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With the wide availability of inertial sensors in smartphones and connected objects, interest in sensor-based activity recognition has
risen. Yet, recognizing human actions from inertial data remains a challenging task because of the complexity of human movements
and of inter-individual differences in movement execution. Recently, approaches based on deep neural networks have shown success
on standardized activity recognition datasets, yet few works investigate systematically how these models generalize to other protocols
for data collection. We present a study that evaluates the performance of various deep learning architectures for activity recognition
from a single inertial measurement unit, on a recognition task combining data from six publicly available datasets. We found that
the best performance on this combined dataset is obtained with an approach combining the continuous wavelet transform and 2D
convolutional neural networks.
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1 INTRODUCTION

Computational movement modeling is a central topic in the Movement and Computing (MOCO) community, as it is the
foundation for the design of interactive systems involving gesture and whole-body motion. The MOCO community has
witnessed an increasing number of contributions to new conceptual frameworks for movement analysis[12], signal
processingmethods [25, 28, 44] and applications ofMachine Learning (ML) tomovement analysis and recognition [15, 21].
Yet, using ML for analyzing movement data from wearable sensors remains challenging, especially in applications
domains where collecting and annotating data remains time-consuming or impractical, for instance in music and
performing arts. Approaches such as interactive machine learning have shown success for designing gesture recognition
systems from few examples [6, 19, 20, 22]. Yet, these approaches often rely on hand-crafted features and standard ML
models, which can limit their use for modeling higher-level movement characteristics and concepts such as movement
qualities [11, 17, 18].

In this project, we are interested in drawing upon Deep Neural Networks (DNNs) to learn representations of
movement from inertial sensor data. While our goal is to apply such techniques to a broad spectrum of movement and
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computing applications, we consider in this paper the task of sensor-based Human Activity Recognition (HAR), where
deep learning has shown success in recent years [14, 26, 32, 38, 40].

HAR based on wearable sensors finds applications in a wide range of areas such as health an well being, monitoring
physical activity or surveillance. Sensor-based HAR entails recognising a person’s activity (e.g. walking, running, etc.)
from their physical movements by analysing data generated from on-body inertial sensors. These wearable sensors
usually embed accelerometers, gyroscopes andmagnetometers. Traditional approaches to HAR apply classic MLmodels –
including Random Forests (RF), Bayesian Network (BN) or Support Vector Machines (SVM), – to movement features that
are engineered by hand. In recent years, DNN-based methods have achieved tremendous success in sensor-based HAR,
and several architectures have been proposed, including convolutional and recurrent neural networks [14, 26, 35, 40]. Yet,
to date few approaches have investigated the potential of time-frequency representations using the wavelet transform in
conjunction with convolutional neural networks (CNNs) which are extremely successful in computer vision. Considering
that human activities captured with wearable sensors often involve characteristic temporal patterns, we hypothesize
that the Continuous Wavelet Transform (CWT), that provides an accurate time-frequency representation, would result
in a valuable representation for recognizing activities. Furthermore, algorithms are usually evaluated on standard
datasets that are publicly available, that are built with a fixed protocol and a limited number of activities.

Our contributions in this paper are twofold. First, rather than considering only individual datasets, we propose
a more challenging task by combining activities from different datasets. This process introduces more variability in
data collection protocols and sensor placement, and challenges the generalization power of HAR methods. Second, we
propose a new method where accelerometer and gyroscope signals are first analyzed using the Continuous Wavelet
Transform (CWT) to generate a 2D image representation, and then classified using a CNN 2D. We demonstrate that
wavelet CNNs achieve competitive accuracies and outperformed the traditional statistical and other deep learning
methods when combining activities from different datasets.

The remainder of this paper is structured as follows: Section 2 summarizes the related work. Section 3 presents the
proposed methods and metrics. Section 4 describes the experimental setup and presents the results, Section 5 contains a
discussion of the obtained results, and Section 6 concludes this paper and proposes future improvements.

2 RELATEDWORK

HAR methods consists in monitoring and analyzing a person’s activity behaviors to enable computing systems to
proactively assist users in various tasks. Significant progress has been made by conventional ML methods. However,
with the rapid development of DL, there is an emerging interest and effort in applying it. Figure 1 presents a typical
flowchart of HAR from inertial measurement unit (IMU) sensor data using approaches based on feature engineering or
approaches based on deep neural networks.

