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PERIODIC ORBITS AND BIRKHOFF SECTIONS OF

STABLE HAMILTONIAN STRUCTURES

ROBERT CARDONA AND ANA RECHTMAN

Abstract. Stable Hamiltonian structures generalize contact forms and define
a volume-preserving vector field known as the Reeb vector field. We study
two aspects of Reeb vector fields defined by stable Hamiltonian structures
on 3-manifolds: on one hand, we classify all the examples with finitely many
periodic orbits under a non-degeneracy condition; on the other, we give sufficient
conditions for the existence of a supporting broken book decomposition and for
the existence of a Birkhoff section.
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1. Introduction

The aim of this paper is to extend recent results concerning Reeb vector
fields defined by contact forms ([12, 13, 14]) to Reeb vector fields defined by
stable Hamiltonian structures (SHS) on closed 3-manifolds, a larger set of volume-
preserving vector fields. These results concern the number of periodic orbits and
the existence of either a supporting broken book decomposition or a Birkhoff
section for generic sets of these vector fields. Both, broken book decompositions
and Birkhoff sections, are powerful tools for studying the dynamics of 3-dimensional
flows.

Stable Hamiltonian structures naturally arise on “stable” regular energy level
sets of a Hamiltonian system, which generalize contact-type energy level sets.
Stability is defined as the existence of some tubular neighborhood foliated by
hypersurfaces with conjugated characteristic foliations, we refer to [30, 10] for
more details. The SHS uniquely determines a Reeb vector field, which corresponds,
up to reparametrization, to the restriction of the Hamiltonian vector field to the
stable hypersurface.

1.1. Background notions. In this paper we are interested in the Reeb vec-
tor fields of stable Hamiltonian structures, or SHS for short. All the structures
considered are C∞ unless otherwise stated.

A SHS on a closed 3-manifold M is a pair of a differential 1-form λ and a
closed 2-form ω, such that λ ∧ ω 6= 0 and kerω ⊂ ker dλ. Observe that the second
condition implies that the two kernels coincide except at the points where dλ = 0.
The Reeb vector field is defined as the unique vector field spanning the kernel of
ω and such that λ(X) = 1. In other words, up to parametrization the orbits of X
are defined by ω while λ controls the parametrization.

Hofer and Zehnder [30] introduced stability in the context of regular energy level
sets of Hamiltonian systems. From a topological perspective, stable Hamiltonian
structures were deeply studied in dimension 3 in seminal works by Cieliebak and
Volkov [9, 10], and appear as well in symplectic field theory [19, 4, 8], and other
works in symplectic topology [20, 47, 33, 38, 35, 37]. Their dynamical properties
recently attracted interest [6, 7, 36, 11, 5], especially since the proof of the Weinstein
conjecture in this context [31, 40]. In closed 3-manifolds, Reeb vector fields defined
by SHS are also known as volume-preserving geodesible vector fields [40], and arise
as well as special stationary solutions to the Euler equations in hydrodynamics
[10].
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Consider a stable Hamiltonian structure (λ, ω) on a closed 3-manifold with Reeb
vector field X. The function f = dλ/ω is a first integral of X. If dλ is identically
zero, the Reeb vector field admits a global section and the ambient manifold fibers
over S1 by Tischler’s theorem [45]. If f is either strictly positive or strictly negative,
the Reeb vector field of the SHS is, up to parametrization, the Reeb vector field of
the contact form λ that we denote Xλ. In general, Cieliebak and Volkov’s results
[10] imply that any SHS admits a (non-unique) structural decomposition (see
Definition 2.2). This is a way of decomposing the manifold M into domains U and
N = N0 tNc, whose boundary components are invariant tori of the Reeb vector
field and such that int(U)∪ int(N) = M . The closure of the connected components
of these domains are manifolds with boundary with the following property. In a
connected component of U , the Reeb vector field is integrable, i.e. the vector field
is tangent to a fibration by tori. In a connected component of N0, the Reeb vector
field admits a global section. Finally, for a connected component of Nc, the Reeb
vector field is the Reeb vector field of some contact form. The last region is called
here the contact region. The part U where the vector field is integrable is called
the integrable region and its connected components are of the form T 2 × I, with
I = [0, 1] and with the vector field tangent to each torus T 2 × {·}.

1.2. Transverse and Birkhoff sections. We use in this paper a plethora of
transverse surfaces to a given vector field, introduced in this paragraph. Consider
a non-singular vector field X on a compact 3-manifold M . If ∂M 6= ∅, we assume
that X is tangent to ∂M . A section or global section of X is an embedded closed
surface that is everywhere transverse to X and intersects all the orbits of X. If
the ambient manifold M has boundary, a section is an embedded surface with
boundary, whose boundary is mapped to ∂M and satisfies the previous conditions.
Observe that in these two cases, M fibers over S1 and the dynamics of the flow of
X (up to parametrization) is captured by the first return map to the section.

The previous situation cannot apply to all 3-manifolds, hence we consider more
general sections of flows. A surface is a transverse surface if it is immersed in M ,
its interior is embedded and transverse to X, while its boundary is a collection
of periodic orbits of X or is contained in ∂M . In case ∂M 6= ∅, the surface is
embedded near ∂M . A transverse surface becomes a Birkhoff section if it intersects
all the orbits of X in bounded time.

Observe that we do not ask a Birkhoff section or a transverse surface to be
embedded along the boundary components that are mapped to periodic orbits: we
allow a connected component of the boundary to cover several times a periodic
orbit and that different connected components are mapped to the same periodic
orbit.

Birkhoff sections are sometimes called in the literature global surfaces of section
(GSS), but we reserve this name, as done in other works, for Birkhoff sections whose
boundary is embedded. There is a well-defined first return map in the interior of
a Birkhoff section, that captures important dynamical features of the flow and
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allows transferring results from surface dynamics to dynamics of 3-dimensional
flows and backward.

1.3. Results on the existence of Birkhoff sections. In order to state the main
theorems in the paper we need to define some sub-families of stable Hamiltonian
structures.

Consider now the periodic orbits of a non-singular vector field and the linearized
Poincaré map of each of them. The vector field is non-degenerate if the eigenvalues
are not equal to 1 (even when one considers the iterations of the map). Hence the
linearized Poincaré map of a periodic orbit of a volume-preserving non-degenerate
vector field is either an irrational rotation or has two real eigenvalues. The cor-
responding periodic orbit is called elliptic or hyperbolic, respectively. In general,
non-degeneracy is a C∞-generic condition among non-singular vector fields, but
not among Reeb vector fields defined by SHS. Instead, we consider contact non-
degenerate SHS (Definition 2.5), whose Reeb vector field is non-degenerate in the
contact region of some structural decomposition. A strongly contact non-degenerate
SHS is a contact non-degenerate SHS satisfying the following additional condition:
the intersection between the stable and unstable manifolds of any hyperbolic
periodic orbit in the contact region is transverse.

We consider the following sets of SHS:

(1) the set B of contact non-degenerate SHS such that, there is a structural
decomposition with a contact region where the Reeb vector field is non-
degenerate and in each connected component of the integrable region U
the slopes of the Reeb vector field are non-constant (see §2.1 for more
details).

(2) the set Bs ⊂ B of strongly contact non-degenerate SHS such that, there is
a structural decomposition with a contact region where the Reeb vector
field is strongly non-degenerate and in each connected component of the
integrable region U the slopes of the Reeb vector field are non-constant.

Colin, Dehornoy, Hryniewicz, and the second author in [13] and Contreras and
Mazzuchelli in [14], established independently that the set of Reeb vector fields
of contact forms admitting a Birkhoff section contains an open and dense set in
the C∞-topology. These results are based on the construction of broken book
decompositions for non-degenerate Reeb vector fields of a contact form. Broken
book decompositions (see Definitions 5.9 and 5.10) were introduced in [12] and
provide a finite collection of transverse surfaces that intersect all orbits of the
vector field. In analogy, our main result is

Theorem A. On any closed connected 3-manifold,

- every Reeb vector field of a SHS in a C2-neighborhood of the set B is
supported by a broken book decomposition;

- every Reeb vector field of a SHS in a C2-neighborhood of the set Bs admits
a Birkhoff section;

- the set Bs is C1-dense among the set of SHS.
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The first two parts of this theorem are proved in §5, they correspond respectively
to Theorems 5.17 and 5.20. The last statement follows from results in [10] and is
explained in §6.1. For the proof of the first two parts, we construct a broken book
decomposition or a Birkhoff section for the Reeb vector field of a SHS in B and
Bs, respectively. We then extend the construction to a neighborhood of these sets
using results from [11].

We now consider the set CSHS(M) of vector fields that are a (positive or
negative) reparametrizations of the Reeb vector field defined by some SHS on
a closed 3-manifold M and X(M) the set of vector fields on M . If we allow to
perturb in this set, instead of perturbing in the set of pairs of differential forms
that define a SHS, we obtain a stronger statement.

Theorem B. Let M be a closed connected 3-manifold. There exists a C∞-dense
subset A ⊂ CSHS(M) such that every vector field in a C1-open neighborhood of A
inside X(M) admits a Birkhoff section.

Observe that, in particular, it follows that a C∞-generic flow in CSHS(M)
admits a Birkhoff section. The same statement holds if all the vector fields to
preserve a given volume form, see Remark 6.5. Another genericity statement that
we show is that the set of SHS that admit a Birkhoff section contains a C1-open
and C1-dense set among the SHS, see Theorem 6.4. This differs with the previous
statement because we perturb the SHS instead of the vector field.

Remark 1.1. Even if Theorem B might apparently imply that there should be a
C∞-dense set of SHS whose Reeb vector field admits a Birkhoff section, this is
not the case. Notice that given a vector field in X ∈ CHSH(M) and a SHS (λ, ω)
such that λ(X) > 0, ιXω = 0, Theorem B implies that arbitrarily close to X there
is some Y with the following property: there is a SHS(λ′, ω′) (and even ω′ can be
chosen arbitrarily C∞-close to ω) such that λ′(Y ) > 0. However, the 1-form λ′

will in general not be C∞-close to λ, but only C1. In other words, the Reeb vector
field of (λ, ω) and (λ′, ω′) are not C∞-close as vector fields, but the 1-dimensional
foliations they define are C∞-close. Hence, a suitable choice of vector fields defining
these foliations are C∞-close vector fields.

The main new ingredient behind the existence statements of Theorem A is the
concept of a helix box. The analogous theorems for Reeb vector fields of contact
structures give a Birkhoff section and a broken book decomposition in the contact
parts of a suitable SHS, after analyzing the behavior near the boundary of these
parts. On the other hand, in the suspension part there is, by definition, a global
section. The main difficulty lies in pasting these surfaces along the integrable parts
that are of the form T 2 × I: we build local Birkhoff sections with boundary that
allow pasting any homology class in T 2×{0} with any homology class in T 2×{1}.
These local Birkhoff sections are what we call helix boxes and are constructed in
§5.1.

In §7, we consider the set of SHS for which the function f = dλ/ω is real analytic
and non-constant. Thus, the Reeb vector field admits a non-trivial real analytic
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first integral and we can prove, without any non-degeneracy assumption, that they
admit a Birkhoff splitting. Roughly speaking a Birkhoff splitting is defined as a
connected Birkhoff section of the flow on the complement of a finite collection
of invariant tori (see Definition 7.1). Birkhoff splittings are constructed using a
combination of our techniques and the analysis done in [11].

1.4. Results on periodic orbits of Reeb vector fields. We now introduce our
results on the number of periodic orbits. Reeb vector fields of SHS might not have
periodic orbits, but it is known that there is always one if the ambient manifold is
not a torus bundle over the circle [31, 40]. We describe all the possible examples
without periodic orbits:

Theorem C. Let X be an aperiodic Reeb vector field of a stable Hamiltonian
structure (λ, ω) on a closed connected 3-manifold M . Then one of the following
holds:

(1) M = T 3 or a positive parabolic torus bundle over S1, the Reeb vector field
admits a torus global section and it is orbit equivalent to the suspension of
an aperiodic symplectomorphism of the torus,

(2) M is a positive hyperbolic torus bundle over S1, the Reeb vector field does
not admit a global section, and after cutting along an invariant torus, it
is orbit equivalent to the suspension of a pseudorotation of the annulus
which is a rigid rotation near the boundary and has a quadratic irrational
rotation number.

If (λ, ω) is assumed to be analytic, then only the first case occurs.

A pseudorotation of the annulus is an area-preserving map without periodic
points, the definition is discussed in §2.3.

Under the contact non-degeneracy assumption, we can characterize as well those
SHS whose Reeb vector field has only finitely many periodic orbits. The following
theorem is an analog of the two or infinitely many periodic orbits theorem for
non-degenerate contact Reeb vector fields proved in [12] (see also [29, 16]).

Theorem D. Let M be a closed connected 3-manifold, and (λ, ω) a contact non-
degenerate SHS whose Reeb vector field has at least one periodic orbit. Then exactly
one of the following holds:

- The Reeb vector field has infinitely many periodic orbits.
- The Reeb vector field is orbit equivalent to the suspension of a symplecto-

morphism of a surface Σg with finitely many periodic points.
- The ambient manifold M is the 3-sphere or a lens space, there are exactly

two closed Reeb orbits and they are the core circles of a genus one Heegaard
splitting of M .

Furthermore, the same conclusion holds for any SHS that has a periodic Reeb orbit
and belongs to a C2-neighborhood of a contact non-degenerate SHS.

We point out that the proof of Theorem D involves proving that an area
preserving diffeomorphism of an oriented surface with boundary, without periodic
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points along the boundary, has infinitely many periodic points (confer Theorem 4.1)
except in the disk and the annulus. This proof is inspired by the ideas in [34].
It is known that symplectomorphisms of closed oriented surfaces with finitely
many periodic points (and at least one) only exist in finite order isotopy classes
of diffeomorphisms of a surface [34, Theorems 1.2 and 1.3] (see also [2]). Those
isotopy classes characterize the surface bundles where contact non-degenerate SHS
with finitely many periodic orbits do exist.

1.5. Structure of the paper. We start presenting known facts about stable
Hamiltonian structures and surface dynamics in §2, in particular, we present
the notion of structural decomposition of a SHS and Definition 2.5 of contact
non-degenerate SHS. We then study aperiodic SHS in §3 and the contact non-
degenerate examples with finitely many periodic orbits in §4, proving Theorems C
and D respectively. In §5 we give the proof for the first two parts of Theorem A,
starting with the construction of helix boxes in §5.1 that establishes a very general
result for Birkhoff sections in integrable regions. In §6, we explain why the last
statement in Theorem A holds, discuss different genericity results for the existence
of Birkhoff sections and establish Theorem B. Finally, in §7, we establish the
existence of Birkhoff splittings for SHS whose Reeb vector field admits an analytic
integral.

Acknowledgements: We are grateful to Patrice Le Calvez, for discussions
concerning surface dynamics and many ideas to prove Theorem 4.1, and to Fran-
cisco Torres de Lizaur for useful discussions. We also thank Pierre Dehornoy, for
pointing out a detail of helix boxes that allowed us to simplify the statements
of Theorems 5.20 and 5.17. We thank the referees for all the corrections and
comments that allowed us to improve the quality of this work.

2. Preliminaries

In this section, we recall some necessary definitions and results that will be used
throughout this work.

2.1. Stable Hamiltonian structures. As mentioned in the introduction, stable
Hamiltonian structures generalize contact forms and are defined on closed odd-
dimensional manifolds. In this work, we only consider the 3-dimensional case.

Definition 2.1. A stable Hamiltonian structure (SHS) on an oriented 3-manifold
M is a pair (λ, ω) where λ ∈ Ω1(M) and ω ∈ Ω2(M) such that

λ ∧ ω > 0, dω = 0 and kerω ⊂ ker dλ.

It uniquely determines a Reeb vector field X by the equations

λ(X) = 1, ιXω = 0.

Observe that X preserves the volume form λ ∧ ω and the plane field ξ = kerλ,
which is transverse to X. Only in dimension three, Reeb vector fields of SHS can be
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equivalently characterized as geodesible volume-preserving vector fields normalized
to be of unit length [40]. The function f = dλ/ω is a first integral of the flow of X.

