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Abstract 

Among primates, humans are special in their ability to create and manipulate highly elaborate 

structures of language, mathematics or music. Here, we show that this sensitivity to abstract 

structure is already present in a much simpler domain: the visual perception of regular 

geometric shapes such as squares, rectangles or parallelograms. We asked human subjects to 5 

detect an intruder shape among six quadrilaterals. Although the intruder was always defined by 

an identical amount of displacement of a single vertex, the results revealed a geometric 

regularity effect: detection was considerably easier when either the base shape or the intruder 

was a regular figure comprising right angles, parallelism or symmetry, than a more irregular 

shape. This effect was replicated in several tasks and in all human populations tested, including 10 

uneducated Himba adults and French kindergartners. Baboons, however, showed no such 

geometric regularity effect, even after extensive training. Baboon behavior was captured by 

convolutional neural networks (CNNs), but neither CNNs nor a variational auto-encoder 

captured the human geometric regularity effect. However, a symbolic model, based on exact 

properties of Euclidean geometry, closely fitted human behavior. Our results indicate that the 15 

human propensity for symbolic abstraction permeates even elementary shape perception. They 

suggest a new putative signature of human singularity, and provide a novel challenge for non-

symbolic models of human shape perception. 
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Main Text 

 [The universe] is written in mathematical language, and its characters are 

triangles, circles and other geometric figures, without which it is impossible to humanly 

understand a word. 

– The Assayer, Galileo Galilei   5 

 

Among primates, humans are unique in their ability to develop formal symbolic systems 

that capture regularities in the external world, such as the language of mathematics. A great 

variety of non-exclusive hypotheses have been proposed to account for human singularity, 

including the emergence of evolved mechanisms for social competence (1), pedagogy (2), 10 

natural language (3, 4), or recursive structures across multiple domains such as language, music 

and mathematics (5–8). To explore these hypotheses, experimental paradigms that afford a 

direct comparison of human and non human primate behavior using the exact same methods 

are the most informative (9–14). Here, we present a novel paradigm to investigate the 

differences between humans and baboons in the domain of geometry, and more specifically, 15 

the visual perception of quadrilaterals such a square, a rectangle or a parallelogram. We show 

that all humans, regardless of culture or education, are sensitive to the presence of geometric 

regularities such as right angles, parallelism or symmetry, and perform very differently from 

baboons in an elementary visual perception task. 

Prehistorical records suggest that the appreciation of regular geometric shapes is as 20 

ancient as humanity itself. Parallel lines, circles, squares and spirals are omnipresent in human 
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art and architecture. The earliest engravings attributed to Homo sapiens, consisting of a 

triangular mesh of parallel lines, are estimated to be ~73000 years old (15). Even Homo erectus 

already drew abstract patterns ~540,000 years ago (16). Paleoanthropologists do not question 

the human origins of such drawings because, when given the opportunity to draw, other non-

human primates never produce structured figures (17). By contrast, the diversity and 5 

abstraction of young children’s drawings are striking (18, 19). Prior research has established 

that even kindergartners and adults with no formal education from the Amazon already possess 

sophisticated intuitions for geometry (20, 21) forming an intuitive mathematical “language of 

thought” (22). Those prior results suggest, but do not prove, that humans possess a more 

symbolic level of understanding of the abstract properties of geometry at the perception level 10 

than other primates. Here, our goal was to design a simple empirical test capable of probing 

this hypothesis. 

We reasoned that if humans are spontaneously attuned to the major properties of 

Euclidean geometry (lines, length, parallelism, perpendicularity, symmetry) and their 

combinations, then they might exhibit a geometric regularity effect, with a better and faster 15 

perception of regular shapes, such as a square, than of irregular ones. This hypothesis is in line 

with a long tradition in the psychology of perception, pioneered by Wundt, Tichener, then the 

Gestaltists (23), Leeuwenberg’s visual grammar (24, 25) and Leyton’s generative theory of 

shape (26), which posit that the shapes which are judged as most regular or most elegant are 

those that elicit the most compact internal representations. Several previous experiments, both 20 

within and outside the domain of geometry, have shown that whenever regularities are 

present, humans use them to compress information in working memory and achieve a smaller 
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“minimal description length”, thus facilitating memorization, anticipation and outlier detection 

(22, 27–30).  

Crucially, the domain of visual shape perception is simple enough to probe the 

sensitivity of human and non-human animals to the same mathematical properties. Indeed, a 

previous study demonstrated that humans could perceive visual patterns with nested 5 

symmetries, while pigeons did not (31). Here, we opted for an even simpler intruder test, 

where a participant must simply find the outlier shape within a set of six, and which has been 

previously used to explore human intuitions of geometry (20, 32). We used it to test a large 

number of humans and baboons with the very same stimuli. 