2.1 Approaches based on Feature Engineering

Conventional approaches to HAR often draw upon classic learning algorithms applied to handcrafted features.
De Leonardis et al. [16] explored five classifiers (SVM, decision tree, K-Nearest Neighbor (KNN), Feedforward Neural
Network (FNN) and Naïve Bayes (NB) for classifying eight activities performed by fifteen subjects from their own
dataset. The results showed that all classifiers were able to correctly recognize more than 90% of activities, and that
best performances were obtained by KNN. Catal et al. [13] conducted several experiments on the Wisdm dataset
with decision trees, logistic regression, and multi-layer perceptron algorithms, and combines these classifiers with
the average of probabilities combination rule. Gao et al. [23] evaluated the effect of multiple sensors on HAR. They
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Fig. 1. HAR from IMU sensor data comprises three main parts, (a) data capture and pre-processing (accelerometer and gyroscope
data); (b) modeling and training, using either feature engineering with standard classifiers or deep learning extract representations
from raw data, and (c) activity recognition.

compared four classifiers, and concluded that decision tree classifier was the best algorithm for this problem. They
explain that traditiona artificial neural network (ANN), KNN, and SVM classifiers are computational expensive although
they provide good performance. The proposed approach achieved 96.4% accuracy when recognizing on their own
dataset. Batool et al. [5] explored the Particle Swarm Optimization (PSO) together with SVM algorithm. The results of
their model shows that pre-classifier as PSO and SVM along with feature extraction module have shown accuracy of
87.50% over MotionSense dataset.

While conventional approaches have made progress in HAR, they remain limited in several aspects. First, traditional
methods require handcrafted features, which heavily relies on human expertise. This lengthy process is task-dependent
and for more general tasks, this will show performance degradation [27]. Second, handcrafted features often refer to
some statistical information. They can only be used to recognize basic physical activities such as walking or standing,
and can hardly infer high-level or context-aware activities [29].

2.2 Approaches based on Deep Neural Networks

Unlike conventional techniques, approaches based on DNNs can directly process raw data and have outperformed
conventional approaches especially for the case of heterogeneous, large and unfamiliar datasets [24, 39]. There are
important reasons behind deep learning’s success: the availability of big data, advances in learning algorithms and
hardware, and increase in computing power. Chen et al. [14] provide a recent review of sensor-based human activity
recognition using deep learning. Muralidharan et al. [35] compared classic approaches based on feature engineering
with standard ML algorithms, as introduced in the previous section, with 1D Convolutional Neural Network (CNNs) on
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UCI HAR dataset. They found that the SVM and the proposed 1D convolution neural network were the best-performing
models. Qi et al. [40] proposed a fast and robust CNN to perform complex activity recognition from smartphone sensors
and the accuracy reached 94.18% in the experiment. Ignatov [26] proposed using a 1D CNN for local feature extraction
together with simple statistical features. The proposed CNN architecture consists of a convolutional layer, a max-pooling
layer, the output of the max-pooling layer is then flattened and stacked together with additional statistical features,
followed by a fully-connected layer. The authors obtained 97.62% accuracy on the UCI HAR dataset with the proposed
method.

In [32, 48], the authors presented an LSTM network for the classification of six activities from UCI HAR dataset.
The first one achieves 92% average accuracy, while the second achieves 91.61% of accuracy. To improve accuracy of
predictions, researchers in [10, 32, 38] merged functionalities of CNN and LSTM architectures to create a new one, the
so-called CNN-LSTM. They used the outputs of CNN as input data for LSTM and obtained good results.

Alemayoh et al. [2] proposed a CNNwith a double-channeled time-domain input to identify activities. In the proposed
architecture, data were shaped into double-channels to extract deep temporal and spatial features of the signals. In
[45], the authors split the sensor data into small segments of 128 data points. A frequency representation is taken from
these windows by applying the Discrete Fourier transform (DFT). A pre-trained deep neural network (AlexNet) extracts
features from the produced images. For the classification task, a SVM is choosen with linear and nonlinear kernels. An
overall accuracy of 94% was reached on the UCI HAR dataset. While a number of neural network architectures have been
proposed for sensors-based HAR, few works have investigated the potential of time-frequency representations such as
the continuous wavelet transform [37]. Moreover, most algorithms are evaluated on published dataset in isolation. In
this paper, we propose a new method for sensor-based HAR that applies 2D CNN to scalograms computed from IMU
data. We evaluate the proposed method against state of the art algorithms, both on isolated datasets and on a combined
dataset that aggregates data from various sources.

