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WEAK-STRONG UNIQUENESS FOR A CLASS OF DEGENERATE

PARABOLIC CROSS-DIFFUSION SYSTEMS

PHILIPPE LAURENÇOT AND BOGDAN-VASILE MATIOC

Abstract. Bounded weak solutions to a particular class of degenerate parabolic cross-
diffusion systems are shown to coincide with the unique strong solution determined by the
same initial condition on the maximal existence interval of the latter. The proof relies on
an estimate established for a relative entropy associated to the system.

1. Introduction

Let Ω be a bounded domain of R
N , N ≥ 1, with smooth boundary ∂Ω and outer unit

normal n, and assume that the constants a, b, c, and d satisfy

(a, b, c, d) ∈ (0,∞)4 and ad > bc . (1.1)

We consider the evolution equations

∂tf = div
(

f∇[af + bg]
)

∂tg = div
(

g∇[cf + dg]
)

}

in (0,∞) × Ω , (1.2a)

supplemented with homogeneous Neumann boundary conditions

∇f · n = ∇g · n = 0 on (0,∞)× ∂Ω , (1.2b)

and non-negative initial conditions

(f, g)(0) = (f in, gin) in Ω . (1.2c)

The porous medium equation [27] as well as the thin film Muskat problem [10] arise as
special cases of (1.2a).

We point out that (1.2a) is a quasilinear degenerate parabolic system with a full diffusion
matrix, so that the study of its well-posedness is already a challenging issue. On the one
hand, owing to its parabolic structure, the system (1.2) fits into the theory developed in [2],
from which the local existence and uniqueness of a strong solution with positive components
can be inferred, see Theorem 2.1 below. However, comparison principles cannot be applied
in the context of (1.2) and the degeneracy featured in (1.2a) might lead to the breakdown
of the positivity of the components in finite time and thus to that of their regularity. As
a consequence, strong solutions cannot be extended beyond a finite time in general. On
the other hand, non-negative global weak solutions to (1.2), which are also bounded, are
constructed in [20, 22], but the uniqueness of such solutions is an open problem, even in
dimension N = 1. This is in sharp contrast with the porous medium equation for which
several uniqueness results for weak solutions are available in the literature, see [1,3,7,21,24,
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25, 27] and the references therein. It is actually the strong coupling in (1.2a) which makes
it difficult to generalize the methods from the above references to this two-phase version of
the porous medium equation.

The goal of this paper is to prove a weaker result, namely that all bounded weak solutions
to (1.2) coincide on some time interval on which a strong solution exists. For that purpose,
we shall rely on the availability of a suitable relative entropy functional, an idea which has
proved instrumental in several recent works on weak-strong uniqueness/stability results for
(systems of) partial differential equations. In particular, this method has been applied in
various settings such as: the compressible Navier-Stokes system [11] and the Fourier-Navier-
Stokes system [12], the (isentropic) Euler equations [5,16], hyperbolic-parabolic systems [9],
the Navier-Stokes-Korteweg and the Euler-Korteweg systems [6,15], the Navier-Stokes equa-
tion with surface tension [14], (reaction-)cross-diffusion systems [8, 19], entropy-dissipating
reaction-diffusion equations [13], energy-reaction-diffusion systems [17], and Maxwell-Stefan
systems [18].

Before stating precisely our main result, let us first make precise the meaning of weak and
strong solutions to (1.2).

Definition 1.1 (Bounded weak solution). Assume (1.1) and let uin := (f in, gin) be an element
of L∞,+(Ω,R

2). Given T ∈ (0,∞], a bounded weak solution u to (1.2) on [0, T ) is a pair of
functions u = (f, g) such that:

(i) for each t ∈ (0, T ),

(f, g) ∈ L∞,+((0, t) × Ω,R2) ∩ L2((0, t),H
1(Ω,R2)) ∩W 1

2 ((0, t),H
1(Ω,R2)′) ; (1.3)

(ii) for all ϕ ∈ H1(Ω) and t ∈ (0, T ),
∫

Ω
(f(t, x)− f in(x))ϕ(x) dx+

∫ t

0

∫

Ω
f(s, x)∇[af + bg](s, x) · ∇ϕ(x) dxds = 0 (1.4a)

and
∫

Ω
(g(t, x) − gin(x))ϕ(x) dx+

∫ t

0

∫

Ω
g(s, x)∇[cf + dg](s, x) · ∇ϕ(x) dxds = 0 . (1.4b)

Observe that the boundedness and weak differentiability required on f and g in (1.3)
guarantee that the integrals in (1.4) are finite.