If the 2-form dλ is never zero, λ is a contact form and X is modulo reparametriza-
tion the Reeb vector field Xλ, while if dλ ≡ 0 then M fibers over the circle and
each fiber is a section of X. This implies that the flow of X is orbit equivalent to
the suspension of an area-preserving diffeomorphism of a closed surface.

Given a SHS (λ, ω) a 1-form λ̃ is another stabilizing form of ω if (λ̃, ω) is again

a SHS. In this situation the Reeb vector field of (λ̃, ω) is a positive multiple of the
Reeb vector field of (λ, ω).

For a stable Hamiltonian structure (λ, ω) with proportionality function f = dλ
ω ,

an integrable region D ⊂M is a domain diffeomorphic to T 2 × I, where I = [0, 1],
such that the Reeb vector field of (λ, ω) integrates to a subfoliation of the trivial
foliation by tori in D. We say that (λ, ω) is T 2-invariant in coordinates (x, y, t) of
T 2 × I when ω is of the form

ω = h1(t)dt ∧ dx+ h2(t)dt ∧ dy, (1)

and λ of the form

λ = g1(t)dx+ g2(t)dy + g3(t)dt. (2)

We point out that whenever we work locally in some integrable region T 2 × I,
up to slightly shrinking I we might assume that g3(t) ≡ 0 by [10, Lemma 3.9].
Whenever the size of I does not need to be fixed, we will make this assumption
without saying it, to lighten a bit the notation. We introduce now an important
notion for stable Hamiltonian structures.

Definition 2.2. A structural decomposition of a SHS (λ, ω) is a decomposition
of M into a compact 3-dimensional submanifold N = Nc t N0 (possibly with
boundary, possibly disconnected) of M , invariant under the Reeb flow; and a
(possibly empty) disjoint union U = U1 t ... t Ur of integrable regions such that

(1) intU ∪ intN = M ;
(2) On each component Nc,j of Nc, the function f is non-vanishing;
(3) On each component N0,k of N0 there is a 1-form βk ∈ Ω1(N0,k) such that

βk ∧ ω|N0,k
6= 0 and dβk = 0;

(4) for each Ui ∼= T 2 × I, the set Ui \N is of the form T 2 × (a, b) with a > 0
and b < 1;

(5) on each Ui ∼= T 2 × I there are coordinates ((x, y), t) for which the stable
Hamiltonian structure (λ, ω) is T 2-invariant, moreover in Ui \N the torus
fibers are regular level sets of f = f(t).

Notice that a given SHS might admit several structural decompositions that
can be very different. We make a few observations on Definition 2.2. First, by
condition (1), each boundary component of N is contained in U and hence belongs
to an integrable region. This implies that inside N each boundary component has
a neighborhood that is foliated by 2-dimensional tori tangent to the Reeb vector
field and in these neighborhoods X is fiberwise linear. Condition (3) implies that
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N0 fibers over S1 and that the flow of the Reeb vector field is orbit-equivalent to a
suspension of a symplectomorphism of a surface (with boundary if N0 6= M). The
domain Nc splits into two disjoint domains N+, N− where f = dλ

ω is respectively
positive and negative. In N+ and N−, the 1-form λ is respectively a positive or a
negative contact form and the Reeb vector field X of the SHS is colinear with the
Reeb vector field Xλ of the contact form λ. We call Nc the contact region of such
a decomposition.

The T 2-invariance of (λ, ω) implies that in each connected component of U with
the coordinate system in part (5), the Reeb vector field X is a linear vector field
and we can write

X = a1(t)
∂

∂x
+ a2(t)

∂

∂y
. (3)

The theory developed in [10], concretely [10, Theorem 3.3] and the key [10,
Proposition 3.23], implies that any SHS admits a structural decomposition.

Theorem 2.3. [10] Any SHS admits a structural decomposition.

We state here a version of [10, Theorem 4.1], which proves that any stable
Hamiltonian structure admits, up to changing the stabilizing 1-form by a C1-
perturbation, a very special structural decomposition.

Theorem 2.4 (SHS structure theorem). Let (λ, ω) be a stable Hamiltonian struc-

ture on a closed 3-manifold M . Then there exists a stabilizing 1-form λ̃ that is

C1-close to λ such that (λ̃, ω) admits a structural decomposition with the property

that f̃ is constant and non-vanishing in Nc and equal to zero in N0.

The fact that f̃ is constant in N is crucial to allow for perturbations of the SHS
in N , and to prove that certain non-degenerate SHS are dense. The statement
above is slightly different from [10, Theorem 4.1], but follows from its proof. Indeed,

the function f̃ = dλ̃
ω constructed in the proof of [10, Theorem 4.1] has exactly N

as preimage of its singular values, and thus f̃ is regular (and its level sets are torus
fibers) in Ui \N . Observe that the 2-form ω has not changed, and thus the Reeb

vector field of (λ̃, ω) is just a reparametrization of the Reeb vector field of (λ, ω)
by a function C1-close to one.

If one asks that the Reeb vector field of a SHS is non-degenerate on M (e.g.
as in [37]) and U is non-empty, the vector field has to be of constant irrational
slope on each Ui. This is a very strong condition that might not be dense in some
reasonable topology in the set of SHS. To apply results from [12], we need that in
the contact region Nc the Reeb vector field is non-degenerate, but we do not need
the vector field to be non-degenerate everywhere. Hence we define

Definition 2.5. A stable Hamiltonian structure (λ, ω) is contact non-degenerate
if there exists a structural decomposition of (λ, ω) such that λ is a non-degenerate
contact form in Nc.
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Recall that a contact form is non-degenerate if its Reeb vector field is non-
degenerate, and this property is satisfied by a dense set of contact forms in
the C∞-topology. In [10, p 375], Cieliebak and Volkov introduce two different
conditions of non-degeneracy for a Reeb vector field of a SHS. One is that of
Morse non-degeneracy, meaning that the Reeb flow is everywhere non-degenerate.
This definition is stronger than Definition 2.5, since it requires non-degeneracy
in all M , which is in general larger than just the contact region Nc for a choice
of N . The other non-degeneracy condition is that of Morse-Bott non-degeneracy
in all M , an analog of the Morse-Bott non-degeneracy of contact forms. Being
Morse-Bott is less strong than the contact non-degeneracy along a contact region
(for some structural decomposition), but stronger than contact non-degeneracy in
the complement of that contact region. Indeed, contact non-degeneracy does not
assume anything away from a contact region of some structural decomposition.
Both Morse-Bott non-degeneracy and contact non-degeneracy are dense conditions
in the set of SHS in the C1-topology.

If (λ, ω) is contact non-degenerate, the periodic orbits of its Reeb vector field X
in Nc are either elliptic or hyperbolic, and near each connected component of ∂N
there is a foliation by invariant 2-tori in which X is colinear to a linear vector field
of irrational slope. In particular, the periodic orbits of X are far away from ∂N .
Observe also that if γ is a hyperbolic periodic orbit in Nc, it has a stable and an
unstable manifold denoted respectively by W u(γ) and W s(γ) which are contained
in Nc.

Definition 2.6. A contact non-degenerate stable Hamiltonian structure (λ, ω) is
contact strongly non-degenerate if the intersections between stable and unstable
manifolds of the hyperbolic periodic orbits in Nc are transverse.

The arguments in [10] can be adapted to show that contact strongly non-
degenerate SHS are C1-dense as well, see §6.1.

2.2. Torus bundles over S1. The classification of torus bundles over S1 will play
an important role in the proof of Theorem C. Let us recall the main properties
that we will need. An (orientable) torus bundle over S1 is obtained by considering
the mapping torus of an orientation-preserving diffeomorphism ϕ : T 2 → T 2 of a 2-
torus. The isotopy class of ϕ in the group of orientation preserving diffeomorphisms
Diff(T 2) is determined by the action on the first homology group of T 2, which is
given by an element A ∈ SL(2,Z). The conjugacy class of A in SL(2,Z) defines the
torus bundle up to homeomorphism. These classes are divided into three groups
depending on the trace of A:

- If | tr(A)| < 2, there are two conjugacy classes for each possible value of
the trace: −1, 0 and 1. The torus bundles obtained via these matrices are
called elliptic torus bundles. In this case, the matrix is not diagonalizable.
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- If | tr(A)| = 2, there are two Z-families of conjugacy classes given by
matrices of the form(

1 n
0 1

)
,

(
−1 n
0 −1

)
, with n ∈ Z.

We call the torus bundles obtained using these matrices positive para-
bolic and negative parabolic torus bundles respectively. In this case, both
eigenvectors have rational slope.

- If | tr(A)| > 2, the matrix always has eigenvalues λ and 1
λ for some λ 6= 0.

The corresponding eigenvectors have irrational slope. We call the torus
bundles obtained using a matrix in this class hyperbolic torus bundles. We
call it a positive or negative hyperbolic bundle if the trace of A is positive
or negative respectively.

2.3. Surface dynamics. Let us recall a few definitions that we will need concern-
ing homeomorphisms of compact surfaces. For details, we refer to [3, 34].

Let f : A→ A be a homeomorphism of the closed annulus A = S1×I isotopic to

the identity. Let Ã = R× I be the universal cover of A and f̃ : Ã→ Ã be a lift of

f . Denote by π1 : Ã→ R the projection into the first factor. Given an f -invariant
compactly supported Borel probability measure µ, we define the rotation number
of µ as

rot
f̃
(µ) =

∫
D

(π1 ◦ f̃ − π1)dµ,

where D is any fundamental domain of the covering. The rotation set rot(f̃) ⊂ R
is the set of rotation numbers for all invariant measures, and defines a compact
interval. For two different lifts, the rotation set only differs by an integer number.

A special class of maps of the annulus is the one formed by pseudorotations,
which can be characterized by their rotation set: a pseudorotation of the annulus
is an area-preserving homeomorphism of A isotopic to the identity and whose
rotation set reduces to a single irrational number.

One can define as well pseudorotations of the closed disk and the sphere. We
give a definition, equivalent to the fact that the rotation set is a single irrational
number, in terms of the fixed and periodic points:

Definition 2.7. A pseudorotation is a homeomorphism with no wandering points
of a surface that is isotopic to the identity map and such that:

- if the surface is the annulus, it has no periodic points;
- if the surface is the disk, it has one fixed point and no other periodic points;
- if the surface is the sphere, it has two fixed points and no other periodic

points.

Recall that if f : X → X is a homeomorphism of a topological space, a point
x ∈ X is wandering if there is an open set U containing x and a N > 0 such that
for all n > N we have fn(U)∩U = ∅. Otherwise, x is a non-wandering point. When
f preserves an area form and X is compact, every point is non-wandering. The
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following result combines two classical results of Franks [24, 25] on the existence
of periodic orbits of surface homeomorphisms with no wandering points. We
point out that Franks theorems are stated for homeomorphisms that are chain
transitive, which is a stronger condition than having all points non-wandering (see
[24, Proposition 1.2]).

Theorem 2.8. Let F : Σ→ Σ be an orientation preserving homeomorphism with
no wandering points, where Σ is a sphere, a disk, or a closed annulus. Then either
F is a pseudorotation or it admits infinitely many periodic points. If the rotation
set contains more than a point, there are periodic points with arbitrarily large
periods in a compact subset K in the interior of Σ.

A pseudorotation of the disk has a fixed point, that can be blown up to obtain
a pseudorotation of an annulus. Likewise, in the case of the sphere, there are two
fixed points that can be blown up to obtain also a pseudorotation of an annulus.
Thus the statement above reduces to the case of the annulus. Let us justify why the
periodic points of an arbitrarily large period lie in a compact set K in the interior
of the closed annulus Σ. The fact that the rotation set is not a single point allows
us to choose an interval [c, d] in the rotation set that has a non-empty interior
and does not contain the rotation number of any of the boundary components of
Σ. The periodic points of arbitrarily large periods can be chosen to have rotation
numbers in [c, d] by [24, Corollary 2.4]. Then, by continuity of the rotation number,
these orbits will all lie at a uniform positive distance from the boundary.

Another class of homeomorphisms that we will use are the so-called Dehn twist
maps, defined on closed surfaces of genus at least 2.

Definition 2.9. Let Σ be a closed surface of genus g ≥ 2. A Dehn twist map is
an orientation preserving homeomorphism h : Σ→ Σ such that:

- there is a finite family of pairwise disjoint invariant essential closed annuli
(Ai)i=1,...,k,

- no connected component of Σ \
⋃k
i=1Ai is an annulus,

- h fixes every point in Σ \
⋃k
i=1Ai,

- the map h|Ai is conjugated to τni , where ni 6= 0 and τ is a homeomorphism
of S1 × [0, 1] that lifts to τ̃(x, y) = (x+ y, y).

3. Characterization of aperiodic SHS

Given a stable Hamiltonian structure (λ, ω), it is immediate that if f = dλ
ω

never vanishes, then λ is a contact form and so X cannot be aperiodic by Taubes’
theorem [43]. Hence, aperiodic examples only occur when f vanishes somewhere
and we start by analyzing the cases in which f is not identically zero. In this section,
we provide a dynamical and topological characterization of counterexamples to
the Weinstein conjecture for SHS, proving Theorem C. As an intermediate step,
we study contact Reeb dynamics in the 3-manifold with boundary Nc associated
to a structural decomposition as in Definition 2.2 of a SHS (λ, ω).
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3.1. Reeb vector fields of a SHS in Nc. Denote by I the interval [0, 1] and
by A = S1 × I the closed annulus. In order to study Reeb vector fields of SHS for
which f is not identically zero, we start by

Lemma 3.1. Let M be a closed oriented 3-manifold endowed with (λ, ω) a contact
non-degenerate SHS with respect to a structural decomposition such that Nc 6= M .
If the Reeb vector field X of (λ, ω) has finitely many periodic orbits in Nc, then
either Nc

∼= T 2× I and X is orbit equivalent to the suspension of a pseudorotation
of the annulus, or Nc

∼= S1 ×D2 and X is orbit equivalent to the suspension of a
pseudorotation of the disk.

Proof. Since near the boundary of Nc the SHS (λ, ω) is T 2-invariant (see §2.1), we
have that each connected component of ∂Nc admits a neighborhood V ∼= T 2× [0, δ]
with coordinates (x, y, t) so that

X = a1(t)
∂

∂x
+ a2(t)

∂

∂y
. (4)

Observe that since we assume that X has finitely many periodic orbits in Nc,
we have that a2(t)/a1(t) is a constant irrational number. The arguments in [31,
Section 5.2] imply that the contact form λ can be assumed to be

λ =
1

2
ρ(t)2(a2dx− a1dy) + α2dy, (5)

where ρ(t)2 is a smooth function on [0, δ] and ρ(t) is smooth and strictly increasing
on (0, δ]. We can collapse the boundary torus to a circle by identifying those points
that have the same x coordinate along the torus t = 0. Then (ρ, x) become polar
coordinates on the disk and y is the coordinate of the S1 direction.

Doing this along each component of the boundary we obtain a closed 3-manifold
N1, and λ becomes a smooth contact form λ1 on N1 just by using the expression (5)
along each solid torus V1 obtained from V . Let σi be the circles that we constructed
by collapsing the boundary tori. The Reeb vector field Xλ1 of λ1 in N1 \ {σi}
coincides with X in the interior of Nc.

The Reeb vector field Xλ1 is non-degenerate and has finitely many periodic
orbits, by hypothesis. Then [12, Theorem 1.2] implies that the manifold N1 is a
sphere or a lens space and Xλ1 has exactly two periodic orbits that we denote
by γ1 and γ2. By [31, Theorem 1.2], the periodic orbits are the core circles of
the solid tori of a genus one Heegaard splitting of N1. This implies that either
Nc
∼= T 2 × I or Nc

∼= S1 ×D2. Finally, by [15, Corollary 1.10], each closed Reeb
orbit of Xλ1 bounds a disk-like Birkhoff section (one could alternatively find an
annulus-like Birkhoff section induced by the projection of holomorphic cylinders,
see [31, Section 4.6]).

At least one of these two periodic orbits coincides with a collapsed boundary
component of Nc. Assume without loss of generality that γ2 corresponds to a
collapsed boundary component. Consider the disk-like section bounded by γ2 and
denote the first-return map by h. The map h is smooth since there is an invariant
foliation by circles near the boundary. Moreover, h is conjugated to a rigid rotation
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in each such circle. Since h has finitely many periodic points, Theorem 2.8 implies
that h is conjugated to a pseudorotation of the disk.