3 METHODS

This Section describes the adopted four baseline approaches, as well as our method combining CWT and CNNs.

3.1 Baseline Approaches

3.1.1 Random Forests on Statistical Features. We first consider a conventional baseline that applies a standard classifier
on a large set of both time-domain and frequency-domain features. Frequency domain signals were obtained by applying
a Fast Fourier Transform (FFT). Following Anguita et al. [3], we used 561 features to train a classifier. We experimented
with several popular algorithms (KNN, Adaboost, NB and RF) and found that Random Forests (RF) gave higher accuracy
in this circumstance. RF classifiers are efficient on huge data and can manage hundreds of input variable without
deletion [8]. It is also preferred because of its interpretability and low computational cost.

3.1.2 Convolutional Neural Network (CNN 1D). CNNs have been actively used and achieved impressive performance in
many research area that include activity recognition [34]. CNNs consist of combinations of convolutional, pooling,
normalization, and fully connected layers that extract progressive yet semantically rich features from the input data.
CNNs were developed for image classification problems, where the model learns an internal representation of the
input image, and produces a batch of 2D feature, in a process referred to as feature learning. This same process can be
harnessed on one-dimensional sequences of data, such as in the case of acceleration and gyroscopic sensors. The model
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learns to extract features from sequences of observations and how to map the internal features to different activity
types. CNN are able to capture the spatial information and connections of multimodal sensory data.

In this paper, we adopt the architecture proposed by Ignatov [26], that consists of a convolutional layer, followed
by one Max pooling layer, followed by a flattening convolutional layer, then one fully-connected layer and finally a
softmax classifier. It is denoted CNN1D in the following. The choice of this method is motivated by the fact that this
algorithm is computationally efficient, and the obtained results significantly outperforms baseline approaches [26].

3.1.3 Long-Short Term Memory Networks (LSTM). Long Short-Term Memory (LSTM) are a special case of Recurrent
Neutral Networks (RNN), having the capability to extract dependencies in time-series data and incrementally learn
information through time intervals. Hence, they are appropriate for streaming sensory data in human activity recognition.
The internal architecture of LSTM includes several gates where each gate processes the input from the previous gate
and forward it to the next gate thereby controlling the flow of information towards the final output.

We compare two LSTM architectures. The LSTM architecture consists of one LSTM layer, followed by one fully-
connected layer and finally a dense layer with a softmax activation function [10]. The CNN-LSTM architecture involves
CNN layers for feature extraction on input data combined with LSTMs to support sequence prediction. The architecture
seeks to leverage the combined power of both networks [36, 47]. The architecture consists of two sets of convolutional
layers, followed by one Max pooling layer, followed by a flattening convolutional layer. These features are then passed
through one LSTM layer, followed by one fully-connected layer and finally a dense layer with a softmax activation
function for classification [9].

3.2 Proposed Method Combining CWT and 2D CNNs

We propose a new approach that draws upon a time-frequency representation of IMU data, combined with 2D convolu-
tional networks, as illustrated in Figure 2. A similar approach has previously been proposed using the windowed Fourier
transform [45]. This approach is motivated by the fact that many daily activities such as walking, running, involve
specific temporal patterns that could be analyzed in the spectral domain. Time-frequency representations can then be
considered images, and we can take advantage of methods developed in computer vision to analyze spectrograms as
images. Rather than using the Short-Term Fourier Transform (STFT), we propose to consider the Continuous Wavelet
Transform (CWT), which addresses limitations of the STFT [1, 31, 43]. Wavelets could be considered as viable options
when considering feature extraction in activity recognition, as evidenced in [42]. Rather than imposing a fixed window
length for analysis, the CWT translates and dilates a wavelet function with short-term influence, raising better resolution
in both time and frequency [43]. The CWT also gives flexibility in the choice of the Wavelet basis used for analysis, and
in the choice of the frequency range and resolution to use for analysis.