Results 10 

Design of the geometric intruder task. We focused on four geometrical properties of polygons: 

the presence of parallel lines, equal sides, equal angles, and right angles. Our hypothesis was 

that the perceived geometric regularity of a shape would be directly related to its number of 

geometrical properties. On this basis, we selected 11 quadrilaterals ranging from highest 

regularity (a square) to full irregularity (an arbitrary quadrilateral devoid of any of these 15 

properties). The 11 shapes, ordered by predicted regularity, are depicted in Fig. 1A and 

described in supplementary table T1. For each such reference shape, four deviant versions 

were generated by changing the position of the bottom-right vertex by a constant distance, 

either along the bottom side or along a circle centered on the bottom-left vertex (thus violating 

either distance or parallelism). All deviants departed from their reference shape by the same 20 

amount, and all 11 reference shapes were matched for average distances between vertices (see 
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Supplementary Online Materials). On each trial of the intruder task, we selected one of the 11 

possible reference shapes and presented five instances of it, varying in scale and orientation 

(e.g. 5 rectangles), together with a single deviant (in this case, a non-rectangle with the bottom-

right vertex displaced). The location of this outlier was randomized, and six levels of shape 

rotation and shape scale were pseudo-randomly distributed among the six shapes. The 5 

participants’ task was to click on the outlier shape, as fast and accurately as possible (figure 1B).  

Intruder task in educated adults. In experiment 1, with N = 605 French adults, we observed 

that error rates in the intruder task varied dramatically with the reference shape, from 2% to 

40% (Fig. 1C; Univariate Type III Repeated-Measures ANOVA: F(10, 6040) = 292.88, p < 10-15; 

explained variance evaluated by the generalized eta squared: η²G= .27). Average performance 10 

was well predicted by the total number of geometrical regularities (linear regression on 11 

points: r²=.64, p=.0031) and showed a consistent, though imperfect, ordering from regular to 

irregular (Fig. 1C). Since the regularity of symmetrical figures, such as the iso-trapezoid, was 

underestimated by our theoretical measure, in subsequent experiments we use the error rate 

from experiment 1 as an empirical measure of regularity. 15 

By contrast to the major effect of shape, the size, rotation and position of the outlier 

had significant but only minor effects (size: F(5, 3020) = 4.46, p = .0005, η²G=.005; rotation: F(5, 

3020) = 21.19, p < .0001, η²G=.021; position: F(5, 3020) = 4.96, p = .0001, η²G=.005). Response 

times were tightly correlated with error rates (linear regression: r² = .92, p < .0001) and 

therefore also exhibited a large geometric regularity effect (Fig. S1). 20 
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In experiment 1, the intruder was always a deviant shape, and was therefore more 

irregular than the reference shape. Thus, participants could have responded by selecting the 

most irregular among the six shapes on display. To avoid this confound, in experiment 2 and all 

subsequent experiments, half of the displays were canonical (five instances of one of the 11 

reference shapes, plus a single deviant) and half were swapped (five deviants, identical up to a 5 

rotation or scale change, plus a single reference shape; see examples in Fig. 1B). As previously, 

participants were simply asked to click on the shape that differed from the others. In a new 

group of N = 117 French adults, the geometric regularity effect was replicated (differences 

between shapes: F(10, 1160) = 70.96, p < 10-15, η²G=.25; correlation with experiment 1: r² = .97; 

p < 10-7; Fig 1.D), while size, position and rotation effects again had either insignificant or very 10 

small effects (size: F(5, 580)=2.16, p=.056, η²G=.008 ; rotation: F(5, 580)=9.66, p < .0001, 

η²G=.031; position: F(5,580)=2.26, p=.047, η²G=.008). Response times also yielded a large 

geometric regularity effect (correlation with error rate: r²=.95, p<.00001). Error rates were 

strongly correlated across  the two display types (r² = .84; p < .0001; Fig. 1.D). 

Subjective ratings of complexity. Three additional experiments investigated the origins of the 15 

geometric regularity effect. First, we asked whether geometric regularity was consciously 

accessible and could therefore be directly reported using subjective ratings. N = 27 French 

adults rated the subjective complexity and N = 21 rated the subjective regularity of each 

reference shape on a 1-100 scale. Both subjective ratings correlated tightly with error rates in 

the intruder task (complexity r²=.88 and regularity r²=.76; r²=.84 after aggregating the two 20 

conditions by averaging complexity and 1 – regularity; all p<.0001; Fig. 1E). Since what 

characterizes complex stimuli at the early visual stages of object recognition is largely thought 
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to be inaccessible to introspection (33), the finding that humans have correct intuitions that 

some geometric shapes are simpler than others suggesting that this effect arises at a level of 

representation beyond early vision. 

