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Abstract. In this paper, we describe a new two-dimensional
and multi-channel feature detection algorithm (2D-McDA)
and demonstrate its application to lidar backscatter measure-
ments from the Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observations (CALIPSO) mission. Unlike previous
layer detection schemes, this context-sensitive feature finder
algorithm is applied to a 2-D lidar “scene”, i.e., to the im-
age formed by many successive lidar profiles. Features are
identified when an extended and contiguous 2-D region of
enhanced backscatter signal rises significantly above the ex-
pected “clear air” value. Using an iterated 2-D feature de-
tection algorithm dramatically improves the fine details of
feature shapes and can accurately identify previously un-
detected layers (e.g., subvisible cirrus) that are very thin
vertically but horizontally persistent. Because the algorithm
looks for contiguous 2-D patterns using successively lower
detection thresholds, it reports strongly scattering features
separately from weakly scattering features, thus potentially
offering improved discrimination of juxtaposed cloud and
aerosol layers. Moreover, the 2-D detection algorithm uses
the backscatter signals from all available channels: 532 nm
parallel, 532 nm perpendicular and 1064 nm total. Since the
backscatter from some aerosol or cloud particle types can
be more pronounced in one channel than another, simulta-
neously assessing the signals from all channels greatly im-
proves the layer detection. For example, ice particles in sub-
visible cirrus strongly depolarize the lidar signal and, con-
sequently, are easier to detect in the 532 nm perpendicular
channel. Use of the 1064 nm channel greatly improves the
detection of dense smoke layers, because smoke extinction at
532 nm is much larger than at 1064 nm, and hence the range-

dependent reduction in lidar signals due to attenuation oc-
curs much faster at 532 nm than at 1064 nm. Moreover, the
photomultiplier tubes used at 532 nm are known to generate
artifacts in an extended area below highly reflective liquid
clouds, introducing false detections that artificially lower the
apparent cloud base altitude, i.e., the cloud base when the
cloud is transparent or the level of complete attenuation of
the lidar signal when it is opaque. By adding the informa-
tion available in the 1064 nm channel, this new algorithm can
better identify the true apparent cloud base altitudes of such
clouds.

1 Introduction

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation (CALIPSO) mission (Winker et al., 2010) has
provided direct measurements of cloud and aerosol vertical
distributions with a very high vertical resolution since 2006.
A key component of these measurements is made by the ac-
tive remote sensing instrument CALIOP (Cloud-Aerosol Li-
dar with Orthogonal Polarization), a two-wavelength (532
and 1064 nm) polarization-sensitive elastic backscatter lidar.

The knowledge of the cloud and aerosol vertical distribu-
tions and their properties is critical in assessing the planet’s
radiation budget (e.g., Shonk and Hogan, 2010), in eval-
uating the atmospheric radiative heating rate (e.g., Huang
et al., 2009) and for advancing our understanding of cloud–
climate feedback cycles that occur as the climate warms (e.g.,
Tsushima et al., 2006).
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The critically important first step in retrieving the spatial
and optical properties of clouds and aerosols is to determine
where these “features” are located in the vertical, curtain-
like images (altitude vs. satellite track) of the backscattered
lidar signals (Fig. 1). The CALIPSO feature detection al-
gorithms were first developed for ground-based observa-
tions and then adapted for space-based analyses using LITE
measurements and CALIPSO simulations. These algorithms,
which were conceived more than 25 years ago (e.g., Winker
and Vaughan, 1994), at a time when computational power
was considerably lower than what is now available, are in-
voked sequentially on single, one-dimensional (1-D) lidar
signal profiles (possibly generated from averaging data from
several consecutive laser pulses). Moreover, in order to min-
imize the computational load, the current CALIPSO algo-
rithm is only applied to the 532 nm total signal (Vaughan
et al., 2009).

To locate cloud and aerosol layers within lidar backscat-
ter profiles, two main approaches are generally employed:
the slope-based method, which looks for zero crossings in
the first derivative of the raw signal (e.g., Pal et al., 1992)
and threshold-based methods, which search for regions ex-
ceeding some expectation of the maximum signal value that
could be measured in “clear air” (e.g., Winker and Vaughan,
1994; Clothiaux et al., 1998; Campbell et al., 2008). Some
studies use a combination of both methods (e.g., Wang and
Sassen, 2001; Lewis et al., 2016). A few others adopt a
third method: the wavelet analysis (e.g., Davis et al., 2000;
Brooks, 2003). Because these layer detection algorithms are
applied successively to individual 1-D profiles (either single
shot or averaged), we define them collectively as “profile-
based processes”. We also define a second, more comprehen-
sive class of methods as “scene processes”. Scene processes
can take advantage of the contextual information provided
by a continuous series of profile measurements by searching
for cloud and aerosol patterns in the two-dimensional (2-D)
image formed by successive lidar profiles. While edge de-
tection techniques based on 2-D gradient search routines are
not well suited for spatial analysis of lidar data (Vaughan
et al., 2005), methods based on sliding window operations
have been shown to greatly improve the feature shape detec-
tion (e.g., Hagihara et al., 2010; van Zadelhoff et al., 2011;
Herzfeld et al., 2014).

Here, we propose a new 2-D and multi-channel feature de-
tection algorithm (2D-McDA). This “context-sensitive” fea-
ture finder algorithm is then applied to a 2-D lidar sig-
nal scene, i.e., to the image formed by many successive li-
dar profiles. Moreover, the 2-D detection algorithm uses the
backscatter signals from all available channels: the 532 nm
co-polarized (or parallel) signal, the 532 nm cross-polarized
(or perpendicular) signal and the 1064 nm signal. Since the
backscatter from some aerosol or cloud particle types can
be more pronounced in one channel than another, simultane-
ously assessing the signals from all channels is expected to
greatly improve the layer detection.