If Nc
∼= S1 ×D2, then Xλ1 is tangent to a foliation by invariant tori near the

boundary that corresponds to the circle γ2. We can restrict h to a disk D′ whose
boundary is an invariant circle close enough to γ2, and hence Xλ1 is orbit equivalent
to the suspension of h|D′ , a pseudorotation of the disk, and we conclude in this
case.

In the other case, the original manifold is Nc
∼= T 2 × I, which means that near

the boundary γ2 and near the fixed point of h there is a foliation by invariant circles
of h. Along those circles, the diffeomorphism is conjugated to a rigid rotation.
By restricting h to some annulus A bounded by two invariant circles, one close
enough to the fixed point and one close enough to γ2, we obtain an area-preserving
diffeomorphism h|A of the closed annulus. It follows that Xλ1 is orbit equivalent
to the suspension of h, and the same holds for X in Nc. We conclude that X is
orbit equivalent to the suspension of a pseudorotation of the annulus. �

3.2. A global section up to cutting along a torus. In this section, we prove
that aperiodic SHS always admit a global section if one allows to cut open the
ambient manifold along an invariant torus. A key fact is that the suspension of
a pseudorotation of an annulus A that can be extended in a particular way to a
homeomorphism of the torus admits global sections inducing any homology class
on the boundary.

Following [32] we recall some definitions needed to apply Fried’s theory of global
sections [26]. Let g be a diffeomorphism of the torus T 2, that we assume to be in
the path-connected component of the identity. Given a lift g̃ : R2 → R2 of g, the
rotation vector of g̃ at p̃ ∈ R2 is defined as

ρ(p̃, g̃) = lim
n→∞

g̃n(p̃)− p̃
n

,

whenever the limit is defined. The rotation vector at a point for two different lifts
of g differs by a fixed vector in Z2. For a fixed lift, the rotation set ρ(g̃) is the
set of rotation vectors obtained at any point in R2. We call a diffeomorphism g
a pseudorotation of the torus if the rotation set of g̃ is a unique vector whose
coordinates are independent over Q, notice that this does not depend on the choice
of the lift.

If we suspend g into a flow of T 3 by choosing an isotopy generating g, we
can assign rotation vectors to such an isotopy as follows. The resulting flow

φ : R× T 3 → T 3 lifts to a flow φ̃ : R× R3 → R3. The rotation vector of a point
p ∈ T 3 is

ρ(p, φ) = lim
t→∞

φ̃t(p̃)− p̃
t

,

where p̃ is any lift of p. The homological direction is the projectivization [ρ(p, φ)],
i.e. the equivalence class of the vector after identifying vectors that are strictly
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positive multiples of each other. We denote by ρ(φ) and [ρ(φ)] the set of rotation
vectors and of homological directions of φ.

In the following statement, we consider homology classes of global sections up
to sign.

Proposition 3.2. Let h : A → A be a smooth pseudorotation of the annulus
that extends to a smooth pseudorotation of the torus. For any homology class
σ ∈ H1(T

2,Z), the suspension flow of h admits a global section Σ such that
Σ ∩ ∂(T 2 × I) induces in each boundary torus a circle of homology class σ.

Notice that the suspension flow of a homeomorphism isotopic to the identity
depends on the choice of isotopy generating the homeomorphism. However, the
(smooth) orbit equivalence class of the flow is determined by the homeomorphism.
We thus speak of “the suspension” understood as this equivalence class.

Proof. Identify T 2 ∼= R2/Z2 and the annulus A with the image of [0, 1]× [0, 1/2]
in the quotient R2/Z2. Let H : T 2 → T 2 be an extension of h to a pseudorotation
of the torus. In particular, H is isotopic to the identity, and for any lift of H to
R2, the rotation vector is of the form (α, n) for an irrational number α and n ∈ Z.

Fix a lift H̃ such that ρ(H̃) = (α, 0), for an irrational number α.
Let φ be the flow obtained by the suspension of H, defined in the 3-torus

T 3 = R3/Z3 = T 2 × S1 with coordinates (x, y, t). Denote by [ρ(φ)] the set of
homological directions of φ, that is

[ρ(φ)] = {[ρ(p, φ)] | p ∈ T 3}.

In the case of a suspension of a diffeomorphism of the torus whose rotation set is

a single vector, the choice of H̃ above implies that (we refer to [32, Equation 2.2])

[ρ(φ)] = {[(α, 0, 1)]}.

Fried’s Theorem [26, Theorem D] shows that there is a global section Σ of φ
inducing the Poincaré dual class [−qdx + pdt]H1(T 3;Z) as long as −qdx + pdt is
positive when evaluated on the set of homological directions of φ.

Since [ρ(φ)] = [(α, 0, 1)], given any pair of integers (p, q) 6= (0, 0), the cohomology
class [−qdx+pdt] does not vanish when evaluated at [ρ(φ)]. If the value is positive,
Fried’s theorem implies that there is a global section Σ of φ inducing the Poincaré
dual class [−qdx+ pdt]H1(T 3;Z); if the value is negative we use [qdx− pdt]H1(T 3;Z).

Now recall that the annulus S1 × [0, 1/2] is invariant under H, and φ restricted
to S1× [0, 1/2]×S1 corresponds to a suspension of h. The surface Σ restricts as an
annulus-like section of the suspension of h with associated class [qdx−pdt]H1(T 2×I).
Since (p, q) was arbitrary, we can find a global section with a prescribed homology
class of Σ ∩ ∂(S1 × [0, 1/2]× S1). �

Remark 3.3. The previous proposition holds for the suspension of any pseudorota-
tion of the annulus as long as Fried’s theorem holds on compact manifolds with
boundary. A different approach to try to prove this fact is using [3, Proposition
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5.1]. It follows from it that any pseudorotation is smoothly conjugate to a diffeo-
morphism that is arbitrarily C0-close to a rigid rotation. If this diffeomorphism is
connected to the rigid rotation by a C0-small isotopy, a fact that is not implied
by the C0-closeness of the diffeomorphisms, then one can deduce the previous
proposition for any pseudorotation of the annulus.

We now use the previous proposition to obtain a global section, up to cutting
open M along an invariant torus, for any aperiodic SHS Reeb vector field.

Theorem 3.4. Let X be the Reeb vector field of a stable Hamiltonian structure
(λ, ω) without periodic orbits on a closed oriented 3-manifold M . If f = dλ

ω is
non-constant, then given any torus T ⊂M contained in a regular level set of f ,

cutting M along T yields a manifold with boundary M̃ which is diffeomorphic to
T 2× I and in which the Reeb vector field admits an annulus-like section. Moreover,
the vector field is orbit equivalent to the suspension of a pseudorotation of the
annulus.

Proof. Take a structural decomposition U = U1 t . . . t Uk and N = Nc tN0 of
(λ, ω), as in Theorem 2.4. By Taubes’ theorem [43], X is not the Reeb vector field

of a contact sturcture and hence U 6= ∅. Let V = U \N and, to simplify, choose
a torus T to be a connected component of ∂V . Then T is contained in a regular
level of f , is invariant under the Reeb flow and T ⊂ int(U). Recall that each Ui is
an integrable region diffeomorphic to T 2 × I where (λ, ω) can be assumed to be
T 2-invariant.

Denote by M̃ the compact manifold obtained by cutting open M along T , whose
boundary is given by two copies of T that we denote by T ′, T ′′. Notice that T ′ and
T ′′ both admit a neighborhood of the form T 2 × I with a coordinate system for

which (λ, ω) is T 2-invariant. The manifold M̃ is also decomposed in the regions

V and N (for which we use the same notation). Observe that in M̃ , T ′ belongs
either to V or N , we assume that T ′ ⊂ V and hence T ′′ ⊂ N .

Let us show that we can apply Proposition 5.7 to each connected component
of U (or V ) and of N . We start by studying the integrable regions. Since the
Reeb vector field has no periodic orbits, it has constant irrational slope in each
integrable region Ui. In particular, the Reeb vector field in Ui is orbit equivalent
to the suspension of a rigid irrational rotation of the annulus that trivially extends
to a smooth pseudorotation of the torus.

In each component of N0 the Reeb vector field has a global section, and it is
then orbit equivalent to the suspension of an area-preserving diffeomorphism of
a compact surface without periodic orbits. This implies that each component of
N0 is diffeomorphic to T 2 × I and that the Reeb vector field is orbit equivalent
to the suspension of a pseudorotation h of the annulus, see [40, page 20] or [31,
Section 5.3]. Observe that near the boundary of each connected component of
N0 we have a family of invariant tori, implying that the pseudorotation of the
annulus is a rigid irrational rotation near each boundary component of the annulus.
Moreover, the rotation number of h at each boundary has to be the same. This
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implies that h can be extended to a pseudorotation of a torus, as in the hypothesis
of Proposition 3.2.

In each connected component N ′ of Nc, Lemma 3.1 implies that each component

is diffeomorphic to T 2× I or S1×D2. Since M̃ has two boundary components, we
only have the first option. Moreover, the Reeb flow in N ′ is orbit equivalent to the
suspension of a pseudorotation h of the annulus. Since the boundary components
of N ′ admit a neighborhood in N ′ contained in U , the flow near ∂N ′ is tangent to
a foliation by tori and thus h is a rigid rotation near the boundary. In particular,
the diffeomorphism h extends also in this case to a smooth pseudorotation of a
torus, as in the hypothesis of Proposition 3.2.

Consider now the regions Vi = Ui \N ⊂ Ui, that are each diffeomorphic to T 2×I
and the restricted Reeb flow is orbit equivalent to the suspension of an irrational

rotation of the annulus. We have thus shown that M̃ is obtained by gluing along
their boundary a finite number of connected domains each diffeomorphic to T 2× I
where X is orbit equivalent to the suspension of a pseudorotation (that always

extends to a pseudorotation of the torus). In particular we have M̃ ∼= T 2 × I.

We proceed to prove that X admits a global section in M̃ . Consider the
decomposition above N ∪ V and recall that T ′ ⊂ V . We construct the section
starting in the connected component V1 ⊂ V that contains T ′. In V1 the Reeb
vector field is orbit equivalent to the suspension of an irrational rotation, that
extends trivially to a rotation of a torus. By Proposition 3.2, we can choose any
non-trivial homology class σ1 ∈ H1(∂V1;Z) and find an annulus-like section Σ1 of
X|V1 inducing the homology class σ1 in each boundary component. The boundary
component T1 = ∂V1 \ T ′ is glued to a boundary torus of a connected component
N1 ⊂ N , with N1

∼= T 2× I. Denote this boundary torus by T ′1 ⊂ ∂N1. The surface
Σ1 induces on T ′1 a circle with homology class σ′1 (the class σ1 understood in
H1(∂N1;Z)). Applying Proposition 3.2, there is an annulus-like section Σ′1 of X|N1

in N1 inducing circles with homology class σ′1 in each boundary component of N1.
We now paste together Σ1 and Σ′1 to obtain a section of X|V1∪N1 . Denote by

γ1 and γ′1 the circles Σ1 ∩ T ′1 and Σ′1 ∩ T ′1, and choose an orientation for T ′1. Up
to a small C∞ perturbation of Σ′1, we might assume that γ1 and γ′1 intersect
transversely. Each curve comes equipped with an orientation, induced respectively
by the orientations of Σ1 and Σ′1 inherited by the positive direction of the vector
field X. Since [γ1] = [γ′1] in H1(T

′
1;Z), there is some oriented 2-chain C such that

∂C = γ1 − γ′1.
Assume that γ1 ∩ γ′1 6= ∅. The fact that γ1 and γ′1 intersect transversely implies

that C is given by a finite collection of disks. The disk interiors are two by two
disjoint and the boundary of each disk has two corners. Notice that T ′1 is oriented
and C is oriented, hence we can distinguish two types of disks in C: the positive ones
where both orientations coincide and the negative ones where the two orientations
are opposite to each other. Let D be one of the disks of negative sign. In a small
neighborhood V of this disk, the curves γ1 and γ′1 intersect at exactly two points.
Since the flow is transverse to γ1 and γ′1, assume first that in D the orbits of the
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flow go from γ1 to γ′1. We can deform γ1 inside V in the direction of the flow, so
that γ1 and γ′1 no longer intersect in V and both are still transverse to the flow. If,
contrary to the previous assumption, in D the orbits of the flow go from γ′1 to γ1,
we use the negative flow to deform γ1. Doing this on all the negative disks, we can
ensure that γ1 and γ′1 are disjoint. Since these curves are in the same homology
class, they bound a cylinder.

Let ϕt denote the flow ofX, we can find a continuous positive function g : γ1 → R,
which never zero, such ϕg(p)(γ1) = γ′1. Consider a small T 2-invariant neighborhood

W = T 2 × [−δ, δ] of T ′1 in M̃ , where X is just an irrational vector field of
constant slope on each torus. Let t be the coordinate on [−δ, δ]. We take W so that
V1∩W = {t ≤ 0} and N1∩W = {t ≥ 0}. We might assume that Σ1∩{t = −δ} = γ1
and Σ′1 ∩ {t = δ} = γ′1 (where we have abused notation by taking the translated
curves in any of the tori). Now define surface Σ which is equal to Σ1 in V1 \W ,
equal to Σ′1 in N1 \W and such that in W it is given by (ϕh(t,p)(γ1), t) for a
continuous function h(t, p) which is equal to 0 near t = −δ and equal to g(p) near
t = δ. Then Σ is an annulus-like surface of section of the Reeb vector field in
V1 ∪N1.

We can apply this argument iteratively by gluing the connected components
of V and N , showing that the Reeb vector field admits an annulus-like surface of

section in M̃ ∼= T 2 × I and hence that it is orbit equivalent to the suspension of a
pseudorotation of the annulus. �

3.3. Admissible torus bundles. In this section we analyze aperiodic Reeb vector
fields of SHS for which f = dλ

ω is not constant and deduce obstructions on the

topology of the ambient T 2-bundle by applying Theorem 3.4.

Proposition 3.5. Let (λ, ω) be a SHS defining an aperiodic Reeb vector field such
that f = dλ

ω is not constant. Then M ∼= T 3 or M is a positive hyperbolic torus

bundle over S1.

Proof. Observe that if f does not vanishes, then the Reeb vector field X of
(λ, ω) is the Reeb vector field of a contact structure and has periodic orbits by
Taubes’ theorem [43]. Hence f vanishes somewhere and not everywhere. Applying
Theorem 2.4 we find a non-empty integrable region U1

∼= T 2 × I where (λ, ω) is
T 2-invariant. By cutting open the manifold M along one of the torus fibers in

the interior of U1, we obtain a compact manifold with boundary M̃ ∼= T 2 × I
and coordinates (x, y, t) such that (λ, ω) is T 2-invariant near the boundary. The
Reeb vector field X defined by (λ, ω) is orbit equivalent to the suspension of a
pseudorotation of the annulus by Theorem 3.4, denote by α its irrational rotation
number. Since the vector field X corresponds to an irrational flow on each invariant
torus near the boundary, near t = 0 and t = 1 it has irrational slope equal to
α ∈ R \Q on each torus.
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We now work near t = 0, and write the form λ and the vector field X as in
equations (2) and (3):

λ = g1(t)dx+ g2(t)dy X = a1(t)
∂

∂x
+ a2(t)

∂

∂y
.

Then a2(t)
a1(t)

≡ α.

The kernel of λ induces a linear foliation on the torus t = 0 whose slope equal to

−g1(0)
g2(0)

. Assume that the function −g1(t)
g2(t)

is non-constant. Then, modulo changing

the cutting torus inside U1, we can assume that −g1(0)
g2(0)

is irrational and different

from α. Denote by ϕ : T 2 → T 2 the gluing diffeomorphism such that M is obtained
by gluing the torus t = 1 with the torus t = 0 via ϕ. Such a diffeomorphism
must preserve the irrational foliation by orbits of X, and the foliation given by
the kernel of λ restricted to t = 1 must be sent to the foliation spanned by the
kernel of λ restricted to t = 0. Let δ be the slope of the kernel of λ at t = 1, and

β = −g1(0)
g2(0)

be the slope of the kernel of λ along t = 0. Write the map φ induced

by ϕ on R2, considered as the universal cover of T 2, in coordinates:

ϕ(x, y) = (ϕ1(x, y), ϕ2(x, y)),

where ϕ1 and ϕ2 can be expressed in a unique way as

ϕ1(x, y) = l1(x, y) + p1(x, y)

ϕ2(x, y) = l2(x, y) + p2(x, y)

where l1, l2 : R2 → R2 are linear functions and p1, p2 : R2 → R2 are periodic
functions. The fact that the kernel of λ is preserved implies that there is some
function G : R→ R such that

ϕ2(x, y)− βϕ1(x, y) = G(y − δx).

