rst set C 1 every vertex at odd distance from x and every leaf. If there is a support vertex u ∈ S 1 (T )∩C 1 and an adjacent leaf v ∈ L 1 (T )∩N (u), we create a separating set C 1 from C 1 by shifting the vertex away from leaf v to some vertex w ∈ N (u) \ L(T ). We construct in a similar manner sets C 2 and C 2 , except that we add the vertices at even distance from x to C 2 and do the shifting when u ∈ S 1 (T ) has even distance to x.

Claim 3. Both C 1 and C 2 are separating sets.

Let us denote by N S 3 (T ) a smallest set of vertices in T such that for each vertex

v ∈ S 3 (T ) which has N (v) ∩ S + (T ) = ∅, we have at least one vertex u ∈ N (v) \ L(T ) in N S 3 (T ) (such a set exists since T is not a star).
We assume that out of the two sets C 1 and C 2 , C a (a ∈ {1, 2}) has less vertices among the vertices in V (T ) \ (L(T ) ∪ S + (T ) ∪ N S 3 (T )). In particular, it contains at most half of those vertices and we have |C a \ (L(T ) ∪ S + (T ) ∪ N S 3 (T ))| ≤ (n -(T ) -s + (T ) -|N S 3 (T )|)/2. Now, we will construct set C from C a . Let us start by having each vertex in C a be in C. Let us then, for each support vertex u ∈ S + (T ), remove from C every adjacent leaf w ∈ L + (T ) ∩ N (u) such that w is in the more common color class within the vertices in N (u) ∩ L + (T ) in coloring c. We then add some vertices to C as follows. For u ∈ S i (T ), i ≥ 4, we add u to C and some leaves so that there are at least two vertices in N (u) ∩ C. We have at most |L(T

) ∩ N [u]|/2 + 1 vertices in C ∩ (N [u] ∩ L(T ) ∪ {u}).
For i = 3, we add u and any v ∈ N S 3 (T ) ∩ N (u) \ C, depending on which one already belongs to C. Then, if all leaves in N (u) have the same color, we add one of them to C. Hence, we have |C ∩ (L 2 (T ) ∪ N S 3 (T ))|/s 3 (T ) ≤ 2.

Finally, for i = 2, if the two leaves have same color and u ∈ C a , we add u and one of the two leaves to C. If the two leaves have the same color and u ∈ C a , we add a non-leaf neighbor of u to C. If the leaves have dierent colors, one of them, say v, has the same color as u. We add u to C and shift the vertex in C in the leaves so that v is in C. We added at most two vertices to C in this case.

Notice that now we have S + (T ) ⊆ C.

Each time, we added to C at most half the considered vertices in N (u), and at most one additional vertex. After these changes, we shift some vertices in C away from L 1 (T ) the same way we built C a from C a . As |C a \ (L(T ) ∪ S + (T ) ∪ consisting of the vertices {p 1 , . . . , p 6 , q 1 , . . . , q 4 }. Every vertex p i is connected to a unique pair of vertices from {u 1 , u 2 , u 3 , u 4 } and every vertex q j is connected to a unique triple of vertices from {u 1 , u 2 , u 3 , u 4 }. For example in the gure we have p 4 connected with the pair of vertices u 2 and u 3 and q 3 connected with the triplet of vertices u 1 , u 3 and u 4 . Let H(v 1 , v 2 ) be a subgraph of some graph G such that H is connected to the rest of G only by the vertices v 1 and v 2 . We dene a worst-coloring of G as any red-blue coloring of G where sep RB (G, c) = max-sep RB (G). We make the following claim.

Claim 5. For any worst-coloring c of G the optimal red-blue separating code of (G, c) will always contain the vertices u 1 , u 2 , u 3 and u 4 .

The variable gadget for a variable x consists of the graph H(x 1 , x 2 ) and H(x, x) with additional edges (x 1 , x 2 ), (x 1 , x) and (x 1 , x). If x 1 and x 2 are colored dierently, then either x or x needs to be in the red-blue separating set. Selecting at least one of x or x also separates x and x themselves. The clause gadget for a clause c = (x ∨ y ∨ z) is H(c 1 , c 2 ), where c 1 is connected to the vertices x, y and z. If c 1 and c 2 are colored dierently, then the red-blue separating set should contain at least one of x, y or z in order to separate them. This is used to show the following, and complete the proof. Claim 6. σ is satisable if and only if max-sep RB (G) ≤ k = 4m + 9n.

