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Introduction

Let Ω be a bounded domain of R N , N ≥ 1, with smooth boundary ∂Ω and outer unit normal n, and assume that the constants a, b, c, and d satisfy (a, b, c, d) ∈ (0, ∞) 4 and ad > bc .

(

We consider the evolution equations

∂ t f = div f ∇[af + bg] ∂ t g = div g∇[cf + dg] in (0, ∞) × Ω , (1.2a) 
supplemented with homogeneous Neumann boundary conditions

∇f • n = ∇g • n = 0 on (0, ∞) × ∂Ω , (1.2b) 
and non-negative initial conditions (f, g)(0) = (f in , g in ) in Ω .

(1.2c)

The porous medium equation [START_REF] Vázquez | The Porous Medium Equation[END_REF] as well as the thin film Muskat problem [START_REF] Escher | Modelling and analysis of the Muskat problem for thin fluid layers[END_REF] arise as special cases of (1.2a). We point out that (1.2a) is a quasilinear degenerate parabolic system with a full diffusion matrix, so that the study of its well-posedness is already a challenging issue. On the one hand, owing to its parabolic structure, the system (1.2) fits into the theory developed in [START_REF] Amann | Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems[END_REF], from which the local existence and uniqueness of a strong solution with positive components can be inferred, see Theorem 2.1 below. However, comparison principles cannot be applied in the context of (1.2) and the degeneracy featured in (1.2a) might lead to the breakdown of the positivity of the components in finite time and thus to that of their regularity. As a consequence, strong solutions cannot be extended beyond a finite time in general. On the other hand, non-negative global weak solutions to (1.2), which are also bounded, are constructed in [START_REF] Ph | Bounded weak solutions to a class of degenerate cross-diffusion systems[END_REF][START_REF]Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals[END_REF], but the uniqueness of such solutions is an open problem, even in dimension N = 1. This is in sharp contrast with the porous medium equation for which several uniqueness results for weak solutions are available in the literature, see [START_REF] Alt | Quasilinear elliptic-parabolic differential equations[END_REF][START_REF] Ph | Solutions of the porous medium equation in R N under optimal conditions on initial values[END_REF][START_REF] Brézis | Uniqueness of solutions of the initial-value problem for ut -∆ϕ(u) = 0[END_REF][START_REF]The porous medium equation as a singular limit of the thin film Muskat problem[END_REF][START_REF] Otto | L 1 -contraction and uniqueness for quasilinear elliptic-parabolic equations[END_REF][START_REF] Pierre | Uniqueness of the solutions of ut -∆(φ(u)) = 0 with initial datum a measure, Nonlinear Anal[END_REF][START_REF] Vázquez | The Porous Medium Equation[END_REF] and the references therein. It is actually the strong coupling in (1.2a) which makes it difficult to generalize the methods from the above references to this two-phase version of the porous medium equation.

The goal of this paper is to prove a weaker result, namely that all bounded weak solutions to (1.2) coincide on some time interval on which a strong solution exists. For that purpose, we shall rely on the availability of a suitable relative entropy functional, an idea which has proved instrumental in several recent works on weak-strong uniqueness/stability results for (systems of) partial differential equations. In particular, this method has been applied in various settings such as: the compressible Navier-Stokes system [START_REF] Feireisl | Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system[END_REF] and the Fourier-Navier-Stokes system [START_REF] Feireisl | Weak-strong uniqueness property for the full Navier-Stokes-Fourier system[END_REF], the (isentropic) Euler equations [START_REF] Brenier | Weak-strong uniqueness for measure-valued solutions[END_REF][START_REF] Gwiazda | Weak-strong uniqueness for measure-valued solutions of some compressible fluid models[END_REF], hyperbolic-parabolic systems [START_REF] Christoforou | Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity[END_REF], the Navier-Stokes-Korteweg and the Euler-Korteweg systems [START_REF] Bresch | On Navier-Stokes-Korteweg and Euler-Korteweg systems: application to quantum fluids models[END_REF][START_REF] Giesselmann | Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics[END_REF], the Navier-Stokes equation with surface tension [START_REF] Fischer | Weak-strong uniqueness for the Navier-Stokes equation for two fluids with surface tension[END_REF], (reaction-)cross-diffusion systems [START_REF] Chen | Weak-strong uniqueness of renormalized solutions to reaction-cross-diffusion systems[END_REF][START_REF] Jüngel | Nonlocal cross-diffusion systems for multi-species populations and networks[END_REF], entropy-dissipating reaction-diffusion equations [START_REF] Fischer | Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations[END_REF], energy-reaction-diffusion systems [START_REF] Hopf | Weak-strong uniqueness for energy-reaction-diffusion systems[END_REF], and Maxwell-Stefan systems [START_REF] Huo | Weak-strong uniqueness for Maxwell-Stefan systems[END_REF].

