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Abstract—Diagnosis demands a deep analysis of data to iden-
tify the root cause of an anomaly and still mostly relies on
human experts. The increase of Internet traffic combined with the
arrival of the encrypted protocol QUIC which invalidates many
troubleshooting methods, urges to automate this process. To this
effect, both domain familiarity and analysis skills are required.
In this work we present our methods and strategies to detect
the root cause of anomalies from active and passive network
measurement and we share our plan towards an automatic root
cause diagnosis. We focus on four root causes : transmission,
congestion, application limited and packet delay variation, and
present the building blocks of classification methods.

Index Terms—troubleshooting, active probe, passive probe,
TCP, QUIC, Congestion Control algorithm, time series data

I. INTRODUCTION

Troubleshooting is essential to the operators to offer good
network services to their clients. Telecommunication opera-
tors have made substantial investment to ensure high QoS
(Quality of Service) and QoE (Quality of Experience) to their
customers, this has been made possible thanks to relentless
tracking of network degradation. In this article we focus on
troubleshooting that rely on transport layer and more precisely
on congestion control algorithm behaviour. Operators use
active and passive probes to perform network measurement.
This troubleshooting method is considered as one of the best
solutions to detect root causes that directly impact the end user.
In this purpose we should distinguish two types of network
measurement : active and passive measurement.

Active measurement consists in observing test traffic gener-
ated by active probes, sometimes called robots. These probes
will generate packets that are sent over the network to perform
different measures. The main role of active probes is to act as
an end-user client connected to the Internet through an access
network. In passive measurement, probes are deployed in the
network with the objective of tracking and collecting real users
data.

The collected data from active and passive measurement is
presented as a time series data. For confidential matters all
the data presented is this work will be extracted with active
probes only. However the analysis and diagnosis methods
of the data collected with passive probes still remain the
same while using TCP. Sequence number, acknowledgment,
receiving window, selective acknowledgment, round trip time
and bytes in flight represent the different metrics captured by
probes and extracted or calculated from TCP packet headers.

II. METRICS DESCRIPTION

Active and passive probes timestamp each captured packet
which leads to a time series. In this section we describe the
most important metrics that we collect and analyse to detect
the root cause of an anomaly.

o Sequence (SEQ): The sequence number identifies the first
data byte in a packet. [1].

o Acknowledgment (ACK) : The acknowledgment number
is the sequence number of the next byte the receiver
expects to receive.

« Receiving window (RWIN) : The receiving window iden-
tifies the number of bytes that the receiver can accept. It
is sent to the source by the receiver in every ACK.

o Selective acknowledgment (SACK) : With selective ac-
knowledgments, the data receiver can inform the source
about all segments that have arrived successfully.

« Bytes in flight (BIF) : Bytes in flight are the number of
bytes sent by the source but not yet acknowledged. Con-
trarily to the RWIN, SEQ and ACK, BIF is not included
in the TCP header. To measure the BIF, we calculate the
bytes difference between the sequence number and the
last received ACK. If the congestion control algorithm
has the sack option then we take this information into
consideration for better BIF estimation.

¢ Round-Trip-Time (RTT) : Round trip time is the delay
between the emission of a packet and the reception of the
corresponding acknowledgment. Like the BIF, the RTT is
not included in the TCP header. To measure the RTT we
compute the time difference between the observation of
the sequence number and its acknowledgment.

Identifying the root cause of an anomaly is essential for
an efficient troubleshooting. This requires a deep knowledge
of the congestion control algorithm’s (CCA) behaviour; this
behaviour can be caught by observing the time series of
CCA states (e.g. : Slow-Start, Congestion Avoidance, Fast
Retransmit, Fast Recovery [3]). CCA states are easily readable
in the sender stack, typically a server in an active measurement
scenario. On the contrary, internal CCA states are out of reach
for a mid-point observer, typical of a passive measurement
scenario. In that case, human experts typically derive CCA
state time series from the analysis of the previously defined
metrics (BIF, SEQ, etc.). For example, detecting Slow-Start
state exit time and determining if it’s an early exit (or not)
is the first necessary step to investigate an anomaly. This



detection is crucial because in this state the CCA estimates the
bottleneck capacity, and overestimating or underestimating the
bottleneck capacity will lead to a bad connection throughput.

III. TIME SERIES ANALYSIS FOR ROOT CAUSE
IDENTIFICATION

In this section we analyse time series captured by active
probes so as to classify them into root causes. We focus on four
of the most frequent root causes in Internet networks. In each
case we expose our data and explain the reason underlying
our diagnosis. The presented data are collected from RAN
and fully wired network with various TCP versions.