Visual search. We further tested this idea by probing whether the search for geometric 

regularity engages parallel (“pop-out”) or serial processes. N = 11 French adults engaged in a 5 

classic task of visual search for an outlier in arrays of 6, 12 or 24 shapes. Response times 

showed that search was always serial, for all 11 shapes, yet with a slope and an error rate that 

again correlated linearly with geometric regularity (p<.0001, r²=0.98; Fig. 2; detailed analysis of 

the effects of number of items and item presence provided in Supplementary Materials). This 

finding shows that the regularity effect does not arise from an early pre-attentive pop-out, even 10 

for the simplest shapes such as square or rectangle. Rather, geometric shape perception 

involves an attention-dependent stage whose speed increases with geometric regularity. 

Sequential presentation of shapes. As a further test of the perceptual stage at which the 

geometric regularity effect arises, we asked whether this effect would still be present if the 

shapes could not be perceived in one glance, but had to be mentally reconstructed for a 15 

sequential display of their vertices. N = 16 French adults participated in an experiment in which 

the shapes were broken down into a sequence of four dots, one for each vertex location, in a 

systematic order. By having the sequence unfold over a time span of 1.8 s, thus largely 

exceeding the time window for integration within the ventral visual recognition system (34, 35), 

our goal was to prevent classical bottom-up shape recognition mechanisms, yet still allow 20 

subjects to grasp the geometric relationships between the 4 vertices. The experiment was run 
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in small blocks, each with reference shapes. In the first six trials of a given block, the four dots 

always traced a fixed quadrilateral (e.g. rectangle), with variations in size and orientation. Then, 

on each subsequent trial, the first 3 dots continued to trace the same quadrilateral (again with 

variations in size and orientation), but on half of the trials the fourth dot was displaced to one 

of the four possible deviants shown in figure 1A. Participants were asked to indicate if the last 5 

dot was correctly or incorrectly located. Even under this sequential condition, the geometric 

regularity effect was replicated: the error rate still varied dramatically across shapes (F(8, 120) = 

10.1, p<10-9, η²G=.16) and the effect correlated with the geometric regularity effect observed 

for static shapes (r² = .56; p = .02; Fig. 1F). Thus, the effect arises from a level of representation 

where geometric properties can be ascertained even when they are not simultaneously present 10 

in the stimulus. 

Probing the influence of education: Himbas and young children. We next investigated the 

dependence of the effect on age, education and culture. One possibility is that the effect arises 

from formal education in mathematics, for instance because regular shapes are also familiar, 

nameable, and taught at school. To address this concern, we turned to human populations with 15 

little or no formal schooling. First, we tested French kindergartners (N=28; mean age 5 years 4 

months; range 4:11 to 5:10. To shorten the duration of the experiment, children were tested 

solely with canonical displays. N=156 1st graders were also tested, see supplementary materials 

and Fig. S2 for detailed results). Second, even since those Western children could have been 

introduced with shape names, we also tested 22 uneducated Himba adults, a pastoral people of 20 

northern Namibia whose language contains no words for geometric shapes, receive little or no 

formal education, and who, unlike French subjects, do not live in a carpentered world (36). 
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In both populations, the geometric regularity effect was replicated (Fig. 1G and 1H; see 

table T2 for a systematic investigation of the significance and effect size of each predictor on 

each population). In kindergartners, errors rates varied even more dramatically than in 

educated French adults across the 11 shapes. They remained below 20% for the square and 

rectangle, ~50% for the iso-trapezoid, and continued to climb up to 60-70% for more irregular 5 

quadrilaterals. The correlation of children and French adult performance was strong and 

remained significant even when excluding the two simplest shapes (square and rectangle; Fig. 

S2D). Similarly, the performance of Himba adults varied with geometrical regularity and was 

correlated with that of both French adults (r²=0.55) and French kindergartners (r²=0.59). Both 

findings converge with previous work (20, 22) to suggest that the geometric regularity effect 10 

reflects a universal intuition of geometry present in all humans and largely independent of 

formal knowledge, language, schooling, and environment. 