Before stating precisely our main result, let us first make precise the meaning of weak and strong solutions to (1.2). Definition 1.1 (Bounded weak solution). Assume (1.1) and let u in := (f in , g in ) be an element of L ∞,+ (Ω, R 2 ). Given T ∈ (0, ∞], a bounded weak solution u to (1.2) on [0, T ) is a pair of functions u = (f, g) such that:

(i) for each t ∈ (0, T ),

(f, g) ∈ L ∞,+ ((0, t) × Ω, R 2 ) ∩ L 2 ((0, t), H 1 (Ω, R 2 )) ∩ W 1 2 ((0, t), H 1 (Ω, R 2 ) ′ ) ; (1.3) 
(ii) for all ϕ ∈ H 1 (Ω) and t ∈ (0, T ),

Ω (f (t, x) -f in (x))ϕ(x) dx + t 0 Ω f (s, x)∇[af + bg](s, x) • ∇ϕ(x) dxds = 0 (1.4a)
and

Ω (g(t, x) -g in (x))ϕ(x) dx + t 0 Ω g(s, x)∇[cf + dg](s, x) • ∇ϕ(x) dxds = 0 . (1.4b)
Observe that the boundedness and weak differentiability required on f and g in (1.3) guarantee that the integrals in (1.4) 

u in = (f in , g in ) ∈ O s p . A strong solution u to (1.2) on [0, T ) is a pair u = (f, g) such that u ∈ C([0, T ), O s p ) ∩ C 1 ((0, T ), L p (Ω, R 2 )) ∩ C((0, T ), H 2 p,B (Ω, R 2 )) ,
which satisfies (1.2) in a strong sense (and in particular a.e. in (0, T ) × Ω).

One may easily check that a strong solution to (1.2) on [0, T ) in the sense of Definition 1.2 is also a bounded weak solution on [0, T ) in the sense of Definition 1.1.

The aim of this paper is to establish a weak-strong uniqueness result for (1.2) as stated in Theorem 1.3 below. As in [START_REF] Fischer | Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations[END_REF], the main tool to be used in the proof is the relative entropy functional

H(u 1 |u 2 ) := Ω f 1 ln f 1 f 2 -(f 1 -f 2 ) + b c g 1 ln g 1 g 2 -(g 1 -g 2 ) dx , (1.6) 
which is well-defined for The main step in the proof of Theorem 1.3 is to derive the integral inequality (1.7) which measures the "distance" between a bounded weak solution in the sense of Definition 1.1 and a strong solution in the sense of Definition 1.2. Gronwall's inequality then provides the weak-strong uniqueness property for the evolution problem (1.2). 