Section 2 presents a refined method for determining fea-
ture detection thresholds, which are a critically important
component of the detection algorithm. Section 3 presents the
detection algorithm. The detection of the Earth’s surface is
described first as it is performed first and separately from the
cloud and aerosol detection. This has been shown to have
many practical advantages. Then, the cloud and aerosol de-
tection algorithm is described. Finally, the detections from
each channel are merged into a composite feature detection
mask. Section 4 shows how this new algorithm improves the
feature detection compared to the CALIPSO version 4 verti-
cal feature mask (VFM).

2 Threshold-based feature detection

Atmospheric lidars measure attenuated signal backscattered
by molecules (m) and particles (p):

β ′(r)=
(
βm(r)+βp(r)

)
Tm(r)

2TO3(r)
2Tp(r)

2, (1)

where βm(r) and βp(r) are the volume backscatter coeffi-
cients for molecules and particulates, and Tm(r)2, TO3(r)

2

and Tp(r)2 are, respectively, the two-way transmittances for
molecules, ozone and particles, and r is the range from the
satellite altitude. If there are no particles in the atmosphere,
Eq. (1) reduces to the molecular attenuated backscatter coef-
ficient:

β ′m(r)= βm(r)Tm(r)
2TO3(r)

2. (2)

A feature, i.e., a cloud or an aerosol layer, appears as
an extended and contiguous region of enhanced attenuated
backscatter signal that rises significantly above the expected
clear-sky (molecules only) value. However, not all signals
that exceed the expected values of β̂ ′m(r) necessarily indicate
the presence of features; instead, such excursions are often
caused by noise. To distinguish features from the ambient
(but noisy) clear-sky signals, a first step is to determine a
threshold above which signals can be confidently attributed
to enhanced scattering arising from clouds or aerosols. We
construct this threshold by first calculating the expected
molecular attenuated backscatter, β̂ ′m(r), to which we add k
times the expected noise-induced standard deviation of the
molecular signal. The resulting range-dependent threshold
is the sum of β̂ ′m(r) and, based on error propagation theory
(e.g., Bevington and Robinson, 2003), k times the root mean
square (rms) of the standard deviations due to both range-
independent and range-dependent noise sources.

In constructing thresholds to be applied to CALIOP data,
one must take into account the onboard signal averaging
that is applied to the backscatter measurements. Because
the CALIPSO satellite has limited telemetry bandwidth, the
backscatter data are averaged both vertically and horizontally
before the data are downlinked from the satellite, with in-
creasing amounts of averaging applied to data acquired at
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Figure 1. Curtain of attenuated backscatter signal measured by CALIOP in the 532 nm parallel channel during nighttime observations on
31 August 2018, 21:46:37 UTC (start point), over the Arabian Sea.

higher altitudes (Hunt et al., 2009). As an example, signals
acquired between 8.2 and 20.2 km are averaged horizontally
over three consecutive lidar pulses and vertically for four
full-resolution (15 m) range bins. Consequently, the down-
linked profile data from within this region have been aver-
aged over 12 full-resolution onboard range bins. We com-
pute a range-dependent threshold specifically tailored for the
CALIOP profiles using

β ′T(r)= β̂
′
m(r)+ k

fcorr(r)
√
N(r)

√
1β ′b(r)

2+ 1̂β ′m(r)
2
, (3)

where 1β ′b(r) is the standard deviation due to background
noise (range independent1), 1̂β ′m(r) is the expected standard
deviation due to the shot noise (range dependent) in the ex-
pected clear sky, andN(r) is the number of bins averaged on-
board. The fcorr(r) term is a correction function which takes
into account the partial vertical correlation in samples due to
the limited electronic bandwidth and the shifting and rebin-
ning that can occur in the altitude registration phase of the
level 1A processing (details in Appendix A). The number
of shot noise standard deviations considered in the thresh-
old is quantified by the factor k, which can be tuned accord-
ing to the degree of sensitivity needed to avoid false detec-
tions. β̂ ′m(r) is derived from modeled profiles of molecular
and ozone number densities. 1β ′b(r) is derived from the on-
board computation of the rms of the background signal in
the high-altitude background region (HABR) between 65 and
80 km for each shot (Hostetler et al., 2006). 1̂β ′m(r) is esti-
mated using its proportional relation with the square root of
β̂ ′m(r) (e.g., Liu and Sugimoto, 2002), called the “noise scale
factor” (NSF):

1̂β ′m(r)= NSFβ ′
√
β̂ ′m(r). (4)

1The background noise is range- independent in the digitizer-
reading domain P . However, it then depends on r when transformed
to the β ′ domain.

Figure 2. Range-dependent threshold (red) applied to a single-shot
lidar signal profile (blue) in clear sky during nighttime. The esti-
mated molecular signal is shown in black. Jumps in the lidar signal
and threshold at−0.5, 8.2 and 20.2 km reveal the change of onboard
averaging resolution.

The NSF is evaluated from the solar background signal
during daytime for the 532 nm parallel and perpendicu-
lar channels (Hostetler et al., 2006; Liu et al., 2006). At
1064 nm, CALIOP uses an avalanche photodiode (APD) de-
tector rather than the photomultiplier tubes (PMTs) that are
used for the 532 nm channels. Because the APD dark noise
overwhelms the 1064 nm shot noise, only the background
noise is considered at 1064 nm.

Figure 2 shows the range-dependent threshold (red) com-
puted from Eq. (3) with k = 2 applied to the 532 nm par-
allel lidar signal (blue) for a clear-sky case study during
nighttime. Note the noise due to the quantum nature of pho-
tons (shot noise) in this figure. Indeed, although background
noise, mainly due to solar radiation, is quite low during night-
time, the lidar signal shows large variations around the ex-
pected clear-sky return (black). The range-dependent thresh-
old correctly keeps most the signal below the detection level.
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Figure 3. Pixels of Fig. 1 where the lidar signal is above the range-
dependent threshold computed from Eq. (3) with k = 2 are shown
in orange. Brown pixels show surface detection.

