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A B S T R A C T   

The present work aims to expand the knowledge of the behaviour of masonry corners, which are capital to obtain 
an integral seismic response in masonry buildings. In particular, the influence of the seismic load orientation 
(from π/4 to π/2) is investigated experimentally, numerically and analytically. Both units and interfaces have 
been subjected to a material characterisation process, following which pseudo-static 1:4 scaled experiments on a 
tilting table have been conducted on a symmetric dry-joint masonry corner. The experimental results have also 
been simulated using a discrete element model. Finally, a new analytical limit analysis model has been devel
oped, which considers both experimental and numerical observations and accounts for rocking-sliding and 
flexural mechanisms. In general, a good agreement is found between the three approaches, both in terms of 
collapse mechanism and load multiplier.   

1. Introduction 

Simulation of the seismic behaviour of historical masonry structures 
is a challenging task. It depends on several factors, such as the me
chanical properties of the constitutive materials (units and mortar), the 
geometrical configuration of the structure, the connections between 
load-bearing components, the stiffness of the horizontal diaphragms, 
etc. When an earthquake occurs, localised out-of-plane (OOP) failure 
mechanisms are prone to form in historical masonry structures, partic
ularly in the absence of box-like or integral structural behaviour [1,2]. In 
this framework, following post-seismic damage surveys carried out after 
the Irpinia and Syracuse earthquakes in Italy, in [3], an abacus of local 
failure mechanisms was compiled that may be assessed through simple 
analytical formulations mainly based on the theorems of the limit 
analysis (LA). 

Once a mechanism is selected, a set of equilibrated generalised forces 
and a set of compatible generalised virtual displacements are deter
mined. Then, the work done by the generalised forces in equilibrium 
with the internal stresses for the given set of generalised virtual dis
placements is computed. The application of the static theorem leads to a 

lower-bound or safe solution based on equilibrium equations, while the 
application of the kinematic theorem provides an upper-bound multi
plier of the collapse load factor [4]. Thus, the solution that satisfies the 
hypotheses of the pre-mentioned theorems and equilibrium, compati
bility and material conditions is the correct solution and provides the 
theoretical actual collapse load multiplier for the specific problem. In 
the last decade, following Heyman’s pioneering work [4], to investigate 
the most reasonable collapse mechanisms, different algorithms were 
implemented into user-defined routines of analysis, adopting the lower 
or upper bound theorem of LA [5–8]. 

Among the damage mechanisms found in masonry structures, failure 
of masonry corners is commonly observed during earthquakes [9,10]. 
Certain geometrical features or structural details usually increase the 
probability of corner failure, among them: i) the lack of confinement of 
the building by adjacent structures, ii) the presence of openings, iii) the 
presence of chimneys, and iv) the lack of rigid horizontal diaphragms. 
However, limited investigations have been conducted concerning the 
seismic vulnerability of masonry corners. To that end, in [5], an 
analytical formula based on LA was proposed to determine masonry 
corners’ associated horizontal load multiplier. A similar methodology 
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was also applied in [11,12], which included the actual value of the 
frictional resistance defined as a weighted value dependent on the crack 
line angle. In accordance with post-earthquake surveys, these models 
also account for openings, which are a significant factor of weakness for 
this mechanism [10]. 

Recently, LA of masonry corners was also used as the first step of a 
workflow to identify the most likely collapsing macroblock’s geometry 
[13]. The second step consisted of a simplified analytical dynamic 
rocking analysis of the identified macroblock [13]. Such an approach 
leads to an overall efficient and engineering-oriented tool, similar to 
what has also been proposed for masonry façades [14]. However, while 
most studies focused on the rocking-sliding mechanism of masonry 
corners, the experimental tests presented by [15] evidenced through 
tilting tests that a flexural mechanism can also develop. Consequently, a 
separate LA formulation for this flexural mechanism was proposed and 
calibrated against experimental results [15]. Nevertheless, the failure of 
corners was only investigated when loaded symmetrically with respect 
to both walls (i.e. π/4), thereby revealing a gap in the literature. 

In general, LA-based tools neglect the structure’s global behaviour 
and only focus on assessing pre-defined local failure mechanisms 
[3,5,7]. Nonetheless, in many cases, there is a need to investigate the 
non-linear global behaviour of masonry structures in more detail, and 
this may be achieved by adopting sophisticated numerical methodolo
gies, such as the Finite Element Method (FEM) [16–19] or the Discrete 
Element Method (DEM) [20–24]. Such approaches model masonry using 
different representation scales: equivalent continuum, macroblocks, or 
discrete representations (i.e. micro-modelling). DEM, in particular, en
ables the explicit representation of the units and joints [21,25], thereby 
making it well-suited for modelling the response of blocky masonry 
structures. DEM has been applied with success to the analysis of both 
unreinforced and retrofitted, dry-joint and mortared, masonry wall as
semblies [22,24,26–33]. Despite the accuracy, the computational effi
ciency of the available numerical methods is rarely compatible with the 
need to have a rigorous real-time post-earthquake assessment [34]. 
Thus, researchers are committed to developing alternative modelling 
approaches and practical tools to decrease the computational cost 
without compromising the accuracy [35–38]. 

As far as masonry built cultural heritage is concerned, joint behav
iour can broadly be akin to dry-joint behaviour. Indeed, if present, it is 
common that mortar deteriorated through time losing its bonding 
properties. Therefore, this paper focuses on dry-joint masonry speci
mens. Single-leaf and scaled (1:4) masonry corners tested on a tilting 
table are adopted as they provide a relatively simple validation 

framework for numerical and analytical models. The objectives of the 
present work are summarised below:  

• Provide experimental data to validate numerical and analytical 
methodologies to study the stability of masonry corners.  

• Provide an illustrative example of the complete characterisation of 
dry-joint masonry specimens at low normal stress, including dry- 
joint stiffness. 

• Quantify the effect of the seismic orientation on the failure mecha
nism and associated collapse load multiplier of masonry corners.  

• Improve existing analytical LA models to account for the orientation 
of the seismic loading in an integrated way.  

• Validate LA predictions of the collapse load multiplier and failure 
mechanism against experimental and numerical DEM results. 

The experiments are reproduced numerically using the Discrete 
Element software 3DEC, while a novel analytical LA formulation for 
masonry corners is also developed. Such a general formulation allows to 
consider, jointly or separately, rocking-sliding and flexural mechanisms 
noted by [15] and accounts for the orientation of the seismic loading. 