u i = (f i , g i ) ∈ L 2,+ (Ω, R 2 ), i = 1, 2,
Theorem 1.3. Consider u in 1 ∈ L ∞,+ (Ω, R 2 ) and u in 2 ∈ O s p for some s ∈ (1 + N/p, 2) and p > N . Let u 2 = (f 2 , g 2 ) be the strong solution to (1.2) with initial condition u in 2 defined on its maximal existence interval [0, T + ), T + ∈ (0, ∞], see Theorem 2.1 below. If u 1 = (f 1 , g 1 ) is a bounded weak solution to (1.2) on [0, T + ) with initial condition u in
H(u 1 (t)|u 2 (t)) ≤ H(u in 1 |u in 2 ) + C t 0 H(u 1 (s)|u 2 (s)) ds for all t ∈ [0, T ] . (1.7)
In particular, if u in 1 = u in 2 , then u 1 (t) = u 2 (t) for all t ∈ [0, T + ). We emphasize that Theorem 1.3 applies to any pair of initial conditions u in 1 ∈ L ∞,+ (Ω, R 2 ) and u in 2 ∈ O s p for some s ∈ (1 + N/p, 2) and p > N . Indeed, the existence of a bounded weak solution to (1.2) on [0, ∞) with initial condition u in 1 follows from [START_REF] Ph | Bounded weak solutions to a class of degenerate cross-diffusion systems[END_REF][START_REF]Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals[END_REF], while that of a strong solution to (1.2) on some maximal time interval with initial condition u in 2 is provided in Theorem 2.1 below.

Proof of the main result

We start this section by considering the evolution problem (1.2) in the setting of strong solutions as specified in Definition 1.2. Using the quasilinear parabolic theory developed in [START_REF] Amann | Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems[END_REF], we then prove in Theorem 2.1 that (1.2) is well-posed in this strong setting. The remaining part is then devoted to the proof of Theorem 1.3.

2.1.

Strong solutions to the evolution problem (1.2). In order to construct strong solutions to (1.2) we reformulate (1.2a) in a suitable framework. For that purpose, we fix p > N and s ∈ (1 + N/p, 2) and introduce the mobility matrix

M (X) = (m jk (X)) 1≤j,k≤2 := aX 1 bX 1 cX 2 dX 2 , X = (X 1 , X 2 ) ∈ R 2 . (2.1)
The problem (1.2) can then be recast as

du dt (t) = Φ(u(t))[u(t)], u(0) = u in , (2.2) 
where the quasilinear operator Φ :

O s p → L(H 2 p,B (Ω, R 2 ), L p (Ω, R 2 
)) is defined by the relation

Φ(u)[v] := div(M (u)∇v) = N i=1 ∂ i (M (u)∂ i v), u ∈ O s p , v ∈ H 2 p,B (Ω, R 2 ) .
Observing that, for u ∈ O s p , the matrix-valued function M (u) belongs to C 1 (Ω, R 2×2 ) and that M (u(x)), x ∈ Ω, has its spectrum contained in the right-half plane {Re z > 0}, we infer from [2, Theorem 4.1 and Example 4.3 (e)] that Φ(u) is, for each u ∈ O s p , the generator of an analytic semigroup in L(L p (Ω, R 2 )). Since

[L p (Ω), H 2 p,B (Ω)] s/2 = H s p,B (Ω)
, where [•, •] is the complex interpolation functor, see [START_REF] Triebel | Interpolation Theory, Function Spaces, Differential Operators[END_REF]Theorem 4.3.3], we may now apply to (2.2) the quasilinear parabolic theory presented in [2, Section 12] (see also [23, Remark 1.2 (ii)]) to obtain the following result. 

∈ C([0, T + ), O s p ) ∩ C 1 ((0, T + ), L p (Ω, R 2 )) ∩ C((0, T + ), H 2 p,B (Ω, R 2 
)) , where T + ∈ (0, ∞] denotes the maximal existence time.

2.2.

Proof of Theorem 1.3. Let T ∈ (0, T + ). Since {u 2 (t) : t ∈ [0, T ]} is a compact subset of O s p , there is σ ∈ (0, 1) (possibly depending on T ) such that, for t ∈ [0, T ],

σ ≤ min x∈Ω min f 2 (t, x), g 2 (t, x) and max ∇f 2 (t) ∞ , ∇g 2 (t) ∞ ≤ σ -1 . (2.3)
Moreover, since u 1 is a bounded weak solution, we may assume that also

|u 1 (t, x)| + |u 2 (t, x)| ≤ σ -1 a.e. in (0, T ) × Ω . (2.4) 
Given η ∈ (0, 1), let

