WEAK-STRONG UNIQUENESS FOR A CLASS OF DEGENERATE PARABOLIC CROSS-DIFFUSION SYSTEMS

Philippe Laurençot, Bogdan-Vasile Matioc

- To cite this version:

Philippe Laurençot, Bogdan-Vasile Matioc. WEAK-STRONG UNIQUENESS FOR A CLASS OF DEGENERATE PARABOLIC CROSS-DIFFUSION SYSTEMS. Archivum Mathematicum, 2023, 59, pp.201-213. 10.5817/AM2023-2-201 . hal-03710966

HAL Id: hal-03710966

https://hal.science/hal-03710966

Submitted on 1 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

WEAK-STRONG UNIQUENESS FOR A CLASS OF DEGENERATE PARABOLIC CROSS-DIFFUSION SYSTEMS

PHILIPPE LAURENÇOT AND BOGDAN-VASILE MATIOC

Abstract

Bounded weak solutions to a particular class of degenerate parabolic crossdiffusion systems are shown to coincide with the unique strong solution determined by the same initial condition on the maximal existence interval of the latter. The proof relies on an estimate established for a relative entropy associated to the system.

1. Introduction

Let Ω be a bounded domain of $\mathbb{R}^{N}, N \geq 1$, with smooth boundary $\partial \Omega$ and outer unit normal \mathbf{n}, and assume that the constants a, b, c, and d satisfy

$$
\begin{equation*}
(a, b, c, d) \in(0, \infty)^{4} \quad \text { and } \quad a d>b c \tag{1.1}
\end{equation*}
$$

We consider the evolution equations

$$
\left.\begin{array}{rl}
\partial_{t} f & =\operatorname{div}(f \nabla[a f+b g]) \tag{1.2a}\\
\partial_{t} g & =\operatorname{div}(g \nabla[c f+d g])
\end{array}\right\} \quad \text { in }(0, \infty) \times \Omega
$$

supplemented with homogeneous Neumann boundary conditions

$$
\begin{equation*}
\nabla f \cdot \mathbf{n}=\nabla g \cdot \mathbf{n}=0 \text { on }(0, \infty) \times \partial \Omega \tag{1.2b}
\end{equation*}
$$

and non-negative initial conditions

$$
\begin{equation*}
(f, g)(0)=\left(f^{i n}, g^{i n}\right) \text { in } \Omega . \tag{1.2c}
\end{equation*}
$$

The porous medium equation [27] as well as the thin film Muskat problem [10] arise as special cases of (1.2a).

We point out that (1.2a) is a quasilinear degenerate parabolic system with a full diffusion matrix, so that the study of its well-posedness is already a challenging issue. On the one hand, owing to its parabolic structure, the system (1.2) fits into the theory developed in [2], from which the local existence and uniqueness of a strong solution with positive components can be inferred, see Theorem 2.1 below. However, comparison principles cannot be applied in the context of (1.2) and the degeneracy featured in (1.2a) might lead to the breakdown of the positivity of the components in finite time and thus to that of their regularity. As a consequence, strong solutions cannot be extended beyond a finite time in general. On the other hand, non-negative global weak solutions to (1.2), which are also bounded, are constructed in $[20,22]$, but the uniqueness of such solutions is an open problem, even in dimension $N=1$. This is in sharp contrast with the porous medium equation for which several uniqueness results for weak solutions are available in the literature, see $[1,3,7,21,24$,

[^0]$25,27]$ and the references therein. It is actually the strong coupling in (1.2a) which makes it difficult to generalize the methods from the above references to this two-phase version of the porous medium equation.

The goal of this paper is to prove a weaker result, namely that all bounded weak solutions to (1.2) coincide on some time interval on which a strong solution exists. For that purpose, we shall rely on the availability of a suitable relative entropy functional, an idea which has proved instrumental in several recent works on weak-strong uniqueness/stability results for (systems of) partial differential equations. In particular, this method has been applied in various settings such as: the compressible Navier-Stokes system [11] and the Fourier-NavierStokes system [12], the (isentropic) Euler equations [5,16], hyperbolic-parabolic systems [9], the Navier-Stokes-Korteweg and the Euler-Korteweg systems [6,15], the Navier-Stokes equation with surface tension [14], (reaction-)cross-diffusion systems [8, 19], entropy-dissipating reaction-diffusion equations [13], energy-reaction-diffusion systems [17], and Maxwell-Stefan systems [18].

Before stating precisely our main result, let us first make precise the meaning of weak and strong solutions to (1.2).
Definition 1.1 (Bounded weak solution). Assume (1.1) and let $u^{i n}:=\left(f^{i n}, g^{i n}\right)$ be an element of $L_{\infty,+}\left(\Omega, \mathbb{R}^{2}\right)$. Given $T \in(0, \infty]$, a bounded weak solution u to (1.2) on $[0, T)$ is a pair of functions $u=(f, g)$ such that:
(i) for each $t \in(0, T)$,

$$
\begin{equation*}
(f, g) \in L_{\infty,+}\left((0, t) \times \Omega, \mathbb{R}^{2}\right) \cap L_{2}\left((0, t), H^{1}\left(\Omega, \mathbb{R}^{2}\right)\right) \cap W_{2}^{1}\left((0, t), H^{1}\left(\Omega, \mathbb{R}^{2}\right)^{\prime}\right) \tag{1.3}
\end{equation*}
$$

(ii) for all $\varphi \in H^{1}(\Omega)$ and $t \in(0, T)$,

$$
\begin{align*}
& \int_{\Omega}\left(f(t, x)-f^{i n}(x)\right) \varphi(x) \mathrm{d} x+\int_{0}^{t} \int_{\Omega} f(s, x) \nabla[a f+b g](s, x) \cdot \nabla \varphi(x) \mathrm{d} x \mathrm{~d} s=0 \tag{1.4a}\\
& \quad \text { and } \\
& \int_{\Omega}\left(g(t, x)-g^{i n}(x)\right) \varphi(x) \mathrm{d} x+\int_{0}^{t} \int_{\Omega} g(s, x) \nabla[c f+d g](s, x) \cdot \nabla \varphi(x) \mathrm{d} x \mathrm{~d} s=0 \tag{1.4b}
\end{align*}
$$

Observe that the boundedness and weak differentiability required on f and g in (1.3) guarantee that the integrals in (1.4) are finite.