We can now argue as in [40, Lemma 4.4]: the function p2 − βp1 is constant on the
straight line of irrational slope y = δx thus it is constant everywhere. This shows
that G(z) = az + b for some constants a, b and so

ϕ2(x, y)− βϕ1(x, y) = a(y − δx) + b.

The same argument applied to the foliation of slope α shows that

ϕ2(x, y)− αϕ1(x, y) = c(y − αx) + d,

for some constants c, d. Then

c(y − αx) + d+ αϕ1(x, y) = a(y − δx) + b+ βϕ1(x, y),

and since β 6= α, we obtain that ϕ1 and ϕ2 are linear functions. Up to a translation,
the diffeomorphism ϕ is given by a matrix A ∈ SL(2,Z) which necessarily admits
an eigenvector with irrational slope α. This proves that A is the identity or a
hyperbolic matrix of SL(2,Z). Furthermore, notice that since the two boundary
components are identified via A, the linear map should identify the foliation given
by the orbits of X in T 2×{0} with the foliation given by the orbits of X in T 2×{1}.
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Both foliations are linear of slope (1, α), and hence this vector is necessarily an
eigenvector of A. However, if A is negative hyperbolic, the foliation glues in a
non-coorientable way, which contradicts the existence of X in the first place. This
shows that M must be a positive hyperbolic bundle.

We are left with the case in which the function −g1(t)
g2(t)

is constant. We can

assume that we chose the invariant domain U1 such that f 6= 0 there. This implies
that dλ 6= 0 on U1, and it has the form

dλ = g′1(t)dt ∧ dx+ g′2(t)dt ∧ dy.

Since ιXdλ = 0, it follows that
g′1(t)
g′2(t)

≡ −α. Using that g1(t)
g2(t)

is constant we deduce

that g1(t)
g2(t)

=
g′1(t)
g′2(t)

= −α. In other words, we have shown that the slope of the

foliation induced by kerλ can be assumed to be irrational on the boundary of M̃ .
We are now in the same situation as in the previous case, finishing the proof. �

3.4. Proof of Theorem C. Let M be a closed 3-dimensional manifold equipped
with a stable Hamiltonian structure (λ, ω) whose Reeb vector field X is aperiodic.
This implies that M is a torus bundle over S1. Denote by f the function dλ

ω . This
function necessarily vanishes somewhere since otherwise, the 1-form λ is a positive
or negative contact form and the Reeb vector field X admits a periodic orbit by
Taubes’ theorem [43].

First case: f ≡ 0. Assume first that the function f is constant and equal
to 0. In this case, the one form λ is closed, and by Tischler’s theorem [45] M
is a fibration over S1 such that each fiber is a global section of X. Then the
fiber is necessarily a torus. Hence X is orbit equivalent to the suspension of a
symplectomorphism of the torus ϕ : T 2 → T 2, whose mapping class corresponds
to a matrix A ∈ SL(2,R). The Lefschetz number of ϕ is given by

Γϕ =
2∑
i=0

(−1)i tr(ϕ∗Hi(X,Q)) = 2− tr(A).

By hypothesis ϕ admits no periodic points, which implies that Γϕ = 0 and hence
tr(A) = 2. We deduce that M is either T 3 or a positive parabolic torus bundle,
and X admits a global section.

Second case: f 6≡ 0 and vanishes somewhere. In this case Proposition 3.5
implies that M is either T 3 or a positive hyperbolic torus bundle. Theorem 3.4
shows that there is some embedded invariant torus T such that the compact

manifold M̃ obtained by cutting open M along T is diffeomorphic to T 2× I where
X admits some annulus-like global section Σ and X is orbit equivalent to the
suspension of a pseudorotation of the annulus.

IfM = T 3, then Σ defines inM an immersed surface with boundary S, embedded
in the interior, and whose boundary is given by two circles defining the same
homology class in H1(T 2;Z). We might argue exactly as in the proof of Theorem 3.4
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to deform a bit S so that it glues smoothly along T and yields a global section of
X diffeomorphic to a torus.

If M is a (positive) hyperbolic torus bundle, the missing part is to prove that
X does not admit a global section. Assume that there is such surface S, that we
assume connected. Then after cutting along an invariant torus T , we obtain a

global section S of X in M̃ ∼= T 2 × I. Since X in M̃ admits an annulus-like global

section, S has to be an annulus and it induces in the boundary of M̃ circles with
non-trivial homology class. The fact that S defines a smooth closed surface in

M after the identification of the two boundary components of M̃ implies that
such identification preserves some integer homology class. In other words, the
matrix A ∈ SL(2,Z) of the mapping class of ϕ admits an eigenvector with integer
coordinates, leading to a contradiction with the fact that A is hyperbolic. We
deduce that X does not admit a global section, even if after cutting along T it is
orbit equivalent to the suspension of a pseudorotation of the annulus.

Observe now that the rotation number of the annulus defines the slope of X
in appropriate coordinates. Arguing as in the proof of Proposition 3.5, we know

that the gluing diffeomorphism between the two components of ∂M̃ is induced by
the matrix A. Once we have our well-chosen generators of H1(T ;Z), the irrational
slope of X is necessarily the same as the slope of some eigenvector of A. Writing
the matrix A in the form

A =

(
a b
c d

)
it follows that the slope α of an eigenvector satisfies bα2 + (a − d)α − c = 0, a
quadratic equation. We conclude that α is a quadratic irrational number.

Finally, when (λ, ω) is real analytic, it was shown in [40, Section 4] that M
is either T 3 or a parabolic T 2-bundle over S1. Combining it with our previous
discussion, we deduce that M ∼= T 3 and only case (1) occurs. This finishes the
proof of Theorem C.

Remark 3.6. The fact that the rotation number is quadratic implies that it is not
of Liouville type. In this case, no example is known of a smooth pseudorotation
that is not conjugated to a rigid irrational rotation. It is an open question whether
non-trivial pseudorotations with Diophantine (i.e. non Liouville) rotation number
exist [22].

3.5. Aperiodic examples. A natural question that arises is whether there is
actually an aperiodic example in each case not forbidden by Theorem C. In T 3, an
example is given by the suspension of the time one map of any linear vector field
on T 2 with irrational slope. In a positive parabolic bundle, an example is given by
the suspension of the map

φ : T 2 −→ T 2

(x, y) 7−→ (x+ ny, y + α),
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where α is an irrational number and n 6= 0 is an integer that determines the
homeomorphism type of the resulting (positive) parabolic torus bundle.

However, we do not know if an example exists for positive hyperbolic torus
bundles. The simplest candidate can be constructed as follows. Given a hyperbolic
matrix A ∈ SL(2,Z) with positive eigenvalues, choose an eigenvector (1, α) (α ∈
R \ Q) and consider a suspension of an irrational rotation of the annulus with
rotation number α. Using that (1, α) is an eigenvector and choosing a good
parametrization of the suspended flow, one obtains a flow that descends to the
quotient MA obtained by identifying the two boundaries of T 2 × I using A. Let
us call Fα the 1-dimensional foliation of MA given by the orbits of such a flow.
Observe that if we do this construction for a matrix A with negative eigenvalues,
the foliation Fα is not coorientable.

The question at this point is whether this Fα can be defined by the orbits of
a Reeb flow of a SHS. One easily sees that the foliation lies in the kernel of a
closed 2-form, so the only relevant point is whether a stabilizing 1-form exists,
i.e., whether the foliation is geodesible [42]. It turns out that this is never the
case, as shown in [1, Remark 2.1] using the basic cohomology of the foliation.
Hence, if a SHS with an aperiodic Reeb vector field exists in some hyperbolic torus
bundle, after cutting open along an invariant torus the flow would have to be
orbit equivalent to the suspension of a non-trivial pseudorotation of the annulus
with quadratic rotation number. As we mentioned in Remark 3.6, it is not clear
whether such pseudorotations exist.

4. SHS with finitely many periodic orbits

In this section, we are interested in understanding when a contact non-degenerate
SHS admits, or not, infinitely many periodic orbits.

4.1. Symplectomorphism of surfaces aperiodic at the boundary. Let Σ
be a compact surface. A diffeomorphism φ : Σ→ Σ is called a symplectomorphism
if there exists an area form ω in Σ such that φ∗ω = ω. To simplify the statement
of the following theorem, we require that φ is aperiodic along the boundary.
However, the same theorem holds if we require only that there is a non-empty set
of connected components of the boundary that is φ-invariant and where φ has no
periodic points.

Theorem 4.1. Let Σ be a surface with non-empty boundary. Let φ : Σ→ Σ be
a symplectomorphism without periodic points along the boundary. Then φ admits
periodic points of arbitrarily large period in the interior of Σ unless either Σ ∼= D2

and φ is a pseudorotation of the disk, or Σ ∼= A and φ is a pseudorotation of the
annulus.

Proof. Let Σ = Σb
g be a surface of genus g with b > 0 boundary components. Up

to considering an iterate of φ, we can assume that each boundary component is
preserved. Then φ restricts on each boundary component to a diffeomorphism
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of the circle that is conjugated to an irrational rotation (we will only need this
property in one of the boundary components).

We can blow-down each boundary component of Σb
g to a point. We obtain a

closed surface of genus g on which φ induces a homeomorphism that preserves a
measure that is positive on non-empty open sets

ϕ : Σg −→ Σg.

Then every point of Σg is non-wandering under ϕ. Observe that ϕ has at least b

fixed points, that correspond to the connected components of ∂Σb
g. Choose one of

them that we call z ∈ Σg. For the proof, we consider three cases: g = 0, g = 1 and
g ≥ 2.

We start with the case g = 0, thus Σg is a sphere. Theorem 2.8 shows that either
ϕ is a pseudorotation (if the rotation set is a single point), or ϕ has infinitely many
periodic points of arbitrarily large periods. We deduce that φ has infinitely many
periodic points of arbitrarily large period or Σb

g is either a disk D2 or an annulus
A, and in both cases φ is a pseudorotation. Observe that if a positive iterate of
a homeomorphism is a pseudorotation, the same holds for the homeomorphism
itself.

Assume now that the surface is a torus Σg = Σ1 = T 2. Consider R2 as the
universal cover of T 2, and

ϕ̃ : Σ̃1 −→ Σ̃1,

a lift of ϕ such that ϕ̃(z̃) = z̃ for some lift z̃ of z. The homeomorphism ϕ̃ has no
wandering points. Decompose ϕ̃ as ϕ̃(x, y) = A(x, y) + g(x, y), where A ∈ SL(2,Z)
and g is Z-periodic in both coordinates.

If A is a hyperbolic element of SL(2,Z), it is well known that the map ϕ
necessarily admits infinitely many periodic points of arbitrarily large period [23, 27].
Thus we assume that A is either parabolic, elliptic, or the identity.

Next we identify R2 with the open unit disk D2 via the map ρ(x, y) = (x,y)
||(x,y)||+1 .

We can construct a continuous extension of ϕ̂ = ρ ◦ ϕ̃ ◦ ρ−1 to D2 as follows: any
sequence of points of the form (un, vn) such that (un, vn)→ (u, v) ∈ ∂D2 satisfies

lim
n→∞

ρ ◦ ϕ̃ ◦ ρ−1(un, vn) =
A(u, v)

||A(u, v)||
.

This allows us to extend the map ϕ̂ to a map of D2.
We now consider the different types of A ∈ SL(2,Z). If A is of finite order, i.e.

an elliptic element of SL(2,Z), then ϕ̂ corresponds to a rational rotation along
∂D2. If A is parabolic, we can find an eigenvector of A which induces a fixed point
of ϕ̂ along the boundary. Finally, if A is the identity, then ϕ̂ is just the identity on
the boundary ∂D2. In the three cases, observe that ϕ̂ admits either a fixed point
or a periodic point along the boundary of the disk. This implies that the rotation
number of ϕ̂ along the boundary is rational.

Let ẑ = ρ(z̃) ∈ D2. We blow up ẑ, obtaining a homeomorphism with no
wandering points of the closed annulus A. The boundary component obtained by
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blowing up ẑ is invariant by this homeomorphism and the dynamics restricted to
it is not necessarily a rigid rotation, but the rotation number is irrational. On the
other boundary component, the rotation number is rational. Hence, these numbers
are different and we deduce that the rotation set of the homeomorphism of the
annulus has at least two points (see §2.3 for the definition of the rotation set).
Thus, by Theorem 2.8 there is a compact subset K of D2 with periodic points
of arbitrarily large period. The compactness of K implies that each point in Σg

has only finitely many preimage points in K by the projection from the universal
cover, so we deduce that the projection of K in Σg contains periodic points of ϕ

of arbitrarily large period. It follows that φ : Σb
1 → Σb

1 also admits infinitely many
periodic points of arbitrarily large periods.

It only remains to analyze the case where the surface is Σg with g ≥ 2. By the
Nielsen-Thurston decomposition [44, 21], we know that there is a positive integer
q such that one of the following holds:

- ϕq is isotopic to the identity,
- ϕq is isotopic to a Dehn twist,
- the decomposition of ϕ has at least one pseudo-Anosov component.

If ϕ has a pseudo-Anosov component, it is well-known that ϕ admits infinitely
many periodic points of arbitrarily large periods [27]. Otherwise, denote ϕq by Φ.

The universal cover of Σg is the Poincaré disk Σ̃g
∼= D2 and consider a lift of Φ

Φ̃ : D2 −→ D2

such that Φ̃(z̃) = z̃, where z̃ is one lift of the fixed point z. Such homeomorphism
admits an extension to the boundary of the disk S∞ = ∂D2 (see e.g. [44, Corollary
1.2]).

Lemma 4.2. The rotation number of Φ̃|S∞ is a rational number.

Proof. We will show that Φ̃|S∞ necessarily has a periodic point, which implies
that its rotation number is rational. Let Φ′ be a diffeomorphism isotopic to Φ
which is either the identity or a Dehn twist. We can lift the isotopy, obtaining a

homeomorphism Φ̃′ isotopic to Φ̃. Abusing notation, we also denote by Φ̃′ and Φ̃
the extended homeomorphisms to the closed disk.

If Φ′ is the identity then Φ̃′ coincides with a deck transformation of D2, which

is given by a hyperbolic translation. This readily implies that Φ̃′ admits two fixed

points (the endpoints of the translation axis) along S∞. Since Φ̃′|S∞ = Φ̃|S∞ , we

deduce that Φ̃ also admits two fixed points along the boundary of the disk. This
proves Lemma 4.2 in the first case.

Otherwise, Φ′ is a Dehn twist and we can find some simple closed curve γ
non-trivial in homology that is preserved by Φ′. The lift of γ to the universal cover
is an infinite family of disjoint open segments, and the closure of each intersects S∞
at two points. Fix one of such lifts γ̃0, with boundary points p1, p2 ∈ S∞. Since γ

is preserved by Φ′, Φ̃′(γ̃0) is another segment γ̃1 with boundary points q1, q2 ∈ S∞
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(that projects into γ). Both segments γ̃0 and γ̃1 (with their boundary points

included) are either equal or disjoint. If γ̃0 = γ̃1, then (Φ̃′)2(p1) = (Φ̃)2(p1) = p1
and Lemma 4.2 is proved. If γ̃0 6= γ̃1, assume without loss of generality that

Φ̃′(p1) = q1 and Φ̃′(p2) = q2.