We can use Theorem 9 and a reduction to Set Cover to show the following.

Theorem 20. Max Red-Blue Separation can be approximated within a factor of O((ln n) 2 ) on graphs of order n in polynomial time.

Conclusion

We have initiated the study of Red-Blue Separation and Max Red-Blue Separation on graphs, problems which seem natural given the interest that their geometric version has gathered, and the popularity of its non-colored variants Identifying Code on graphs or Test Cover on set systems.

When the coloring is part of the input, the solution size of Red-Blue Separation can be as small as 2, even for large instances; however, we have seen that this is not possible for Max Red-Blue Separation since max-sep RB (G) ≥ log 2 (n) for twin-free graphs of order n. max-sep RB (G) can be as large as n -1 in general graphs, yet, on trees, it is at most 2n/3 (we do not know if this is tight, or if the upper bound of 3n/5, which would be best possible, holds). It would also be interesting to see if other interesting upper or lower bounds can be shown for other graph classes.

We have shown that sep(G) ≤ log 2 (n) • max-sep RB (G). Is it true that sep(G) ≤ 2 max-sep RB (G)? As we have seen, this would be tight.

We have also shown that Max Red-Blue Separation is NP-hard, yet it 

  solution subset C of S (here a set of C separates two vertices if it contains exactly one of them). Motivated by machine learning applications, a geometric-based special case of Red-Blue Separation has been studied in the literature, where the vertices of V are points in the plane and the sets of S are half-planes [7]. The classic problem Set Cover over set systems generalizes both Geometric Set Cover problems and graph problem Dominating Set (similarly, the set system problem Separation generalizes both Geometric Discriminating Code and the graph problem Identifying Code). It thus seems natural to study the graph version of Red-Blue Separation.
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Claim 4. C is a red-blue separating set for coloring c.

The upper bound of Theorem 15 is tight. Consider, for example, a path on eight vertices. Also, the trees presented in Proposition 18 are within 1/2 from this upper bound. In the following theorem, we oer another upper bound for trees which is useful when the number of support vertices is large.

Theorem 16. For any tree T of order n ≥ 5, sep(T ) ≤ n -s(T ).

The following corollary is a direct consequence of Theorems 15 and 16. Indeed, we have max-sep RB (T ) ≤ min{n -s(T ), (n + s(T ))/2}.

Corollary 17. For any tree T of order n ≥ 5, we have max-sep RB (T ) ≤ 2n 3 .

We next show that Corollary 17 (and Theorem 15) is not far from tight.

Proposition 18. For any k ≥ 1, there is a tree T of order n = 5k + 1 with

4 Algorithmic results for Max Red-Blue Separation

The problem Max Red-Blue Separation does not seem to be naturally in the class NP (it is in the second level of the polynomial hierarchy). Nevertheless, we show that it is NP-hard by reduction from a special version of 3-SAT [25].

3-SAT-2l

Input: A set of m clauses C = {c 1 , . . . , c m } each with at most three literals, over n Boolean variables X = {x 1 , . . . , x n }, and each literal appears at most twice. Question: Is there an assignment of X where each clause has a true literal?

Theorem 19. Max Red-Blue Separation is NP-hard even for graphs of maximum degree 12.

Proof. To show hardness we reduce from the 3-SAT-2l problem. Given an instance σ of 3-SAT-2l with m clauses and n variables, we create an instance (G, k) of Max Red-Blue Separation as follows.

First let us explain the construction of a domination gadget and its properties.

A domination gadget on vertices v 1 and v 2 is represented in Fig. 4. The vertices v 1 and v 2 may be connected to each other or to some other vertices which is represented by the dashed edges. Both v 1 and v 2 are also connected to the vertices u 1 , u 2 , u 3 and u 4 as shown in the gure. Next we have a clique K 10