Can baboon pass the intruder test? Next, we investigated whether the effect was also present 

in a non-human primate species, the guinea baboon (Papio papio). Baboons’ visual system is 

largely similar to that of humans, and they perform similarly in some shape recognition tasks 15 

(e.g. ref 25). We capitalized on a large facility where baboons can freely access testing booths 

with touch screens (38). Twenty-six baboons received individualized training on the intruder 

task, using a great variety of images and textures (Fig. 3). Complete detail of each subject’s 

learning history and performance is provided in Fig. S3 and in Supplementary Materials. A full 

data set was obtained from 20 animals who completed (1) an initial series of training stages on 20 

the intruder task with 10 non-geometric image pairs, progressively increasing in the number of 

available choices (Fig. 3A; 20 animals reached criterion; average of 5200 trials to criterion, 
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range 1000 – 14500); (2) a first generalization to 10 novel non-geometric image pairs, indicating 

that they understood the intruder task (only tested in 18 animals; average = 272 trials, range 

100 – 700); (3) a second generalization to black-and-white geometric shapes, where a simple 

non-geometric parameter sufficed to respond (e.g. pick a small triangle amidst large pentagons; 

average = 220 trials, range 100 – 600); and finally (4) generalization and further retraining with 5 

the complete set of quadrilaterals identical to human participants (average 6305 trials, range 

704 – 8712). 

Twenty of the 26 animals showed a clear understanding of the intruder task, because 

following training with 20 non-geometric images, they showed immediate first-trial 

generalization to new such images and/or to easily distinguishable polygons (Fig. 3B). However, 10 

when presented with the 11 quadrilaterals, baboons’ performance collapsed, suggesting that 

they found all of them equally similar (Fig. 3C). Their performance was close to chance on the 

first test block (76.2% errors, SE=1%; chance = 83.3%) and slowly progressed on subsequent 

days. 11 animals continued performing the geometrical task for 8000 trials or more, eventually 

reaching 53% errors (significant deviation [SD]=6.7%) on blocks 81 to 99. Note that this 15 

performance was comparable to that of the kindergartners and 1st graders, who achieved 

respectively 51% (SD=14%) and 48% errors (SD=16%). Yet even in the latter blocks, for the 11 

primates who reached that stage and had therefore received substantial training, no geometric 

regularity effect was observed. Although error rates differed across the 11 shapes (F(10, 100) = 

24.68, p<10-14, .0001, η²G=.44), with a consistent ordering across baboons (Fig. S4) and a tight 20 

correlation with their RT (Fig. S1), they correlated weakly and non-significantly with the 

geometric regularity effect found in human populations (Fig. 3C). Rather, baboon performance 
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was impacted, at least in part, by visual properties that had little to no impact on human 

participants, such as outlier rotation and outlier type (see table T2). Thus, baboons performed 

poorly with quadrilaterals and were insensitive to their geometric regularities. 

Models of human and baboon performance. To shed light on the dissociated performance of 

humans and baboons, we contrasted two classes of models of the intruder task (Fig. 4). The 5 

first class assumes that quadrilaterals are processed by standard image recognition mechanisms 

in the ventral visual pathway, while the second assumes an additional level of discrete, 

symbolic processing of non-accidental geometrical properties.  

We modeled the ventral visual pathway using CORnet, one of the top-scoring 

convolutional neural networks (CNN) on brain-score.org, a platform that compares 10 

computational models with behavioral and neural observations (39) (other CNNs gave identical 

results; see Supplementary Online Materials). This model was pre-trained to label photographs 

on ImageNet, a large set of images featuring natural and man-made items. To determine if this 

model could successfully simulate the outlier task, we fed the network, without retraining, with 

each of the six images actually presented to the participants on a given trial, collected the 15 

corresponding activation vectors in each CNN layer, and defined as the intruder the image 

whose vector differed most from the mean of the others. When averaging across trials, this 

process yielded a predicted error rate for each shape, separately for each layer in the model. 

A second class of model, capitalizing on the prior demonstration of categorical 

perception for parallels and perpendicularity (32), assumes that quadrilaterals are mentally 20 

encoded as a symbolic list of discrete geometric properties. For each shape, the model loops 
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over all pairs of sides and angles and generates a vector of 0’s and 1’s for the presence or 

absence of equal angles, equal sides, parallelism, and right angles (with a tolerance fitted to 

12.5%, although this parameter had little impact, see Fig. S5). The difficulty of spotting the 

intruder is then predicted to be inversely related to the ℒ1 distance (Manhattan distance) 

between the symbolic vectors coding for the reference and deviant shapes. 5 

 Fig. 4C shows the matrix of correlation, over the 11 shapes, between the errors rates for 

each human population, each of the 11 well-trained baboons, and the predictions of the two 

models. Two squares are apparent. First, all baboons are intercorrelated, and their 

performance is well predicted by the last layer of the CNN model, putatively corresponding to 

ventral inferior temporal cortex (IT; mean across animals: r = .81, SE = .03). However, the CNN 10 

model is a poor predictor of human performance (mean across human groups: r = .48, SE = .10; 

the two distributions are significantly different: t-test, p = .024) and reaches significance only 

for Himbas and kindergartners (p = .005 and p = .048 respectively). Second, conversely, all 

human groups are well predicted by the symbolic model (mean r=.84, SE=.05, see table T3 for a 

breakdown of the effect of each symbolic property), but that model is a poor predictor of 15 

baboon behavior (mean r = .44, SE = .04; the two distributions are significantly different: t-test, 

p < .001). 