We next turn to strong solutions to (1.2) and first introduce some notation: for p > N
and s ∈ (1 +N/p, 2], we set

Hs
p,B(Ω) := {z ∈ Hs

p(Ω) : ∇z · n = 0 on ∂Ω} ,

where Hs
p(Ω) denotes the Bessel potential space, see [2, Section 5] for instance, and

Os
p := {u = (f, g) ∈ Hs

p,B(Ω,R
2) : f > 0 and g > 0 in Ω} . (1.5)

We observe that the continuous embedding of Hs
p(Ω) in C1(Ω) for p > N and s ∈ (1+N/p, 2]

guarantees that Os
p is an open subset of Hs

p,B(Ω,R
2).

Definition 1.2 (Strong solution). Assume (1.1) and let p > N , s ∈ (1 +N/p, 2), T ∈ (0,∞],
and uin = (f in, gin) ∈ Os

p. A strong solution u to (1.2) on [0, T ) is a pair u = (f, g) such
that

u ∈ C([0, T ),Os
p) ∩ C1((0, T ), Lp(Ω,R

2)) ∩ C((0, T ),H2
p,B(Ω,R

2)) ,
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which satisfies (1.2) in a strong sense (and in particular a.e. in (0, T ) × Ω).

One may easily check that a strong solution to (1.2) on [0, T ) in the sense of Definition 1.2
is also a bounded weak solution on [0, T ) in the sense of Definition 1.1.

The aim of this paper is to establish a weak-strong uniqueness result for (1.2) as stated in
Theorem 1.3 below. As in [13], the main tool to be used in the proof is the relative entropy
functional

H(u1|u2) :=

∫

Ω

{[

f1 ln
(f1
f2

)

− (f1 − f2)

]

+
b

c

[

g1 ln
(g1
g2

)

− (g1 − g2)

]}

dx , (1.6)

which is well-defined for ui = (fi, gi) ∈ L2,+(Ω,R
2), i = 1, 2, provided that f2 and g2 are

bounded from below by positive constants. It is important to remark that H(u1|u2) controls
the square of the L2-norm of u1−u2, see (2.14) below, if u1 and u2 are additionally bounded
functions.

The main step in the proof of Theorem 1.3 is to derive the integral inequality (1.7) which
measures the “distance” between a bounded weak solution in the sense of Definition 1.1 and
a strong solution in the sense of Definition 1.2. Gronwall’s inequality then provides the
weak-strong uniqueness property for the evolution problem (1.2).

Theorem 1.3. Consider uin1 ∈ L∞,+(Ω,R
2) and uin2 ∈ Os

p for some s ∈ (1 + N/p, 2)

and p > N . Let u2 = (f2, g2) be the strong solution to (1.2) with initial condition uin2
defined on its maximal existence interval [0, T+), T+ ∈ (0,∞], see Theorem 2.1 below.

If u1 = (f1, g1) is a bounded weak solution to (1.2) on [0, T+) with initial condition uin1
and T ∈ (0, T+), there exists a positive constant C = (a, b, c, d, u1 , u2, T ) such that

H(u1(t)|u2(t)) ≤ H(uin1 |uin2 ) + C

∫ t

0
H(u1(s)|u2(s)) ds for all t ∈ [0, T ] . (1.7)

In particular, if uin1 = uin2 , then u1(t) = u2(t) for all t ∈ [0, T+).

We emphasize that Theorem 1.3 applies to any pair of initial conditions uin1 ∈ L∞,+(Ω,R
2)

and uin2 ∈ Os
p for some s ∈ (1+N/p, 2) and p > N . Indeed, the existence of a bounded weak

solution to (1.2) on [0,∞) with initial condition uin1 follows from [20, 22], while that of a
strong solution to (1.2) on some maximal time interval with initial condition uin2 is provided
in Theorem 2.1 below.

2. Proof of the main result

We start this section by considering the evolution problem (1.2) in the setting of strong
solutions as specified in Definition 1.2. Using the quasilinear parabolic theory developed
in [2], we then prove in Theorem 2.1 that (1.2) is well-posed in this strong setting. The
remaining part is then devoted to the proof of Theorem 1.3.