In short, this work investigates the influence of the orientation of the 
seismic load (adopting static lateral loading) on the capacity and failure 
mechanism of dry-joint masonry corners. The paper is organised as 
follows. Section 2 describes in detail the experimental campaign that 
concerns the mechanical characterisation of both the blocks and in
terfaces and the tilting tests of the masonry corner prototypes. Section 3 
is devoted to the DEM model and its validation against the experimental 
results. Experimental and numerical observations are subsequently 
adopted to formulate a new analytical formulation based on LA in Sec
tion 4. Finally, relevant conclusions are drawn in Section 5. 

2. Experimental campaign 

In this section, the experiments involving single-leaf dry-joint ma
sonry corners are presented. The campaign studies the influence of the 
seismic loading direction on masonry connections and constitutes a 
reference for validating analytical and numerical results. Furthermore, 
the investigation describes the characterisation of the material, 
including unit and interface properties. 

2.1. Material characterisation 

The masonry corners were built of dry calcium silicate (CS) blocks, 

Fig. 1. Experimental setup sketches: (a) normal joint stiffness evaluation by means of joint closure tests and (b) tangential joint stiffness evaluation through direct 
shear box tests. 
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provided by the Xella Company [39], which were sawn to dimensions 
t× l×h=57.3±0.6 (1.1%)×114.9±0.5 (0.5%)×70.3±0.2 (0.3%)mm3 

and density equal to ρ = 1876±17 (0.9%)kg⋅m-3. Here, the standard de
viation and coefficient of variation (CoV) are also given. The compressive 
strength fcr of the units was evaluated, following the ASTM D 2938-95 [40] 
standard, through five uniaxial displacement-controlled compression tests 
on prismatic bricks. The tests provided a value equal to fcr =
36.5±2.4 (6.6%)MPa. The Young’s modulus was subsequently obtained 
through ten compression tests along the three orthogonal material di
rections [41]. Besides a small anisotropy due to the industrial vibro- 
compaction production process, a value of 7.0±1.16 (16.5%)GPa was 
found to characterise the material. 

Joint normal kn and shear ks stiffnesses describe the variation of the 
normal (or shear) stress with the normal (or shear) displacement. They 
constitute critical numerical parameters in discrete element modelling 
approaches, though no clear guidelines already exist to support their 
identification. Herein, the normal joint stiffness kn was characterised 
through classical joint closure tests [42–46], which consisted of uniaxial 
compression tests on two-stacked CS blocks (Fig. 1a). The displacement 
reading was obtained using four monitoring LVDTs placed around the 
blocks in the vicinity of the dry-joint, supported by two aluminium rings 
bounding the extremity. The tests were displacement-controlled through 
an additional LVDT measuring the actuator movement and consisted of 
five loading-unloading cycles. At the beginning of each loading cycle, 
the joint was completely unloaded to obtain stress-displacement re
lationships for very low stresses, here up to 0.01 MPa. Fig. 2a shows an 
example of the obtained experimental curves, in which the displacement 
due to block elastic deformation has already been removed based on the 
previously evaluated Young’s modulus. After an initial phase of joint 
closure, where relatively low stresses trigger large displacements, the 
slope (i.e. the joint stiffness) dramatically increases for larger stress 
levels. Each experimental curve has been fitted using an exponential 
function (Fig. 2a), which expresses the stress as a function of the joint 
closure dj and two empirical constants A and B as follows [42]: 

σ = A × eB×dj (1) 

Differentiating both sides of Eq. (1) with respect to the normal joint 
displacement dj, the normal joint stiffness reads: 

kn =
dσ
ddj

= B × σ (2) 

From the 25 tests conducted, two outliers have been disregarded, and 
the mean value of the empirical constant B was found equal to B =

195.6 ± 49.4 (25.3%) mm-1. It is noted that the coefficient of variation 
of this joint property is much larger than the ones found for the me
chanical properties of the unit (6.6% for compressive strength and 
16.5% for Young’s modulus). This difference is explained by the larger 
variability of the physical properties of the joint (e.g. surface’s rough
ness, geometrical tolerance) which directly influence the joint stiffness 
compared to volumetric properties. 

Direct shear tests were also conducted to evaluate the tangential 
stiffness ks of the dry-joints. The specimens consisted of two CS blocks of 
55.82 ± 1.17 (2.1%) mm length, 57.65 ± 0.27 (0.5%) mm width and 
27.15 ± 0.81 (3.0%) mm height. The test setup was composed of i) a 
bottom block located within the box base and pushed by a horizontal 
force FH and ii) a fixed top block subjected to a constant normal force FV 
(Fig. 1b). The data acquisition system comprised two load cells 
measuring the vertical and horizontal forces FV and FH, while the rela
tive normal and shear displacement between the bottom and the top 
blocks was monitored by a Digital Image Correlation (DIC) system, 
which has already been employed in the literature for extracting the 
interface stiffness, proving its efficiency against other types of acquisi
tions [47]. This non-contact full-field measurement method solely 
identifies the relative displacement between the two blocks, whereas the 
shear box displacement acquisition system, i.e. vertical and horizontal 
LVDTs, also measures the external compliances owing to the shear box 
rig. 

Fig. 2b provides an example of the obtained shear stress- 
displacement curve assuming a pre-compression of 10 kPa. The first 
window (I) corresponds to the so-called “elastic-stick” regime, in which 
the increase of shear stress leads to very small relative displacements 
[47,48]. In the second window (II), micro-slips progressively develop: at 
the micro-scale, some asperities are in adhesion (i.e. stuck), while other 
asperities experience relative tangential displacements. Such a phase is a 
transition from window I to window III, which corresponds to the gross 
slip phase, where all the asperities experience relative tangential 
displacement: the value of shear stress reaches the shear strength of the 
joint. Ten tests were carried out and no dilatancy has been noticed, 
similar to [49]. 