We next turn to strong solutions to (1.2) and first introduce some notation: for $p>N$ and $s \in(1+N / p, 2]$, we set

$$
H_{p, \mathcal{B}}^{s}(\Omega):=\left\{z \in H_{p}^{s}(\Omega): \nabla z \cdot \mathbf{n}=0 \text { on } \partial \Omega\right\},
$$

where $H_{p}^{s}(\Omega)$ denotes the Bessel potential space, see [2, Section 5] for instance, and

$$
\begin{equation*}
\mathcal{O}_{p}^{s}:=\left\{u=(f, g) \in H_{p, \mathcal{B}}^{s}\left(\Omega, \mathbb{R}^{2}\right): f>0 \text { and } g>0 \text { in } \Omega\right\} . \tag{1.5}
\end{equation*}
$$

We observe that the continuous embedding of $H_{p}^{s}(\Omega)$ in $\mathrm{C}^{1}(\bar{\Omega})$ for $p>N$ and $s \in(1+N / p, 2]$ guarantees that \mathcal{O}_{p}^{s} is an open subset of $H_{p, \mathcal{B}}^{s}\left(\Omega, \mathbb{R}^{2}\right)$.
Definition 1.2 (Strong solution). Assume (1.1) and let $p>N, s \in(1+N / p, 2), T \in(0, \infty]$, and $u^{i n}=\left(f^{i n}, g^{i n}\right) \in \mathcal{O}_{p}^{s}$. A strong solution u to (1.2) on $[0, T)$ is a pair $u=(f, g)$ such that

$$
u \in \mathrm{C}\left([0, T), \mathcal{O}_{p}^{s}\right) \cap \mathrm{C}^{1}\left((0, T), L_{p}\left(\Omega, \mathbb{R}^{2}\right)\right) \cap \mathrm{C}\left((0, T), H_{p, \mathcal{B}}^{2}\left(\Omega, \mathbb{R}^{2}\right)\right),
$$

which satisfies (1.2) in a strong sense (and in particular a.e. in $(0, T) \times \Omega)$.
One may easily check that a strong solution to (1.2) on $[0, T)$ in the sense of Definition 1.2 is also a bounded weak solution on $[0, T)$ in the sense of Definition 1.1.

The aim of this paper is to establish a weak-strong uniqueness result for (1.2) as stated in Theorem 1.3 below. As in [13], the main tool to be used in the proof is the relative entropy functional

$$
\begin{equation*}
H\left(u_{1} \mid u_{2}\right):=\int_{\Omega}\left\{\left[f_{1} \ln \left(\frac{f_{1}}{f_{2}}\right)-\left(f_{1}-f_{2}\right)\right]+\frac{b}{c}\left[g_{1} \ln \left(\frac{g_{1}}{g_{2}}\right)-\left(g_{1}-g_{2}\right)\right]\right\} \mathrm{d} x \tag{1.6}
\end{equation*}
$$

which is well-defined for $u_{i}=\left(f_{i}, g_{i}\right) \in L_{2,+}\left(\Omega, \mathbb{R}^{2}\right), i=1,2$, provided that f_{2} and g_{2} are bounded from below by positive constants. It is important to remark that $H\left(u_{1} \mid u_{2}\right)$ controls the square of the L_{2}-norm of $u_{1}-u_{2}$, see (2.14) below, if u_{1} and u_{2} are additionally bounded functions.

The main step in the proof of Theorem 1.3 is to derive the integral inequality (1.7) which measures the "distance" between a bounded weak solution in the sense of Definition 1.1 and a strong solution in the sense of Definition 1.2. Gronwall's inequality then provides the weak-strong uniqueness property for the evolution problem (1.2).
Theorem 1.3. Consider $u_{1}^{i n} \in L_{\infty,+}\left(\Omega, \mathbb{R}^{2}\right)$ and $u_{2}^{i n} \in \mathcal{O}_{p}^{s}$ for some $s \in(1+N / p, 2)$ and $p>N$. Let $u_{2}=\left(f_{2}, g_{2}\right)$ be the strong solution to (1.2) with initial condition $u_{2}^{i n}$ defined on its maximal existence interval $\left[0, T^{+}\right), T^{+} \in(0, \infty]$, see Theorem 2.1 below. If $u_{1}=\left(f_{1}, g_{1}\right)$ is a bounded weak solution to (1.2) on $\left[0, T^{+}\right)$with initial condition $u_{1}^{i n}$ and $T \in\left(0, T^{+}\right)$, there exists a positive constant $C=\left(a, b, c, d, u_{1}, u_{2}, T\right)$ such that

$$
\begin{equation*}
H\left(u_{1}(t) \mid u_{2}(t)\right) \leq H\left(u_{1}^{i n} \mid u_{2}^{i n}\right)+C \int_{0}^{t} H\left(u_{1}(s) \mid u_{2}(s)\right) \mathrm{d} s \quad \text { for all } t \in[0, T] . \tag{1.7}
\end{equation*}
$$

In particular, if $u_{1}^{i n}=u_{2}^{i n}$, then $u_{1}(t)=u_{2}(t)$ for all $t \in\left[0, T^{+}\right)$.
We emphasize that Theorem 1.3 applies to any pair of initial conditions $u_{1}^{i n} \in L_{\infty,+}\left(\Omega, \mathbb{R}^{2}\right)$ and $u_{2}^{i n} \in \mathcal{O}_{p}^{s}$ for some $s \in(1+N / p, 2)$ and $p>N$. Indeed, the existence of a bounded weak solution to (1.2) on $[0, \infty)$ with initial condition $u_{1}^{i n}$ follows from [20,22], while that of a strong solution to (1.2) on some maximal time interval with initial condition $u_{2}^{i n}$ is provided in Theorem 2.1 below.

2. Proof of the main result

We start this section by considering the evolution problem (1.2) in the setting of strong solutions as specified in Definition 1.2. Using the quasilinear parabolic theory developed in [2], we then prove in Theorem 2.1 that (1.2) is well-posed in this strong setting. The remaining part is then devoted to the proof of Theorem 1.3.
2.1. Strong solutions to the evolution problem (1.2). In order to construct strong solutions to (1.2) we reformulate (1.2a) in a suitable framework. For that purpose, we fix $p>N$ and $s \in(1+N / p, 2)$ and introduce the mobility matrix

$$
M(X)=\left(m_{j k}(X)\right)_{1 \leq j, k \leq 2}:=\left(\begin{array}{ll}
a X_{1} & b X_{1} \tag{2.1}\\
c X_{2} & d X_{2}
\end{array}\right), \quad X=\left(X_{1}, X_{2}\right) \in \mathbb{R}^{2}
$$

The problem (1.2) can then be recast as

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} t}(t)=\Phi(u(t))[u(t)], \quad u(0)=u^{i n} \tag{2.2}
\end{equation*}
$$

where the quasilinear operator $\Phi: \mathcal{O}_{p}^{s} \rightarrow \mathcal{L}\left(H_{p, \mathcal{B}}^{2}\left(\Omega, \mathbb{R}^{2}\right), L_{p}\left(\Omega, \mathbb{R}^{2}\right)\right)$ is defined by the relation

$$
\Phi(u)[v]:=\operatorname{div}(M(u) \nabla v)=\sum_{i=1}^{N} \partial_{i}\left(M(u) \partial_{i} v\right), \quad u \in \mathcal{O}_{p}^{s}, v \in H_{p, \mathcal{B}}^{2}\left(\Omega, \mathbb{R}^{2}\right)
$$