2.1. Strong solutions to the evolution problem (1.2). In order to construct strong
solutions to (1.2) we reformulate (1.2a) in a suitable framework. For that purpose, we
fix p > N and s ∈ (1 +N/p, 2) and introduce the mobility matrix

M(X) = (mjk(X))1≤j,k≤2 :=

(

aX1 bX1

cX2 dX2

)

, X = (X1,X2) ∈ R
2 . (2.1)
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The problem (1.2) can then be recast as

du

dt
(t) = Φ(u(t))[u(t)], u(0) = uin , (2.2)

where the quasilinear operator Φ : Os
p → L(H2

p,B(Ω,R
2), Lp(Ω,R

2)) is defined by the relation

Φ(u)[v] := div(M(u)∇v) =
N
∑

i=1

∂i(M(u)∂iv), u ∈ Os
p, v ∈ H2

p,B(Ω,R
2) .

Observing that, for u ∈ Os
p, the matrix-valued function M(u) belongs to C1(Ω,R2×2) and

that M(u(x)), x ∈ Ω, has its spectrum contained in the right-half plane {Re z > 0}, we infer
from [2, Theorem 4.1 and Example 4.3 (e)] that Φ(u) is, for each u ∈ Os

p, the generator of

an analytic semigroup in L(Lp(Ω,R
2)). Since

[Lp(Ω),H
2
p,B(Ω)]s/2 = Hs

p,B(Ω) ,

where [·, ·] is the complex interpolation functor, see [26, Theorem 4.3.3], we may now ap-
ply to (2.2) the quasilinear parabolic theory presented in [2, Section 12] (see also [23, Re-
mark 1.2 (ii)]) to obtain the following result.

Theorem 2.1. Let p > N , s ∈ (1 + N/p, 2), and assume that (1.1) is satisfied. Then,

given uin ∈ Os
p, the problem (1.2) has a unique maximal strong solution

u ∈ C([0, T+),Os
p) ∩ C1((0, T+), Lp(Ω,R

2)) ∩ C((0, T+),H2
p,B(Ω,R

2)) ,

where T+ ∈ (0,∞] denotes the maximal existence time.

2.2. Proof of Theorem 1.3. Let T ∈ (0, T+). Since {u2(t) : t ∈ [0, T ]} is a compact
subset of Os

p, there is σ ∈ (0, 1) (possibly depending on T ) such that, for t ∈ [0, T ],

σ ≤ min
x∈Ω

min
{

f2(t, x), g2(t, x)
}

and max
{

‖∇f2(t)‖∞, ‖∇g2(t)‖∞
}

≤ σ−1 . (2.3)

Moreover, since u1 is a bounded weak solution, we may assume that also

|u1(t, x)|+ |u2(t, x)| ≤ σ−1 a.e. in (0, T )× Ω . (2.4)

Given η ∈ (0, 1), let

Hη(u1(t)|u2(t)) :=

∫

Ω

[

f1(t) ln
(f1(t) + η

f2(t)

)

− (f1(t)− f2(t))

]

dx

+
b

c

∫

Ω

[

g1(t) ln
(g1(t) + η

g2(t)

)

− (g1(t)− g2(t))

]

dx, t ∈ [0, T ] .

As a consequence of (2.4) and of Definition 1.1, we have ui(t) ∈ L∞(Ω,R2) for i = 1, 2
and all t ∈ [0, T ], and the dominated convergence theorem, together with the lower bound
in (2.3), yields

lim
η→0

Hη(u1(t)|u2(t)) = H(u1(t)|u2(t)) , t ∈ [0, T ] . (2.5)

Furthermore, by virtue of Definition 1.1, Definition 1.2, (2.3), (2.4), and the continuous
embedding of Os

p in C1(Ω,R2) we have

f1, g1 ∈ L2((0, T ),H
1(Ω)) ∩W 1

2 ((0, T ),H
1(Ω)′)
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and

ln f2, ln g2 ∈ L2((0, T ),H
1(Ω)) ∩W 1

2 ((0, T ),H
1(Ω)′) .