H η (u 1 (t)|u 2 (t)) := Ω f 1 (t) ln f 1 (t) + η f 2 (t) -(f 1 (t) -f 2 (t)) dx + b c Ω g 1 (t) ln g 1 (t) + η g 2 (t) -(g 1 (t) -g 2 (t)) dx, t ∈ [0, T ] .
As a consequence of (2.4) and of Definition 1.1, we have 

u i (t) ∈ L ∞ (Ω, R 2 ) for i = 1,
p in C 1 (Ω, R 2 ) we have f 1 , g 1 ∈ L 2 ((0, T ), H 1 (Ω)) ∩ W 1 2 ((0, T ), H 1 (Ω) ′ ) and ln f 2 , ln g 2 ∈ L 2 ((0, T ), H 1 (Ω)) ∩ W 1 2 ((0, T ), H 1 (Ω) ′
) . These properties, together with (2.3), (2.4), and suitable versions of the Lions-Magenes lemma, see, e.g., [4, Theorem II.5.12] and Lemma A.1, imply that

[t → H η (u 1 (t)|u 2 (t))] : [0, T ] → R is continuous and H η (u 1 (t)|u 2 (t)) -H η (u in 1 |u in 2 ) = t 0 ∂ t f 1 , ln f 1 + η f 2 + f 1 f 1 + η (H 1 ) ′ ,H 1 ds - t 0 ∂ t f 2 , f 1 f 2 (H 1 ) ′ ,H 1 ds + b c t 0 ∂ t g 1 , ln g 1 + η g 2 + g 1 g 1 + η (H 1 ) ′ ,H 1 ds - b c t 0 ∂ t f 2 , f 1 f 2 (H 1 ) ′ ,H 1 ds (2.6)
for all t ∈ [0, T ], where •, • (H 1 ) ′ ,H 1 is the duality bracket between H 1 (Ω) and H 1 (Ω) ′ . Reformulating (2.6) with the help of (1.4), we find

H η (u 1 (t)|u 2 (t)) -H η (u in 1 |u in 2 ) = - t 0 Ω f 1 ∇(af 1 + bg 1 ) • ∇f 1 f 1 + η - ∇f 2 f 2 dxds - t 0 Ω f 1 ∇(af 1 + bg 1 ) • ∇ f 1 f 1 + η -f 2 ∇(af 2 + bg 2 ) • ∇ f 1 f 2 dxds - b c t 0 Ω g 1 ∇(cf 1 + dg 1 ) • ∇g 1 g 1 + η - ∇g 2 g 2 dxds - b c t 0 Ω g 1 ∇(cf 1 + dg 1 ) • ∇ g 1 g 1 + η -g 2 ∇(cf 2 + dg 2 ) • ∇ g 1 g 2 dxds .
Hence,

H η (u 1 (t)|u 2 (t)) -H η (u in 1 |u in 2 ) = T 1 η (t) + T 2 (t) , (2.7) 
where

T 1 η (t) := η 2 t 0 Ω ∇(af 1 + bg 1 ) • ∇f 1 (f 1 + η) 2 dxds + η 2 b c t 0 Ω ∇(cf 1 + dg 1 ) • ∇g 1 (g 1 + η) 2 dxds and T 2 (t) := - t 0 Ω ∇(af 1 + bg 1 ) • ∇f 1 - f 1 f 2 ∇f 2 -f 2 ∇(af 2 + bg 2 ) • ∇ f 1 f 2 dxds - b c t 0 Ω ∇(cf 1 + dg 1 ) • ∇g 1 - g 1 g 2 ∇g 2 -g 2 ∇(cf 2 + dg 2 ) • ∇ g 1 g 2 dxds .
In view of Definition 1.1 (i), both functions ∇(af 1 + bg 1 ) • ∇f 1 and ∇(cf 1 + dg 1 ) • ∇g 1 belong to L 1 ((0, t) × Ω) and

lim η→0 η 2 ∇f 1 (f 1 + η) 2 = 0 lim η→0 η 2 ∇ g 1 (g 1 + η) 2 = 0     
a.e. in (0, t) × Ω , as ∇f 1 = 0 a.e. on {(s, x) : f 1 (s, x) = 0} and ∇g 1 = 0 a.e. on {(s, x) : g 1 (s, x) = 0}. The dominated convergence theorem now implies that

lim η→0 T 1 η (t) = 0 for all t ∈ [0, T ] . (2.8)
Hence, letting η → 0 in (2.7), we deduce from (2.5) and (2.8) that