Observing that, for $u \in \mathcal{O}_{p}^{s}$, the matrix-valued function $M(u)$ belongs to $\mathrm{C}^{1}\left(\bar{\Omega}, \mathbb{R}^{2 \times 2}\right)$ and that $M(u(x)), x \in \bar{\Omega}$, has its spectrum contained in the right-half plane $\{\operatorname{Re} z>0\}$, we infer from [2, Theorem 4.1 and Example $4.3(\mathrm{e})]$ that $\Phi(u)$ is, for each $u \in \mathcal{O}_{p}^{s}$, the generator of an analytic semigroup in $\mathcal{L}\left(L_{p}\left(\Omega, \mathbb{R}^{2}\right)\right)$. Since

$$
\left[L_{p}(\Omega), H_{p, \mathcal{B}}^{2}(\Omega)\right]_{s / 2}=H_{p, \mathcal{B}}^{s}(\Omega)
$$

where $[\cdot, \cdot]$ is the complex interpolation functor, see [26, Theorem 4.3.3], we may now apply to (2.2) the quasilinear parabolic theory presented in [2, Section 12] (see also [23, Remark 1.2 (ii)]) to obtain the following result.

Theorem 2.1. Let $p>N, s \in(1+N / p, 2)$, and assume that (1.1) is satisfied. Then, given $u^{i n} \in \mathcal{O}_{p}^{s}$, the problem (1.2) has a unique maximal strong solution

$$
u \in \mathrm{C}\left(\left[0, T^{+}\right), \mathcal{O}_{p}^{s}\right) \cap \mathrm{C}^{1}\left(\left(0, T^{+}\right), L_{p}\left(\Omega, \mathbb{R}^{2}\right)\right) \cap \mathrm{C}\left(\left(0, T^{+}\right), H_{p, \mathcal{B}}^{2}\left(\Omega, \mathbb{R}^{2}\right)\right)
$$

where $T^{+} \in(0, \infty]$ denotes the maximal existence time.
2.2. Proof of Theorem 1.3. Let $T \in\left(0, T^{+}\right)$. Since $\left\{u_{2}(t): t \in[0, T]\right\}$ is a compact subset of \mathcal{O}_{p}^{s}, there is $\sigma \in(0,1)$ (possibly depending on T) such that, for $t \in[0, T]$,

$$
\begin{equation*}
\sigma \leq \min _{x \in \bar{\Omega}} \min \left\{f_{2}(t, x), g_{2}(t, x)\right\} \quad \text { and } \quad \max \left\{\left\|\nabla f_{2}(t)\right\|_{\infty},\left\|\nabla g_{2}(t)\right\|_{\infty}\right\} \leq \sigma^{-1} \tag{2.3}
\end{equation*}
$$

Moreover, since u_{1} is a bounded weak solution, we may assume that also

$$
\begin{equation*}
\left|u_{1}(t, x)\right|+\left|u_{2}(t, x)\right| \leq \sigma^{-1} \quad \text { a.e. in }(0, T) \times \Omega \tag{2.4}
\end{equation*}
$$

Given $\eta \in(0,1)$, let

$$
\begin{aligned}
H_{\eta}\left(u_{1}(t) \mid u_{2}(t)\right):= & \int_{\Omega}\left[f_{1}(t) \ln \left(\frac{f_{1}(t)+\eta}{f_{2}(t)}\right)-\left(f_{1}(t)-f_{2}(t)\right)\right] \mathrm{d} x \\
& +\frac{b}{c} \int_{\Omega}\left[g_{1}(t) \ln \left(\frac{g_{1}(t)+\eta}{g_{2}(t)}\right)-\left(g_{1}(t)-g_{2}(t)\right)\right] \mathrm{d} x, \quad t \in[0, T]
\end{aligned}
$$

As a consequence of (2.4) and of Definition 1.1, we have $u_{i}(t) \in L_{\infty}\left(\Omega, \mathbb{R}^{2}\right)$ for $i=1,2$ and all $t \in[0, T]$, and the dominated convergence theorem, together with the lower bound in (2.3), yields

$$
\begin{equation*}
\lim _{\eta \rightarrow 0} H_{\eta}\left(u_{1}(t) \mid u_{2}(t)\right)=H\left(u_{1}(t) \mid u_{2}(t)\right), \quad t \in[0, T] \tag{2.5}
\end{equation*}
$$

Furthermore, by virtue of Definition 1.1, Definition 1.2, (2.3), (2.4), and the continuous embedding of \mathcal{O}_{p}^{s} in $\mathrm{C}^{1}\left(\bar{\Omega}, \mathbb{R}^{2}\right)$ we have

$$
f_{1}, g_{1} \in L_{2}\left((0, T), H^{1}(\Omega)\right) \cap W_{2}^{1}\left((0, T), H^{1}(\Omega)^{\prime}\right)
$$

and

$$
\ln f_{2}, \ln g_{2} \in L_{2}\left((0, T), H^{1}(\Omega)\right) \cap W_{2}^{1}\left((0, T), H^{1}(\Omega)^{\prime}\right)
$$

These properties, together with (2.3), (2.4), and suitable versions of the Lions-Magenes lemma, see, e.g., [4, Theorem II.5.12] and Lemma A.1, imply that

$$
\left[t \mapsto H_{\eta}\left(u_{1}(t) \mid u_{2}(t)\right)\right]:[0, T] \rightarrow \mathbb{R}
$$

is continuous and

$$
\begin{align*}
& H_{\eta}\left(u_{1}(t) \mid u_{2}(t)\right)-H_{\eta}\left(u_{1}^{i n} \mid u_{2}^{i n}\right) \\
& =\int_{0}^{t}\left\langle\partial_{t} f_{1}, \ln \left(\frac{f_{1}+\eta}{f_{2}}\right)+\frac{f_{1}}{f_{1}+\eta}\right\rangle_{\left(H^{1}\right)^{\prime}, H^{1}} \mathrm{~d} s-\int_{0}^{t}\left\langle\partial_{t} f_{2}, \frac{f_{1}}{f_{2}}\right\rangle_{\left(H^{1}\right)^{\prime}, H^{1}} \mathrm{~d} s \tag{2.6}\\
& \quad+\frac{b}{c} \int_{0}^{t}\left\langle\partial_{t} g_{1}, \ln \left(\frac{g_{1}+\eta}{g_{2}}\right)+\frac{g_{1}}{g_{1}+\eta}\right\rangle_{\left(H^{1}\right)^{\prime}, H^{1}} \mathrm{~d} s-\frac{b}{c} \int_{0}^{t}\left\langle\partial_{t} f_{2}, \frac{f_{1}}{f_{2}}\right\rangle_{\left(H^{1}\right)^{\prime}, H^{1}} \mathrm{~d} s
\end{align*}
$$