The tangential stiffness ks was estimated by considering the slope of 
the elastic-stick phase (I), where the stress grows with a linear trend with 
respect to the displacement. Since the vertical stresses involved in the 

Fig. 2. (a) Fitting process to evaluate the stress dependency of joint normal stiffness and (b) example of the stress-displacement curve obtained from direct 
shear tests. 
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experiments lie between 0 kPa and 10 kPa, the shear tests assumed 
5 kPa and 10 kPa for the vertical stresses. Five tests for each pre- 
compression level were performed, obtaining a mean value of ks =

0.33 ± 0.07 (22.8%) GPa⋅m− 1 at 5 kPa and ks = 0.49 ±

0.25 (51.1%) GPa⋅m− 1 at 10 kPa. Again, a high coefficient of variation 
is obtained for the interface stiffness. Moreover, it is noted that the ratio 
between shear and normal stiffness for these two levels, using the pre
vious expression for the normal stiffness, is 0.34 and 0.25, which is also 
in line with results found by others [50,51]. 

Finally, the shear (III) strength was extracted from the shear box tests 
considering 11 normal loading conditions, i.e. from 3 kPa to 50 kPa 
[52]. Assuming a Coulomb behaviour for the joint, the friction coeffi
cient was estimated through linear regression of all the experimental 
outcomes and results in μ = 0.67 (R2

= 0.97). 
The material characterisation process was completed by identifying 

the friction coefficient also through pseudo-static tilting tests, which was 
then compared with the results from the direct shear tests. Two bottom 
blocks were fixed to the tilting table, while a top unit was left free to 
slide. The table was then progressively inclined to obtain the block-block 
friction coefficient, while a digital inclinometer attached to the table 
allowed the reading of the sliding angle. A total of 50 tests were per

formed, leading to a mean value of μ = 0.66 ± 0.06 (9.5%), with a range 
between 0.50 and 0.78. This value is close to the one identified through 
direct shear tests, especially when considering the experimental scatter. 
The obtained variability can be related to the surface’s dustiness and 
also to some geometrical effects due to the presence of two interfaces 
instead of one. The mean value μ = 0.66 is hereafter assumed globally 
representative of the dry-joint behaviour of the CS blocks, given the 
agreement with the shear box tests and the fact that this testing condi
tion (i.e. layout of the joint) is physically closer to the corner’s test setup. 

2.2. Test setup 

Tilting table tests have often been adopted as a tool to study collapse 
mechanisms of masonry structures [15,53,54]. A simple apparatus ap
proximates the seismic forces through the progressive tilting of one 
extremity of the table: seismic forces are experimentally represented as 
static horizontal actions proportional to the specimen mass. Despite 
their simplicity, tilting tests estimate the horizontal collapse load mul
tipliers of given structures and make it possible to observe the associated 
failure mechanisms [54]. 

The present experimental campaign focuses on studying the capacity 
of masonry corners to withstand horizontal forces with respect to 
seismic load orientation. Experimentally, the building-up process varied 
the direction of the corner bisector plan towards the rotational axis of 
the hinge (Fig. 3). More in detail, five load orientations equally spaced 
by π/16 were analysed, i.e. π/4, 5π/16, 3π/8, 7π/16 and π/2. The 
specimen consisted of a single-leaf dry-joint masonry corner, which 
comprised two walls of, ideally, 804 mm in length and 633 mm in 
height (Fig. 3 and Fig. 4). The courses had seven full blocks for each wall, 
staggering the joints between the layers and reaching nine horizontal 
courses (Fig. 4a). 

A total of 25 tests (5 per configuration) were performed at the lab
oratory of the University of Minho in Guimarães (Portugal). The adopted 
testing rig consisted of a 1.5 m × 1.5 m steel table welded on a double T 
frame. The table was connected to an actuator through a steel wire that 
allows the uplifting of one extremity, while the other end rotated around 
a hinge [56]. Tilting speed was set to 0.1◦⋅s− 1 before an angle of 9◦ and 
0.02◦⋅s− 1 afterwards, in order to ensure quasi-static conditions close to 
the specimen collapse. 

Sliding between the first course and the steel table was prevented by 
fixing this course to the table with a double-faced tape, while the up
rightness and repeatability of the building up process were ensured 
using a timber guiding system. The free ends of the walls were clamped 
with an L-shaped profile and rubber pads to simulate ideal boundary 
conditions (Fig. 4b). 

A digital inclinometer installed on the table captured the rotation 
angle, while the collapse mechanism was recorded by two digital cam

Fig. 3. Top view sketch of the corner position by varying the bisector direction.  

Fig. 4. (a) Corner 5π/16 test setup and (b) side view of the clamping system.  
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eras placed orthogonally to the plane of each sidewall. Finally, three 
lights were installed in the vicinity of the corner to allow a recording 
speed of 10 Hz with a shutter speed of 4 ms. 

2.3. Experimental results 

In this section, the outcomes obtained from the experimental 
campaign are presented. The results in terms of load multiplier (i.e. ratio 
between horizontal and vertical loading) λα are listed in Table 1, while 
full details of the experimental dataset are publicly available in [55]. As 
stated, the repeatability and reliability of the results were ensured by 
including five tests for each direction (the CoV is very small, demon
strating the low scatter). Additionally, similar collapse mechanisms have 
been found for tests belonging to the same group. 

As Fig. 5 illustrates, the collapse load multiplier decreases following 
a non-linear trend from π/4 to π/2. It can be observed that the highest 
capacity of the system is obtained when the load direction is coincident 
with the corner bisector, i.e. π/4, resulting in an increase in the capacity 
by 21% compared to the π/2 case. Indeed, when rotating the corner 
towards the π/4 orientation, the out-of-plane component acting on each 
wall is reduced. Additionally, the different types of failure mechanisms, 
namely rocking, sliding and horizontal flexural, depend on the orien
tation of the corner. 