H(u 1 (t)|u 2 (t)) -H(u in 1 |u in 2 ) = T 2 (t) for t ∈ [0, T ] . (2.9)
With respect to T 2 (t), we note that

T 2 (t) a = - t 0 Ω ∇f 1 • ∇ f 1 + b a g 1 + b a ∇g 1 • ∇ f 1 + d c g 1 dxds + t 0 Ω f 1 f 2 ∇f 2 • ∇ f 1 + b a g 1 + b a g 1 g 2 ∇g 2 • ∇ f 1 + d c g 1 dxds + t 0 Ω ∇f 1 • ∇ f 2 + b a g 2 + b a ∇g 1 • ∇ f 2 + d c g 2 dxds - t 0 Ω f 1 f 2 ∇f 2 • ∇ f 2 + b a g 2 + b a g 1 g 2 ∇g 2 • ∇ f 2 + d c g 2 dxds .
(2.10)

Introducing T 2 I (t) := - b(ad -bc) ac t 0 Ω |∇g 1 | 2 -1 + g 1 g 2 ∇g 1 • ∇g 2 + g 1 g 2 |∇g 2 | 2 dxds and T 2 II (t) := T 2 (t) -T 2 I (t), we note that T 2 I (t) = - b(ad -bc) ac t 0 Ω ∇g 1 - 1 2 1 + g 1 g 2 ∇g 2 2 - g 1 -g 2 2g 2 ∇g 2 2 dxds ≤ b(ad -bc) ac t 0 Ω g 1 -g 2 2g 2 ∇g 2 2 dxds , (2.11) 
thanks to (1.1). Furthermore, in view of the relation

d c = b a + ad -bc ac , T 2 II (t) a = - t 0 Ω ∇ f 1 + b a g 1 2 dxds - t 0 Ω ∇ f 1 + b a g 1 • 1 + f 1 f 2 ∇f 2 + b a 1 + g 1 g 2 ∇g 2 dxds - t 0 Ω ∇ f 2 + b a g 2 • f 1 f 2 ∇f 2 + b a g 1 g 2 ∇g 2 dxds = - t 0 Ω ∇ f 1 + b a g 1 - 1 2 1 + f 1 f 2 ∇f 2 + b a 1 + g 1 g 2 ∇g 2 2 dxds + 1 4 t 0 Ω 1 + f 1 f 2 ∇f 2 + b a 1 + g 1 g 2 ∇g 2 2 dxds - t 0 Ω ∇ f 2 + b a g 2 • f 1 f 2 ∇f 2 + b a g 1 g 2 ∇g 2 dxds .
Observing that

1 4 1 + f 1 f 2 ∇f 2 + b a 1 + g 1 g 2 ∇g 2 2 -∇ f 2 + b a g 2 • f 1 f 2 ∇f 2 + b a g 1 g 2 ∇g 2 = 1 4 ∇ f 2 + b a g 2 + f 1 f 2 ∇f 2 + b a g 1 g 2 ∇g 2 2 -∇ f 2 + b a g 2 • f 1 f 2 ∇f 2 + b a g 1 g 2 ∇g 2 = 1 4 ∇ f 2 + b a g 2 - f 1 f 2 ∇f 2 - b a g 1 g 2 ∇g 2 2 = 1 4 1 - f 1 f 2 ∇f 2 + b a 1 - g 1 g 2 ∇g 2 2 ≤ 1 2 f 1 -f 2 f 2 ∇f 2 2 + b 2 2a 2 g 1 -g 2 g 2 ∇g 2 2
, the last estimate resulting from Young's inequality, we are led to

T 2 II (t) a ≤ 1 2 t 0 Ω f 1 -f 2 f 2 ∇f 2 2 + b 2 a 2 g 1 -g 2 g 2 ∇g 2 2
dxds .