for all $t \in[0, T]$, where $\langle\cdot, \cdot\rangle_{\left(H^{1}\right)^{\prime}, H^{1}}$ is the duality bracket between $H^{1}(\Omega)$ and $H^{1}(\Omega)^{\prime}$. Reformulating (2.6) with the help of (1.4), we find

$$
\begin{aligned}
& H_{\eta}\left(u_{1}(t) \mid u_{2}(t)\right)-H_{\eta}\left(u_{1}^{i n} \mid u_{2}^{i n}\right) \\
&=-\int_{0}^{t} \int_{\Omega} f_{1} \nabla\left(a f_{1}+b g_{1}\right) \cdot\left(\frac{\nabla f_{1}}{f_{1}+\eta}-\frac{\nabla f_{2}}{f_{2}}\right) \mathrm{d} x \mathrm{~d} s \\
&-\int_{0}^{t} \int_{\Omega}\left[f_{1} \nabla\left(a f_{1}+b g_{1}\right) \cdot \nabla\left(\frac{f_{1}}{f_{1}+\eta}\right)-f_{2} \nabla\left(a f_{2}+b g_{2}\right) \cdot \nabla\left(\frac{f_{1}}{f_{2}}\right)\right] \mathrm{d} x \mathrm{~d} s \\
&-\frac{b}{c} \int_{0}^{t} \int_{\Omega} g_{1} \nabla\left(c f_{1}+d g_{1}\right) \cdot\left(\frac{\nabla g_{1}}{g_{1}+\eta}-\frac{\nabla g_{2}}{g_{2}}\right) \mathrm{d} x \mathrm{~d} s \\
&-\frac{b}{c} \int_{0}^{t} \int_{\Omega}\left[g_{1} \nabla\left(c f_{1}+d g_{1}\right) \cdot \nabla\left(\frac{g_{1}}{g_{1}+\eta}\right)-g_{2} \nabla\left(c f_{2}+d g_{2}\right) \cdot \nabla\left(\frac{g_{1}}{g_{2}}\right)\right] \mathrm{d} x \mathrm{~d} s .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
H_{\eta}\left(u_{1}(t) \mid u_{2}(t)\right)-H_{\eta}\left(u_{1}^{i n} \mid u_{2}^{i n}\right)=T_{\eta}^{1}(t)+T^{2}(t), \tag{2.7}
\end{equation*}
$$

where

$$
\begin{aligned}
T_{\eta}^{1}(t): & =\eta^{2} \int_{0}^{t} \int_{\Omega} \nabla\left(a f_{1}+b g_{1}\right) \cdot \frac{\nabla f_{1}}{\left(f_{1}+\eta\right)^{2}} \mathrm{~d} x \mathrm{~d} s \\
& +\eta^{2} \frac{b}{c} \int_{0}^{t} \int_{\Omega} \nabla\left(c f_{1}+d g_{1}\right) \cdot \frac{\nabla g_{1}}{\left(g_{1}+\eta\right)^{2}} \mathrm{~d} x \mathrm{~d} s
\end{aligned}
$$

and

$$
\begin{aligned}
T^{2}(t):= & -\int_{0}^{t} \int_{\Omega}\left[\nabla\left(a f_{1}+b g_{1}\right) \cdot\left(\nabla f_{1}-\frac{f_{1}}{f_{2}} \nabla f_{2}\right)-f_{2} \nabla\left(a f_{2}+b g_{2}\right) \cdot \nabla\left(\frac{f_{1}}{f_{2}}\right)\right] \mathrm{d} x \mathrm{~d} s \\
& -\frac{b}{c} \int_{0}^{t} \int_{\Omega}\left[\nabla\left(c f_{1}+d g_{1}\right) \cdot\left(\nabla g_{1}-\frac{g_{1}}{g_{2}} \nabla g_{2}\right)-g_{2} \nabla\left(c f_{2}+d g_{2}\right) \cdot \nabla\left(\frac{g_{1}}{g_{2}}\right)\right] \mathrm{d} x \mathrm{~d} s .
\end{aligned}
$$

In view of Definition 1.1 (i), both functions $\nabla\left(a f_{1}+b g_{1}\right) \cdot \nabla f_{1}$ and $\nabla\left(c f_{1}+d g_{1}\right) \cdot \nabla g_{1}$ belong to $L_{1}((0, t) \times \Omega)$ and

$$
\begin{array}{r}
\lim _{\eta \rightarrow 0} \eta^{2} \frac{\nabla f_{1}}{\left(f_{1}+\eta\right)^{2}}=0 \\
\lim _{\eta \rightarrow 0} \eta^{2} \nabla \frac{g_{1}}{\left(g_{1}+\eta\right)^{2}}
\end{array}=0 \quad\{\quad \text { a.e. in }(0, t) \times \Omega
$$

as $\nabla f_{1}=0$ a.e. on $\left\{(s, x): f_{1}(s, x)=0\right\}$ and $\nabla g_{1}=0$ a.e. on $\left\{(s, x): g_{1}(s, x)=0\right\}$. The dominated convergence theorem now implies that

$$
\begin{equation*}
\lim _{\eta \rightarrow 0} T_{\eta}^{1}(t)=0 \quad \text { for all } t \in[0, T] \tag{2.8}
\end{equation*}
$$

Hence, letting $\eta \rightarrow 0$ in (2.7), we deduce from (2.5) and (2.8) that

$$
\begin{equation*}
H\left(u_{1}(t) \mid u_{2}(t)\right)-H\left(u_{1}^{i n} \mid u_{2}^{i n}\right)=T^{2}(t) \quad \text { for } t \in[0, T] . \tag{2.9}
\end{equation*}
$$