The collapse mechanism for the loading conditions π/4, 5π/16, 3π/
8, 7π/16 and π/2 are depicted in Fig. 6. The configurations for which 
the load is applied in the direction of the bisector, i.e. π/4 (Fig. 6a), 
develop a mixed mechanism that comprises both in-plane and out-of- 
plane components in each wall. Both walls show a predominant out- 
of-plane component, appearing at first with an out-of-plane sliding of 
the units. This initial phase is then followed by an uplift of the blocks 

that contributes to the formation of three cylindrical hinges in both 
walls: i) the first one is located in the vicinity of the boundary condi
tions, i.e. line O’A’ and line O’’A’’, and appears fully open, ii) the second 
one is fully formed and shows up in a central wall area corresponding to 
the inner wall side, i.e.  line O’B’ and line O’’B’’, iii) the third one de
velops in an area close to the wall intersection and it is only triggered in 
the left wall, line O’C’, and completely open in the right wall, line O’’C’’. 
Fig. 6b displays the collapse mechanism of the 5π/16 case. In this 
configuration, the left wall shows a similar mechanism to the π/4 case, 
while the right wall presents a higher displacement in-plane, followed 
by an out-of-plane mechanism. Similar collapse mechanisms have been 
registered for 3π/8 (Fig. 6c), 7π/16 (Fig. 6d) cases and the weakest 
condition, namely π/2 (Fig. 6e). The right wall works in its plane, 
showing a clear initial sliding phase of the units followed by a rotation 
around O’’ (Fig. 6c, d, e-right). At the same time, the orthogonal wall 
experiences a predominant out-of-plane mechanism, which results in the 
creation of two macroblocks, namely O’A’B’ and O’B’C’ (Fig. 6c, d, e- 
left). It is worth noting that the macroblock O’A’B’ is formed thanks to 
two cylindrical hinges fully formed, i.e. O’A’ and O’B’, while the onset of 
the O’C’ is triggered but not fully formed. In particular, the cylindrical 
hinge O’C’ dissipates a minimal amount of energy, resulting in pseudo 
orthogonality between the two walls in the kinematic collapse 
configuration. 

3. Numerical (DEM) modelling 

Numerical analyses of the corner specimens have been conducted 
using DEM in 3DEC [57]. In this section, the model setup is first briefly 
presented, following which its predictions are validated against the 
experimental results. 

3.1. Model setup 

Using DEM, the individual units making up a structure can be 
modelled as either rigid or deformable blocks. In the latter case, the 
blocks are discretised using a finite element mesh. In the present work, 
the specimens are modelled as an assembly of rigid blocks, as these are 
more suitable for quasi-static analyses [57]. All the system deformability 
is therefore concentrated in the joints and each block is characterised by 
the experimental density of 1876 kg⋅m− 3 and 6 degrees of freedom. 

Interaction between the blocks is modelled using zero-thickness non- 
linear springs (point contacts), which are automatically created when 
two block faces are determined to be in contact. The point contacts 
approach allows the modelling of large displacements and complete 
separation between blocks, which makes it particularly suitable for 
problems of stability and/or collapse. In the case of rigid blocks (as used 
herein), point contacts (sub-contacts) are generated through triangula
tion of the block faces and are usually created at each block face’s 
vertices [57]. By default, rectangular block faces are divided into two 
triangles, resulting in four-point contacts (Fig. 7); however, more con
tact points are usually required to capture the contact stress distribution 
accurately [21]. In this study, the triangulation density is increased so 
that each block comprises 10, 7 and 6 contact points along its length, 
height, and thickness, respectively. Using the contact points approach, 
the resultant force increment ΔF at each contact point can be deter
mined through the relative incremental displacement Δu between the 
blocks at that point, the contact spring stiffness k, as well as the sub- 
contact area Ac. The latter is typically equal to 1/3 of the areas of the 
triangles containing the contact point (Fig. 7). 

As a soft contact approach is used here, the extent of interpenetration 
between blocks is controlled by the stiffness of the springs. Though 
Section 2.1 evidenced the dependency of stiffness on axial stress, in this 
work, stiffness is considered homogeneous and is taken equal to the 
average value in the specimens, as given next. From the geometry and 
density of the specimens, the axial stress at mid-height of the specimen is 
σ = (0.633× 1.876× 9.81)/2 = 5.82 kPa. According to Eq. (2), the 

Table 1 
Experimental results, load multiplierλα.  

Load orientation α Load Multiplier λα 

Mean Value λ CoV [%] 

π/4  0.287  2.0 
5π/16  0.270  3.9 
3π/8  0.248  3.0 
7π/16  0.239  1.3 
π/2  0.236  3.6  

Fig. 5. Experimental load collapse multiplier λα obtained for all the orienta
tions tested. 
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Fig. 6. Failure mechanisms for (a) Corner π/4, (b) Corner 5π/16, (c) Corner 3π/8, (d) Corner 7π/16 and (e) Corner π/2.  
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average normal stiffness of the dry-joints therefore equals kn = 195.6×

σ = 1.14 GPa⋅m-1. Similarly, the tangential stiffness is determined to be 
ks = 0.33 GPa⋅m-1. The non-linear response of the point contacts is 
controlled via the tensile strength ft in the normal direction and the 
Coulomb-slip joint model in the shear direction (Fig. 8), which conse
quently depends on the values specified for the cohesion c and friction 
coefficient μ (indicated by μ = tanφ in Fig. 8). Herein, null values are 
selected for the tensile strength and the cohesion of the dry-joints, while 
the dilatancy angle ψ is set to zero, according to the direct shear tests 
(Section 2.1) and literature [49]. On the other hand, the friction coef
ficient is set to the value of μ = 0.66 (φ = 34◦) obtained through the 
tilting tests. 

With respect to the boundary conditions, the blocks at the end of the 
walls are fixed to reproduce the clamped conditions of the experiment. 
Similarly, the bottom course is fixed in order to model the effect of the 
double-faced tape (see Fig. 9, shown here for the π/4 corner test setup). 

In terms of loading, to simulate the tilting table, the vertical 
component of gravity is kept constant at10 m⋅s-2, while the horizontal 
component is progressively increased in steps of 0.05 m⋅s-2. For each 
load increment, the analysis is run until the maximum velocity in the 
system is less than 0.001 m⋅s-1, and only once the convergence criterion 
is satisfied is the loading increased. Failure is considered to occur with a 
lack of convergence of the maximum velocity, and the simulations are 
continued until the maximum displacement of the system exceeds 
0.7 m, to obtain the complete collapse of the structure. 

The equations of motion of the system are solved by means of an 
explicit time-stepping scheme, which makes use of a central-difference 
algorithm [21]. At each timestep, the relative velocity across a sub- 
contact (contact point) is first determined and then converted into a 
relative incremental displacement Δu. This displacement is resolved into 
its normal and shear components, Δun and Δus, and is consequently used 
to determine the force increments. The total normal and shear forces for 
the sub-contacts are subsequently updated and adjusted based on the 
contact constitutive relations (in this case, the Coulomb-slip joint 

model). The sub-contact forces are added to the forces/moments acting 
on the relevant block centroids, and the corresponding equations of 
motion are then integrated to obtain the new block velocities and po
sitions, which serve as input for the next calculation cycle. Note that to 
ensure numerical stability, a suitably small timestep is required for the 
analyses, which is automatically calculated by the program and is 
directly proportional to the smallest nodal mass and inversely propor
tional to the maximum contact stiffness of the system. Consequently, a 
decrease in nodal mass tends to increase the overall solve time (e.g. more 
contact points, resulting from an increase in the triangulation density). 