Let us show that Φ̃′ admits a periodic point at the boundary. Let J0 be the
closed interval in S∞ whose boundary is p1 and p2 and such that q1, q2 are not
in the interior of J0. Such an interval exists because the curves γ̃0 and γ̃1 are

disjoint. Denote by J1 the interval Φ̃′(J0) which satisfies ∂J1 = {q1, q2}. Two cases
can occur. In the first case, we have J0 ⊂ J1, and we can apply Brouwer’s fixed

point theorem to (Φ̃′)−1, deducing that Φ̃′ admits a fixed point. In the second case,

J0 and J1 are disjoint. Consider the interval H = (Φ̃′)2(J0) and we claim either

H ⊆ J0 or J0 ⊂ H. To see this, note first that H is the image of J1 by Φ̃′ and

hence lies in the complementary of the interior of J1, because J1 = Φ̃′(J0) and we
are assuming that J0 and J1 are disjoint along their interior. Furthermore, the

boundary points of H lie in the boundary of some curve (Φ̃′)2(γ̃) which is another
lift of γ and so is either equal to or disjoint with γ̃. This shows that the boundary
points of H are either both contained in J0 or both in S∞ \ J0, since otherwise

the curves γ̃ and (Φ̃′)2(γ̃) would be different but with non-trivial intersection.
We conclude that if the boundary points of H lie in J0 then H ⊆ J0, and if

they lie outside of J0 then J0 ⊂ H. We can apply Brouwer’s fixed point theorem

to (Φ̃′)2 or to (Φ̃′)−2 to conclude that Φ̃′ admits a periodic point of period two.

Since Φ̃′|S∞ = Φ̃|S∞ , we deduce that Φ̃ always admits a periodic point at the
boundary. �

We can now finish the proof of Theorem 4.1 as in the case of the torus. The

lift Φ̃ fixes a point z̃ with an irrational rotation number, and since it admits a
periodic point along S∞, it has a rational rotation number along S∞. We can blow
up the fixed point z̃ to obtain a homeomorphism with no wandering points of the
closed annulus with different rotation numbers at each boundary component, and
conclude as before that ϕ, and hence φ, admits periodic points of arbitrarily large
period. �

Corollary 4.3. Let (λ, ω) be a stable Hamiltonian structure (possibly degenerate),
and fix some structural decomposition. If N0 6= ∅ and there is a connected component
of N0 that is not a solid torus or a thickened torus (T 2 × I), then the Reeb vector
field admits infinitely many periodic orbits.

Proof. Assume by contradiction, that there is a connected component of N0 that
is neither a solid torus, nor T 2 × I and that the Reeb vector field has finitely
many periodic orbits. Then, in every invariant torus in U the linear vector field
has irrational slope. The Reeb flow in N0 is orbit equivalent to the suspension of a
symplectomorphism of a surface with boundary, which by hypothesis is neither a
disk nor a torus. It follows from Theorem 4.1 that the Reeb vector field admits
infinitely many periodic orbits. �
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4.2. Proof of Theorem D. Let M be a closed manifold endowed with a contact
non-degenerate SHS (λ, ω), i.e. the Reeb vector field is non-degenerate in Nc for
some structural decomposition U , N0, Nc. Assume that the Reeb vector field X is
not aperiodic. We separate the proof depending on whether U is empty or not. For
each case, we first prove that the only contact non-degenerate cases with at least
one and finitely many periodic orbits are the two options listed in Theorem D. We
then explain why the statement holds in a neighborhood of such a SHS.

If U = ∅, then either M = Nc or M = N0. If M = Nc, then the Reeb vector
field X is, up to reparametrization, a non-degenerate Reeb vector field of the
contact form λ. It follows from [12, Theorem 1.2] that the Reeb vector field of
(λ, ω) has infinitely many periodic orbits unless either M is the sphere or M is a
lens space and there are exactly two periodic orbits that are core circles of a genus
one Heegaard splitting of M .

Consider now the case in which M = N0. Then the vector field X is orbit
equivalent to the suspension of a symplectomorphism of a closed surface, so we
deduce that if X has finitely many periodic orbits, it is orbit equivalent to the
suspension of a symplectomorphism of a surface with finitely many periodic points.

The last case to analyze is when U is non-empty. Assume that (λ, ω) is such that
its Reeb vector field has finitely many periodic orbits, and at least one. For each
connected component of N0 we know that the Reeb vector field X is orbit equivalent
to a suspension of symplectomorphism of a surface with boundary Σb

g. Then in each
boundary component of N0 the Reeb vector field is orbit equivalent to an irrational
linear flow, so in the boundary of Σb

g the corresponding symplectomorphism has
no periodic points. By Theorem 4.1 we deduce that each component of N0 is
diffeomorphic to a solid torus or to T 2 × I and X restricted to each connected
component of N0 is orbit equivalent to the suspension of a pseudorotation.

Now, in each connected component of Nc, the vector field X is a non-degenerate
Reeb vector field of the contact form λ, which is T 2-invariant near the boundary.
Assuming that X has finitely many periodic orbits, Lemma 3.1 implies that each
connected component of Nc is diffeomorphic to a solid torus or to T 2× I, and that
X restricted to each connected component of N0 is orbit equivalent to a suspension
of a pseudorotation.

The connected components of N are glued along their boundary to boundary
components of V = U \N . Each connected component of V is diffeomorphic to
T 2×I and, since X has finitely many periodic orbits, X restricted to one connected
component of V is orbit equivalent to the suspension of an irrational rotation of
an annulus.

In conclusion, the manifold M is obtained by gluing a finite number of copies of
S1 ×D2 and T 2 × I along their boundaries. Since M is assumed to be connected,
we deduce that there are either two or zero copies of S1 ×D2. In the first case,
the vector field X has no periodic orbits, since in each domain T 2 × I it is orbit
equivalent to the suspension of a pseudorotation of the annulus. Since we assumed
that X has at least one periodic orbit, we deduce that exactly two connected
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components in N are diffeomorphic to S1 × D2. After gluing together all the
components that are diffeomorphic to T 2 × I iteratively to one of the solid tori,
we obtain a decomposition of M into two solid tori V1, V2 that share a common
boundary. This shows that M is either S2 × S1 and the vector field is conjugate
to the suspension of a symplectomorphism of the sphere with exactly two periodic
points, or a sphere or a lens space and the periodic orbits of X are core circles of
V1 and V2 which define a genus one Heegaard splitting of M .

This shows that the conclusions of Theorem D for the Reeb vector field of a
contact non-degenerate SHS. We now prove that the same holds for a SHS with a
periodic Reeb orbit and that is C2-close to a contact non-degenerate SHS (λ, ω).

Denoting as before U,Nc, N0 a structural decomposition of (λ, ω), assume first

that U = ∅ and M = Nc. The Reeb vector field of any C2-close SHS (λ̃, ω̃) will

be the Reeb vector field of the contact form λ̃ which is C2-close to λ. Since [12,
Theorem 1.2] is valid in a C2-neighborhood of the contact form λ we deduce that

the conclusions of Theorem D hold for (λ̃, ω̃).
Assume now that U = ∅ and M = N0. Then the Reeb vector field admits a

global section, and this is an open condition. Thus the Reeb vector field of any SHS
C2-close to (λ, ω) is orbit equivalent to the suspension of a symplectomorphism,
and the proof of Theorem D applies directly in this case.

The last case is when U 6= ∅. By [10, Theorem 3.7], given a stable Hamiltonian

structure (λ̃, ω̃) sufficiently C2-close to (λ, ω), there will be a T 2-invariant integrable
region Ki inside each connected component Ui of U of almost full measure in U .
Let K be the disjoint union of the Ki. In particular we can assume that N0 and
Nc still have a neighborhood of each of their boundary components contained in
K, and we can redefine the domains N0, Nc, so that their boundary is an invariant

torus of the Reeb vector field of (λ̃, ω̃) in K. Assume that the vector field X̃ of

(λ̃, ω̃) has finitely many periodic orbits and at least one periodic orbit. Then the

slope of X̃ has constant irrational slope in each Ki. The complement of K, which
is a slightly shrunk version of U , is diffeomorphic to N0 t Nc. In N0, the Reeb
vector field still admits a global section, since there it is C1-close to the Reeb
vector field of (λ, ω), which is orbit equivalent to a suspension flow. In the contact

region Nc, the Reeb vector field of (λ̃, ω̃) is the Reeb vector field of the contact

form λ̃, which is C2-close to λ. Since a neighborhood of the boundary of Nc is
contained in the interior of K, we are in the setting of Lemma 3.1 except that the
contact form is not necessarily non-degenerate. However, the lemma still applies
to (contact) Reeb vector fields in a C1-small neighborhood of non-degenerate ones,
since so does [12, Theorem 1.2]. Then each argument of our proof for the contact

non-degenerate case above applies as well to the Reeb vector field of (λ̃, ω̃). This
concludes the proof of Theorem D.

Remark 4.4. Notice that if [12, Theorem 1.2] and hence Lemma 3.1 can be proven
without the non-degeneracy hypothesis, then our proof applies and Theorem D
holds without the contact non-degeneracy hypothesis.
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5. Broken books and Birkhoff sections for SHS

The aim of this section and the next one is to generalize the main results of
[12] and [13, 14], from Reeb vector fields of a contact form to Reeb vector fields
of a SHS. In particular, we give a proof of Theorem A. We start by recalling the
following definitions of subsets of SHS:

(1) the set B of contact non-degenerate SHS such that, there is a structural
decomposition with a contact region where the Reeb vector field is non-
degenerate and in each connected component of the integrable region U
the slopes of the Reeb vector field are non-constant (see §2.1 for more
details).

(2) the set Bs ⊂ B of strongly contact non-degenerate SHS such that, there is
a structural decomposition with a contact region where the Reeb vector
field is strongly non-degenerate and in each connected component of the
integrable region U the slopes of the Reeb vector field are non-constant.

Broken book decompositions, introduced in [12] (consult Definitions 5.9 and
5.10), provide a strong tool for studying the dynamics of a vector field. In par-
ticular, they are the starting point to construct Birkhoff sections under generic
hypotheses (see [13] and [14]). We prove the existence of a supporting broken book
decomposition for Reeb vector fields of a SHS in B.

We now recall the definition of Birkhoff section, which we mentioned in the
introduction, and introduce the notion of ∂-strongness.

Definition 5.1. A Birkhoff section of a flow X on a compact 3-manifold M is an
immersed surface i : S −→M satisfying that

- it is embedded and transverse to X in the interior,
- the boundary is tangent to X,
- it intersects any positive trajectory of X in bounded time.

If we remove the last property, the surface is called a transverse surface. Given a
periodic orbit γ of X we denote by Σγ the unit normal bundle (TMγ/Tγ)/R+ to γ
and by Mγ the normal blow-up of M along γ, that is the manifold (M \ γ) ∪ Σγ .
The vector field X extends to a vector field Xγ on the torus Σγ and hence to a
vector field on Mγ tangent to the boundary. Observe that Xγ restricted to the
interior of Mγ coincides with X in M \ γ. We abuse notation and still denote this
extension by X. If S is a transverse surface in M with γ ⊂ ∂S, we denote by ∂γS
the extension to Σγ of the boundary components of S that cover γ.

Definition 5.2. A transverse surface S is ∂-strong if, for every boundary orbit γ
of S, the extension ∂γS is a collection of embedded curves in Σγ that are transverse
to the vector field Xγ . If S is a Birkhoff section, S is ∂-strong if moreover ∂γS
defines a section of Xγ .

The rough idea of the existence of broken books is the following. First, we assume
that the Reeb vector field of a SHS is neither a suspension nor a Reeb vector field
of a contact form. In N0 we have global sections whose boundary is contained
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in ∂N0, while in N+ and N− we have a broken book decomposition whose pages
might have boundary components contained in ∂N+ and ∂N− respectively. We
want to paste the boundaries of these two types of transverse surfaces along the
integrable region, and this is done with helix boxes of the form T 2 × I contained
in the region U , as explained in §5.1.

We start with the construction of the helix boxes in §5.1. Then in §5.2 we prove
Theorem A.

5.1. Birkhoff sections in T 2 × I. We proceed to the construction of Birkhoff
sections (see §1) with prescribed boundary behavior of certain vector fields in
T 2 × I. We call T 2 × I endowed with the Birkhoff section a helix box. Consider
T 2 × I with a non-singular vector field X that is tangent to the boundary. As in
§2, we say that X is T 2-invariant if it is tangent to and conjugate to a linear flow
in each torus fiber of T 2 × I (as in Equation (3)). It would be enough that X is
orbit equivalent to a linear flow on each fiber, but then up to reparametrization
the flow is just T 2-invariant.

Proposition 5.3. Let X be a vector field on T 2 × I that is T 2-invariant, with
a periodic orbit ν in T 2 × {t∗} for some t∗ ∈ (0, 1). Let γ0, γ1 be two connected
closed curves respectively in T 2 × {0} and T 2 × {1}. Assume that:

(1) γ0 × I and γ1 × I are positively transverse to X respectively in T 2 × [0, t∗]
and T 2 × [t∗, 1];

(2) the homology classes [γ0] and [ν] generate H1(T
2;Z);

(3) [γ0] 6= [γ1] in H1(T
2;Z).

Write [γ1] = p[γ0]+q[ν]. Then X admits a ∂-strong Birkhoff section Σ with binding
ν (covered −q times, where ν is oriented by the flow) and such that Σ∩{t = 1} = γ1
and Σ ∩ {t = 0} is given by p parallel copies of γ0.

Since γ0 and γ1 are connected curves, the coefficient q in the theorem cannot
be equal to zero unless (p, q) = (1, 0) contradicting part (3) of the hypothesis.
If [γ0] = [γ1], the vector field admits an annulus-like section without boundary
components in T 2 × (0, 1), justifying hypothesis (3). In particular, we have that in
the relation [γ1] = p[γ0] + q[ν] both coefficients are non-zero.

Proof. Notice that because γ0 and γ1 are connected, their homology classes are
primitive. In a small neighborhood V = T 2× [t∗− ε, t∗+ ε] of T 2×{t∗}, the vector
field X has slope close to the one at T 2 × {t∗}, where ν is a periodic orbit of X.
Hence the surfaces γ0× I and γ1× I are transverse to X in V . We will construct a
Birkhoff section in V that intersects T 2 × {t∗ − ε} in p parallel copies of the curve
γ0 × {t∗ − ε} and intersects T 2 × {t∗ + ε} in the curve γ1 × {t∗ + ε}. In particular,
this Birkhoff section can be extended to a Birkhoff section to all T 2 × I trivially
with p parallel copies of the surface γ0 × [0, t∗ − ε] and the surface γ1 × [t∗ + ε, 1].

Since the homology classes of γ0 and ν are assumed to generate H1(T
2;Z), we

call the direction of ν the vertical direction and the direction of γ0 the horizontal
direction. In V the vector field is almost constant, thus we simplify the situation
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by considering: X to be a constant vector field parallel to the vertical direction.
Finally, we identify V with a cube I3 with coordinates (x, y, t). This cube identifies
with V under the relations (0, y, t) ∼ (1, y, t) and (x, 0, t) ∼ (x, 1, t) as

I3 /∼ ∼= V ∼= T 2 × I.
In the coordinates (x, y, t), we set ν to be the vertical curve {x = 1/2, t = 1/2}
(in particular we have t∗ = 1/2 and the vector field is parallel to ∂

∂y in V by our

assumption above) and γ0 the curve {y = 0} and {t = 0}. The closed curve γ1 in
T 2 × {1} can be assumed to be a linear constant slope curve up to isotopy. Recall
that [γ1] = p[γ0] + q[ν], for some integers p, q ∈ Z.

Lemma 5.4. Assume that [γ1] = p[γ0] + q[ν] is a primitive homology class in
H1(T

2;Z). With the notation above, the vector field X admits a Birkhoff section
Σ in V whose boundary is −q times the periodic orbit ν = {x = 1/2, t = 1/2} and
such that [Σ ∩ {t = 0}] = p[γ0] and Σ ∩ {t = 1} = γ1.

The idea of the proof is to construct suitable curves in the boundary of I3 and
then use them to span a surface whose boundary is −qν and curves in ∂I3, see
Figure 2. Finally, we quotient to obtain a Birkhoff surface in V .

Proof. Let us assume that q > 0. Up to a translation, we might assume that the
curve γ1 intersects the point (0, 0, 1). Let H = {y = 0, t = 1} be the horizontal
bottom side of the square I2 × {t = 1}, and V = {x = 1, t = 1} be the vertical
right side of the same square. The curve γ1 is represented in I2 × {t = 1} by
p+ q − 1 disjoint segments.