Jumps at−0.5, 8.2 and 20.2 km reveal the change of onboard
averaging resolution. However, a few points of the lidar sig-
nal still exceed the threshold. Some continuity tests are then
needed to determine whether these high signals are due to
noise or instead part of an extended feature. Unlike the cur-
rent CALIPSO detection algorithm, this continuity test will
be applied in two dimensions. Figure 3 shows all pixels of
Fig. 1 where the lidar signal is above the range-dependent
threshold computed from Eq. (3) with k = 2.

Like the current CALIOP layer detection algorithm, the
2D-McDA is applied to profiles of attenuated scattering ra-
tios, defined as

R′(r)=
β ′(r)

β ′m(r)
. (5)

The attenuated scattering ratio threshold is then obtained
from

R′T(r) =
β ′T(r)

β̂ ′m(r)

= 1+ k
fcorr(r)
√
N(r)

√√√√ 1

β̂ ′m(r)
21β

′

b(r)
2
+NSF2

β ′
1

β̂ ′m(r)
. (6)

Equation (6) is applied to the three lidar channels (532 nm
parallel, 532 nm perpendicular and 1064 nm) during the 2D-
McDA process.

3 2-D and multi-channel feature detection algorithm

The 2D-McDA is applied to the scattering ratio signals at
532 nm parallel, 532 nm perpendicular and 1064 nm. First,
the detection of the surface altitude is performed and the sig-
nal from this altitude and below is removed from the data.
Second, the detection of cloud and aerosol layers is done in
each channel based on iterated detection thresholds and 2-
D spatial continuity tests. Finally, the masks from the three
channels are merged in a composite feature mask.

3.1 Surface detection

Before detecting cloud and aerosol layers using the detection
threshold as described in the previous section, we perform

first an independent detection of the Earth’s surface. Doing
the surface detection in a first and separate step allows a bet-
ter retrieval of the surface echo and prevents complications in
the cloud and aerosol layer detection process. Also, knowing
where the surface is detected allows subsequent separation
of semi-transparent features from opaque features, which is
essential for accurately estimating range-resolved profiles of
extinction coefficients (Young et al., 2018). Operationally,
atmospheric features are defined as being opaque when no
surface return or other atmospheric feature can be detected
below them. From this definition, it follows that the signals
received from beneath opaque features have been fully at-
tenuated within these features. The Earth surface detection
algorithm used here is closely akin to the one described in
Vaughan et al. (2021) and is applied to the 532 nm paral-
lel and 1064 nm channels (details in Appendix B). The sig-
nals from the top of the detected surface echo and below this
point are removed from the data. To minimize computation
times, the surface detection algorithm is not applied to the
532 nm perpendicular channel signal. The backscatter from
ocean surfaces (covering ∼ 70 % of the planet) does not de-
polarize and, excluding snow and ice, the depolarization of
most land surfaces is relatively low (Lu et al., 2017); hence,
the preponderance of the surface backscatter is in the paral-
lel channel. The altitude retrieved in the parallel channel is
used to remove the signal at and below the estimated surface
altitude in the perpendicular channel. Note that there is some
small chance that a surface echo can appear in the perpen-
dicular channel but not be visible or detected in the parallel
channel. The detection of the surface corresponding to Fig. 1
is shown in brown in Fig. 3.

3.2 Cloud and aerosol detection

The detection of cloud and aerosol layers in a single channel
curtain of lidar measurements takes place in four main steps:

1. detecting strong features, i.e., identifying contiguous re-
gions of enhanced attenuated scattering ratios that rise
above the feature detection threshold (which is repeat-
edly decreased from a very large value of k down to k =
1) without applying any signal averaging (i.e., d = 1–4
in Table 1, Sect. 3.2.1);

2. flagging regions below opaque features as “fully attenu-
ated” (FA) and regions below transparent features where
the signal is strongly attenuated with the low confidence
flag “almost fully attenuated” (AFA) (Sect. 3.2.2);

3. averaging of those signals not already flagged using a
horizontal sliding window (Sect. 3.2.3); and

4. detecting faint features; features are once again identi-
fied as contiguous regions of enhanced signal (i.e., av-
eraged attenuated scattering ratios) that rise above the
recomputed feature detection threshold (Sect. 3.2.1).

Atmos. Meas. Tech., 14, 1593–1613, 2021 https://doi.org/10.5194/amt-14-1593-2021
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Figure 4. Flowchart of the two-dimensional and multi-channel feature detection algorithm (2D-McDA). d is the detection step, k is the
number of total noise standard deviations used in the detection threshold Eq. (3), s is the size of the window used for the spatial coherence
test, n is the minimum number of pixels in each pattern, and a is the size of the averaging window. See the algorithm description in Sect. 3
and the coefficient values in Table 1.

Figure 4 shows the flowchart of the whole detection algo-
rithm. The parameter values used at the different detection
levels are given in Table 1.

The following subsections give the details of the main
steps presented above.

3.2.1 Detection

The detection phase is performed following three substeps:

1. All pixels within the image that exceed the threshold are
first flagged as detected (Fig. 3).

2. A spatial coherence test window is applied to the im-
age of detected versus undetected pixels. It smooths the
shape of detected pattern and removes isolated noisy de-
tected pixels by turning some of detected pixels to un-
detected or undetected to detected.

3. Smoothed patterns are required to meet a minimum nu-
meric threshold of contiguous pixels. Patterns that fail
to meet this threshold are removed from consideration
for this level of detection.