With respect to $T^{2}(t)$, we note that

$$
\begin{align*}
\frac{T^{2}(t)}{a}= & -\int_{0}^{t} \int_{\Omega}\left[\nabla f_{1} \cdot \nabla\left(f_{1}+\frac{b}{a} g_{1}\right)+\frac{b}{a} \nabla g_{1} \cdot \nabla\left(f_{1}+\frac{d}{c} g_{1}\right)\right] \mathrm{d} x \mathrm{~d} s \\
& +\int_{0}^{t} \int_{\Omega}\left[\frac{f_{1}}{f_{2}} \nabla f_{2} \cdot \nabla\left(f_{1}+\frac{b}{a} g_{1}\right)+\frac{b}{a} \frac{g_{1}}{g_{2}} \nabla g_{2} \cdot \nabla\left(f_{1}+\frac{d}{c} g_{1}\right)\right] \mathrm{d} x \mathrm{~d} s \\
& +\int_{0}^{t} \int_{\Omega}\left[\nabla f_{1} \cdot \nabla\left(f_{2}+\frac{b}{a} g_{2}\right)+\frac{b}{a} \nabla g_{1} \cdot \nabla\left(f_{2}+\frac{d}{c} g_{2}\right)\right] \mathrm{d} x \mathrm{~d} s \tag{2.10}\\
& -\int_{0}^{t} \int_{\Omega}\left[\frac{f_{1}}{f_{2}} \nabla f_{2} \cdot \nabla\left(f_{2}+\frac{b}{a} g_{2}\right)+\frac{b}{a} \frac{g_{1}}{g_{2}} \nabla g_{2} \cdot \nabla\left(f_{2}+\frac{d}{c} g_{2}\right)\right] \mathrm{d} x \mathrm{~d} s .
\end{align*}
$$

Introducing

$$
T_{I}^{2}(t):=-\frac{b(a d-b c)}{a c} \int_{0}^{t} \int_{\Omega}\left[\left|\nabla g_{1}\right|^{2}-\left(1+\frac{g_{1}}{g_{2}}\right) \nabla g_{1} \cdot \nabla g_{2}+\frac{g_{1}}{g_{2}}\left|\nabla g_{2}\right|^{2}\right] \mathrm{d} x \mathrm{~d} s
$$

and $T_{I I}^{2}(t):=T^{2}(t)-T_{I}^{2}(t)$, we note that

$$
\begin{align*}
T_{I}^{2}(t) & =-\frac{b(a d-b c)}{a c} \int_{0}^{t} \int_{\Omega}\left[\left|\nabla g_{1}-\frac{1}{2}\left(1+\frac{g_{1}}{g_{2}}\right) \nabla g_{2}\right|^{2}-\left|\frac{g_{1}-g_{2}}{2 g_{2}} \nabla g_{2}\right|^{2}\right] \mathrm{d} x \mathrm{~d} s \tag{2.11}\\
& \leq \frac{b(a d-b c)}{a c} \int_{0}^{t} \int_{\Omega}\left|\frac{g_{1}-g_{2}}{2 g_{2}} \nabla g_{2}\right|^{2} \mathrm{~d} x \mathrm{~d} s
\end{align*}
$$

thanks to (1.1). Furthermore, in view of the relation

$$
\frac{d}{c}=\frac{b}{a}+\frac{a d-b c}{a c},
$$

$$
\begin{aligned}
\frac{T_{I I}^{2}(t)}{a}= & -\int_{0}^{t} \int_{\Omega}\left|\nabla\left(f_{1}+\frac{b}{a} g_{1}\right)\right|^{2} \mathrm{~d} x \mathrm{~d} s \\
& -\int_{0}^{t} \int_{\Omega} \nabla\left(f_{1}+\frac{b}{a} g_{1}\right) \cdot\left[\left(1+\frac{f_{1}}{f_{2}}\right) \nabla f_{2}+\frac{b}{a}\left(1+\frac{g_{1}}{g_{2}}\right) \nabla g_{2}\right] \mathrm{d} x \mathrm{~d} s \\
& -\int_{0}^{t} \int_{\Omega} \nabla\left(f_{2}+\frac{b}{a} g_{2}\right) \cdot\left(\frac{f_{1}}{f_{2}} \nabla f_{2}+\frac{b}{a} \frac{g_{1}}{g_{2}} \nabla g_{2}\right) \mathrm{d} x \mathrm{~d} s \\
= & -\int_{0}^{t} \int_{\Omega}\left|\nabla\left(f_{1}+\frac{b}{a} g_{1}\right)-\frac{1}{2}\left[\left(1+\frac{f_{1}}{f_{2}}\right) \nabla f_{2}+\frac{b}{a}\left(1+\frac{g_{1}}{g_{2}}\right) \nabla g_{2}\right]\right|^{2} \mathrm{~d} x \mathrm{~d} s \\
& +\frac{1}{4} \int_{0}^{t} \int_{\Omega}\left|\left(1+\frac{f_{1}}{f_{2}}\right) \nabla f_{2}+\frac{b}{a}\left(1+\frac{g_{1}}{g_{2}}\right) \nabla g_{2}\right|^{2} \mathrm{~d} x \mathrm{~d} s \\
& -\int_{0}^{t} \int_{\Omega} \nabla\left(f_{2}+\frac{b}{a} g_{2}\right) \cdot\left(\frac{f_{1}}{f_{2}} \nabla f_{2}+\frac{b}{a} \frac{g_{1}}{g_{2}} \nabla g_{2}\right) \mathrm{d} x \mathrm{~d} s .
\end{aligned}
$$

Observing that

$$
\begin{aligned}
& \frac{1}{4}\left|\left(1+\frac{f_{1}}{f_{2}}\right) \nabla f_{2}+\frac{b}{a}\left(1+\frac{g_{1}}{g_{2}}\right) \nabla g_{2}\right|^{2}-\nabla\left(f_{2}+\frac{b}{a} g_{2}\right) \cdot\left(\frac{f_{1}}{f_{2}} \nabla f_{2}+\frac{b}{a} \frac{g_{1}}{g_{2}} \nabla g_{2}\right) \\
& \quad=\frac{1}{4}\left|\nabla\left(f_{2}+\frac{b}{a} g_{2}\right)+\frac{f_{1}}{f_{2}} \nabla f_{2}+\frac{b}{a} \frac{g_{1}}{g_{2}} \nabla g_{2}\right|^{2}-\nabla\left(f_{2}+\frac{b}{a} g_{2}\right) \cdot\left(\frac{f_{1}}{f_{2}} \nabla f_{2}+\frac{b}{a} \frac{g_{1}}{g_{2}} \nabla g_{2}\right) \\
& \quad=\frac{1}{4}\left|\nabla\left(f_{2}+\frac{b}{a} g_{2}\right)-\frac{f_{1}}{f_{2}} \nabla f_{2}-\frac{b}{a} \frac{g_{1}}{g_{2}} \nabla g_{2}\right|^{2} \\
& \quad=\frac{1}{4}\left|\left(1-\frac{f_{1}}{f_{2}}\right) \nabla f_{2}+\frac{b}{a}\left(1-\frac{g_{1}}{g_{2}}\right) \nabla g_{2}\right|^{2} \\
& \quad \leq \frac{1}{2}\left|\frac{f_{1}-f_{2}}{f_{2}} \nabla f_{2}\right|^{2}+\frac{b^{2}}{2 a^{2}}\left|\frac{g_{1}-g_{2}}{g_{2}} \nabla g_{2}\right|^{2},
\end{aligned}
$$

the last estimate resulting from Young's inequality, we are led to

$$
\begin{equation*}
\frac{T_{I I}^{2}(t)}{a} \leq \frac{1}{2} \int_{0}^{t} \int_{\Omega}\left[\left|\frac{f_{1}-f_{2}}{f_{2}} \nabla f_{2}\right|^{2}+\frac{b^{2}}{a^{2}}\left|\frac{g_{1}-g_{2}}{g_{2}} \nabla g_{2}\right|^{2}\right] \mathrm{d} x \mathrm{~d} s . \tag{2.12}
\end{equation*}
$$