(2.12)

On behalf of (2.9), (2.11), and (2.12) we conclude that

H(u 1 (t)|u 2 (t)) ≤ H(u in 1 |u in 2 ) + b(ad -bc) ac t 0 Ω g 1 -g 2 2g 2 ∇g 2 2 dxds + a 2 t 0 Ω f 1 -f 2 f 2 ∇f 2 2 + b 2 a 2 g 1 -g 2 g 2 ∇g 2 2 dxds .
Recalling (2.3), we deduce that there exists a positive constant C = C(a, b, c, d) such that

H(u 1 (t)|u 2 (t)) ≤ H(u in 1 |u in 2 ) + Cσ 4 t 0 Ω |f 1 -f 2 | 2 + b c |g 1 -g 2 | 2 dxds (2.13)
for all t ∈ [0, T ]. In view of the inequality

x ln x y -(x -y) ≥ 1 2 |x -y| 2 max{x, y} , (x, y) ∈ [0, ∞) × (0, ∞) , (2.14) 
which follows from [START_REF] Huo | Weak-strong uniqueness for Maxwell-Stefan systems[END_REF]Lemma 18], it is not difficult to infer from (2.13), by taking also into account the boundedness of u 1 and u 2 in (0, T ) × Ω provided by (2.4), that

H(u 1 (t)|u 2 (t)) ≤ H(u in 1 |u in 2 ) + C t 0 H(u 1 (s)|u 2 (s)) ds for all t ∈ [0, T ] . (2.15)
This completes the proof of (1.7).

Proof. We may assume without loss of generality that Φ(0) = Φ ′ (0) = 0 (as the claim is obvious for affine functions). Then

|Φ(r) -Φ(s)| ≤ L(|r| + |s|)|r -s| , |Φ ′ (r) -Φ ′ (s)| ≤ L|r -s| , (r, s) ∈ R 2 . (A.3)
In particular, since Φ(0) = Φ ′ (0) = 0,

|Φ(f (t))| ≤ L|f (t)| 2 and |Φ ′ (f (t))| ≤ L|f (t)| , t ∈ I ,
and it follows that

Φ(f (t)) ∈ L 1 (Ω) and Φ ′ (f (t))∂ t f (t) ∈ L 1 (Ω) , t ∈ I .
Let t = t 0 ∈ I. We then have

I(t) -I(t 0 ) t -t 0 - Ω Φ ′ (f (t 0 ))∂ t f (t 0 ) dx ≤ Ω Φ(f (t)) -Φ(f (t 0 )) t -t 0 -Φ ′ (f (t 0 ))∂ t f (t 0 ) dx ≤ Ω 1 0 Φ ′ ((1 -s)f (t 0 ) + sf (t)) f (t) -f (t 0 ) t -t 0 -Φ ′ (f (t 0 ))∂ t f (t 0 ) dsdx ≤ J 1 (t) + J 2 (t) ,
where

J 1 (t) := Ω 1 0 Φ ′ ((1 -s)f (t 0 ) + sf (t)) f (t) -f (t 0 ) t -t 0 -∂ t f (t 0 ) dsdx , J 2 (t) := Ω 1 0 [Φ ′ ((1 -s)f (t 0 ) + sf (t)) -Φ ′ (f (t 0 ))]∂ t f (t 0 ) dsdx .
By (A.3), Hölder's inequality, and the regularity of f ,

J 1 (t) ≤ L( f (t 0 ) 2 + f (t) 2 ) f (t) -f (t 0 ) t -t 0 - df dt (t 0 ) 2 → t→t 0 0 , J 2 (t) ≤ L f (t) -f (t 0 ) 2 ∂ t f (t 0 ) 2 → t→t 0 0 .
Therefore, I is differentiable at t 0 and its derivative is given by (A.2). It next readily follows from (A.3) and the regularity of f that Φ ′ (f ) and ∂ t f both belong to C(I, L 2 (Ω)), from which we deduce that I ′ ∈ C(I) with the help of Hölder's inequality.

We now recall a basic property which is used in the proof of Lemma A.1 below. Let X, Y be Banach spaces such that the embedding of X in Y is continuous and dense and let The identity (A.1) is then a direct consequence of (A.6), (A.7), and (A.8).