The scattering ratio image used in the layer detection
scheme has a spatial resolution of one laser pulse horizon-
tally and 30 m vertically, equivalent to the finest spatial res-
olution of the CALIOP data. As described in Hunt et al.
(2009), CALIOP data are averaged aboard the satellite with
spatial resolutions that vary according to altitude. Scattering
ratios in regions where the data resolution is coarser than
the image resolution (30 m× 0.33 km horizontally) are du-
plicated as necessary to match the image resolution. For ex-
ample, between 8.2 and 20.2 km, the spatial resolution of the
signal is 1 km horizontally ×60 m vertically. These values
are replicated 12 times to populate the corresponding area
in the 30 m× 0.33 km scattering ratio image. The first sub-
step is then to flag all pixels of this image which exceed the
detection threshold given by Eq. (6) with the value of k de-
fined in Table 1. For example, for the 532 nm parallel chan-
nel, at the detection level d = 3, the detected pixels are those
where the signal is greater than 1+k times the expected noise

standard deviation with k = 2 (Fig. 5a; orange pixels). Then,
the second substep is to apply a spatial coherence test win-
dow (rows a in Table 1) on these detected pixels (Fig. 5a, b).
Here, an 11× 11 pixels window is applied to each pixel of
the image, with the window being centered successively on
all pixels. If the number of originally detected pixels in the
window is greater than half of the total number of pixel in the
window (≥ 61 for a 11× 11 pixels window), then the center
pixel is considered to be detected. If not, the center pixel is
considered to be undetected. In this smoothing step, the de-
termination of detection status does not rely on a single pixel
exceeding its threshold but instead on the fraction of neigh-
boring pixels that exceed their thresholds. Consequently, a
pixel classified as detected may not itself exceed the de-
tection threshold. Similarly, a pixel that exceeds the thresh-
old may not ultimately be classified as detected. The pixel
count within the window is limited to those detected at the
current detection level d and at the previous detection level
d−1. This allows detection continuity of similar backscatter
intensities and avoids connecting noise encountered during
fainter detections to a strong feature detected earlier. Other
flagged pixels (i.e., “surface”, detection ≤ d−2, “likely arti-
fact”, “fully attenuated”, “almost fully attenuated” and “low
confidence small strips” (to be described in detail later in
this section and Sect. 3.2.2) and pixels outside the window
when the top or bottom edges of the image are not consid-
ered in the window and the total number of candidate pix-
els in the window is decreased accordingly. The shapes of
detected features are smoothed by the spatial coherence test
window, while the noise (isolated orange pixel) is removed.
However, some small clusters of pixels sometimes persist.
Those small clusters cannot be confidently declared as fea-
tures at this stage. They can be due to noise or they can be
part of a larger, fainter feature. Then, we decide not to con-
sider these small patterns as detected features and retain these
regions for inclusion in the signal averaging used in succes-
sive iterations of the algorithm. To be declared as detected
features, smoothed detected patterns need to consist of more

https://doi.org/10.5194/amt-14-1593-2021 Atmos. Meas. Tech., 14, 1593–1613, 2021
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Table 1. Coefficient k in threshold detection, spatial coherence test window size s, minimum number of pixels in pattern n and averaging
window size a used at each detection level d . Window sizes are given in vertical × horizontal pixel counts, with a single pixel resolution of
30 m× 0.33 km.

d 1 2 3 4 5

532 nm parallel

k 100 20 2 1 1

s – – 11× 11 3× 21 9× 51
(330 m× 3.67 km) (90 m× 7 km) (270 m× 17 km)

n 1 1 60 200 10 000

a – – – – 1× 15
(30 m× 5 km)

532 nm perpendicular

k 500 100 2 1 1

s – – 11× 11 3× 21 9× 51
(330 m× 3.67 km) (90 m× 7 km) (270 m× 17 km)

n 1 1 60 200 1000

a – – – – 1× 15
(30 m× 5 km)

1064 nm

k – 20 2 1 1

s – – 11× 11 3× 21 9× 51
(330 m× 3.67 km) (90 m× 7 km) (270 m× 17 km)

n – 1 60 200 10 000

a – – – – 1× 15
(30 m× 5 km)

than n connected pixels (see Table 1); otherwise, they are re-
moved from this detection level.

This detection procedure is applied several times (the suc-
cessive detection level d of Table 1) with different thresholds,
different spatial coherence test windows s and different lim-
its on the number of connected pixels required n (Table 1) in
order to detect all layers from the most evident, very strong
patterns to the very faint ones and from geometrically small
patterns to very extended ones. Note that the horizontal spa-
tial coherence test window (3× 21) enables the detection of
faint but horizontally extended cirrus such as the layer shown
between 50 and 100 km in Fig. 1. The detection of this sub-
visible cirrus is presented in Fig. 6. Figure 6a–b show the
implementation of the 3× 21 spatial coherence test window.
We see that the cirrus pattern is smoothed and now clearly ap-
pears in Fig. 6b due to the fact that most of the noise around
has been removed. However, many small clusters of noise
pixels persist. By applying the minimum numeric threshold
of connected pixel n on the detected pattern, we are able to
remove small clusters due to noise while keeping the real cir-
rus (Fig. 6c).

3.2.2 Special flags

For the 532 nm channels, a first detection of a very strong
signal is performed (see d = 1 in Table 1). The aim of this

initial scan is to identify the tops of very strongly scattering
liquid clouds and ice clouds containing high fractions of hor-
izontally oriented ice (HOI) crystals. The non-ideal transient
response by PMTs following these very strong signals often
generates a spurious, exponentially decaying signal enhance-
ment in the underlying range bins (McGill et al., 2007; Hunt
et al., 2009; Lu et al., 2020). The presence of these “noise
tails” in the 532 nm signals can introduce large biases into the
determination of the apparent bases of opaque water clouds.
To exclude this artifact in the detection process, the 600 m
below the base of the detected very strong signal are flagged
as “likely artifact” and removed from the signal. Since the
APD used in 1064 nm channel does not produce these noise
tails, we rely on the 1064 nm channel for the detection of the
apparent base of these strongly scattering layers.