On behalf of (2.9), (2.11), and (2.12) we conclude that

$$
\begin{aligned}
H\left(u_{1}(t) \mid u_{2}(t)\right) \leq & H\left(u_{1}^{i n} \mid u_{2}^{i n}\right)+\frac{b(a d-b c)}{a c} \int_{0}^{t} \int_{\Omega}\left|\frac{g_{1}-g_{2}}{2 g_{2}} \nabla g_{2}\right|^{2} \mathrm{~d} x \mathrm{~d} s \\
& +\frac{a}{2} \int_{0}^{t} \int_{\Omega}\left[\left|\frac{f_{1}-f_{2}}{f_{2}} \nabla f_{2}\right|^{2}+\frac{b^{2}}{a^{2}}\left|\frac{g_{1}-g_{2}}{g_{2}} \nabla g_{2}\right|^{2}\right] \mathrm{d} x \mathrm{~d} s .
\end{aligned}
$$

Recalling (2.3), we deduce that there exists a positive constant $C=C(a, b, c, d)$ such that

$$
\begin{equation*}
H\left(u_{1}(t) \mid u_{2}(t)\right) \leq H\left(u_{1}^{i n} \mid u_{2}^{i n}\right)+C \sigma^{4} \int_{0}^{t} \int_{\Omega}\left[\left|f_{1}-f_{2}\right|^{2}+\frac{b}{c}\left|g_{1}-g_{2}\right|^{2}\right] \mathrm{d} x \mathrm{~d} s \tag{2.13}
\end{equation*}
$$

for all $t \in[0, T]$. In view of the inequality

$$
\begin{equation*}
x \ln \left(\frac{x}{y}\right)-(x-y) \geq \frac{1}{2} \frac{|x-y|^{2}}{\max \{x, y\}}, \quad(x, y) \in[0, \infty) \times(0, \infty), \tag{2.14}
\end{equation*}
$$

which follows from [18, Lemma 18], it is not difficult to infer from (2.13), by taking also into account the boundedness of u_{1} and u_{2} in $(0, T) \times \Omega$ provided by (2.4), that

$$
\begin{equation*}
H\left(u_{1}(t) \mid u_{2}(t)\right) \leq H\left(u_{1}^{i n} \mid u_{2}^{i n}\right)+C \int_{0}^{t} H\left(u_{1}(s) \mid u_{2}(s)\right) \mathrm{d} s \quad \text { for all } t \in[0, T] . \tag{2.15}
\end{equation*}
$$

This completes the proof of (1.7).

Appendix A. A version of the Lions-Magenes lemma

In this section we establish a version of the Lions-Magenes lemma, see Lemma A. 1 below, which is used in the proof of Theorem 1.3 when differentiating the mapping

$$
\left[t \mapsto \int_{\Omega}[f(t) \ln (f(t)+\eta)-f(t)] \mathrm{d} x\right]:(0, T) \rightarrow \mathbb{R}, \quad \text { with } \eta>0
$$

for some appropriate non-negative function f. Before stating the result, we note that the function $\Phi(s):=s \ln (s+\eta)-s, s \geq 0$, satisfies $\Phi^{\prime \prime}(s)=(s+2 \eta) /(s+\eta)^{2}, s \geq 0$. Thus

$$
\left\|\Phi^{\prime \prime}\right\|_{\infty}<\infty .
$$

Lemma A. 1 (Lions-Magenes lemma). Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and $\Phi \in \mathrm{C}^{2}(\mathbb{R})$ satisfy $\left\|\Phi^{\prime \prime}\right\|_{\infty}<\infty$. Assume that

$$
f \in L_{2}\left((0, T), H^{1}(\Omega)\right) \cap W_{2}^{1}\left((0, T), H^{1}(\Omega)^{\prime}\right) .
$$

Then

$$
\left[t \mapsto I(t):=\int_{\Omega} \Phi(f(t)) \mathrm{d} x\right] \in \mathrm{C}([0, T], \mathbb{R})
$$

and for all $0 \leq t_{0} \leq t \leq T$ we have

$$
\begin{equation*}
\int_{\Omega} \Phi(f(t)) \mathrm{d} x-\int_{\Omega} \Phi\left(f\left(t_{0}\right)\right) \mathrm{d} x=\int_{t_{0}}^{t}\left\langle\partial_{t} f(\tau), \Phi^{\prime}(f(\tau))\right\rangle_{\left(H^{1}\right)^{\prime}, H^{1}} \mathrm{~d} \tau . \tag{A.1}
\end{equation*}
$$

As we are lacking a precise reference for Lemma A.1, we include below a proof for the sake of completeness. As a first step, we establish in Lemma A. 2 an auxiliary result which is used in the proof of Lemma A.1.

Lemma A.2. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and let $f \in \mathrm{C}^{1}\left(\mathcal{I}, L_{2}(\Omega)\right)$, where $\mathcal{I} \subset \mathbb{R}$ is an interval. Let further $\Phi \in \mathrm{C}^{2}(\mathbb{R})$ satisfy $\left\|\Phi^{\prime \prime}\right\|_{\infty}=: L<\infty$. Then,

$$
\left[t \mapsto I(t):=\int_{\Omega} \Phi(f(t)) \mathrm{d} x\right] \in \mathrm{C}^{1}(\mathcal{I}, \mathbb{R})
$$

and

$$
\begin{equation*}
I^{\prime}(t)=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} \Phi(f(t)) \mathrm{d} x=\int_{\Omega} \Phi^{\prime}(f(t)) \partial_{t} f(t) \mathrm{d} x, \quad t \in \mathcal{I} . \tag{A.2}
\end{equation*}
$$

Proof. We may assume without loss of generality that $\Phi(0)=\Phi^{\prime}(0)=0$ (as the claim is obvious for affine functions). Then

$$
\begin{equation*}
|\Phi(r)-\Phi(s)| \leq L(|r|+|s|)|r-s|, \quad\left|\Phi^{\prime}(r)-\Phi^{\prime}(s)\right| \leq L|r-s|, \quad(r, s) \in \mathbb{R}^{2} \tag{A.3}
\end{equation*}
$$