We will now construct q oriented piecewise linear curves λi in the boundary of
∂I3, with i = 1, 2, . . . , q. We proceed iteratively as follows. To construct λ1, we
first consider a segment that starts at (1/2, 0, 0) and follows the boundary of I3

along {y = 0, t = 0} up to (0, 0, 0). At this point, the curve λ1 continues along the
segment that goes from (0, 0, 0) along {x = 0, y = 0} up to (0, 0, 1). The curve
continues by following the only segment of γ1 that contains (0, 0, 1). We have to
consider several cases.

(1) If the other endpoint of this segment of γ1 intersects the top horizontal
side of I2 × {t = 1} at a point (x̃, 1, 1) with x̃ 6= 1, the curve λ1 finishes at
this point (see for example the left curve of the right picture in Figure 1).

(2) If the segment of γ1 intersects V along a point (1, ỹ, 1) with ỹ 6= 1, we
continue the construction of λ1 with the horizontal line segments connect-
ing successively the points (1, ỹ, 1), (1, ỹ, 0), (0, ỹ, 0) and (0, ỹ, 1) (see for
example the left picture of Figure 1). In this case, the construction of the
curve λ1 is not yet finished.

(3) If the segment of γ1 intersects V at the point (1, 1, 1), we continue λ1 from
(1, 1, 1) through horizontal line segments from (1, 1, 1) to (1, 1, 0) and from
there to (1/2, 1, 0), finishing the construction of λ1.

At this point, if the construction of λ1 is not finished we were in case (2). We
continue the construction of λ1 by repeating the process with the segment of γ1
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starting at (0, ỹ, 1). Eventually, the curve λ1 reaches the top horizontal side of
I2 × {t = 1} in cases (1) or (3), ending its construction.

If there is a point (x̃, 0, 1) ∈ H in γ1 immediately to the right of (0, 0, 1) along
H, we construct λ2 starting at (x̃, 0, 1) and applying the same recipe as before: we
take the line segment of γ1 starting at (x̃, 0, 1) and continue according to cases
(1), (2) or (3) (see for example the right curve in the right picture of Figure 1).

At the end of this process we have q oriented curves λi, with λ1 starting at
(1/2, 0, 0) and λq ending at (1/2, 1, 0).

V

H

t
x

y

(1/2, 0, 0)

(0, 0, 1)

Figure 1. The curves λi for i = 1, 2, . . . , q, in the cases p = 2, q = 1
on the left hand side and p = 1, q = 2 on the right hand side. The
left hand side corresponds to an example that requires a single
curve λ1 whose construction goes first through case (2) and then
through case (3). The right hand side corresponds to an example
where the construction produces two segments: the construction
of λ1 goes through case (1) and the construction of λ2 starts at
(1/2, 0, 1) and goes through case (3).

Let (r, θ) be polar coordinates of the square {y = 0} centered at {x = 1/2, t =
1/2}. The key feature of each path λi is that it can be parametrized as

λi(s) = (y(s), r(s), θ(s)), s ∈ [0, 1]

in a way that θ′(s) > 0 for all s. Construct for each λi a surface with boundary Σi

in I3 parametrized by φi : I2 → I3 with

φi(s, ρ) = ((1− ρ)s+ ρy(s), ρr(s), θ(s)). (6)

Choosing well the parameter s of each λi, we can achieve that the surfaces Σi

are pairwise disjoint except along the boundary segment {x = 1/2, t = 1/2}. One
option is to choose a parameter s that varies a small quantity when the curve λi(s)
moves along a plane of fixed y coordinate, and s varies approximately as the y
coordinate along each segment of γ1.
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Figure 2. Surfaces for p = 2, q = 1 and p = 1, q = 2

The surfaces Σi are well defined in the quotient space of T 2 × I, and we obtain
a continuous surface Σ in T 2 × I whose boundary ∂Σ is given by γ1 ⊂ {t = 1},
p curves in {t = 0} parallel to γ0, and the central orbit of the flow given by
{x = 1/2, t = 1/2} covered −q times, where we oriented the orbit by the direction
of the flow and Σ by the unique orientation that makes X positively transverse
to its interior. We can easily construct surfaces Σi that induce a C∞-immersed

surface Σ by considering smooth parametrizations of the general form φ̃i(s, ρ) =
(f1(s, ρ), f2(s, ρ), θ(s)). It is embedded except maybe along {x = 1/2, t = 1/2}
where it is embedded only if q = 1. The parametrization φi satisfies

dφi

(
∂

∂ρ

)
= (y(s)− s) ∂

∂y
+ r(s)

∂

∂r

dφi

(
∂

∂s

)
= (1− ρ+ ρy′(s))

∂

∂y
+ ρr′(s)

∂

∂r
+ θ′(s)

∂

∂θ
,

and since r(s) and θ′(s) do not vanish in the complement of {x = 1/2, t = 1/2},
we deduce that for ρ 6= 0, the image of dφ never contains ∂

∂y .

Note that if q < 0, the only difference is that we need to adapt the construction
with curves λi that satisfy θ′(s) < 0. �

Back to the proof of Proposition 5.3, we only need to consider the constructed
Birkhoff section inside U = T 2 × [t∗ − ε, t∗ + ε] and extend this surface trivially to
T 2 × I.

Let us argue why the section is ∂-strong. Consider the coordinates used in the
proof of Lemma 5.4. The Poincaré map of the periodic orbit ν is (x, t) 7→ (x+f(t), t)
for some function f . We can blow up the periodic orbit ν. The vector field Xν has
two periodic orbits ν1 and ν2 (that are vertical, parallel to the y direction) that
bound two cylinders. Observe that these periodic orbits correspond to the invariant
torus that contains ν. In the cylinders bounded by ν1 and ν2, the slope of Xν at a
point of the torus depends on the differential of f(t) in the direction orthogonal to
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ν defined by the chosen point. The vector field Xν is never horizontal but could
be close to horizontal near the center circles of the annuli bounded by ν1 and ν2.

Let S be the Birkhoff section obtained by extending the construction in
Lemma 5.4 and Sν the induced section after blowing up ν. A priori, there might
be points where Sν is tangent to Xν , but Xν is never negatively transverse to Sν .
Up to isotopy, we might deform the section near the binding by an isotopy so that
these tangencies no longer occur. To do this, we deform the section Sν to a new
transverse section that is almost vertical near the orbit ν1 and almost horizontal
(at least more horizontal than Xν at any point) along some circle transverse to ∂t.

�

An example of the last step in the previous explanation is represented in Figure
3, which represents the blow-up at the binding orbit. In this case, the section
defines a curve that turns once in the vertical direction and once in the horizontal
one, on the left, there are tangency points and on the right there are none.

Sν

Xν

ν1

Figure 3. Making a section ∂-strong: the tangency points (in
blue) are removed by an isotopy of the section.

Remark 5.5. If γ1 is a finite number of parallel copies of a closed curve of primi-
tive homology class, we can take parallel copies of the surface Σ constructed in
Lemma 5.4. This implies that Proposition 5.3 also holds stated as follows: Write
[γ1] = `[γ′1] for a primitive curve γ′1, ` ∈ Z, and [γ′1] = p[ν] + q[γ0]. There is a
Birkhoff section Σ such that Σ ∩ {t = 0} is given by `p parallel copies of γ0,
Σ ∩ {t = 1} is given by γ1, and the binding of Σ ∩ {t = 1} is ν covered −`q times.

Remark 5.6. Similar surfaces were first considered in [46] in the context of open
book decompositions for contact structures. They were later used in dynamical
systems by Dehornoy [17, 18] to classify global surfaces of section of the geodesic
flow on the flat torus. His construction uses several binding orbits instead of one,
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and yields surfaces that are embedded up to the boundary (instead of surfaces
that are only immersed along the boundary, as in our construction). Those are
constructed by piling up vertically and horizontally copies of the surface obtained
in Lemma 5.4 when choosing a linear curve γ with p = 1, q = 1. Using this
approach, one obtains an embedded Birkhoff section, at the cost of needing several
parallel binding components along the torus t = {1/2}.

In [17, 18], the name helix box refers to the construction in Lemma 5.4 for a
curve γ such that p = 1, q = 1. Since it is a natural generalization, we use the
same name for the construction in Lemma 5.4, independently of the curve γ. We
proceed to the proof of the main result of this section, obtained by concatenating
suitable helix boxes.

Proposition 5.7. Let X be a non-singular vector field in T 2 × I that is T 2-
invariant and whose slope is non-constant. Let Γ0,Γ1 be two families of oriented
embedded closed curves such that Γ0 ⊂ T 2×{0}, Γ1 ⊂ T 2×{1}, and such that X|t=0

and X|t=1 is respectively positively transverse to Γ0 and Γ1. Then there exists a
∂-strong Birkhoff section Σ of X such that Σ∩{t = 1} = Γ1 and Σ∩{t = 0} = Γ0.

Proof. We might assume that Γ0 and Γ1 are just parallel copies of linear closed
curves γ0, γ1 that have primitive integer homology classes in H1(T 2;Z), respectively.
In homology, we have [Γ0] = r[γ0] and [Γ1] = `[γ1]. As before, we can consider
these curves to be linear constant slope curves in a torus.

Let k(t) denote the slope of the vector field X on T 2 × {t}, with respect to a
coordinate system (x, y, t) in T 2 × I. Let ε > 0 be such that the slope k(t) is not
constant in [0, ε] and in [ε, 1], varies only by a small value and satisfies k′(t) ≥ 0
for 0 ≤ t ≤ ε (if k′(t) ≤ 0, an analogous argument works). In particular, we can
assume that Γ0 × [0, ε] is transverse to X. Choose two primitive integer homology
classes b1, b2 of T 2 represented by two positively oriented periodic orbits of the
flow on two tori {t = s1} and {t = s2} where X has rational slope and such that
0 < s1 < s2 < ε. We might further impose that b1, b2 are generators of H1(T

2;Z)
and that [γ0], b1 are also generators of H1(T

2;Z). We can choose the coordinates
x, y in T 2 such that ∂

∂x is parallel to γ0 and ∂
∂y is parallel to b1. Since the slope of

the Reeb vector field is of positive derivative for t ∈ [0, ε], it follows that b2 can be
chosen such that b2 = Nb1 + [γ0] for some N >> 0.

Fix a small number θ0 > 0 and set t0 = 0. Partition the interval [ε, 1] into
(possibly just one) subintervals

[t1, t2], [t2, t3], ..., [tn−1, tn],

where t1 = ε and tn = 1, so that in each interval the slope is non-constant and
varies only by some amount smaller in absolute value than θ0. We can take θ0
such that Γ1 × I is transverse to X on T 2 × [tn−1, 1]. Construct a family of closed
curves σi with i = 1, ..., n− 1 in T 2 × {ti} such that:

- [σ1] = p′b1 + q′[γ0] for some coprime integers such that p′ < 0 and q′ ≥ r,
and [σ1], b2 are generators of H1(T

2;Z),
- σi × I is transverse to X for t ∈ [ti−1, ti+1] for each i = 1, ..., n− 1.
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This is possible because the slope of the vector field does not vary more than θ0 in
each interval, iterating choose σi for i = 2, ..., n− 1 to be a curve whose slope is
approximately minus the inverse of the slope of the vector field in T 2 × {ti} (with
respect to the coordinates (x, y) in T 2 × I). For i = 1 there are many choices for
σ1.

Having the curves σi we choose, in each domain T 2×(ti, ti+1), a periodic orbit of
the flow whose homology class together with [σi] gives a base of H1(T 2;Z). These
will be the bindings of the helix boxes that we will construct in each T 2 × [ti, ti+1].

We apply Proposition 5.3 first in T 2× [tn−1, tn = 1] where the curve in T 2×{1}
is Γ1 (by Remark 5.5, Proposition 5.3 applies even if Γ1 is not connected). We find
a ∂-strong Birkhoff section whose boundary along t = 1 is Γ1 and along t = tn−1
is a finite collection of parallel copies of σn−1. Iteratively, we apply Proposition 5.3
to each domain T 2 × [ti, ti+1] with i = n− 2, ..., 1, choosing the boundary of the
Birkhoff section constructed in [ti+1, ti+2] as the curve in T 2 × {ti+1} (it is given
by a finite number of copies of σi+1), and σi as the curve in T 2 × {ti}. Again
by Remark 5.5, there is no issue in considering multiple copies of a curve. After
reaching t = t1 = ε, we constructed a ∂-strong Birkhoff section Σ in T 2 × [ε, 1]
that intersects {t = 1} along Γ1, and intersects {t = ε} along some finite number
of parallel copies of σ1. To simplify the notation, denote γε the curve σ1, and Γε
the finite collection of parallel copies of γε given by the intersection of the Birkhoff
section with {t = ε}.

By construction [γε] = p′b1 + q′[γ0], for some coprime integers p′, q′ satisfying
p′ < 0 and q′ ≥ r. Since [Γε] = s[γε] = pb1 + q[γ0] for some positive integer s, we
have p < 0 and q ≥ r. We can decompose the homology class of Γε as

[Γε] = [Γ0] + (p− (q − r)N)b1 + (q − r)b2,

using that b1, b2 are generators. In vectorial notation, we have [γ0] = (0, 1),
b1 = (1, 0), and the equality above is tantamount to

(p, q) = (0, r) + (p− (q − r)N)(1, 0) + (q − r)(N, 1).

Choose some ε′ ∈ (s1, s2) and a set of closed (linear) curves Γ′ε in T 2 × {ε′} such
that [Γε′ ] = [Γ0] + (p − (q − r)N)b1. We would like to apply Proposition 5.3 in
T 2 × [0, ε′] and in T 2 × [ε′, ε], choosing as curves Γ0,Γε′ and with binding in
T 2 × {s1}, and Γε′ ,Γε with binding in T 2 × {s2}. The curves and bindings are
schematically depicted in Figure 4.

To be able to do it, we need to check that Γε′ × I is transverse to the flow for
t ∈ [s1, s2].

We claim that the condition p < 0, q > r ensures that Γε′ × I is transverse to
the vector field for t ∈ [s1, ε]. Recall that s1 is such that in T 2 × {s1} the orbits of
X have homology b1. The transversality follows from the fact that the vector field
“rotates” in the direction that increases the angle between X and Γε′ × [s1, ε] as t
increases. This is represented in Figure 4: the vector field rotates clockwise as t
increases, becoming increasingly transverse to Γε′ × [s1, ε].
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t = 0 t = s1 t = ε′ t = s2 t = ε

Γ0

Γε′ Γε

Figure 4. Last step in T 2 × [0, ε]

Formally, the vector field along any torus T 2 × {t∗} with t∗ ∈ [s1, ε] is of the
form Xt∗ = m ∂

∂x + n ∂
∂y where n,m are real numbers such that n >> m > 0.

On the other hand, the section is given by an integral curve of the vector field
Y = r ∂

∂x +
(
p− (q − r)N

)
∂
∂y . The determinant of the matrix whose columns are

the coefficients of these vector fields is

det

(
r m

p− (q − r)N n

)
= rn−m

(
p− (q − r)N

)
.

It follows from the fact that p < 0 and that q ≥ r that this determinant is always
positive, as claimed.

We are now able to apply Proposition 5.3 in T 2× [0, ε′], and construct a ∂-strong
Birkhoff section of the flow such that along t = 0 it defines the curves Γ0 and at
t = ε′ it defines Γε′ , and whose binding is a periodic orbit of the flow along t = s1.
The key fact in this step is that the homology of Γε′ expressed in the base γ0, b1
has a coefficient r in γ0. This ensures that along t = 0 the section can be chosen
to coincide with Γ0, i.e. with exactly r copies of γ0.

Finally, we have

[Γε] = [Γε′ ] + (q − r)b2,
and the key fact is again that in the base [γε′ ], b2, both sets of curves have the
same coefficient in [γε′ ]. We apply again Proposition 5.3 to construct a ∂ Birkhoff
section of the vector field in T 2× [ε′, ε] with a binding component which is a closed
curve of the flow in {t = s2}. This Birkhoff section coincides with Γε′ and Γε when
intersected with t = ε′ and t = ε respectively.