T > 0. Then, C ∞ ([0, T ], X) is dense in E 2 (X, Y ) := L 2 ((0, T ), X) ∩ W 1 2 ((0, T ), Y ), see, e.g., [4, Lemma II.5.10]. Proof of Lemma A.1. Since C ∞ ([0, T ], H 1 (Ω)) is dense in E 2 (H 1 (Ω), H 1 (Ω) ′ ),

1 and

 1 T ∈ (0, T + ), there exists a positive constant C = (a, b, c, d, u 1 , u 2 , T ) such that

Theorem 2 . 1 .

 21 Let p > N , s ∈ (1 + N/p, 2), and assume that (1.1) is satisfied. Then, given u in ∈ O s p , the problem (1.2) has a unique maximal strong solution u

0 Φ 0 Φt t 0 ∂ 0 ∂

 0000 there is a sequence(f n ) n≥1 ∈ C ∞ ([0, T ], H 1 (Ω)) such that lim n→∞ f n -f L 2 ((0,T ),H 1 (Ω)) = lim n→∞ ∂ t f n -∂ t f L 2 ((0,T ),H 1 (Ω) ′ ) = 0 . (A.4)Moreover, thanks to the continuous embedding ofE 2 (H 1 (Ω), H 1 (Ω) ′ ) in C([0, T ], L 2 (Ω)),see, e.g.,[START_REF] Boyer | Mathematical tools for the study of the incompressible Navier-Stokes equations and related models[END_REF] Theorem II.5.13], we deduce from (A.4) thatlim n→∞ sup t∈[0,T ] f n (t) -f (t) 2 = 0 . (A.5) Let 0 ≤ t 0 ≤ t ≤ T . By Lemma A.2 Ω Φ(f n (t)) dx -Ω Φ(f n (t 0 )) dx = t t 0 ∂ t f n (τ ), Φ ′ (f n (τ )) (H 1 ) ′ ,H 1 dτ . (A.6)On the one hand, we infer from (A.3), (A.5), and Hölder's inequality thatlim n→∞ Ω Φ(f n (t)) dx = Ω Φ(f (t)) dx and lim n→∞ Ω Φ(f n (t 0 )) dx = Ω Φ(f (t 0 )) dx . (A.7)On the other hand, it readily follows from (A.3) and (A.4) thatlim n→∞ T ′ (f n (τ )) -Φ ′ (f (τ )) 2 2 dτ = 0 .Moreover, the boundedness and continuity of Φ ′′ , (A.4), and Lebesgue's dominated convergence theorem entail thatΦ ′ (f n ) ∈ L 2 ((0, T ), H 1 (Ω)) with ∇Φ ′ (f n ) = Φ ′′ (f n )∇f n , n ≥ 1 ,andlim n→∞ T ′′ (f n (τ ))∇f n (τ ) -Φ ′′ (f (τ ))∇f (τ ) 2 2 dτ = 0 . Therefore, lim n→∞ Φ ′ (f n ) -Φ ′ (f ) L 2 ((0,T ),H 1 (Ω)) = 0 .Combining this convergence with (A.4), leads us to lim n→∞ t f n (τ ), Φ ′ (f n (τ )) (H 1 ) ′ ,H 1 dτ = t t t f (τ ), Φ(f (τ )) (H 1 ) ′ ,H 1 dτ = 0 . (A.8)

  provided that f 2 and g 2 are bounded from below by positive constants. It is important to remark that H(u 1 |u 2 ) controls the square of the L

2 -norm of u 1 -u 2 , see (2.14) below, if u 1 and u 2 are additionally bounded functions.
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Appendix A. A version of the Lions-Magenes lemma

In this section we establish a version of the Lions-Magenes lemma, see Lemma A.1 below, which is used in the proof of Theorem 1.3 when differentiating the mapping

for some appropriate non-negative function f . Before stating the result, we note that the function Φ(s

and for all 0 ≤ t 0 ≤ t ≤ T we have

As we are lacking a precise reference for Lemma A.1, we include below a proof for the sake of completeness. As a first step, we establish in Lemma A.2 an auxiliary result which is used in the proof of Lemma A.1.