After detection of the strongest features, i.e., without sig-
nal averaging (d = 1−4 in Table 1), we flag all pixels below
a detected strong feature where the surface has not been de-
tected as “fully attenuated” (FA). In this portion of the pro-
file, the signal is too weak to be further exploited. Second,
the contiguous pixels located in the vertical extent between
two detected features are flagged as “almost fully attenuated”
(AFA) whenever the backscatter intensity falls below an em-
pirically determined threshold. For the 532 nm parallel chan-
nel, these pixels are flagged as AFA when more than 30 %

Atmos. Meas. Tech., 14, 1593–1613, 2021 https://doi.org/10.5194/amt-14-1593-2021
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Figure 5. Illustration of the spatial coherence test window substep of 2D-McDA on the 532 nm parallel channel for the case study shown in
Fig. 1. (a) Pixels which are over the detection threshold given by Eq. (6) with the value of k = 2 (orange). (b) Result after applying a 11×11
spatial coherence test window on the detected pixels. Note that the insert at the top is just an illustration and does not show the real content
of the image portion.

of the population has backscatter intensities that are less than
10 % of the corresponding detection thresholds. These pix-
els are flagged as AFA in the 532 nm perpendicular channel
whenever the signals in more than 90 % of the population
fall below (100 % of) the corresponding threshold values. To
be flagged as AFA in the 1064 nm channel, more than 85 %
of the population must have a signal less than (100 %) of
the corresponding threshold. In all cases, the AFA thresholds
were determined experimentally and are tunable. Finally, the
horizontal distance between successive (A)FA columns can
be very small and the likelihood of confidently detecting fea-
tures in these narrow gaps is very low. For this reason, the
data in all horizontal extents smaller than 5 km (15 profiles)
that lie between (A)FA columns are flagged as “low confi-
dence small strips”.

After removing all data identified with these low confi-
dence flags from the attenuated scattering ratios, the signal is
averaged in order to try to detect fainter features.

3.2.3 Signal averaging

We then average the remaining signal (here the attenuated
scattering ratios) using a Gaussian sliding window that ex-
tends over 5 km (15 profiles) horizontally and a single range
bin vertically (a in Table 1). Using a sliding window, instead
of the fixed window used in the CALIOP feature detection al-
gorithm, provides much improved resolution of the horizon-
tal edges’ position of faint features (0.33 km instead of 5, 20,
or 80 km) and makes it possible to detect non-uniform hor-
izontal edges. A Gaussian weight with a standard deviation
of 1.67 km is applied, thus giving a stronger weight to pixels
closer to center of the window than at the edges. We chose
a horizontal window here because the spatial extent of very

https://doi.org/10.5194/amt-14-1593-2021 Atmos. Meas. Tech., 14, 1593–1613, 2021
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Figure 6. Illustration of the horizontal spatial coherence test window substep and the pattern size threshold rejection substep of 2D-McDA
on the 532 nm parallel channel for the case study shown in Fig. 1. (a) Pixels which are over the detection threshold given by Eq. (6) with
the value of k = 1 (orange). (b) Result after applying a 3×21 spatial coherence test window on the detected pixels. (c) Result after rejecting
all patterns composed by less than n= 200 pixels (note that the insert at the top is just an illustration and does show the real content of the
image portion). Before these substeps, surface is detected first (brown); then, a very strong signal (k = 100) occurring on highly reflecting
liquid clouds is detected (black) and the 600 m below is flagged as “likely artifact” (gray), as it is the region where we see artifacts due to the
time response of photomultiplier tubes (PMTs) in the 532 nm channels. Two detections were also made: one with k = 20 and another with
k = 2, a 11× 11 spatial coherence test window and n= 60.

faint layers is mainly in the horizontal direction. Typically,
thin cirrus have geometrical thicknesses of a few hundreds of
meters but spread horizontally over several hundreds of kilo-
meters. The use of a horizontal averaging window thus al-
lows the detection of thin layers close to each other vertically.

Pixels flagged as surfaces or features are not considered in
the averaging window. However, if the center pixel of the av-
eraging window (i.e., the pixel to which the averaging is ap-
plied) is a low confidence pixel (i.e., “likely artifact”, (A)FA
or “low confidence small strips”), then the averaging window
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Figure 7. Final feature mask of the 532 nm parallel channel.

is applied, and, if the average signal value exceeds the detec-
tion threshold, this center pixel in the feature detection mask
is “unflagged” until the end of the detection-level processing,
after which its low confidence flag is restored. This allows
us to maintain connections between features separated by a
few low confidence pixels. Once the averaging is performed,
the detection substeps (Sect. 3.2.1) are then applied to the
averaged signal. Note too that horizontally adjacent features
separated only by a low confidence vertical band (i.e., pix-
els classified as FA, AFA and/or small strips) are considered
a single, merged feature when counting the number of con-
nected pixels. Some examples of this horizontal merging are
seen in the smaller fragments of the aerosol layer found at
about 4 km and an along-track distance of 500 km to 750 km
in Fig. 7.

Figure 7 shows the final mask for the 532 nm parallel chan-
nel after the detection of the faint features.

3.3 Three-channel composite detection

The detection algorithm is applied individually to the lidar
signal from each of the three channels (Fig. 8), and all pix-
els identified as features in any of the three channels are re-
tained in the composite mask (Fig. 9a). Comparing this new
feature mask (Fig. 9a, b) to the current version of the VFM
(Fig. 9c), we first note the improvement in the detected con-
tour of the large cirrus. We also note that the 2D-McDA read-
ily detects faint cirrus (e.g., as seen between 0 and 75 km)
that is missed by the current VFM. The vertical spreading
of the clouds seen in the VFM at around 7.5 km in altitude
and between 500 and 900 km horizontally is due to the afore-
mentioned PMT artifact afflicting the 532 nm signals beneath
strongly scattering layers. This is not seen in the 2D-McDA
feature mask because pixels below the cloud top are flagged
as “likely artifact” in the 532 nm channels and so we make
no attempt to retrieve the cloud apparent base of such opaque
clouds at this wavelength. Instead, in these cases, we retrieve
the true penetration depth estimates using the 1064 nm sig-
nals (Fig. 8c), which are not affected by detector transient re-

sponse artifacts (note that the light blue color indicates “1064
only” in Fig. 9a).

4 Performance assessments and comparisons to
version 4

In this section, we present two case studies to show the im-
provements made by this new feature detection approach.