This double dissociation was confirmed by a two-parameter multiple regression where 

the predictions of the two models were put in competition to predict 44 data points (11 shapes 

x 4 deviants) per population (Fig. 4D). The three experiments with French adults who received 20 

formal education were almost exclusively captured by the symbolic regressor, and each 
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baboon’s data by the neural-network regressor. Interestingly, uneducated populations (Himba 

adults and French kindergartners) showed a significant contribution of both models.  

Thus, the modelling suggests that two strategies are available to solve the intruder task 

and may coexist in humans (36, 40): an early visual capacity, shared with other non-human 

primates, to recognize shapes in the ventral visual pathway and use this code to detect a salient 5 

deviation in shape; and a higher-level universal human capacity to grasp abstract geometric 

properties. The former may exploit a variety of early and late visual cues, since further analysis 

of the CNN’s performance showed some degree of predictability of the baboons’ behavior by 

the V1 layer already, or by the surface area of the stimuli (Fig. S6). The abstract strategy, 

however, appears out of reach of such simple perceptual models (indeed, without further 10 

assumptions, the neural networks would have been incapable of passing the sequence version 

of the task, as humans did).  

We verified that several other similar neural networks, such as DenseNet or ResNet, 

were similarly unable to fit human behavior (Fig. S7). It could be argued that the geometric 

shape fell too far off the training space to elicit uninterpretable results. However, the model 15 

trained to label the ImageNet dataset did attribute to each geometry shape a highly consistent 

label (mostly “envelopes”; Supplementary Table T4). In order to test the effect of the training 

space, we modified the network with extra output units and trained it to label our reference 

shapes (Fig. S8). Four training strategies were tried, depending on whether we trained the 

network to label all 11 shapes or just the shapes with names in English; and whether all layers 20 

were allowed to change, or just the final layer (see Supplementary Materials). Nevertheless, all 
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four manipulations failed to increase their predictive power of the CNN for any human 

population, and either worsened the predictive power for the baboon behavior, or left it 

unchanged. Since CNNs are far from perfect in capturing human behavior, even for natural 

stimuli(41–43), we also tested Variational Auto-Encoders(44) (VAE). VAE’s architecture enforce 

the unsupervised learning of a low dimensionality representation of a set of data by jointly 5 

learning to encode and decode to/from a bottleneck layer. In that sense a VAE “compresses” 

information and may therefore be more suited to the task of encoding regular shapes. A 

classical VAE was successfully trained to encode and decode our reference shapes (Fig. S9A). 

However, it too did not exhibit the geometric regularity effect. First, its loss function varied very 

little across the 11 shapes (Fig. S9B). All shapes were learned similarly across training epochs, 10 

and the loss did not correlate well with either the human or the baboon behavior (Fig. S9C). 

Second, using the same methodology as for CNNs, we probed whether the internal compressed 

representation of the model could be used to spot the outlier; again, it proved to be predictive 

of neither the humans’ or the baboons’ behavior (Fig. S9D).  

 15 

Discussion 

Using the geometric intruder test, regardless of the human populations we tested, we 

observed a replicable geometric regularity effect: finding an intruder amongst six quadrilaterals 

is much easier when either the reference or the deviant shape are highly regular. This effect is 

already present in young children (kindergartners and 1st graders), and was also replicated in 20 

uneducated adults from a remote non-Western population with reduced access to education, 
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suggesting that the effect does not depend on age, culture and education. Additionally, we 

show that this effect is replicable using different presentation modes (by presenting the entire 

shape at once, or the four vertices sequentially) and different tasks (intruder, serial search, or 

subjective complexity rating).  

Given this apparent universality in humans, it is noteworthy that the baboons did not 5 

share this effect. Their performance was initially quite poor with all quadrilaterals, but even 

when it later improved to the level of human children and showed significant variations across 

shapes, it still did not correlate with the geometrical regularity effect. This striking difference 

occurred even though the baboons clearly understood the demands of the intruder task, having 

reached a threshold of 80% correct or more on a first set of stimuli (where chance is 16.7% 10 

correct) and then generalized to new non-geometrical stimuli. It also cannot come from a lack 

of motivation: while a few baboons did not complete the training, the twenty on which we 

collected data spontaneously performed an average of 867 geometrical trials per day (1st 

quartile 278 trials, median 641 trials, 3rd quartile 1332 trials).  