For static and pseudo-static solutions, the equations of motion are 
damped in such a way that they reach a force equilibrium state as 
rapidly as possible. Conceptually similar to dynamic relaxation, a 
damping force, proportional to the velocity of the blocks, is artificially 
added into the equations of motion to avoid oscillations around the 
equilibrium position [57]. Here, local damping with the default value of 
0.8 is used, whereby an additional/artificial damping force is applied on 
each node. This force is proportional to the magnitude of the unbalanced 
force at that same node, in a direction such that energy is always 
dissipated [57]. This form of damping is usually recommended for 

Fig. 7. Mechanical representation of contact between blocks.  

Fig. 8. Coulomb friction joint (a) normal stress versus normal displacement and (b) shear stress versus shear displacement behaviour (adapted from [57]).  

Fig. 9. Final 3DEC model.  
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static/pseudo-static analyses and can minimise oscillations arising from 
abrupt failure of the model [22,57]. 

3.2. Experimental validation 

The results of the numerical models have been evaluated in terms of 
the load multipliers λα and associated collapse mechanisms obtained for 
each load orientation angle α. In terms of the collapse load multipliers, 
as Table 2 and Fig. 10 indicate, the predictions of the numerical model 

generally tend to follow the same trend as the experiments, with the load 
multiplier globally decreasing in a non-linear manner from π/4 to π/2. 
However, the numerical model appears to consistently overestimate λα, 
with an average overprediction of about 10%. 

This slight overestimation is likely to be partly due to the fixed 
boundary conditions assumed in the numerical model, which do not 
permit any rotations and consequently increase the stiffness of the walls 
in the out-of-plane (OOP) direction. The effect of this assumption in
creases as the OOP load component acting on the individual walls grows 
and explains why, in the case of the π/2 orientation, where one of the 
walls is loaded entirely in the OOP direction, a higher load multiplier is 
required to cause a local collapse. 

In addition to the effect of the boundary conditions mentioned 
above, the overestimation of the load multiplier is also attributed to 
other assumptions of the numerical model, such as perfect (zero-thick
ness) joints between blocks and uniform cross-sections within the 
blocks. This first assumption is most likely not the case in reality for the 
vertical (head) joints, where small gaps between the blocks could 
decrease the in-plane and flexural capacities of the walls. Additionally, 
given that the CS blocks used in the experiments have been manually 
sawn, it is unlikely that they would have perfectly uniform cross- 
sections. 

Given that the walls are already quite slender in the out-of-plane 
(OOP) direction (H/t = 10), small differences in the thickness of the 
blocks (decrease of a few mm) may increase the overall slenderness and 
therefore decrease the capacity of the wall in the out-of-plane direction 
as well. Thus, two sets of additional numerical simulations have been 
run with a reduced thickness (increased slenderness). The first uses a 5% 
reduction in thickness (and therefore an approximately 5% increase in 
slenderness), while the second uses a 10% reduction in thickness (or 
conversely a 10% increase in slenderness). Note that a thickness 
reduction higher than 10% (i.e. 5.7 mm) was not considered reasonable 
given the near-perfect edges of the CS blocks. 

The results of these analyses can be found in Fig. 11a and Table 3, 
where it can be seen that although an increase in slenderness does cause 
a slight decrease in the collapse load multiplier, the numerical simula
tions still overestimate λα, with an average overprediction of 8% and 6% 
for the 5% and 10% thickness reduction cases respectively. Thus, the 
non-uniform cross-sections of the CS blocks are unlikely to be a signif
icant cause of the discrepancy between the numerical and experimental 
results. 

Table 2 
Comparison of the experimental and numerical load multipliers λα, with 
Difference (%) = (λNUM

α − λEXP
α )/λEXP

α × 100.  

Load orientation α Load Multiplier λα Difference (%) 

Experimental Numerical 

π/4  0.287  0.315  9.8 
5π/16  0.270  0.290  7.4 
3π/8  0.248  0.270  8.9 
7π/16  0.239  0.265  10.9 
π/2  0.236  0.270  14.4  

Fig. 10. Variation of collapse load multiplier with load orientation for both the 
experimental tests and numerical models. 

Fig. 11. Variation of collapse load multiplier with load orientation for both the experimental tests and numerical models, for (a) different slenderness (H/t) ratios 
and (b) different stiffnesses (kn,ks). 

C. Colombo et al.                                                                                                                                                                                                                               



Construction and Building Materials 344 (2022) 127969

9

In fact, another source of discrepancy could be attributed to the 
values adopted for the joint normal stiffness kn, which was herein 
evaluated through classical joint closure tests. In [44], the authors have 
demonstrated that the local normal stiffness of joints belonging to a 
staggered masonry wall is approximately 2 to 3 times lower than that 
evaluated through joint closure tests. This is due to the existence of 
misalignment and dimension differences between blocks in a wall, 
where contact is never only between two blocks (case of the joint closure 
tests). To that end, two additional sets of simulations have been con
ducted – the first one reducing the normal stiffness by a factor of 2 (or 
50%) and the second reducing the normal stiffness by a factor of 3 (so to 
approximately 30% of the original stiffness). In the absence of similar 
information about the tangential stiffness ks, it was chosen to keep the 
initial ratio of ks/kn constant for these analyses. The results of these 
additional analyses can be found in Fig. 11b and Table 4. 