4.1 Variety of cloud type and shape

Figure 10 presents the attenuated backscattered lidar signal
in the three channels for another case study showing a vari-
ety of cloud types and shapes which occurred above Ethiopia
on 31 August 2018 during nighttime. We can see that the
artifacts below liquid water clouds (close to the surface and
up to 8 km) appear in the 532 nm parallel (Fig. 10a) and the
532 nm perpendicular (Fig. 10b) channels but not at 1064 nm
(Fig. 10c). We note that thin cirrus clouds, like the one at
17 km in altitude between 1550 and 1850 km, are clearly
brought out in the 532 nm perpendicular channel (Fig. 10b).
If we look now at the composite feature detections derived
from these three signals (Fig. 11a), we note again how well
the apparent bases of liquid clouds are retrieved by using the
1064 nm channel. We note also that the successful identifica-
tion of thin cirrus can largely be attributed to our use of the
532 nm perpendicular channel. Figure 11b shows the same
mask as Fig. 11a but with the same colors that are used for the
VFM images (Fig. 11c). This change of colors is intended to
facilitate one-to-one comparisons between the two detection
schemes. However, note that the yellow and white colors do
not discriminate aerosol from cloud, as in the VFM, but in-
stead simply differentiate weak from strong features based on
whether the feature detection required data averaging (yel-
low) or not (white). Finally, Fig. 11d shows the difference
between the new composite feature detection mask and the
VFM. We see that the contour of features retrieved by the 2D-
McDA represents a distinct improvement over the squared
boundaries reported by the VFM. We note too that the new
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Figure 8. Curtain of attenuated scattering ratios measured by CALIOP during nighttime observations on 31 August, 21:46:37 UTC (start
point), daytime observations at (a) 532 nm parallel (same as Fig. 1), (b) 532 nm perpendicular and (c) 1064 nm.

algorithm detects thin clouds that are obviously missed by
the VFM and that it eliminates significant detection artifacts
reported by the VFM between 700 and 900 km.

4.2 Dense smoke

Figure 12 presents a dense smoke event in Siberia on 26 July
2006 during daytime.

The smoke layer is opaque at 532 nm, and thus we do not
see any surface echo for this channel (Fig. 12a). Note that the
smoke is non-depolarizing so there is no perpendicular sig-
nal (Fig. 12b). Because the standard CALIOP layer detection
only examines the 532 nm channel, the VFM (Fig. 13c) indi-

cates that the signals are fully attenuated after detecting (at
532 nm) the apparent base of the smoke layer. However, at
1064 nm, the dense smoke layer is semi-transparent because
the 1064 nm signals are attenuated significantly less than at
532 nm. Then, the surface is readily detected at 1064 nm
(Fig. 12c). This scene clearly illustrates the advantage gained
by using a multi-channel feature detection algorithm, since
the full vertical extent of the smoke plume can only be re-
trieved by inspecting the 1064 nm measurements (light blue
color in Fig. 13a).
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Figure 9. (a) Composite feature detection mask derived from signals shown in Fig. 8. (b) Same as panel (a) but using the same colors as
those used for the VFM. “Strong” (white) features are those detected without averaging in at least one channel; others are flagged as “weak”
(yellow). (c) VFM of version 4 of the CALIOP data product. (d) Difference between the new mask and the VFM.
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Figure 10. Curtain of attenuated scattering ratios measured by CALIOP during nighttime observations on 31 August 2018, 23:25:54 UTC
(start point), over Ethiopia at (a) 532 nm parallel, (b) 532 nm perpendicular and (c) 1064 nm.

5 Conclusions

This paper describes the architecture and theoretical un-
derpinnings of a new two-dimensional, multi-channel fea-
ture detection algorithm (2D-McDA) used to identify layer
boundaries in the backscatter signals acquired by the elas-
tic backscatter lidar aboard the Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observations (CALIPSO) plat-
form. The cloud and aerosol layer detection boundaries re-
ported in the standard CALIPSO data products are detected
by scanning sequences of 532 nm attenuated scattering ratio
profiles constructed at increasingly coarser horizontal aver-
aging resolutions. In contrast, the 2D-McDA is more akin to
an image processing algorithm that examines full-resolution
lidar scenes and hence can identify many of the fine de-

tails that are often obscured by CALIPSO’s standard multi-
resolution averaging scheme. Relative to the CALIPSO ver-
sion 4.2 vertical feature mask (VFM) data product, the 2D-
McDA shows the following improvements.

– Because it is applied to single profiles averaged over
several different horizontal resolutions, the standard
CALIOP feature detection produces blocky, rectangu-
lar layers. The complex shapes of aerosol and cloud
features are better preserved by the 2D-McDA win-
dowing and data aggregation operations, which provide
the flexibility required to distinguish fine spatial details.
It is hoped that this improved feature detection will
lead to improvements in classifying features accord-
ing to type (e.g., clouds vs. aerosols) and in their op-
tical property retrievals. Ideally, separate identification
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Figure 11. (a) Composite feature detection mask derived from signals shown in Fig. 10. (b) Same as panel (a) but using the same colors as
those used for the VFM. “Strong” (white) features are those detected without averaging in at least one channel; others are flagged as “weak”
(yellow). (c) VFM of version 4 of the CALIOP data product. (d) Difference between the new mask and the VFM.
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Figure 12. Curtain of attenuated scattering ratios measured by CALIOP during a dense smoke event which occurred in Siberia on 26 July
2006, 06:00:25 UTC (start point), daytime observations at (a) 532 nm parallel, (b) 532 nm perpendicular and (c) 1064 nm.

of strongly scattering and weakly scattering features by
the 2D-McDA will also offer improved discrimination
between juxtaposed cloud and aerosol layers or identifi-
able regions of ice and liquid water within a cloud. The
improvement of the cloud shape detection is by itself
important, for example, for studies interested in anvil
clouds (e.g., Bony et al., 2016; Hartmann, 2016).

– The detection of subvisible cirrus is significantly en-
hanced by both the 2-D detection scheme and the use of
the 532 nm perpendicular channel, which is especially
sensitive to the presence of depolarizing ice crystals.
Those clouds play an important role in the climate sys-
tem as they regulate the vertical transport of water va-
por near the upper troposphere–lower stratosphere (e.g.,
Jensen et al., 1996; Luo et al., 2003), influence the local

thermal budget and drive dynamics of the tropopause
region (e.g., Hartmann et al., 2001; McFarquhar et al.,
2000).