In this paper, we use the Complex Morlet wavelet, which is defined as a plane wave modulated by a Gaussian window.
Using the complex version of the Morlet wavelet enables us to compute the scalogram (analog to the spectrogram with
the Fourier transform), by taking the power of the transform. We used 32 frequency bands distributed in log scale, with
a fixed number of 4 bands per octave. Applied to signals sampled at 50 Hz, the corresponding frequency range is [0.11,
25] Hz. Since each signal has six components, each signal will also have six scalograms. The scalograms are placed on
top of each other to create one single image with six channels, of shape (128, 32, 6). For computational efficiency and
reduced memory, the scalograms are downsampled by a factor 4 along the time axis, raising images of shape (32, 32, 6).
We can therefore use the images resulting from the mapping from the input sensors into a 2-dimensional space via
CWT as input of a 2D CNN.
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Given that images have small dimension and low complexity (compared to pictures), we used a simple 2D CNN
architecture, summarized in Figure 2- (c), with 2 convolutional layers with 64 filters of size 3x3, interleaved with max
pooling layers with kernel size 2 and stride 2, a flattening layer is used then to convert the output of the pooling layer,
followed by two dense layers containing 1024, 128 units separately with ReLU activation, dropouts are applied after
each dense layer. And the last dense layer, uses softmax as the activation function.

Fig. 2. CWT-CNN2D framework comprises three main parts, (a) data pre-processing for sensor-based HAR (accelerometer and
gyroscope); (b) continuous wavelet transform applied on data; (c) training phase, which utilizes CNN2D, and (d) activities recognition.

4 RESULTS

4.1 Experimental Protocol

We assessed the performance of the methods presented in Section 3.1 to predict human activities on several datasets. In
order to ensure the reproducibility of our results, we chose to train and evaluate our methods on six publicly available
datasets, that are summarized in Table 1. To further assess the generalization power of the various methods, we also
created a new "combined" dataset aggregating data from these six datasets across five common activities (Walking,
Upstairs, Downstairs, Sitting, Standing).

Each dataset was divided into a training set and for test set with a 70/30% split across users, guaranteeing that
different users are used for training and evaluation. For the combined dataset, we kept the train and test split from each
dataset to constitute the train and test sets.

For consistency, we used similar preprocessing for all of methods. We only used accelerometer and gyroscope data
from a single IMU. Signals were resampled at a fixed frame rate of 50Hz, and segmented into 2.56s windows (128
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Table 1. HAR Datasets used for evaluation. The combined dataset was created using common activities from all six datasets.

Dataset Activities
number

Sensor
placement Frequency Users

w-Har [7] 7 Ankle 250 22
UCI HAR[4] 6 Pocket 50 30
PAMAP2 [41] 18 Wrist 100 9
MotionSense [30] 6 Pocket 50 24
Wisdm (smartphone) [46] 18 Pocket 20 51
Wisdm (watch)[46] 18 Wrist 20 5
Combined dataset 5 multiple 100 136

samples) with 50% overlap. We used Scikit-Learn1 for RF and all deep learning algorithms were implemented using
Keras.2 Models were trained using the Adam optimizer with a learning rate of 0.001, with a batch size of 128, for a
maximum of 100 epochs with an additional early stopping mechanism.

4.2 Activity Recognition on Individual Datasets

In this Section, we examine a comparison between the different methods on individual datasets, including all activities
from each dataset. We report the accuracy on the test set of each of the methods in Table 2. Overall, the classifiers
performed better with the UCI HAR dataset followed by the MotionSense dataset.

Random Forest performs relatively better than the other methods, obtaining the best scores on 4 datasets: MotionSense,
PAMAP2, w-HAR and WisdmWatch. The proposed CWT-CNN2D yielded an accuracy of 92.46% for UCI HAR and 48.4%
for Wisdm Phone. The results are poor on the Wisdm dataset for all methods. PAMAP2 showed also poor performances,
with an accuracy inferior to 63%.

Table 2. Classification results on different HAR datasets. Bold font indicates best results.

CNN1D LSTM CNN-LSTM CWT-CNN2D RF
UCI HAR 92.2 87.5 89.8 92.46 86
MotionSense 82.6 80.08 86.1 88.9 91.52
PAMAP2 52.4 51.8 53.9 54.4 62.17
w-HAR 64.2 59.9 64.7 71.3 74.33
Wisdm Phone 29.8 26.9 40.75 48.4 38.52
Wisdm watch 54.2 49.7 47.4 49.4 57.52

4.3 Activity Recognition on a Combined Dataset

Table 3 reports the recognition rates obtained by the different methods, when reducing the number of activities to
the ones that are common across all six datasets: laying, sitting, walking, walking upstairs and walking downstairs.
We observe an increase in recognition rates for all methods. The best results were given by our proposed method
CWT-CNN2D on UCI HAR, w-HAR, Wisdm Phone, and Wisdm Watch datasets, followed by RF applied on statistical
features. We also note that the MotionSense dataset has the highest recognition rate, with 93.9%. CWT-CNN2D gives

1https://scikit-learn.org/stable/
2https://keras.io/
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the best recognition rate on the Combined Dataset. In particular, this result demonstrated an increase of approximately
9% over the RF method.