As Fig. 11b illustrates, the numerical models demonstrate a sensi
tivity to the joint stiffness. Decreasing this parameter by a factor of 2 
causes a substantial decrease in the collapse load multiplier, with the 
numerical predictions now lying within the range of the experimental 
scatter, with an average overprediction of 4% (with respect to the mean 
experimental values). Similarly, reducing the joint stiffness by a factor of 
3 further reduces the collapse load multiplier, with the numerical pre
dictions now providing a lower bound to the experimental results and, 
on average, underpredicting λα by 3%. These analyses thus demonstrate 
the importance of evaluating the joint stiffness on the whole masonry 
wall, and not just through joint closure tests. Nevertheless, it is worth 
underlining that the sensitivity analyses investigate the variation of a 
single parameter individually (i.e. slenderness or stiffness), while most 

likely the global outcome includes the influence of combined factors. For 
this reason, it is understood that the adopted range of stiffness variation 
may be reduced if concurrently considering other sources of 
uncertainties. 

With respect to the collapse mechanisms, a near-perfect agreement 
has been found between the numerical models and the experiments in 
terms of the blocks involved in each mechanism (see Fig. 12). Note that 
as similar mechanisms were obtained from the four sets of parametric 
analyses, only the mechanisms from the original numerical analyses are 
presented here. A good agreement was also observed in terms of the 
shape of the failure mechanism and the associated hinge locations, as 
illustrated by Fig. 13, with the formation of horizontal flexural mecha
nisms in the out-of-plane loaded walls and rocking-sliding mechanisms 
in the in-plane walls. The two walls have also been observed to retain 
their orthogonality relative to each other. The main difference observed 
is in terms of the location of hinge B’ on the OOP-loaded wall, which 
occurred one block closer to the corner in the numerical models, 
resulting in a slightly larger macroblock O’A’B’ than the experimental 
tests for all considered load orientations. 

4. Analytical model 

The failure mechanism of the corner through an analytical model has 
been recently investigated by [15]. A three-dimensional macroblock 
model with frictional joints to analyse failure mechanisms was devel
oped, with crack patterns and load factors derived through the kine
matic approach of Limit Analysis (LA). This formulation considers either 
the rocking–sliding mechanism or the horizontal flexure phenomena 

Table 3 
Comparison of experimental and numerical load multipliers λα for different slenderness (H/t) ratios, with Difference (%) = (λNUM

α − λEXP
α )/λEXP

α × 100.  

Load Multiplier λα 

Load orientation α Experimental Numerical (H/t)⋅1.05 Difference (%) Numerical (H/t)⋅1.10 Difference (%) 

π/4  0.287  0.310  8.0  0.305  6.3 
5π/16  0.270  0.285  5.6  0.280  3.7 
3π/8  0.248  0.265  6.9  0.260  4.8 
7π/16  0.239  0.260  8.8  0.255  6.7 
π/2  0.236  0.265  12.3  0.260  10.2  

Table 4 
Comparison of experimental and numerical load multipliers λα for different stiffnesses kn and ks, with Difference (%) = (λNUM

α − λEXP
α )/λEXP

α × 100.  

Load Multiplier λα 

Load orientation α Experimental Numerical (kn, ks)⋅0.5 Difference (%) Numerical (kn, ks)⋅0.3 Difference (%) 

π/4  0.287  0.300  4.5  0.280  − 2.4 
5π/16  0.270  0.270  0.0  0.255  − 5.6 
3π/8  0.248  0.255  2.8  0.240  − 3.2 
7π/16  0.239  0.250  4.6  0.235  − 1.7 
π/2  0.236  0.255  8.1  0.240  1.7  

Fig. 12. Comparison in terms of blocks involved in the collapse mechanisms for the experimental and numerical tests, for the different load orientations.  
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typically expected in masonry corners. Despite the good accuracy in 
terms of both horizontal multiplier and geometry of the failure mecha
nisms, such an analytical formulation presents limitations: i) the model 
cannot be applied when the masonry corner prototype is not symmetric, 
ii) the model is not able to predict the load multiplier and the geometry 
of the failure mechanism when the horizontal action is not passing from 
the bisector of the corner. Therefore, a new analytical model is proposed 
next. 

4.1. Model formulation 

The primary assumption in the analytical model is to decompose the 
horizontal action along with the X and Y directions (see Fig. 14). Thanks 
to this assumption, the mathematical formulation to compute the com
ponents λX and λY are fully uncoupled and hence may be treated sepa
rately. One can note that the horizontal cylindrical hinge is in turn 
considered perpendicular to the load actions, i.e. aligned with the X or Y 
axes. 

Fig. 15 addresses the horizontal load component coincident with the 
X direction. It is required to mathematically describe the problem with 
the principle of virtual work and to represent the kinematics of the 
failure mechanism with only one virtual parameter: δθ (see Fig. 15). For 
this purpose, the following hypotheses arising from observations of the 
experimental campaign are adopted:  

• Wall WX1 is assumed to collapse in its plane because of the rocking- 
sliding mechanism; this activates frictional resistance according to 
the formulation described in [35]. 

Fig. 14. Plan view of a masonry corner: horizontal action components along X 
and Y axes. 

Fig. 15. Kinematic description of the failure mechanism: (a) plan view; (b) side view involving shear-torsion and rocking; (c) side view involving shear-rocking. 
HG(WY,2), HG(WX1 + WY1), LY1, LY1 and LG(WX1 + WY1) define the position of the centre of gravity of the red and green macroblocks. (For interpretation of the refer

ences to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Numerically-obtained failure mechanism configurations (hinge locations) of (a) Corner π/4, (b) Corner 3π/8 and (c) Corner π/2 (see Fig. 6 for comparison).  
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• The two walls that compose the corner, i.e. WX1 and WY1, retain 
their orthogonality relative to each other (Sections 2.3 and 3.2). As 
shown in Fig. 6e, the macroblock O’B’C’ rotates only slightly with 
respect to the macroblock of the second orthogonal wall that shows 
an in-plane rocking motion around O’’. In short, the corner seems to 
keep the orthogonality since the cylindrical hinge O’C’ can dissipate 
a lower amount of energy compared with O’A’ and O’B’.  

• Wall WY1 generates two cylindrical hinges, O’A’ and O’B’, which 
dissipate energy due to the shear-torsion interaction (see Fig. 15). 