– The apparent base altitudes of highly reflective clouds,
i.e., the levels of complete attenuation of the lidar signal,
which are routinely biased low (by several hundred me-
ters) due to the non-ideal transient response of 532 nm
photomultiplier tubes, are now more correctly retrieved
by incorporating measurements made by the 1064 nm
channel. The apparent cloud base altitude, which re-
sults from both attenuation of the direct beam and mul-
tiple scattering effects, has been directly linked with
the amount of longwave radiation escaping the Earth
at the top of the atmosphere (Vaillant de Guélis et al.,
2017a, b), making its accurate estimation very impor-

Atmos. Meas. Tech., 14, 1593–1613, 2021 https://doi.org/10.5194/amt-14-1593-2021



T. Vaillant de Guélis et al.: 2D-McDA for CALIOP 1607

Figure 13. (a) Composite feature detection mask derived from signals shown in Fig. 12. (b) Same as panel (a) but using the same colors as
those used for the VFM. “Strong” (white) features are those detected without averaging in at least one channel; others are flagged as “weak”
(yellow). (c) VFM of version 4 of the CALIOP data product. (d) Difference between the new mask and the VFM.
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tant for cloud feedback studies (Vaillant de Guélis et al.,
2018).

– The 2D-McDA can retrieve the full vertical extent of
dense smoke layers by examining the 1064 nm channel.
Within smoke, the 1064 nm signals are attenuated sig-
nificantly less than at 532 nm and hence can more often
penetrate the full vertical extent of these layers. Those
biomass burning aerosols play a significant role in the
Earth’s radiative balance by their scattering and absorp-
tion of incoming solar radiation (e.g., Penner et al.,
1992; Christopher et al., 1996) and the interaction they
have with clouds (e.g., Kaufman and Fraser, 1997). The
full detection of those layers will lead to more accurate
aerosol optical depth retrievals which will improve es-
timates of the radiation budget. Profiling the full depth
of the smoke layer will also help to understand whether
the layer is in contact with underlying clouds and able
to affect cloud microphysics.

While the current implementation of the algorithm is compu-
tationally intensive, numerous optimizations are underway,
and it is now feasible to apply the 2D-McDA operationally
using CALIPSO’s available computer resources. However,
while fundamentally important, feature detection is only the
first step in extracting a comprehensive suite of geophysical
parameters from raw lidar measurements. Taking full advan-
tage of the improved spatial analyses delivered by the 2D-
McDA thus requires the development of a companion set of
2-D scene processes to replace the 1-D profile-based pro-
cesses that are currently used in the CALIPSO retrieval ar-
chitecture to perform the essential tasks of discriminating be-
tween clouds and aerosols, identifying cloud thermodynamic
phase and classifying aerosols by type.
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Appendix A: Correction functions

A1 Correction due to electronic bandwidth

A correction should be applied to Eq. (3) due to the fact
that the nominal sample range interval (15 m) of the lidar
is smaller than its range resolution (≈ 40 m) determined by
the electronic bandwidth (2 MHz; Hunt et al., 2009). Con-
sequently, a 15 m sample bin is partially correlated with the
two bins above and the two bins below. As a result, vertical
averaging of several 15 m binsNbin does not reduce the noise
standard deviation as much as it would if the samples were
independent. A function fa(Nbin) > 1 is then applied to cor-
rect from this partial correlation. This function is evaluated
as follows.

A 15 m bin bi has a variance Var(bi). If Nbin 15 m bins are
vertically averaged together to form a larger bin B, then the
variance of the mean is given by

Var(B)= Var
( 1
Nbin

Nbin∑
i=1

bi

)

=
1
N2

bin
Var

(Nbin∑
i=1

bi
)

=
1
N2

bin

Nbin∑
i,j=1

Cov(bi,bj )

=
1
N2

bin

(Nbin∑
i=1

Var(bi)+ 2
∑

1≤i<j≤Nbin

Cov(bi,bj )
)
, (A1)

where Cov(·, ·) is the covariance. When averaging Nbin con-
secutive 15 m bins, we can consider they have approximately
the same range and then that their variance is constant:
Var(bi)= Var(b). If the bi bins were uncorrelated, then we
would have Cov(bi,bj )= 0, ∀(i 6= j), and then Var(B)=
Var(b)
Nbin

. However, since each bin is partially correlated with
its vertical neighbors, we have Cov(bi,bi+m)= constant∀i
for each lag ofm range bins. Then, Eq. (A1) can be rewritten
following

Var(B)=
Var(b)
Nbin

(
1+

2
Nbin

∑
1≤i<j≤Nbin

Cov(bi,bj )
Var(b)

)

=
Var(b)
Nbin

(
1+ 2

Nbin−1∑
m=1

Nbin−m

Nbin
R(m)

)
, (A2)

where R(m)= Cov(bi ,bi+m)
Var(b) is the autocorrelation coefficient

for a lag of m range bins. It follows that the correction func-
tion to apply on the total noise standard deviation in Eq. (3)
to take into account the vertical partial correlation due to the
electronic bandwidth is

fa(Nbin)=

(
1+ 2

Nbin−1∑
m=1

Nbin−m

Nbin
R(m)

)1/2

. (A3)

A2 Correction due to redistribution in altitude
registration

An additional correlation arises from the data redistribution
in the altitude registration of level 0 data during the level 1A
processing. Indeed, the altitudes of the sample bins of a raw
data profile are recalculated with more accurate information
about the satellite altitude and laser viewing angle in the data
processing on ground. A shift for a few range bins (no more
than three in most of the cases) can be needed for the full-
resolution (30 m) samples. The number of 30 m bins shifted
Nshift30 (which we express below in terms of an equivalent
number of 15 m bins shifted; Nshift15) only add correlation to
regions in the profile data where the vertical range resolution
is coarser than 30 m, i.e., where the vertical range resolutions
are 60, 180 and 300 m (Winker et al., 2006). Indeed, in those
regions, a vertical shift by Nshift30 30 m bins led to the ne-
cessity of rebinning two neighboring bins larger than 30 m
which introduce additional correlation to those bins. When
there is a shift of Nshift15 15 m bins (an even number since
shifts are performed at 30 m resolution), each new shifted bin
B ′k , with vertical resolution coarser than 30 m, is computed
from the weighted average of the two original bins (withNbin
size resolution) it steps across (Bk andBk+1; Fig. A1) follow-
ing