These properties, together with (2.3), (2.4), and suitable versions of the Lions-Magenes
lemma, see, e.g., [4, Theorem II.5.12] and Lemma A.1, imply that

[t 7→ Hη(u1(t)|u2(t))] : [0, T ] → R

is continuous and

Hη(u1(t)|u2(t))−Hη(u
in
1 |uin2 )

=

∫ t

0

〈

∂tf1, ln
(f1 + η

f2

)

+
f1

f1 + η

〉

(H1)′,H1

ds−

∫ t

0

〈

∂tf2,
f1
f2

〉

(H1)′,H1

ds

+
b

c

∫ t

0

〈

∂tg1, ln
(g1 + η

g2

)

+
g1

g1 + η

〉

(H1)′,H1

ds−
b

c

∫ t

0

〈

∂tf2,
f1
f2

〉

(H1)′,H1

ds

(2.6)

for all t ∈ [0, T ], where 〈·, ·〉(H1)′,H1 is the duality bracket between H1(Ω) and H1(Ω)′.
Reformulating (2.6) with the help of (1.4), we find

Hη(u1(t)|u2(t))−Hη(u
in
1 |uin2 )

= −

∫ t

0

∫

Ω
f1∇(af1 + bg1) ·

( ∇f1
f1 + η

−
∇f2
f2

)

dxds

−

∫ t

0

∫

Ω

[

f1∇(af1 + bg1) · ∇
( f1
f1 + η

)

− f2∇(af2 + bg2) · ∇
(f1
f2

)

]

dxds

−
b

c

∫ t

0

∫

Ω
g1∇(cf1 + dg1) ·

( ∇g1
g1 + η

−
∇g2
g2

)

dxds

−
b

c

∫ t

0

∫

Ω

[

g1∇(cf1 + dg1) · ∇
( g1
g1 + η

)

− g2∇(cf2 + dg2) · ∇
(g1
g2

)

]

dxds .

Hence,

Hη(u1(t)|u2(t))−Hη(u
in
1 |uin2 ) = T 1

η (t) + T 2(t) , (2.7)

where

T 1
η (t) := η2

∫ t

0

∫

Ω
∇(af1 + bg1) ·

∇f1
(f1 + η)2

dxds

+ η2
b

c

∫ t

0

∫

Ω
∇(cf1 + dg1) ·

∇g1
(g1 + η)2

dxds

and

T 2(t) :=−

∫ t

0

∫

Ω

[

∇(af1 + bg1) ·
(

∇f1 −
f1
f2

∇f2

)

− f2∇(af2 + bg2) · ∇
(f1
f2

)

]

dxds

−
b

c

∫ t

0

∫

Ω

[

∇(cf1 + dg1) ·
(

∇g1 −
g1
g2

∇g2

)

− g2∇(cf2 + dg2) · ∇
(g1
g2

)

]

dxds .
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In view of Definition 1.1 (i), both functions ∇(af1+ bg1) ·∇f1 and ∇(cf1+dg1) ·∇g1 belong
to L1((0, t) × Ω) and

lim
η→0

η2
∇f1

(f1 + η)2
= 0

lim
η→0

η2∇
g1

(g1 + η)2
= 0











a.e. in (0, t)× Ω ,

as ∇f1 = 0 a.e. on {(s, x) : f1(s, x) = 0} and ∇g1 = 0 a.e. on {(s, x) : g1(s, x) = 0}. The
dominated convergence theorem now implies that

lim
η→0

T 1
η (t) = 0 for all t ∈ [0, T ] . (2.8)

Hence, letting η → 0 in (2.7), we deduce from (2.5) and (2.8) that

H(u1(t)|u2(t))−H(uin1 |uin2 ) = T 2(t) for t ∈ [0, T ] . (2.9)

With respect to T 2(t), we note that

T 2(t)

a
= −

∫ t

0

∫

Ω

[

∇f1 · ∇
(

f1 +
b

a
g1

)

+
b

a
∇g1 · ∇

(

f1 +
d

c
g1

)

]

dxds

+

∫ t

0

∫

Ω

[

f1
f2

∇f2 · ∇
(

f1 +
b

a
g1

)

+
b

a

g1
g2

∇g2 · ∇
(

f1 +
d

c
g1

)

]

dxds

+

∫ t

0

∫

Ω

[

∇f1 · ∇
(

f2 +
b

a
g2

)

+
b

a
∇g1 · ∇

(

f2 +
d

c
g2

)

]

dxds

−

∫ t

0

∫

Ω

[

f1
f2

∇f2 · ∇
(

f2 +
b

a
g2

)

+
b

a

g1
g2

∇g2 · ∇
(

f2 +
d

c
g2

)

]

dxds .