According to the adopted hypotheses, it is possible to draw the ki
nematic failure mechanism involving the corner prototype under a 
horizontal load acting along the X-direction (see Fig. 15). The mathe
matical formulation to calculate λX is based on the principle of virtual 
work, which requires the balance between the external and internal 
virtual works: 

δWext = δWint (3) 

The external virtual work contains the destabilising as well as the 
stabilising works performed by the inertial forces and is expressed as: 

δWext = λX⋅(WX1 +WY1)⋅δO,X,1 +m⋅λX⋅WY2⋅δO,X,2 +(1 − m)⋅λX⋅WY2⋅δO,X,2−

− (WX1 +WY1)⋅δR,X,1 − m⋅WY2⋅δR,X,2 − (1 − m)⋅WY2⋅δR,X,2

(4)  

where, δO,X and δR,X are the virtual overturning and stabilising dis
placements of the centre of gravity of the macroblocks (index 1 and 2 
indicate the green and red macroblocks, respectively), m assumes a 
value of 1 if the mechanism is affected by the horizontal flexural 
mechanism or 0 when the pure rocking-sliding mechanism is studied. 
When m is set to 0, it examines the failure mechanism composed of a 
unique rigid block, meaning that the hinge O’B’ is not considered in the 
geometrical definition of the macroblocks (see Fig. 15). The virtual 
displacement contributions are a function of the virtual parameter δθ, 
given by: 

δO,X,1 = δθ⋅HG(WX1 + WY1)

δR,X,1 = δθ⋅LG(WX1 + WY1)

δO,X,2 = δθ⋅HG(WY,2)⋅
LY2

LY1

δO,X,2 = δθ⋅HG(WY,2)

δR,X,2 = δR,X,2 = δθ⋅
tY

2

(5) 

The second term of the Eq. (3) is the internal work that derives from 
the frictional forces along with line O’’A’’ and the shear-torsion inter
action across the cylindrical hinges O’A’ and O’B’: 

δWint = δWint(shear)O’’A’’ + δWint(torsion/shear)O’A′ + δWint(torsion/shear)O’B′ (6) 

with: 

δWint(shear)O’’A’’ = δθ⋅Hf,X

(

Fmax⋅
(

1 −
αc

αb

))

O’’A’’

+(1 − m)⋅δθ⋅Hf,Y⋅
(

Fmax⋅
(

1 −
αc

αb

))

O’A’

(7)  

δWint(torsion/shear)O’A′ + δWint(torsion/shear)O’B’

= δθ⋅
HG(WY,2)⋅LY2/LY1

LY2
⋅m⋅k⋅

(

T0⋅
(

1 −
Fhinge,1

Fmax

)

+ T0⋅
(

1 −
Fhinge,2

Fmax

)) (8)  

where αc and αb are the actual crack inclination and the crack inclina
tion upper threshold of the in-plane wall, respectively, k (k⩽1) is 
introduced to reduce the contact surfaces caused by the uplift of the 
blocks along these hinges, Fhinge,1 and Fhinge,2 are the internal shear 
forces in equilibrium with the external forces at the hinges O’A’ and 

O’B’, respectively. Fmax is the maximum frictional force which is 
computed according to the formulation proposed by [58] and adopted in 
other studies [14]: 

Fmax =

(

γ⋅v⋅h⋅t⋅
n⋅(n + 1)

2

)

⋅μ (9)  

Here, μ is the friction coefficient, t is the block thickness, v is equal to l/2 
and n is the number of unit courses. Referring to Eq. (7), at the cylin
drical hinges O’A’ and O’B’, the frictional resistances develop via shear- 
torsion interaction. The yield function proposed in [15] has been 
adopted and the pure torsion T0 is computed as: 

T0 = Fmax⋅d0 (10)  

where d0 is the torsion constant expressed by the relation: 

d0 =
1

12⋅t⋅v
⋅
(

v3⋅ln
(

t + d
v

)

+ t3⋅ln
(

v + d
t

)

+ 2⋅t⋅v⋅d
)

(11)  

where v = l
2 and d =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
v2 + t2

√
[12]. 

Once the internal and external virtual works have been defined, it is 
possible to solve Eq. (3) for λX, which reduces to a polynomial function 
of all the geometrical variables involved in the problem. 

Following the same approach, the horizontal load acting only along 
the Y direction λY , is computed, but is not reported here for the sake of 
brevity. As explained earlier, the proposed approach aims to define the 
horizontal proportional gravity load multiplier considering any direc
tion in the domain α ∈ [0, π/2]. In this regard, the horizontal load 
multiplier can be expressed as a function of λX and λY , which are then 
combined by means of two coefficients, namely A and B: 

λα = A(α)⋅λX +B(α)⋅λY (12)  

Here, A and B assume the role of weight functions. In particular, A must 
be equal to 1 if α = 0 and equal to 0 if α = π/2 . On the contrary, B must 
be equal to 0 if α = 0 and equal to 1 if α = π/2. One can note that for all 
the values of the domain α ∈ [0, π/2], the coefficients A and B may as
sume any possible value. However, a reasonable attempt would be to 
construct weight functions for which their sum (A + B) is always equal 
to 1 for each α ∈ [0, π/2]. Fig. 16 represents two possible solutions of 
weight functions, one linear and one non-linear, that respect the afore
mentioned constraints; however, multiple (theoretically infinite) alter
natives exist. 

The minimum load factor λα capable of activating the failure mech
anism is computed through an optimisation routine that can explore the 

Fig. 16. Possible alternative of weight functions.  
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whole possible range of solutions by modifying the geometry of the 
failure mechanism, always respecting the kinematic mechanism re
ported in Fig. 15. Fig. 17 represents the parametrisation of the mecha
nism geometry as a function of the optimisation variables. 

It is worth noting that the optimisation variable has to respect con
ditions of geometric compatibility depending on the overall dimension 
of the corner prototype as well as the dimensions of the blocks. Finally, 
the optimisation of the failure mechanism geometry is achieved by 
solving the following constrained minimisation problem: 

minimise : λα(λX, λY)

subject to: h⩽Z1⩽H

Y3⩾tY

Y3⩽Y2

Y1 + Y2⩽LWY

Y1 + Y2 − Y3

H − Z1
⩽tanαb

X3⩾tX

X3⩽X1

X1 + X2⩽LWX

X1 + X2 − X3

H − Z1
⩽tanαb

(13)  

where, X1, X2, X3, Y1, Y2, Y3 and Z1 are the dimensions that define 
the size of the macroblocks (Fig. 17), H is the height of the corner pro
totype, while LW and t are the length and the thickness of the wall along 
the X and Y axes (defined by the subscript X or Y), respectively. This 
constrained optimisation problem has been mathematically imple
mented in a GHPython script [59,60]. The solution is achieved using a 
heuristic solver based on the Nelder-Mead method [61] that is able to 
refine the geometry of the macroblocks and search for the minimum 
value of the load multiplier λα within a few seconds. 