An empiricist could argue that the difference was due to the different environments in 15 

which humans and baboons live. The “carpentered world” hypothesis (45) proposes that an 

increased sensibility for right angles and parallel lines arises naturally from a Western style of 

life in a world full of rectilinear shapes (objects, buildings, books, etc.). Indeed, this was the 

dominant environment for most of our participants. However, several arguments refute this 

idea. First and foremost, the effect was present in the Himba people, but not in baboons. Yet 20 

the rural settlements of the Himba are quite unlike industrialized societies and their 
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environment is relatively free of rectilinear objects. Conversely, the baboons we tested were 

not wild animals, but grew up and lived in an environment comprising a mixture of natural 

objects (trees and rocks) and man-made, rectilinear objects (buildings, doors, computer 

screen), which was arguably as “carpentered” as the Himbas’ (see illustration in Supplementary 

Materials).  5 

Second, even in a carpentered world, after projection in two dimensions, irregular 

shapes are arguably more frequent than regular ones on the retina, because the observers are 

rarely perfectly aligned with their environment for a rectilinear projection to occur. 

Parallelograms are also rare in our environment -- and yet they figured among the shapes with 

few errors. Thus, it is not clear how frequency in the environment would explain our result. 10 

Finally, we directly tested this empiricist hypothesis by training artificial neural networks with a 

dataset (ImageNet) that featured many man-made rectilinear image categories, such as 

envelopes, binders, band-aids or lampshades (labels which they readily applied to our 

quadrilaterals; see table T4). Even more crucially, we retrained them with our geometric shapes 

(see figure S8). Neither types of training sufficed for the neural networks to predict human 15 

behavior. 

The dissociated performance of humans and baboons suggests that the intruder task 

can be solved using two strategies: a perceptual strategy, well captured by current neural-

network models of the ventral visual pathway, in which geometric shapes are encoded using 

the same feature space also used to recognize any image (e.g. faces, objects, etc); and a 20 

symbolic strategy, in which geometric shapes are encoded by their discrete non-accidental 
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regularities such as right-angles or parallel sides. The latter strategy seems available to all 

humans, whether in Paris or in rural Namibia. It is tempting to speculate that it may be available 

only to humans, as suggested by the failure of all the baboons we tested. At the moment, 

however, this proposal remains tentative, because we only tested a limited number of humans 

and a single non-human primate species. Baboons also responded much faster than humans 5 

(~2s versus 5s or more, see Fig. S1), possibly preventing the deployment of a more abstract 

strategy. Both facets of our proposal will have to be submitted to further tests, for instance by 

contrasting human infants, who are known to be born with sophisticated symbolic abilities (46), 

and chimpanzees, who may lack a logical or hierarchical mode of data analysis (8). 

The present results converge with prior research, using more complex geometric 10 

displays and tasks, which indicated that all humans, even young or uneducated ones, possess 

intuitions for geometry (20–22) and automatically apply a symbolic, language-like formalism to 

geometric data (22, 47). Brain imaging showed that this “language of geometry” rests primarily 

on dorsal and inferior sectors of prefrontal cortex (47). These regions are activated whenever 

humans reason about mathematical concepts and recombine them algebraically (48–50). While 15 

they are located outside of classical language areas, their surface area is strikingly expanded in 

the human lineage (51, 52), and they are therefore a good candidate for the emergence of 

novel human capacities in evolution, including symbolic mathematics. Previous work has shown 

that proto-mathematical core knowledge is present in other non-human primates, such as 

numerosity in macaque monkeys (53, 54) or spatial navigation in baboons (55). However, what 20 

these species may be lacking is a capacity to discretize those representations and recombine 

them in larger language-like combinatorial expressions such as “four equal sides” (5–8), which 
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are needed in order to conceive of a square and draw it. In the future, it would be informative 

to test whether chimpanzees who received “language training”, i.e. learned to use visual tokens 

to label numbers and objects (56, 57), would show the geometric regularity effect. There are 

reasons to doubt it, since careful analyses suggest that, unlike young children, chimpanzees do 

not use these tokens in productive combinations (11). 5 

A parallel issue is, how could the neural networks we tested be modified to eventually 

pass the geometrical intruder test? Classical convolutional neural networks mimic only part of 

human visual recognition abilities (43). They roughly correspond to the first, bottom-up pass of 

invariant visual object recognition (58), but much more sophisticated recurrent top-down 

architectures are required to attain human-level performance in slower perceptual decision 10 

making tasks (59, 60). It will be interesting to examine if those newer models pass the present 

test or, as we tentatively suggest, if yet another level of symbolic representation, perhaps 

based on symbolic tree-based generative models and program inference (61–63), is needed.  