A. Transmission loss

Transmission losses occur when packets are dropped with-
out any congestion in a network. It mostly affects Radio Ac-
cess Networks (RAN). Radars, weather and RAN interference
can be the origin of this issue. We can identify it by analysing
packet sequence numbers and their acknowledgements. Trans-
mission loss appears as individual and isolated packet losses
as shown on Fig. 1 (where we have three individual losses
at 13.61s, 13.82s and 14.03s). A loss can be identified by a
sequence number decrease due to packet retransmission. This
loss is considered isolated as we have only one packet lost
from a burst of packets. It’s harmful when it is repeated many
times and more precisely at the beginning of the connection.
Indeed it causes the CCA to exit the slow-start state early,
because it considers these losses as a sign of a congestion,
thus underestimating the bottleneck.

seq

Aok —

288

Volume (MB)

287

286 3

285
283

282
281

28
278

13.55 12.60 13.65 13.70 13.75 13.80 13.85 13.90 13.95 14.00 14.05

Fig. 1. transmission loss detection using seq & ack evolution

B. Network congestion

Network congestion can occur when the emitted traffic
throughput is greater than the network capacity. It may affect
any network, wireless or wireline and mostly depends on link
capacity and buffer sizing. Contrarily to transmission loss, to
detect congestion we look for a burst of packet losses as shown
on Fig. 2 (from 1.88s to 1.94s). These lost packets will be
accompanied by a significant increase in RTT as shown on
Fig. 3 at 1.90s where RTT value starts to rise from 200ms at
1.90s to 625ms at 2.30s.
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Fig. 2. congestion detection using seq & ack evolution
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Fig. 3. RTT evolution

C. Application limited

Beside network issues, the performance of a TCP transfer
can be affected by the endpoints’ ability to send or receive
fast enough. This problem only depends on the server and
terminal. Servers are typically sized not to be overwhelmed
by normal traffic, so the ’slow sender” case is rare. On the
contrary, clients are typically battery-powered devices with
limited resources, and are fairly often the limiting factor. We
thus focus on this case here.

This “’slow receiver” situation is defined by the RWIN
limiting the BIF, as shown on Fig 4. Here we can notice the
BIF’s exponential growth in the slow-start phase, ending at
1.4s by reaching the RWIN’s limitation. This indicates that
the receiver’s buffer cannot grow beyond that size; accordingly,
the source’s sending rate cannot increase any further without
overwhelming the receiver.
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Fig. 4. application limited detection using rwin & bif evolution

D. Packet delay variation impact

Packet delay variation, also called jitter, is a network
issue that normally affects wireless users. Jitter causes bad
performance due to early Slow Start exit when the CCA



misinterprets it as a sign of congestion. To verify if jitter is the
root cause of bad performance we first compute the slow-start
exit time. After that, we correlate with other time series (e.g.
SEQ, ACK, RTT) looking for packet loss or RTT increase. If
no loss is detected and high RTT variance is observed, then
we can conclude that CCA has exited slow-start due to jitter.
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Fig. 6. bif evolution

In Fig 6 the CCA exits slow start at 50000 bytes (0.7s),
while the true bottleneck value we can derive at the end of
transmission is around 1.6 x 10% bytes as shown on Fig 5
which lead to a bad connection throughput.

IV. TOWARDS AN AUTOMATIC TROUBLESHOOTING!

Finding the root cause of degradation within the network
is time consuming for human experts. With the skyrocketing
growth of Internet traffic, this task becomes intractable without
automation. The faster we can detect the heart of the problem
in networks, the quicker we can solve it before impacting the
experience of customers.

A. Slow-start exit automatic detection

Slow-start exit can be detected by searching the exponential
part in BIF time series. For this purpose, we distinguish two
steps : the first one with traffic with headers in clear (TCP),
the second one with deeply encrypted traffic (QUIC).

1) Detection with readable headers: Our work mainly
focuses on slow-start automated detection in TCP where BIF
series is at hand. We first tried to identify the Slow-Start phase
by fitting the BIF series to an exponential, but the results
were disappointing with bursty traffic which typically exhibits
an on-off pattern. We then designed a promising innovative
smoothing method which will be published soon.

2) Detection with encrypted headers: Strictly applying the
previous slow-start detection method on passive measurements
with encrypted traffic is impossible. Indeed, only packets
timestamp and length are reachable in QUIC, thus BIF and
RTT are out of reach.

To overcome this difficulty, we propose to use machine
learning algorithms trained on clear-headers samples: thus,
we first classify TCP captures, then turn them into QUIC-like
captures, erasing all header information. We then feed them
into the ML algorithm, using their previously determined class
as supervision. We then expect the algorithm to extract the
proper regularities, assuming it is possible.

B. Labelled dataset

We gathered more than 400 captures from active probes
in Orange networks and manually labelled them into root
causes using human expertise. This dataset relies on probes
in a broad range of conditions: 4G, wireline, various TCP
versions, various RTT.

This dataset will be used both to evaluate analytical methods
and to train machine-learning algorithms.

The next step is to "QUIC-ize” this dataset so as to mimic
encrypted traffic, so as to verify the consistency of our results;

V. CONCLUSION

This thesis contributes to the research and industry in the
field of network monitoring and troubleshooting. Automatic
troubleshooting is not simple, especially with the arrival of
QUIC that invalidates passive troubleshooting methods due to
packets headers encryption. In this thesis, typical degradation
root causes are analysed, descriptors are defined and new
classification methods are proposed. These methods - coupled
with new learning solutions such as Machine Learning -
seem promising; they potentially allow a high automation of
processes while being compatible with deeply encrypted flows
such as QUIC.
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