(2.10)

Introducing

T 2
I (t) := −

b(ad− bc)

ac

∫ t

0

∫

Ω

[

|∇g1|
2 −

(

1 +
g1
g2

)

∇g1 · ∇g2 +
g1
g2

|∇g2|
2

]

dxds

and T 2
II(t) := T 2(t)− T 2

I (t), we note that

T 2
I (t) = −

b(ad− bc)

ac

∫ t

0

∫

Ω

[

∣

∣

∣
∇g1 −

1

2

(

1 +
g1
g2

)

∇g2

∣

∣

∣

2
−

∣

∣

∣

g1 − g2
2g2

∇g2

∣

∣

∣

2
]

dxds

≤
b(ad− bc)

ac

∫ t

0

∫

Ω

∣

∣

∣

g1 − g2
2g2

∇g2

∣

∣

∣

2
dxds ,

(2.11)

thanks to (1.1). Furthermore, in view of the relation

d

c
=

b

a
+

ad− bc

ac
,
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T 2
II(t)

a
= −

∫ t

0

∫

Ω

∣

∣

∣
∇
(

f1 +
b

a
g1

)∣

∣

∣

2
dxds

−

∫ t

0

∫

Ω
∇
(

f1 +
b

a
g1

)

·
[(

1 +
f1
f2

)

∇f2 +
b

a

(

1 +
g1
g2

)

∇g2

]

dxds

−

∫ t

0

∫

Ω
∇
(

f2 +
b

a
g2

)

·
(f1
f2

∇f2 +
b

a

g1
g2

∇g2

)

dxds

= −

∫ t

0

∫

Ω

∣

∣

∣

∣

∇
(

f1 +
b

a
g1

)

−
1

2

[(

1 +
f1
f2

)

∇f2 +
b

a

(

1 +
g1
g2

)

∇g2

]

∣

∣

∣

∣

2

dxds

+
1

4

∫ t

0

∫

Ω

∣

∣

∣

(

1 +
f1
f2

)

∇f2 +
b

a

(

1 +
g1
g2

)

∇g2

∣

∣

∣

2
dxds

−

∫ t

0

∫

Ω
∇
(

f2 +
b

a
g2

)

·
(f1
f2

∇f2 +
b

a

g1
g2

∇g2

)

dxds .

Observing that

1

4

∣

∣

∣

(

1 +
f1
f2

)

∇f2 +
b

a

(

1 +
g1
g2

)

∇g2

∣

∣

∣

2
−∇

(

f2 +
b

a
g2

)

·
(f1
f2

∇f2 +
b

a

g1
g2

∇g2

)

=
1

4

∣

∣

∣
∇
(

f2 +
b

a
g2

)

+
f1
f2

∇f2 +
b

a

g1
g2

∇g2

∣

∣

∣

2
−∇

(

f2 +
b

a
g2

)

·
(f1
f2

∇f2 +
b

a

g1
g2

∇g2

)

=
1

4

∣

∣

∣
∇
(

f2 +
b

a
g2

)

−
f1
f2

∇f2 −
b

a

g1
g2

∇g2

∣

∣

∣

2

=
1

4

∣

∣

∣

(

1−
f1
f2

)

∇f2 +
b

a

(

1−
g1
g2

)

∇g2

∣

∣

∣

2

≤
1

2

∣

∣

∣

f1 − f2
f2

∇f2

∣

∣

∣

2
+

b2

2a2

∣

∣

∣

g1 − g2
g2

∇g2

∣

∣

∣

2
,

the last estimate resulting from Young’s inequality, we are led to

T 2
II(t)

a
≤

1

2

∫ t

0

∫

Ω

[

∣

∣

∣

f1 − f2
f2

∇f2

∣

∣

∣

2
+

b2

a2

∣

∣

∣

g1 − g2
g2

∇g2

∣

∣

∣

2
]

dxds . (2.12)

On behalf of (2.9), (2.11), and (2.12) we conclude that

H(u1(t)|u2(t)) ≤ H(uin1 |uin2 ) +
b(ad− bc)

ac

∫ t

0

∫

Ω

∣

∣

∣

g1 − g2
2g2

∇g2

∣

∣

∣

2
dxds

+
a

2

∫ t

0

∫

Ω

[

∣

∣

∣

f1 − f2
f2

∇f2

∣

∣

∣

2
+

b2

a2

∣

∣

∣

g1 − g2
g2

∇g2

∣

∣

∣

2
]

dxds .