In particular, since $\Phi(0)=\Phi^{\prime}(0)=0$,

$$
|\Phi(f(t))| \leq L|f(t)|^{2} \quad \text { and } \quad\left|\Phi^{\prime}(f(t))\right| \leq L|f(t)|, \quad t \in \mathcal{I},
$$

and it follows that

$$
\Phi(f(t)) \in L_{1}(\Omega) \quad \text { and } \quad \Phi^{\prime}(f(t)) \partial_{t} f(t) \in L_{1}(\Omega), \quad t \in \mathcal{I}
$$

Let $t \neq t_{0} \in \mathcal{I}$. We then have

$$
\begin{aligned}
& \left|\frac{I(t)-I\left(t_{0}\right)}{t-t_{0}}-\int_{\Omega} \Phi^{\prime}\left(f\left(t_{0}\right)\right) \partial_{t} f\left(t_{0}\right) \mathrm{d} x\right| \\
& \leq \int_{\Omega}\left|\frac{\Phi(f(t))-\Phi\left(f\left(t_{0}\right)\right)}{t-t_{0}}-\Phi^{\prime}\left(f\left(t_{0}\right)\right) \partial_{t} f\left(t_{0}\right)\right| \mathrm{d} x \\
& \leq \int_{\Omega} \int_{0}^{1}\left|\Phi^{\prime}\left((1-s) f\left(t_{0}\right)+s f(t)\right) \frac{f(t)-f\left(t_{0}\right)}{t-t_{0}}-\Phi^{\prime}\left(f\left(t_{0}\right)\right) \partial_{t} f\left(t_{0}\right)\right| \mathrm{d} s \mathrm{~d} x \\
& \leq J_{1}(t)+J_{2}(t)
\end{aligned}
$$

where

$$
\begin{aligned}
& J_{1}(t):=\int_{\Omega} \int_{0}^{1}\left|\Phi^{\prime}\left((1-s) f\left(t_{0}\right)+s f(t)\right)\left[\frac{f(t)-f\left(t_{0}\right)}{t-t_{0}}-\partial_{t} f\left(t_{0}\right)\right]\right| \mathrm{d} s \mathrm{~d} x \\
& J_{2}(t):=\int_{\Omega} \int_{0}^{1}\left|\left[\Phi^{\prime}\left((1-s) f\left(t_{0}\right)+s f(t)\right)-\Phi^{\prime}\left(f\left(t_{0}\right)\right)\right] \partial_{t} f\left(t_{0}\right)\right| \mathrm{d} s \mathrm{~d} x
\end{aligned}
$$

By (A.3), Hölder's inequality, and the regularity of f,

$$
\begin{aligned}
& J_{1}(t) \leq L\left(\left\|f\left(t_{0}\right)\right\|_{2}+\|f(t)\|_{2}\right)\left\|\frac{f(t)-f\left(t_{0}\right)}{t-t_{0}}-\frac{d f}{d t}\left(t_{0}\right)\right\|_{2} \underset{t \rightarrow t_{0}}{\rightarrow} 0, \\
& J_{2}(t) \leq L\left\|f(t)-f\left(t_{0}\right)\right\|_{2}\left\|\partial_{t} f\left(t_{0}\right)\right\|_{2 \rightarrow t_{0}} 0 .
\end{aligned}
$$

Therefore, I is differentiable at t_{0} and its derivative is given by (A.2). It next readily follows from (A.3) and the regularity of f that $\Phi^{\prime}(f)$ and $\partial_{t} f$ both belong to $\mathrm{C}\left(\mathcal{I}, L_{2}(\Omega)\right)$, from which we deduce that $I^{\prime} \in \mathrm{C}(\mathcal{I})$ with the help of Hölder's inequality.

We now recall a basic property which is used in the proof of Lemma A. 1 below. Let X, Y be Banach spaces such that the embedding of X in Y is continuous and dense and let $T>0$. Then, $\mathrm{C}^{\infty}([0, T], X)$ is dense in

$$
E_{2}(X, Y):=L_{2}((0, T), X) \cap W_{2}^{1}((0, T), Y),
$$

see, e.g., [4, Lemma II.5.10].

Proof of Lemma A.1. Since $\mathrm{C}^{\infty}\left([0, T], H^{1}(\Omega)\right)$ is dense in $E_{2}\left(H^{1}(\Omega), H^{1}(\Omega)^{\prime}\right)$, there is a sequence $\left(f_{n}\right)_{n \geq 1} \in \mathrm{C}^{\infty}\left([0, T], H^{1}(\Omega)\right)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{L_{2}\left((0, T), H^{1}(\Omega)\right)}=\lim _{n \rightarrow \infty}\left\|\partial_{t} f_{n}-\partial_{t} f\right\|_{L_{2}\left((0, T), H^{1}(\Omega)^{\prime}\right)}=0 . \tag{A.4}
\end{equation*}
$$

Moreover, thanks to the continuous embedding of $E_{2}\left(H^{1}(\Omega), H^{1}(\Omega)^{\prime}\right)$ in $\mathrm{C}\left([0, T], L_{2}(\Omega)\right)$, see, e.g., [4, Theorem II.5.13], we deduce from (A.4) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{t \in[0, T]}\left\|f_{n}(t)-f(t)\right\|_{2}=0 \tag{A.5}
\end{equation*}
$$

Let $0 \leq t_{0} \leq t \leq T$. By Lemma A. 2

$$
\begin{equation*}
\int_{\Omega} \Phi\left(f_{n}(t)\right) \mathrm{d} x-\int_{\Omega} \Phi\left(f_{n}\left(t_{0}\right)\right) \mathrm{d} x=\int_{t_{0}}^{t}\left\langle\partial_{t} f_{n}(\tau), \Phi^{\prime}\left(f_{n}(\tau)\right)\right\rangle_{\left(H^{1}\right)^{\prime}, H^{1}} \mathrm{~d} \tau . \tag{A.6}
\end{equation*}
$$

On the one hand, we infer from (A.3), (A.5), and Hölder's inequality that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} \Phi\left(f_{n}(t)\right) \mathrm{d} x=\int_{\Omega} \Phi(f(t)) \mathrm{d} x \quad \text { and } \quad \lim _{n \rightarrow \infty} \int_{\Omega} \Phi\left(f_{n}\left(t_{0}\right)\right) \mathrm{d} x=\int_{\Omega} \Phi\left(f\left(t_{0}\right)\right) \mathrm{d} x . \tag{A.7}
\end{equation*}
$$

On the other hand, it readily follows from (A.3) and (A.4) that

$$
\lim _{n \rightarrow \infty} \int_{0}^{T}\left\|\Phi^{\prime}\left(f_{n}(\tau)\right)-\Phi^{\prime}(f(\tau))\right\|_{2}^{2} \mathrm{~d} \tau=0
$$