In the construction above we pasted together different local Birkhoff sections
identifying parts of the boundaries that are far away from the binding orbits. Thus
the construction gives a Birkhoff section that is piecewise smooth and smooth near
the binding. Since being positively transverse to a vector field is an open condition,
we can smooth the Birkhoff section finishing the proof Proposition 5.7. �
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Remark 5.8. Proposition 5.7 holds as well if we want a global surface of section
instead of a Birkhoff section (i.e. the surface is embedded even along the boundary).
This can be done by using several bindings, see Remark 5.6.

5.2. Construction of broken books and Birkhoff sections. Let us first recall
the definition of broken book decomposition, introduced in [12].

Definition 5.9. A degenerate broken book decomposition of a closed 3-manifold
M is a pair (K,F) such that:

- K is a link, called the binding,
- F is a smooth cooriented foliation of M \K such that each leaf S of F is

properly embedded in M \K and admits a compactification S in M that
we call a page. The boundary of S is contained in K.

- K = KrtKb, respectively the radial and broken parts of the binding. Each
k ∈ Kr has a tubular neighborhood U in which F|U is a radial foliation:
every leaf of F|U is an annulus with one of its boundary components
covering k a certain number of times. Each k ∈ Kb, the broken part of the
binding, has a tubular neighborhood V such that every leaf of F|V is an
annulus, some are radial meaning that one of the boundary components
covers k and some of them have both boundary components in ∂V.

The link K in the above definition is not required to be oriented. Consider
a connected component k ∈ K. Each leaf of F having a boundary component
on k induces an orientation on k and if k ∈ Kr different leaves induce different
orientations on k (see Remark 5.14).

A rational open book decomposition of a closed 3-manifold is given by a link K
and a fibration of M \K over S1. Notice that if the broken book decomposition
has no broken components, it is a rational open book decomposition. In this case,
M \K fibers over S1 and the pages of the foliation F coincide with the fibers.

From Definition 5.9, we have that if V is atubular neighborhood of a broken
component k ∈ Kb the foliation F|V has two types of leaves: radial ones that are
annuli with a boundary component in k and the other boundary component in
∂V; and hyperbolic ones that are annuli with both boundary components in ∂V.
Along a broken component k of the binding, consider a disc transverse to k and to
F contained in the tubular neighborhood V. We call radial/hyperbolic sectors to
the connected components of such a disc that belong to radial/hyperbolic leaves.
Broken book decompositions, without the degenerate adjective, have an additional
finiteness hypothesis on the sectors at each broken component of the binding.

Definition 5.10. A broken book decomposition is a degenerate broken book
decomposition such that every k ∈ Kb has exactly four hyperbolic sectors.

Remark 5.11. Radial sectors are closed. A radial sector might contain just one leaf
of F|V . Moreover, the definitions of radial and hyperbolic leaves are only local.

There is a finite number of pages that do not belong to the interior of one-
parameter families of homeomorphic pages, which are called rigid pages. The



38 ROBERT CARDONA AND ANA RECHTMAN

boundary of a rigid page must contain broken binding components. Each connected
component of the complement of the rigid pages fibers over R and the fibers can
be taken to be the leaves of F .

Definition 5.12. Given a vector field X on a 3-manifold equipped with a broken
book decomposition (K,F), we say that the broken book carries (or supports)
the vector field X if the binding K is composed of periodic orbits of X, while the
other orbits are positively transverse to the leaves of F .

If a vector field X admits a Birkhoff section S, then it is carried by an open
book decomposition whose binding is ∂S and whose pages are diffeormorphic to S.

Remark 5.13. In Theorem 5.17, a periodic orbit of a vector field X carried by a
broken book decomposition that belongs to Kb will always be non-degenerate and
hyperbolic. In this case, it can be either positive or negative hyperbolic according
to the sign of the eigenvalues of the linearised Poincaré map.

In the construction below, Kb will be contained in the contact part of the Reeb
vector field of a SHS, and hence the conclusion above follow from the contact
non-degenerate hypothesis.

Remark 5.14. If a periodic orbit k of X belongs to Kb, two radial leaves in adjacent
radial sectors induce opposite orientations on k.

We cite two definitions from [12] for a smooth non-singular vector field X on a
closed 3-manifold M . Recall that given a periodic orbit γ of X, we denote by Σγ

the unit normal bundle (TMγ/Tγ)/R+ to γ and by Mγ the normal blow-up of M
along γ.

Definition 5.15. Let S be a (not necessarily connected) transverse surface with
boundary.

- An orbit γ of X is asymptotically linking S if for every T ∈ R the
arcs γ([T,+∞)) and γ((−∞, T ]) intersect S.

- If γ is a non-degenerate periodic orbit in ∂S, consider its unit normal
bundle Σγ . The self-linking of γ with S is the rotation number of the
extension of X to Σγ , with respect to the 0-slope given by the closed curve
∂γS in Σγ .

As for Birkhoff sections, we have a notion of ∂-strongness for broken books.

Definition 5.16. Consider a broken book decomposition (K,F) of a closed 3-
manifold M . A non-singular vector field X on M is ∂-strong carried by (K,F) if
it is carried by (K,F) and each leaf of F is a ∂-strong transverse surface.

We proceed with the proof of the first part of Theorem A.

Theorem 5.17. Let (λ, ω) be a SHS in B on a closed 3-manifold M whose Reeb
vector field is X. Then there is a C2-neighborhood of (λ, ω) in the set of SHS,
such that every Reeb vector field of a SHS in this neighborhood is supported by a
∂-strong broken book decomposition.
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Proof. Let U,N0, Nc be a structural decomposition for which (λ, ω) is contact
non-degenerate. If U = ∅, the result is immediate. We hence assume that U 6= ∅.
Let us recall the ingredients of the construction of a broken book decomposition
supporting a vector field X. These correspond to the properties enumerated in
[12, Lemma 3.6] and are used in the construction of a broken book decomposition.
We refer to [12, Section 3] for the proof.

Proposition 5.18. Let X be a non-singular vector field on a closed 3-manifold M .
Assume there is a finite collection of ∂-strong transverse surfaces with boundary
S1, S2, . . . S` such that:

(1) the interior of the transverse surfaces are pairwise disjoint;
(2) every orbit intersects ∪iSi;
(3) ∪i∂Si = K;
(4) M \ (∪iSi) fibers over R and the flow is transverse to the fibers;
(5) if an orbit of X is not asymptotically linking ∪iSi, it converges to one of

their boundary components which is a non-degenerate hyperbolic periodic
orbit γ with tubular neighborhood V. In this case, each one of the quad-
rants transversally delimited by the stable and unstable manifolds of γ is
intersected by at least one Si such that a connected component of Si ∩ V
contained in this quadrant has γ as a boundary component.

Then there is a ∂-strong broken book decomposition (K,F) supporting X and
having the surfaces Si as pages.

The binding non-degenerate hyperbolic orbits in Proposition 5.18 (5) are the
orbits in Kb, that is the broken components of the binding of the broken book
obtained. Given a vector field carried by a broken book decomposition, one can
choose a finite collection of pages satisfying Proposition 5.18: the set of rigid pages
is one possibility.

Below, we construct piecewise transverse surfaces to the vector field X by
constructing them in the regions Nc, U and N0. These local constructions are
pasted together and can be smoothed as in the proof of Proposition 5.7.

Let W denote a connected component of Nc. Near ∂W , the Reeb vector field
is parallel to a linear vector field of constant irrational slope: arguing as in the
proof of Lemma 3.1 we can compactify W into a closed 3-manifold W , and find
a contact form α in W . The invariant boundary components of W yield closed
non-degenerate elliptic orbits of the Reeb vector field Rα that are surrounded by
a foliation of invariant tori Tρ for a real parameter ρ. Let Γ be the collection of
these periodic orbits of Rα.By construction, the vector field X restricted to the
interior of Nc coincides with Rα in W \ Γ.

Applying Theorem 1.1 in [12], we know that Rα is carried by a ∂-strong broken
book decomposition (K,F). Any orbit γ ∈ Γ is an elliptic periodic orbit and
hence it cannot be a broken component of K. It follows that either γ is a radial
component of K or γ is transverse to F . In both cases, F induces in each invariant
torus Tρ a foliation by closed curves transverse to Rα, which is a linear irrational
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vector field in each torus. We deduce that in each connected component of Nc the
Reeb vector field X is carried by a broken book decomposition, whose pages are
transverse to the boundary tori and such that K is in the interior of Nc.

Let us still denote by (K,F) the ∂-strong broken book decomposition of Nc: that
is (K,F) restricts to a ∂-strong broken book decomposition in each component of
Nc.

On the other hand, in each connected component of N0, the Reeb vector field
is transverse to the fibers of a surface bundle over the circle. This means that in
the boundary of any connected component of V = U \ int(N), which connects two
boundary components of N , there are two different induced homology classes of
curves: the intersection of any page of (K,F) with the boundary torus of V (if
that boundary torus belongs to Nc), or the intersection of any fiber of the surface
bundle with the torus (if that boundary torus belongs to N0).

Choose the finite collection of rigid pages of (K,F) in Nc and denote them by
P = P1 ∪ · · · ∪ Pk. Observe that since Nc has a boundary, the surfaces Pi might
have boundary components in ∂Nc.

Take a connected component Vi ∼= T 2 × I of V and set ∂Vi = T0 ∪ T1 where
Tk ∼= T 2 × {k} for k = 0, 1. If Tk ⊂ ∂Nc let Γk be the collection of closed curves
P ∩ Tk. If Tk ⊂ ∂N0 let Γk be the intersection of a fiber with Tk. We obtain two
families of closed curves Γ0 and Γ1 transverse to the Reeb vector field along T0
and T1 respectively. Applying Proposition 5.7, we construct a ∂-strong Birkhoff
section in Vi that glues together the surfaces in N along Vi.

We can do this for each Vi, obtaining a finite collection S = S1 ∪ · · · ∪ S` of ∂-
strong transverse surfaces with boundary. We claim that S satisfies Proposition 5.18.
By construction, the surfaces have disjoint interiors and intersect all the orbits of
X. Observe that in the closure of M \Nc the restriction of S is a Birkhoff section,
hence the orbits that are not asymptotically linking S are contained in Nc and by
the choice of P they satisfy (5) of Proposition 5.18. The same argument implies
that the complement of S fibers over R.

The existence of a ∂-strong broken book decomposition carrying X follows from
Proposition 5.18.

It remains to show that there exists an open C2-neighborhood (in the set of
SHS) of (λ, ω), where each Reeb vector field is also carried by a ∂-strong broken

book decomposition. Let (λ̃, ω̃) be a SHS sufficiently C2-close to a SHS (λ, ω) ∈ B
that is contact non-degenerate for some structural decomposition U,N0, Nc. If

U = ∅, then either the Reeb vector field of X̃ of (λ̃, ω̃) admits a global section (as

this is a C0-open property for a vector field), or λ̃ is a contact form (as this is an
open property as well) that is C1-close to a non-degenerate one, and then it admits
a ∂-strong broken book decomposition by [12, Theorem 1.1]. If U 6= ∅, by [10,

Theorem 3.7], the SHS (λ̃, ω̃) will have T 2-invariant integrable regions Ki inside
each component Vi of V = U \ int(N) of almost full measure in V . Since the slope
of the Reeb vector field of (λ, ω) on V was non-constant, the slope of the Reeb

vector field of (λ̃, ω̃) has non-constant slope if the SHS is C2-close to (λ, ω). The
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complement of K = tKi is C1 close and diffeomorphic to N0tNc. In N0, the Reeb
vector field still admits a global section, since it is C1-close to a suspension flow.
In the contact region Nc, the Reeb vector field is C1-close to the Reeb vector field

of (λ, ω), and the contact form λ̃ is C2-close to λ. The broken book decomposition
that carries the Reeb vector field of (λ, ω) is such that in the contact region, the
binding components are non-degenerate periodic orbits and the flow is ∂-strong
carried by the broken book. It was shown in [12, Section 4.7] that the Reeb vector
field defined by a contact form that is C2-close to a non-degenerate contact form
is also supported by a ∂-strong broken book decomposition. We deduce that even

if (λ̃, ω̃) is a priori not contact non-degenerate, the Reeb vector field is supported
by a ∂-strong broken book decomposition in the contact region. The slope in the
integrable region is non-constant in each connected component, so we can still
construct a ∂-strong broken book decomposition supporting the Reeb vector field

of (λ̃, ω̃) arguing step by step as in the contact non-degenerate case. �

Remark 5.19. We only required the contact non-degeneracy to deduce that the
Reeb vector field in the contact regions is carried by a ∂-strong broken book
decomposition. Additionally, by construction, if the broken book decomposition
(K,F) given in the contact region Nc is a rational open book decomposition, the
previous theorem implies that the Reeb vector field of (λ, ω) is carried by a rational
open book decomposition. Indeed, the only broken binding components arise in
the contact region.

We can now give a proof of the second part of Theorem A.

Theorem 5.20. Let (λ, ω) be a SHS in Bs on a closed 3-manifold M whose Reeb
vector field is X. Then there is a C2-neighborhood of (λ, ω) in the set of SHS,
such that every Reeb vector field of a SHS in this neighborhood admits a ∂-strong
Birkhoff section.

Proof. Let us keep the notation of the proof of Theorem 5.17. If the Reeb vector
field is strongly non-degenerate for some structural decomposition U,N0, Nc, it
is also strongly non-degenerate in the closed 3-manifold W obtained by blowing
down the boundary components of Nc. By [14, Theorem A], the ∂-strong broken
book decomposition adapted to the Reeb vector field obtained in [12, Theorem
1.1] can be modified into a proper rational open book decomposition adapted
to the Reeb vector field, whose pages are ∂-strong transverse surfaces. Applying
Theorem 5.17 and Remark 5.19, we deduce that the Reeb vector field of (λ, ω)
is supported by a rational open book decomposition. One of its pages defines a
∂-strong Birkhoff section of the Reeb vector field.

Finally, we want to show that given any SHS (λ, ω) satisfying our hypotheses,
there is C2-open neighborhood of stable Hamiltonian structures around it that
also admit a ∂-strong Birkhoff section. We argue exactly as in the last step of the
proof of Theorem 5.17. The ∂-strong Birkhoff section that we constructed is such
that in the contact regions the binding components are non-degenerate periodic
orbits. Then [13, Proposition 5.1] shows that any Reeb vector field sufficiently
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C1-close to the Reeb vector field of a strongly non-degenerate contact form also

admits a ∂-strong Birkhoff section. Hence the Reeb vector field of (λ̃, ω̃) admits a
∂-strong Birkhoff section in the contact region. The slope in the integrable region is
non-constant in each connected component, so by Remark 5.19 and Theorem 5.17
we can still construct a ∂-strong Birkhoff section for the Reeb vector field of

(λ̃, ω̃). �

The combination of Theorems 5.17 and 5.20 yields the first two parts of Theo-
rem A. The last one, namely the fact that Bs is C1-dense among the set of SHS,
is proved in §6.

6. Genericity of Birkhoff sections

In this section we use our previous results to show that there exists a C1-open
and (C1, C∞)-dense set of SHS that admits a Birkhoff section. Here the (C1, C∞)-
topology means that in the set of SHS, we measure the distance between the
stabilizing 1-forms in the C1-topology and the distance between the 2-forms in
the C∞-topology. As a corollary, we deduce Theorem B.

6.1. Density of Bs. We first show that strongly contact non-degenerate SHS
whose slope is non-constant in each connected component of the integrable region
U are dense, in a suitable topology, in the set of SHS. The following statement is
the missing part of Theorem A.

Theorem 6.1. Let (λ, ω) be a SHS on a closed 3-manifold M . Then there exists

a SHS (λ̃, ω̃) ∈ Bs such that λ̃ is arbitrarily C1-close to λ and ω̃ is arbitrarily
C∞-close to ω.

If there is a structural decomposition of M with respect to (λ, ω) with U empty,
the result follows from known results for Reeb vector fields and suspensions. We
give a proof in the case U 6= ∅. Under this assumption an intermediate step is the
following lemma.

Lemma 6.2. Let (λ, ω) be a stable Hamiltonian structure on M and N,U a

structural decomposition. There exists an arbitrarily C∞-small perturbation (λ̃, ω̃)
of (λ, ω), compactly supported in the integrable region U and T 2-invariant, that
yields a stable Hamiltonian structure with structural decomposition N,U such that
the slope of ker ω̃ is non-constant in each connected component of U .