In summary, the present results suggest a new putative human cognitive universal: the 

capacity to perceive the regularity of a geometric shape such as a square. They hint at the 15 

exciting possibility that humans differ from other primates in cognitive mechanisms that are 

much more basic than language comprehension or theory of mind, and involve a rapid grasp of 

mathematical regularities in their environment. Those findings also provide a novel challenge 

for artificial intelligence, as none of the classical neural network models we tested so far could 

capture human behavior. 20 
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Materials and Methods 

Reference shapes. All experiments relied on a single set of 11 fixed reference shapes, which 

were all quadrilaterals (Fig. 1A; the coordinates of their vertices are listed in Supplementary 

Table T1). We matched most reference shapes for two parameters. First, the average distance 

between all pairs of vertices (i.e., the mean of six distances) was the same across the 11 shapes. 5 

This ensured that the reference shapes had the same overall size. Second, the bottom edge was 

of fixed length across 9 of the 11 shapes – this was particularly important for the sequence 

experiment, where this segment was the last to appear on the screen and was the only one that 

could contain an outlier. The square and the rhombus were the only exceptions: they were only 

matched to other shapes on the average of distances. This was necessary because (1) the 10 

square had only one degree of freedom, and (2) the rhombus would otherwise have been 

either too similar to the square or utterly flat. 

For some shapes (e.g. rectangle), this set of constraints led to a single choice for the specific 

shape. For others, we selected a shape that satisfied the constraints while being maximally 

different from the shapes in other categories. For instance, the specific quadrilateral that we 15 

selected for the “irregular” category made it maximally obvious that it did not have equal sides, 

parallel sides, equal angles or right angles. 

The constraints that we adopted implied that the shapes were not strictly equalized in other 

dimensions such as surface or perimeter. Such residual differences might explain why the 

performance of neural networks and baboons varied slightly across shapes, but crucially they 20 

were uncorrelated with shape regularity (see Supplementary Materials). 
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Deviant shapes. For each reference shape, we generated four deviant shapes by changing the 

position of the bottom-right vertex. All deviant vertices were equidistant from the correct 

vertex location. Two deviant vertices were positioned along the bottom edge, either 

lengthening it or shortening it (see Figure 1A). The two other deviant positions preserved the 

correct distance from the bottom left vertex, and thus the length of the bottom edge, but 5 

changed its orientation. The distance of the deviant position from the correct position was fixed 

for all experiments and was common to all shapes. It was computed as a proportion of the 

(fixed) average distance between all pairs of vertices (55% for the sequence experiment; 30% 

for all other experiments). 

Variations in orientation and size. In their default presentation, the shapes were centered on 10 

their center of mass, and their top edge was horizontal. We then rotated the six shapes by a 

random permutation of the following angles: [-25°, -15°, -5°, 5°, 15°, 25°]. We avoided 0° 

rotation to prevent participants from relying on parallelism with the edges of the computer 

screen, and we avoided larger angles to side step the fact that some shapes had rotational 

symmetry (for instance, a 45° rotated square is identical to a -45° rotated square, but the same 15 

does not hold for a trapezoid). We also scaled the shapes by a random permutation of the 

following scaling factors applied to the edge lengths: [0.875, 0.925, 0.975, 1.025, 1.075, 1.125]. 

Participants and experimental procedures. Details of the participants, design, procedure, and 

analyses specific to each experiment are presented as Supplementary Materials. Briefly, 612 

French adults were recruited for online experiment 1, 117 for online experiment 2, and 48 for 20 

on-line subjective ratings. For the sequence and visual search experiments, we tested 
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respectively 16 and 11 participants in individual isolated testing booths. 28 French 

kindergartners (mean age 64 months; range 59-70 months; 15 boys, 13 girls) from two 

classrooms were tested individually in their school. Finally, 44 native Himba adults were 

recruited on-site in small individual villages of Northern Namibia (Southern Africa). All were 

monolingual native speakers of Otjihimba, a dialect of the Otjiherero language, which does not 5 

have vocabulary for most geometric shapes. Out of these, we report data for the 22 

participants who did not attend a single year of schooling (for additional analyses of the effect 

of schooling, see Supplementary Materials). 

Baboons (26 Papio papio, 18 females, age range 1.5-23 years, mean age 11 years) were tested 

at the CNRS primate facility (Rousset-sur-Arc, France). Baboons lived in a 700 m2 outdoor 10 

enclosure with access to indoor housing and could, on a voluntary basis, at any time, enter ten 

Automated Learning Devices for Monkeys equipped with a 19-inch touch screen, a food 

dispenser, and a radio-frequency identification (RFID) reader that could identify the animals 

Data Availability 

The data for all experiments, as well as both the neural-network and the symbolic models, is 15 

available on the Open Science Framework at the following address: 

https://osf.io/w5pzf/?view_only=83fedf0190e04075b074083ce44a62da   

https://osf.io/w5pzf/?view_only=83fedf0190e04075b074083ce44a62da%20
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Figure 1. Geometric regularity effect in humans 