Recalling (2.3), we deduce that there exists a positive constant C = C(a, b, c, d) such that

H(u1(t)|u2(t)) ≤ H(uin1 |uin2 ) + Cσ4

∫ t

0

∫

Ω

[

|f1 − f2|
2 +

b

c
|g1 − g2|

2
]

dxds (2.13)
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for all t ∈ [0, T ]. In view of the inequality

x ln
(x

y

)

− (x− y) ≥
1

2

|x− y|2

max{x, y}
, (x, y) ∈ [0,∞)× (0,∞) , (2.14)

which follows from [18, Lemma 18], it is not difficult to infer from (2.13), by taking also into
account the boundedness of u1 and u2 in (0, T ) × Ω provided by (2.4), that

H(u1(t)|u2(t)) ≤ H(uin1 |uin2 ) + C

∫ t

0
H(u1(s)|u2(s)) ds for all t ∈ [0, T ] . (2.15)

This completes the proof of (1.7).

Appendix A. A version of the Lions-Magenes lemma

In this section we establish a version of the Lions-Magenes lemma, see Lemma A.1 below,
which is used in the proof of Theorem 1.3 when differentiating the mapping

[

t 7→

∫

Ω
[f(t) ln(f(t) + η)− f(t)] dx

]

: (0, T ) → R , with η > 0 ,

for some appropriate non-negative function f . Before stating the result, we note that the
function Φ(s) := s ln (s+ η)− s, s ≥ 0, satisfies Φ′′(s) = (s+ 2η)/(s + η)2, s ≥ 0. Thus

‖Φ′′‖∞ < ∞ .

Lemma A.1 (Lions-Magenes lemma). Let Ω ⊂ R
n be a bounded open set and Φ ∈ C2(R)

satisfy ‖Φ′′‖∞ < ∞. Assume that

f ∈ L2((0, T ),H
1(Ω)) ∩W 1

2 ((0, T ),H
1(Ω)′) .

Then
[

t 7→ I(t) :=

∫

Ω
Φ(f(t)) dx

]

∈ C([0, T ],R)

and for all 0 ≤ t0 ≤ t ≤ T we have
∫

Ω
Φ(f(t)) dx−

∫

Ω
Φ(f(t0)) dx =

∫ t

t0

〈

∂tf(τ),Φ
′(f(τ))

〉

(H1)′,H1

dτ . (A.1)

As we are lacking a precise reference for Lemma A.1, we include below a proof for the
sake of completeness. As a first step, we establish in Lemma A.2 an auxiliary result which
is used in the proof of Lemma A.1.

Lemma A.2. Let Ω ⊂ R
n be a bounded open set and let f ∈ C1(I, L2(Ω)), where I ⊂ R is

an interval. Let further Φ ∈ C2(R) satisfy ‖Φ′′‖∞ =: L < ∞. Then,

[

t 7→ I(t) :=

∫

Ω
Φ(f(t)) dx

]

∈ C1(I,R)

and

I ′(t) =
d

dt

∫

Ω
Φ(f(t)) dx =

∫

Ω
Φ′(f(t))∂tf(t) dx, t ∈ I . (A.2)
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Proof. We may assume without loss of generality that Φ(0) = Φ′(0) = 0 (as the claim is
obvious for affine functions). Then

|Φ(r)− Φ(s)| ≤ L(|r|+ |s|)|r − s| , |Φ′(r)−Φ′(s)| ≤ L|r − s| , (r, s) ∈ R
2 . (A.3)

In particular, since Φ(0) = Φ′(0) = 0,

|Φ(f(t))| ≤ L|f(t)|2 and |Φ′(f(t))| ≤ L|f(t)| , t ∈ I ,

and it follows that

Φ(f(t)) ∈ L1(Ω) and Φ′(f(t))∂tf(t) ∈ L1(Ω) , t ∈ I .

Let t 6= t0 ∈ I . We then have

∣

∣

∣

I(t)− I(t0)

t− t0
−

∫

Ω
Φ′(f(t0))∂tf(t0) dx

∣

∣

∣

≤

∫

Ω

∣

∣

∣

Φ(f(t))− Φ(f(t0))

t− t0
− Φ′(f(t0))∂tf(t0)

∣

∣

∣
dx

≤

∫

Ω

∫ 1

0

∣

∣

∣
Φ′((1− s)f(t0) + sf(t))

f(t)− f(t0)

t− t0
− Φ′(f(t0))∂tf(t0)

∣

∣

∣
dsdx

≤ J1(t) + J2(t) ,

where

J1(t) :=

∫

Ω

∫ 1

0

∣

∣

∣
Φ′((1− s)f(t0) + sf(t))

[f(t)− f(t0)

t− t0
− ∂tf(t0)

]∣

∣

∣
dsdx ,

J2(t) :=

∫

Ω

∫ 1

0

∣

∣

∣
[Φ′((1− s)f(t0) + sf(t))−Φ′(f(t0))]∂tf(t0)

∣

∣

∣
dsdx .