Table 3. Classification results on HAR datasets, for the common activities. The last row represents the classfication results for the
Combined Dataset. Bold font indicates best results.

CNN1D LSTM CNN-LSTM CWT-CNN2D RF
UCI HAR 93.8 89.8 93 93.9 87.79
MotionSense 87.8 87.08 86.3 89.1 93.9
PAMAP2 77.1 76.1 78.1 74.3 92.20
w-HAR 75.2 69.8 80.8 84.2 78.68
Wisdm Phone 89.1 87.7 86.3 91.8 83.43
WisdmWatch 64.2 63.18 69.3 70.04 63.17
Combined Dataset 63.8 65.2 71.4 82.5 74

5 DISCUSSION

We assessed the performance of the several deep learning and conventional methods to predict human activities from
IMU data on separate datasets. Random Forests performs relatively better than the other methods followed by our
proposed method CWT-CNN2D. The performance of the handcrafted method confirms the years of research experience
in HAR community performed by standard HAR procedure: manually extracted features, feature selection and feature
classification. Nevertheless, for Wisdm Phone dataset, Wisdm Watch dataset and PAMAP2, the results were relatively
poor with all the methods. In fact, the Wisdm dataset have some specific characteristics. It is composed of complex
activities. This complexity increases the difficulty of the recognition because of multiple transitions between different
motions. Moreover, for this dataset, previous works usually considered user-dependent solutions in which, the models
are trained and evaluated for a user using just her/his own data, and trained their models on a subset of activities [33].
For the PAMAP2 dataset, the poor accuracies are related to the high number of activities but also, because it includes
basic movements, household activities and more unusual activities (e.g. rope jumping).

The proposed method combining the CWT with CNNs reached higher accuracy on 4 out of 6 datasets when selecting
only common activities across different datasets. Interestingly, this method outperformed all other approaches on the
combined dataset. This dataset offers a much larger training and testing database and embeds significant variability,
because protocols for data capture differ dramatically across the original datasets. In particular, the combined dataset
aggregates IMU data from different types of sensors (e.g. smartphones and smartwatches), placed on different body parts.
This makes the recognition task more difficult than with isolated datasets, and requires models to further generalize.
The CWT-CNN2D approach is particularly efficient with this data, and might be more robust in real-world settings
where users’ devices might be heterogeneous in type, quality and placement. We hypothesize that the CWT could
present a better ability to capture temporal patterns while remaining invariant to positioning and direction. Yet, its
performance decreases with a higher number of activities, which means that it might generalize well to new data when
the number of activities is limited, but might fail to capture nuances in movement execution when working with a
large number of classes. Finally, the proposed method combining CWT with 2D convolutional networks has higher
computational complexity than other approaches based on 1D CNNs. Training remains efficient once scalograms are
pre-computed for the entire database, and in our experiments the method is still efficient enough for real-time activity
recognition, using 1s windows with 50% overlap.
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6 CONCLUSION

In this work, we compared different deep learning techniques for sensor-based human activity recognition under three
different scenarios: activities from individual datasets, five common activities from individual datasets and five common
activities from a combined dataset. We used data from UCI HAR dataset, MotionSense dataset, PAMAP2 dataset, w-HAR
dataset, Wisdm Phone dataset and Wisdm Watch dataset.

We proposed a new method combining the CWT, that provides an accurate time-frequency representation of the
original signal, with 2D CNNs that have been extensively studied in image processing. The main findings from the
direct comparison of our proposed method CWT-CNN2D against the baseline models is that: (i) CWT-CNN2D reaches
a higher recognition rate, especially when the number of activities is small; (ii) it offers better generalization capacity
illustrated by a higher recognition rate; (iii) conventional methods based on the combination between statistical feature
analysis and Random Forest remain powerful even compared with modern deep learning architectures.

Technically, there is no model which achieves the best results in all tasks, so it is recommended to choose models
based on the scenarios. The proposed CWT-CNN2D method appears more robust to variations in sensors placement
than other techniques, yet it might remain limited when a large number of activities need to be recognized. We believe
that this architecture could form the base of other movement analysis methods which require analyzing temporal
dynamics independently from trajectories and directions. In future research, the proposed method will be extended to
include a transfer learning approach in order to facilitate the design of movement analysis and recognition systems
able to learn from few examples.
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