4.2. Experimental and numerical validation 

The analytical model has been validated against the obtained 
experimental and numerical results reported in Sections 2.3 and 3.2. 
According to the experimental tests and the numerical model, the di
mensions of the blocks are consistent with those reported in Section 2.1, 
whereas the friction coefficient has been set to the value of μ =

0.66 (φ = 34◦). In this case, the weight functions are assumed as equal 
to A = cos2(α) and B = sin2(α). Concerning the horizontal flexural 
mechanism, the k parameter (reducing the frictional forces due to uplift 
of blocks) has been set to vary from 0.3 to 0.6, which corresponds to a 
reasonable range of values according to [15]. 

The analytical model results, which are reported for both horizontal 
flexural and pure rocking-sliding mechanisms, have been evaluated in 

terms of the load multipliers λα and associated collapse mechanisms 
obtained for each load orientation angle α. As Table 5 and Fig. 18 
indicate, the horizontal flexural results better fit the experimental data, 
with overestimations only for α = 5π/16 and α = 3π/8. This effect 
might be easily corrected by assuming other weight functions that better 
approximate the experimental results, though such optimisation is out of 
the scope of the present paper. 

Regarding the collapse mechanisms, Fig. 19 shows the geometry of 
the macroblock involved for the range of experimentally investigated 
angles. It is worth highlighting the good agreement between the mac
roblock geometries reported in Fig. 19 and the blocks involved in the 
collapse mechanisms in the experimental tests and numerical simula
tions, as illustrated in Fig. 6 and Fig. 12. One can note how the analytical 
model predicts a symmetric macroblock geometry when α = π/4, 

Fig. 17. Definition of the failure mechanism: (a) macroblock parametrisation related to the computation of λX and (b) macroblock parametrisation related to the 
computation of λY . 

Table 5 
Comparison of the experimental and numerical load multipliers λα, with 
Difference (%) = (λLA

α − λEXP
α )/λEXP

α × 100.  

Load orientation α Load Multiplier λα Difference (%) 

Experimental LA k = 0.3 

π/4  0.287  0.290  1.0 
5π/16  0.270  0.284  5.2 
3π/8  0.248  0.263  6.0 
7π/16  0.239  0.238  − 0.4 
π/2  0.236  0.229  − 3.0  

Fig. 18. Variation of collapse load multiplier with load orientation for the 
experimental tests, numerical and analytical models. 
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whereas, as in the case of the experimental results, by increasing α until 
π/2 the walls influenced by predominant out-of-plane and in-plane ef
fects tend to increase and decrease their dimensions, respectively. 

The obtained results in terms of the horizontal load multiplier and 
collapse mechanism of the macroblock demonstrate the adequacy of the 
proposed analytical model. 

5. Final remarks 

This paper presented the results of experimental, numerical, and 
analytical investigations into the failure of masonry corners subjected to 
lateral loading due to seismic action. An experimental tilting table 
campaign was conducted on dry-joint masonry corners in order to gain a 
more comprehensive understanding of this less understood failure 
mechanism that commonly occurs during earthquakes. In particular, the 
effect of the seismic load orientation has been investigated here for the 
first time. The experimental data, including the material characterisa
tion, served to validate numerical DEM and analytical LA approaches. 
Both methods can be readily used to carry out parametric analyses on 
similar configurations (to investigate, for example, the effect of masonry 
arrangement, axial overload and the presence of openings) and/or to 
assess the seismic stability of larger-scale masonry buildings. While 
these additional analyses are beyond the scope of the current paper, they 
should be addressed in future works. 

The following points summarise the main findings and contributions 
of the paper:  

• The experimental characterisation of the dry-joint masonry included 
less commonly investigated parameters, namely the dry-joint stiff
nesses. The results have shown that the commonly used linearly 
proportional normal stiffness with normal stress approximates the 
dry-joint behaviour well. However, the numerical simulations evi
denced that the actual joint stiffness in a full wall might be smaller 
(by a factor of 2 to 3) than the one obtained from a joint closure tests 
using only two blocks. These outcomes can be used for other 
experimental studies of dry-joint properties and can also serve as a 
reference for numerical simulations that do not have access to the 
actual joint stiffness.  

• The paper highlighted the effect of the seismic orientation on the 
collapse load multiplier and the collapse mechanism. It has been 
observed that the loading case π/4 (when the pseudo-static action 
symmetrically loads the corner) has the highest resistance to 
collapse, while the loading case π/2 is the most critical one. 
Furthermore, the collapse mechanism of the π/2 loading case clearly 
showed that the rocking-sliding and flexural mechanisms occur 
simultaneously, with the out-of-plane loaded wall experiencing a 
pure flexural mechanism and the in-plane loaded wall experiencing 
pure rocking-sliding motion. When the orientation rotates from π/2 
to π/4, the flexural mechanism appears progressively in the mostly 

in-plane loaded wall, while rocking-sliding is noticeable in the 
mostly out-of-plane loaded wall. Both collapse mechanisms and 
collapse load multipliers have been found to be repeatable, high
lighting the quality of the experimental data that can be readily used 
for other studies.  

• The paper re-iterated the ability of Discrete Element simulations to 
reproduce the results of experimental tests on dry-joint masonry 
structures both in terms of collapse mechanisms and their associated 
collapse load multipliers. In the original case, no numerical cali
bration of parameters was carried out, and only the experimental 
data was used, resulting in an average overestimation of the ultimate 
load of 10%. However, further investigations into the wall slender
ness and joint stiffness highlighted the sensitivity of the results – 
particularly the collapse load multiplier – to these parameters. Spe
cifically, a reduction of the joint stiffness by 50% was found to better 
capture the experimental results (average error of 4%), thereby 
stressing the importance of identifying this parameter on masonry 
walls as a whole and not only with joint closure tests.  

• The work introduced a new LA model that accounts for rocking- 
sliding and flexural mechanisms. Results demonstrated that the 
analytical model describes the experimental results well, both in 
terms of load multiplier and macroblocks involved in the mecha
nism. Only slight overestimations (Difference (%) ≃ 5%) for α =

5π/16 and α = 3π/8 were predicted. 
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