Moreover, the boundedness and continuity of $\Phi^{\prime \prime}$, (A.4), and Lebesgue's dominated convergence theorem entail that

$$
\Phi^{\prime}\left(f_{n}\right) \in L_{2}\left((0, T), H^{1}(\Omega)\right) \quad \text { with } \quad \nabla \Phi^{\prime}\left(f_{n}\right)=\Phi^{\prime \prime}\left(f_{n}\right) \nabla f_{n}, \quad n \geq 1
$$

and

$$
\lim _{n \rightarrow \infty} \int_{0}^{T}\left\|\Phi^{\prime \prime}\left(f_{n}(\tau)\right) \nabla f_{n}(\tau)-\Phi^{\prime \prime}(f(\tau)) \nabla f(\tau)\right\|_{2}^{2} \mathrm{~d} \tau=0
$$

Therefore,

$$
\lim _{n \rightarrow \infty}\left\|\Phi^{\prime}\left(f_{n}\right)-\Phi^{\prime}(f)\right\|_{L_{2}\left((0, T), H^{1}(\Omega)\right)}=0
$$

Combining this convergence with (A.4), leads us to

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{t_{0}}^{t}\left\langle\partial_{t} f_{n}(\tau), \Phi^{\prime}\left(f_{n}(\tau)\right)\right\rangle_{\left(H^{1}\right)^{\prime}, H^{1}} \mathrm{~d} \tau=\int_{t_{0}}^{t}\left\langle\partial_{t} f(\tau), \Phi(f(\tau))\right\rangle_{\left(H^{1}\right)^{\prime}, H^{1}} \mathrm{~d} \tau=0 \tag{A.8}
\end{equation*}
$$

The identity (A.1) is then a direct consequence of (A.6), (A.7), and (A.8).
Acknowledgement. The authors gratefully acknowledge the support by the RTG 2339 "Interfaces, Complex Structures, and Singular Limits" of the German Science Foundation (DFG).

References

[1] H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), pp. 311-341.
[2] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), vol. 133 of TeubnerTexte Math., Teubner, Stuttgart, 1993, pp. 9-126.
[3] Ph. Bénilan, M. G. Crandall, and M. Pierre, Solutions of the porous medium equation in \mathbb{R}^{N} under optimal conditions on initial values, Indiana Univ. Math. J., 33 (1984), pp. 51-87.
[4] F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, vol. 183 of Applied Mathematical Sciences, Springer, New York, 2013.
[5] Y. Brenier, C. De Lellis, and L. Székelyhidi, Jr., Weak-strong uniqueness for measure-valued solutions, Comm. Math. Phys., 305 (2011), pp. 351-361.
[6] D. Bresch, M. Gisclon, and I. Lacroix-Violet, On Navier-Stokes-Korteweg and Euler-Korteweg systems: application to quantum fluids models, Arch. Ration. Mech. Anal., 233 (2019), pp. 975-1025.
[7] H. Brézis and M. G. Crandall, Uniqueness of solutions of the initial-value problem for $u_{t}-\Delta \varphi(u)=$ 0, J. Math. Pures Appl. (9), 58 (1979), pp. 153-163.
[8] X. Chen and A. Jüngel, Weak-strong uniqueness of renormalized solutions to reaction-cross-diffusion systems, Math. Models Methods Appl. Sci., 29 (2019), pp. 237-270.
[9] C. Christoforou and A. E. Tzavaras, Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity, Arch. Ration. Mech. Anal., 229 (2018), pp. 1-52.
[10] J. Escher, A.-V. Matioc, and B.-V. Matioc, Modelling and analysis of the Muskat problem for thin fluid layers, J. Math. Fluid Mech., 14 (2012), pp. 267-277.
[11] E. Feireisl, B. J. Jin, and A. Novotnŷ, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mech., 14 (2012), pp. 717-730.
[12] E. Feireisl and A. NovotnÝ, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system, Arch. Ration. Mech. Anal., 204 (2012), pp. 683-706.
[13] J. Fischer, Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations, Nonlinear Anal., 159 (2017), pp. 181-207.
[14] J. Fischer and S. Hensel, Weak-strong uniqueness for the Navier-Stokes equation for two fluids with surface tension, Arch. Ration. Mech. Anal., 236 (2020), pp. 967-1087.
[15] J. Giesselmann, C. Lattanzio, and A. E. Tzavaras, Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics, Arch. Ration. Mech. Anal., 223 (2017), pp. 1427-1484.
[16] P. Gwiazda, A. Swierczewska Gwiazda, and E. Wiedemann, Weak-strong uniqueness for measure-valued solutions of some compressible fluid models, Nonlinearity, 28 (2015), pp. 3873-3890.
[17] K. Hopf, Weak-strong uniqueness for energy-reaction-diffusion systems. arXiv:2102.02491.
[18] X. Huo, A. Jüngel, and A. E. Tzavaras, Weak-strong uniqueness for Maxwell-Stefan systems, SIAM J. Math. Anal., 54 (2022), pp. 3215-3252.
[19] A. Jüngel, S. Portisch, and A. Zurek, Nonlocal cross-diffusion systems for multi-species populations and networks, Nonlinear Anal., 219 (2022), pp. Paper No. 112800, 1-26.
[20] Ph. Laurençot and B.-V. Matioc, Bounded weak solutions to a class of degenerate cross-diffusion systems. arXiv: 2201.06479.
[21] _-, The porous medium equation as a singular limit of the thin film Muskat problem. arXiv:2108.09032, to appear in Asymptot. Anal.
[22] _—, Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals, Trans. Amer. Math. Soc., 375 (2022), pp. 5963-5986.
[23] B.-V. Matioc and Ch. Walker, On the principle of linearized stability in interpolation spaces for quasilinear evolution equations, Monatsh. Math., 191 (2020), pp. 615-634.
[24] F. Отто, L^{1}-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differ. Equations, 131 (1996), pp. 20-38.
[25] M. Pierre, Uniqueness of the solutions of $u_{t}-\Delta(\phi(u))=0$ with initial datum a measure, Nonlinear Anal., Theory Methods Appl., 6 (1982), pp. 175-187.
[26] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.
[27] J. L. VÁzquez, The Porous Medium Equation, Clarendon Press, Oxford, 2007.
Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, F31062 Toulouse Cedex 9, France

Email address: laurenco@math.univ-toulouse.fr
Fakultät für Mathematik, Universität Regensburg, D-93040 Regensburg, Deutschland
Email address: bogdan.matioc@ur.de

[^0]: 2020 Mathematics Subject Classification. 35A02; 35K51; 35K65; 35Q35.
 Key words and phrases. Cross diffusion; Weak-strong uniqueness; Relative entropy.