B ′k =
Nbin−Nshift15

Nbin
Bk +

Nshift15

Nbin
Bk+1, (A4)

where

Bk =
b1+ b2+ . . .+ bNbin

Nbin
=

1
Nbin

Nbin∑
i=1

bi, (A5)

and

Bk+1 =
bNbin+1+ bNbin+2+ . . .+ bNbin+Nbin

Nbin

=
1
Nbin

Nbin∑
j=1

bNbin+j . (A6)
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The variance of a B ′k can be written as

Var(B ′k)

= Var
(
Nbin−Nshift15

Nbin
Bk +

Nshift15

Nbin
Bk+1

)
=

(
Nbin−Nshift15

Nbin

)2

Var(Bk)+
(
Nshift15

Nbin

)2

Var(Bk+1)+ 2
Nbin−Nshift15

Nbin

Nshift15

Nbin
Cov(Bk,Bk+1)

=

[(
Nbin−Nshift15

Nbin

)2

+

(
Nshift15

Nbin

)2
]

Var(b)
Nbin

fa(Nbin)
2
+ 2

Nbin−Nshift15

Nbin

Nshift15

Nbin

Var(b)
N2

bin
Nbin∑
i,j=1

Cov(bi ,bNbin+j )

Var(b)

=
Var(b)
Nbin

{[(
Nbin−Nshift15
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)2

+
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)2
]

fa(Nbin)
2
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Nbin
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1
Nbin

Nbin∑
i,j=1

R(Nbin+ j − i)

}
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Nbin
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Nbin−Nshift15
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)2
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)2
]

fa(Nbin)
2

+ 2
Nbin−Nshift15

Nbin
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( Nbin∑
m=1

m

Nbin
R(m)

+

Nbin−1∑
m=1

Nbin−m

Nbin
R(Nbin+m)

)}
. (A7)

It follows that the correction function to apply on the stan-
dard deviation to take into account both the vertical partial
correlation due to the electronic bandwidth and the redistri-
bution in altitude registration is

fcorr(Nbin,Nshift15)

=

{[(
Nbin−Nshift15

Nbin

)2

+

(
Nshift15

Nbin

)2
]
fa(Nbin)

2

+ 2
Nbin−Nshift15

Nbin

Nshift15

Nbin

( Nbin∑
m=1

m

Nbin
R(m)+

Nbin−1∑
m=1

Nbin−m

Nbin
R(Nbin+m)

)}1/2

. (A8)

Appendix B: Surface detection

The aim of this procedure is to detect a surface echo in the
near-neighborhood region of the estimated surface altitude

Figure A1. Scheme of redistribution in altitude registration.

ẑsurf given by a digital elevation model (DEM). The width of
this region will vary according to surface type. Since we are
highly confident of the surface altitude over the ocean (where
ẑsurf = 0), we will only search in a very narrow range of al-
titudes for profiles measured over the ocean. On the other
hand, we are somewhat less confident of the DEM surface
altitudes reported over land and even much less confident
over Greenland and Antarctica, so our search regions over
land will be larger. The surface echo can be very weak due to
attenuation by aerosol and cloud layers above. Then, we try
to detect even the weakest surface echo as long as it is sub-
stantially above background noise. This procedure is applied
at single-shot resolution only. For each shot, the method is
made up of the following steps:

1. Compute r̂surf, the estimated range of the surface, from
ẑsurf and the satellite altitude zsat.

2. Compute1β ′b(r̂surf), the standard deviation due to back-
ground noise in the β ′ domain at the range r̂surf.

3. Compute iŝurf, the bin index of the estimated surface al-
titude, i.e., when z(iŝurf) is closest to ẑsurf.

4. Define iŝurf±1i, the range of the surface search region
according to the International Geosphere-Biosphere
Programme (IGBP) classification of the surface type at
the lidar footprint:

a. If surface type is Water and ẑsurf = 0, then 1i =
2(≡ 60m).

b. Otherwise, if surface type is Permanent-Snow, then
1i = 17(≡ 510m).
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c. Otherwise, 1i = 5 (≡ 150 m).

5. Compute the derivatives of the lidar signal for bin index
range 289–578 (8.2 to −0.5 km):(

dβ ′

dz

)
i

=
β ′i −β

′

i−1

zi − zi−1
. (B1)

6. Determine zmin and zmax, the altitudes of the minimum
and maximum values of the derivatives in the surface
search region, and imin and imax, their respective bin in-
dices.

7. Determine β ′max, the maximum signal magnitude lying
between zmin and zmax.

8. Sequentially test the three following rules to determine
if we have identified a legitimate surface return:

a. zmin > zmax;

b. imin−imax ≤N withN = 2 for the 532 nm channels
and N = 4 for the 1064 nm channel;

c. β ′max > 31β ′b(r̂surf).

9. If all rules are passed, set surface bin index isurf follow-
ing these conditions:

a. if
(

dβ ′
dz

)
imin−1

> 0 or β ′imin−1 ≤ 0, then isurf = imin;

b. otherwise (i.e.,
(

dβ ′
dz

)
imin−1

≤ 0 and β ′imin−1 > 0),

isurf = imin−1 for the 532 nm channels and isurf =

imin−2 for the 1064 nm channel.

10. If surface detection arose in a profile (profile horizontal
index p) but not in the previous (p−1) and the following
(p+1) profiles, then the surface detection is canceled if
isurf 6∈ iŝurf±1. This last step reduces the surface search
region for isolated surface detection to prevent false de-
tection in a very attenuated region.
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