By (A.3), Hölder’s inequality, and the regularity of f ,

J1(t) ≤ L(‖f(t0)‖2 + ‖f(t)‖2)
∥

∥

∥

f(t)− f(t0)

t− t0
−

df

dt
(t0)

∥

∥

∥

2
→
t→t0

0 ,

J2(t) ≤ L‖f(t)− f(t0)‖2

∥

∥

∥
∂tf(t0)

∥

∥

∥

2
→
t→t0

0 .

Therefore, I is differentiable at t0 and its derivative is given by (A.2). It next readily follows
from (A.3) and the regularity of f that Φ′(f) and ∂tf both belong to C(I, L2(Ω)), from
which we deduce that I ′ ∈ C(I) with the help of Hölder’s inequality. �

We now recall a basic property which is used in the proof of Lemma A.1 below. Let X, Y
be Banach spaces such that the embedding of X in Y is continuous and dense and let T > 0.
Then, C∞([0, T ],X) is dense in

E2(X,Y ) := L2((0, T ),X) ∩W 1
2 ((0, T ), Y ),

see, e.g., [4, Lemma II.5.10].
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Proof of Lemma A.1. Since C∞([0, T ],H1(Ω)) is dense in E2(H
1(Ω),H1(Ω)′), there is a

sequence (fn)n≥1 ∈ C∞([0, T ],H1(Ω)) such that

lim
n→∞

‖fn − f‖L2((0,T ),H1(Ω)) = lim
n→∞

‖∂tfn − ∂tf‖L2((0,T ),H1(Ω)′) = 0 . (A.4)

Moreover, thanks to the continuous embedding of E2(H
1(Ω),H1(Ω)′) in C([0, T ], L2(Ω)),

see, e.g., [4, Theorem II.5.13], we deduce from (A.4) that

lim
n→∞

sup
t∈[0,T ]

‖fn(t)− f(t)‖2 = 0 . (A.5)

Let 0 ≤ t0 ≤ t ≤ T . By Lemma A.2

∫

Ω
Φ(fn(t)) dx−

∫

Ω
Φ(fn(t0)) dx =

∫ t

t0

〈

∂tfn(τ),Φ
′(fn(τ))

〉

(H1)′,H1

dτ . (A.6)

On the one hand, we infer from (A.3), (A.5), and Hölder’s inequality that

lim
n→∞

∫

Ω
Φ(fn(t)) dx =

∫

Ω
Φ(f(t)) dx and lim

n→∞

∫

Ω
Φ(fn(t0)) dx =

∫

Ω
Φ(f(t0)) dx . (A.7)

On the other hand, it readily follows from (A.3) and (A.4) that

lim
n→∞

∫ T

0
‖Φ′(fn(τ)) − Φ′(f(τ))‖22 dτ = 0 .

Moreover, the boundedness and continuity of Φ′′, (A.4), and Lebesgue’s dominated conver-
gence theorem entail that

Φ′(fn) ∈ L2((0, T ),H
1(Ω)) with ∇Φ′(fn) = Φ′′(fn)∇fn , n ≥ 1 ,

and

lim
n→∞

∫ T

0
‖Φ′′(fn(τ))∇fn(τ)− Φ′′(f(τ))∇f(τ)‖22 dτ = 0 .

Therefore,

lim
n→∞

‖Φ′(fn)− Φ′(f)‖L2((0,T ),H1(Ω)) = 0 .

Combining this convergence with (A.4), leads us to

lim
n→∞

∫ t

t0

〈

∂tfn(τ),Φ
′(fn(τ))

〉

(H1)′,H1

dτ =

∫ t

t0

〈

∂tf(τ),Φ(f(τ))
〉

(H1)′,H1

dτ = 0 . (A.8)

The identity (A.1) is then a direct consequence of (A.6), (A.7), and (A.8). �
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