A, stimuli. We selected 11 quadrilaterals with various degrees of regularity, as defined by 5 

parallelism, equal sides, equal angles and right angles. For each quadrilateral, four deviants 

were generated by moving the bottom right corner by a fixed distance, thus shortening, 

lengthening or rotating the bottom side. B, examples of intruder-task displays. Left: circular 

display used in experiment 1. Participants had to tap the intruder. Center: Rectangular display 

used in experiment 2 and following. In the canonical presentation, five shapes exemplified a 10 

fixed quadrilateral, with variations in size and orientation, and the remaining shape was a 

deviant. In the swapped presentation, those two shapes were swapped. In either case, 

participants had to tap the intruder. Right: sequential presentation, unfolding from top to 

bottom and from left to right over the span of 1.8 seconds. Participants had to answer “correct” 

for properly placed dots (in green), and “incorrect” for deviant dots (example in red).  C, 15 

geometric regularity effect in experiment 1: error rate varied massively with shape regularity 

in French adults. Shapes are ordered by performance and each is labeled with a color which is 

consistent across graphs. Error bars represent the standard error pooled over all participants – 

in this figure it is smaller than dot size. D-H: Replications of the geometric regularity effect 

with: D, swapped versus canonical trials in French adults; E, subjective judgments of shape 20 

complexity on a 1-100 scale; F, Sequential presentation of the four corners; G, French 

kindergartners; H, uneducated Himba adults from rural Namibia. 
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Figure 2. Visual search paradigm. A, Examples of visual search displays. In the visual search 

task, 6, 12 or 24 shapes were randomly positioned inside a circle, and participant had to decide 

whether all the shapes were identical, irrespective of rotation and scaling, or whether there 

was one that differed from the others. They gave their binary present/absent response by 

pressing one of two possible keys on the keyboard. B, Error rates in visual search task. Errors 5 

rates increased with both the number of shapes and their complexity (geometric irregularity). 

The latter effect correlated tightly with the average error rate in the intruder task.  C, Search 

times. Left: Slope of the visual search as a function of the number of displayed items, the 

presence or absence of an outlier, and the shape. Right: Correlation between the slope of the 

visual search on present trials and the error rates of the intruder task (exp. 2).  10 
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Figure 3. The geometric regularity effect is absent in baboons. A, training procedure. Each 

animal was trained for thousands of trials on the intruder task, first with a small number of 

fixed images (n=3, training stage 1), then with a larger number of images (up to 6, training stage 

5) and with variations in size and orientation. Mastery of the task was verified through two 

generalization tests using novel images. Each baboon moved from one stage to the next only 5 

when the error rate fell below 20%. B, Summary of baboon training performance (first and last 

blocks of 88 trials each). Each color represents one baboon. Most animals attained criterion on 

the 10 pairs of shapes used for training (top) and successfully generalized to 10 new pairs of 

shapes (bottom left) and to 3 pairs of easily distinguishable polygons (bottom right; chance = 

83.3% errors with 6 shapes). C, performance in the geometric intruder task. Left: average 10 

performance for each geometric shape at three stages: the first 33 test blocks, the middle 33 

test blocks, and the last 33 test blocks. Each block contained 88 trials, and baboons took at 

most 99 blocks. Right: correlation between the average error rate in baboons and in French 

adults taking the same test (experiment 2). 

15 
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Figure 4. A double dissociation in geometric shape perception. A, symbolic model. Each shape 

is coded by a vector of discrete geometric properties (equal angles, parallel sides, equal lengths 

and right angles; each relationship is assumed to be detected with a tolerance of 12.5%). The 

distance between the standard and outlier vectors is then used as a predictor of the ease of 

intruder detection. B, neural network model (panel modified from ref. (58), with permission 5 

from the authors). CORnet, a model of the ventral visual pathway for image recognition, is used 

to encode each of the six shapes of a given trial by an activation vector in inferotemporal cortex 

(IT). The shape whose vector is the most distant (ℒ2-norm) from the average of the five others, 

is taken as the network’s intruder response. Predicted error rate is obtained by averaging 

across hundreds of trials. C, Simple correlation matrix across shapes between the performance 10 

of individual baboons (names in capitals, top rows), the predictions of the two models (middle 

rows), and various human groups (bottom rows). Color indicates the correlation coefficient r. D, 

Standardized regression weights (beta) in a multiple regression of the data from various human 

and non-human primate groups across 44 data points (11 shapes X 4 outlier types) using the 

symbolic and neural-network models as predictors. Stars indicate significance level (●, p<.05; *, 15 

p<.01; **, p<.001; ***, p<.0001). 
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