Proof. In any connected component of U , we take coordinates (x, y, t) in T 2 × I.
We know that λ is of the form

λ = g1(t)dx+ g2(t)dy + g3(t)dt,

and ω is of the form

ω = h1(t)dt ∧ dx+ h2(t)dt ∧ dy.
The fact (λ, ω) defines a stable Hamiltonian structure implies that

g1
′h2 − g2′h1 = 0 and h1g2 − h2g1 > 0.
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If kerω has constant slope, then h2
h1

is constant. We might simply perturb the

function h2 to h̃2(t) in a way that h2(t) = h̃2(t) for |t − 1
2 | ≥ ε, the slope is no

longer constant and h̃2 is arbitrarily C∞-close to h2. This defines an arbitrarily
small C∞ perturbation of ω, that we denote by

ω̃ = h1(t)dt ∧ dx+ h̃2(t)dt ∧ dy.

We can now perturb λ by a C∞-small perturbation to

λ̃ = g1(t)dx+ g̃2(t)dy + g3(t)dt,

where g̃2(t) is determined by the equations{
g̃2
′ = g1′h̃2

h1
,

g̃2(0) = g2(0).

The function g̃2 coincides with g2 for t ≤ 1
2 − ε. It coincides with g2 for t > 1

2 + ε
if and only if ∫ 1

0

g1
′h̃2
h1

dt = g2(1)− g2(0).

It is clear that we can choose some h̃2 satisfying this condition (see also [10, Lemma
3.15] for more general statements on this type of perturbations, considered in

the C1-topology). It follows that (λ̃, ω̃) is a stable Hamiltonian structure that is
C∞-close to (λ, ω), coincides with it outside of V = T 2×(1/2−ε, 1/2+ε) ⊂ T 2×I
and whose Reeb vector field has a non-constant slope in V . The perturbation can
hence be applied in each connected component of U . �

It follows from the previous lemma and the fact that contact non-degenerate SHS
are C1-dense [10, Theorem 4.6], that B is C1-dense among SHS. The techniques
in [10, Theorem 4.6] allow us to prove that Bs is dense with C1-topology in the
1-form λ and C∞-topology in ω as we explain below.

Proof of Theorem 6.1. Let (λ, ω) be a SHS on a closed 3-manifold M . By Theorem
2.4, there exists some λ′ arbitrarily C1-close to λ such that the SHS (λ′, ω) admits
a structural decomposition U,N0, Nc such that dλ′ = cω for some constant c ∈ R
in each connected component of the contact region Nc, and dλ′ = 0 in N0. We can
perturb the SHS by a perturbation of the form

(λ′ + η, c(ω + dη)),

where η is a 1-form that is arbitrarily C∞-small and compactly supported in the
interior of the contact region that makes the stable Hamiltonian structure contact
strongly non-degenerate [14, 41, 39]. This is possible because close to the boundary
of each connected component of N the flow is just integrable of constant irrational
slope. By Lemma 6.2, we can make another arbitrarily C∞-small perturbation,
compactly supported in the integrable region, such that the slope of the Reeb
vector field in each connected component of U is non-constant. This shows that
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Bs is dense with respect to the C1-topology in the 1-form and the C∞-topology in
the 2-form. �

Remark 6.3. In [9], it was shown that any SHS is exact stable homotopic (through
an homotopy that is not small in any Ck-topology) to one which is supported by
an open book decomposition, which is equivalent to the Reeb vector field admitting
a Birkhoff section. Given a SHS (λ, ω), the C1-perturbation in the proof above can
be done through an exact stable homotopy (as per Lemma 6.2 and [10, Theorem
4.6]). Hence, there is C1-small exact stable homotopy (λ+ αt, ω + dµt) such that
α0 = 0, µ0 = 0 and such that the Reeb vector field of (λ+ α1, ω + dµ1) admits a
Birkhoff section. Equivalently, this means that (λ+ α1, ω + dµ1) is supported by a
rational open book decomposition.

6.2. Open and dense sets with Birkhoff sections. Using the previous dense
set, we proceed to show that a C1-generic SHS admits a Birkhoff section and
deduce Theorem B.

Theorem 6.4. Let M be a closed 3-manifold. In the set of SHS on M , there is a
set of SHS whose Reeb vector fields admit a ∂-strong Birkhoff section that is dense
in the (C1, C∞)-topology, and C1-open.

We point out that the set of SHS that we prove to have such a Birkhoff section
is not Bs. We start with any SHS, and perturb it to be in Bs but then we need an
extra perturbation of the SHS to ensure that the Birkhoff section is ∂-strong.

Proof. Let (λ′, ω′) be a SHS. By Theorem 6.1, there exists an arbitrarily (C1, C∞)-
close SHS (λ, ω) ∈ Bs. By Theorem 5.20, the Reeb vector field X of (λ, ω) admits
a Birkhoff section S. This Birkhoff section is ∂-strong and the binding orbits are
all non-degenerate except those in the integrable region U , which is a union of
regular level sets of f = dλ

ω . If the Birkhoff section is a global section (meaning

that ∂S = ∅), then this is C1-robust with respect to perturbations of the vector
field and we are done. Similarly, if there are no binding orbits in the integrable
region, we conclude by [13, Section 5].

In general, let γ1, ..., γr be the binding orbits of S in U . For each γ ∈ {γ1, ..., γr},
recall that this orbit lies in a torus fiber T of U given by a connected component
of a regular level set of f , and thus there is a neighborhood V of T such that
V = T 2× (−ε, ε) with f = ci+ t, where ci 6= 0 is the (regular) value of f on T , and
t is the coordinate in the second factor of V. Let Z = tri=1ci. By [10, Proposition

3.23], there exist an arbitrarily C1-close 1-form λ̃ such that (λ̃, ω) is a SHS, and

the function f̃ = dλ̃
ω satisfies f̃ ≡ ci in an open neighborhood of f−1(ci). Notice

that the Reeb flow of (λ̃, ω) is just a reparametrization of X by a function that
is arbitrarily C1-close to the constant function equal to 1. In particular, taking

the open neighborhood V small enough, the SHS in V ⊂ f̃−1(ci) is of the form

(λ̃, cidλ̃).
Choose γ ∈ {γ1, . . . , γr}. We claim that there exists a function ρ arbitrarily

C∞-close to 1 and equal to 1 outside a compact subset of V such that the Reeb
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flow of (ρλ̃, cid(ρλ̃)) has γ as a non-degenerate periodic orbit. Observe that the

SHS (ρλ̃, cid(ρλ̃)) extends as (λ̃, ω) away from V.
To see that such a function ρ exists, consider V equipped with the contact form

λ̃, and the symplectization V × (−δ, δ) with symplectic form Ω = d(esλ̃), where s
is the parameter in the second factor. We identify V with V × {0}. By [41, Lemma

19], there exists a hypersurface Ṽ that is arbitrarily C∞-close to V ×{0}, coincides
with V × {0} away from a small neighborhood of γ ⊂ V, and such that γ is a

non-degenerate periodic orbit of the Hamiltonian flow induced on Ṽ . It is well
known that the vector field induced on any hypersurface C∞-close to V × {0} is

the Reeb vector field of the contact form ρλ̃ for some function ρ that is C∞-close

to 1 (see e.g. [28, Section 6]). Applying this fact to Ṽ, we find a contact form ρλ̃,
where the function ρ is equal to 1 outside of a small neighborhood of γ, whose
Reeb flow has γ as a non-degenerate periodic orbit. Denote by (λ̂, ω̂) the SHS

obtained by extending (ρλ̃, cid(ρλ̃)) by (λ̃, ω̃) in M \ V, it is C∞-close to (λ̃, ω̃).

Its Reeb flow R̂ coincides along V with that of the contact form fλ̃, and hence
has γ as a non-degenerate periodic orbit. Doing this at each γi, we find a stable

Hamiltonian structure that we still denote by (λ̃, ω̃) for which S is a Birkhoff

section with non-degenerate periodic orbits of the Reeb flow R̂. Furthermore, since
the Birkhoff section S was ∂-strong, it remains a Birkhoff section of R̂.

Thus we have shown that there is SHS (λ̂, ω̂) that is arbitrarily (C1, C∞)-close
to (λ′, ω′) and whose Reeb vector field admits a ∂-strong Birkhoff section with
non-degenerate binding orbits. Finally, admitting a ∂-strong Birkhoff section with
non-degenerate binding orbits is a C1-open condition among vector fields [13,
Proposition 5.1], and C1-close stable Hamiltonian structures define C1-close Reeb
vector fields. This concludes the proof. �

Although we did not explicitly state it, the C∞-perturbation of the two-form that
we produce in Theorem 6.4 is exact. We finish this section by proving Theorem B.

Proof of Theorem B. Let X be a reparametrized Reeb vector field of a SHS, i.e.
it satisfies λ(X) 6= 0 and ιXω = 0 for some SHS (λ, ω). Since admitting a Birkhoff
section does not depend on the orientation of X, if λ(X) < 0 we consider −X
instead.

Theorem 6.4 shows that there exists a C1-perturbation of λ and a C∞-perturbation

of ω such that the Reeb vector field of (λ̃, ω̃) admits a ∂-strong Birkhoff section

with non-degenerate binding orbits. Let R̃ be the Reeb vector field defined by
such SHS, we claim that there exists a positive function g ∈ C∞(M) such that

X̃ = gR̃ is a C∞-perturbation of X. Indeed, observe that ω and ω̃ are C∞-close,

hence given a section of the bundle kerω (such as X), there exists a section X̃ of

ker ω̃ that is C∞-close to X. Since ι
R̃
ω̃ = 0, the section X̃ is of the form X̃ = gR̃

for some positive function g. We have thus shown that given any X ∈ CSHS(M),

there exists a C∞-perturbation X̃ of X that admits a ∂-strong Birkhoff section
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with non-degenerate binding orbits. On the other hand, by [13, Section 5], this

property holds for a C1-neighborhood of X̃. �

Remark 6.5. Notice that the C∞-perturbation X̃ of X in the previous proof is
obtained by producing a C∞-perturbation ω̃ of an arbitrary given stabilizable
2-form ω such that ιXω = 0. In particular, if X preserves a given volume form µ,
and ιXµ is chosen as the stabilizable 2-form ω, then we can define the vector field

X̃ by ι
X̃
µ = ω̃. In particular, if the set of vector fields that preserve µ is denoted by

Xµ(M), the previous proof shows that the set of vector fields in CSHS(M)∩Xµ(M)
that admit a Birkhoff section is dense in CSHS(M) ∩ Xµ(M).

7. Analytic integrable Reeb flows

In this last section, we analyze the case of SHS whose Reeb flow admits a real
analytic first integral f ∈ Cω(M). Every time that we speak of an analytic object,
we mean real analytic with respect to a real analytic structure on M . Real analytic
SHS have beed studied previously. Given an analytic (λ, ω), the function dλ

ω is an
analytic first integral of the Reeb vector field of (λ, ω). As shown by Cieliebak
and Volkov [11], a stationary solution to the Euler equations on a Riemannian
3-manifold (M, g) with an analytic Bernoulli function gives rise to a SHS whose
Reeb flow admits an analytic first integral.

Definition 7.1. Let X be a nonvanishing vector field on a closed 3-manifold
M . We say that X admits a Birkhoff splitting if there exists a finite collection of
invariant tori T1, ..., Tk such that:

- the manifold M̃ obtained by cutting M open along T1, ..., Tk is connected,

- the induced vector field X̃ on M̃ admits a Birkhoff section.

Observe that the existence of a Birkhoff splitting reduces the dynamics of X to
the dynamics of a homeomorphism of a connected compact surface with boundary,

as a Birkhoff section does. One could drop the assumption that the manifold M̃ is
connected, in which case the existence of a Birkhoff splitting for analytic integrable
SHS follows immediately from [11] and Proposition 5.7.

Theorem 7.2. Let (λ, ω) be a stable Hamiltonian structure whose Reeb vector field
admits a non-constant analytic first integral. Then the Reeb vector field defined by
(λ, ω) admits a Birkhoff splitting.

The proof of this theorem relies crucially in Sections 2 and 3 of [11]. To
avoid repeating several arguments, we refer to concrete parts of those sections.
Throughout the proof, we will sometimes construct Birkhoff sections in domains
of M using the following trick due to Tischler [45]: on a compact manifold with a
non-vanishing vector field X, a closed 1-form α with rational cohomology class
such that α(X) > 0 can be used to construct a global section of X. This is done
by multiplying α by a large enough integer so that this multiple defines a fibration
over S1. Any fiber of this fibration will be a global section of the flow.
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Proof. Let f be the analytic first integral of the Reeb vector field X of (λ, ω),
which is not necessarily the function dλ

ω . For each critical value ci, let Sci be the

union of the connected components of f−1(ci) that are not regular. Then let Ni

be the intersection of a small open neighborhood of Sci with f−1([ci − δ, ci + δ]),
where δ is small enough so that Ni is a compact submanifold with boundary,
and the boundary is a union of invariant tori given by connected components of
f−1(ci±δ). Let U = M \N be the closure of the complement of N =

⊔
ci
Ni. In U ,

the function f is everywhere regular and so the Reeb vector field of (λ, ω) is orbit
equivalent to a linear flow on each regular torus of f , e.g. by [10, Theorem 3.3].
Since f is real analytic, it has a finite number of critical values and U decomposes
as a finite union of domains each diffeomorphic to T 2 × I.

We now associate to the decomposition M = N ∪ U a graph: each connected
component of N is a vertex and each connected component of U is an edge.
Since each connected component of U is of the form T 2 × I, it has two boundary
components that coincide with boundary components of N . Thus we put an edge
between two vertices if there is a connected component of U intersecting their
boundaries. This graph is connected, can have cycles and is finite.

The strategy of the proof is as follows: we choose a vertex v1 and find a global
section of the flow in the corresponding manifold N1. Then we extend the section
as a Birkhoff section along the connected components of U that correspond to
the edges having at least one endpoint in v1. Next, for each of those edges, we
try to extend the Birkhoff section on the component Nj of N that corresponds
to the other endpoint. Here we need to consider several cases (for example, both
endpoints of the edge could be v1) and it is not always possible to extend the
Birkhoff section. We either extend the Birkhoff section to Nj or cut along the
boundary torus of ∂Nj that corresponds to that edge. If we cut along a torus, we

obtain a new manifold M̃1 with an associated graph that is obtained by removing
the corresponding edge from the original graph. Recursively, we continue the
construction along the vertices that are at distance two from v1. As we will see
in the proof, the only cases where we might have to cut along a torus can occur
when we reach a vertex corresponding to a component of N where we already
constructed a Birkhoff section, i.e. when we circulate along a cycle of the graph.
Hence, possibly after cutting open some cycles of the graph, the graph resulting
after extending the Birkhoff section to all the vertices is always connected. We
end up with a Birkhoff splitting.

Following [11], let us recall the structure of Sci , that is by hypothesis a real
analytic set and thus it is stratified with respect to dimension. By [11, Proposition
2.6], each Sci has finitely many connected components and each one is of one of
the following forms:

(1) a two-torus,
(2) a Klein bottle,
(3) a periodic orbit,



48 ROBERT CARDONA AND ANA RECHTMAN

(4) a union of periodic orbits (the 1-dimensional strata) and open cylinders and
Möbius strips that are embedded (the 2-dimensional strata). The closure
of the open cylinders and Möbius strips are C1-immersed surfaces whose
boundary components are finite coverings of the 1-dimensional strata in
Sci .

Given a 1-dimensional substratum γ of Sci (that is a periodic orbit of X), we
denote by dγ ∈ N the folding number of the covering of γ by the 2-dimensional
cylinders and Möbius bands, i.e. the number of connected components of U \ γ
where U is a small enough neighborhood of γ inside Sci .

The complement of Sci is a finite union of regular integrable domains diffeomor-
phic to T 2×(0, 1). Let V be connected component of this set, whose boundaries are
contained in f−1(c1) ∪ f−1(c2) with c1, c2 critical values, not necessarily distinct.
Then by [11, Lemma 3.4], if the slope of X is constant in V then:

- If the slope is rational, each V ∩ f−1(c1) and V ∩ f−1(c2) is either a
periodic orbit, a rational torus, a Klein bottle or a union of periodic
cylinders and Möbius bands connected along their boundaries (possibly
multiply covered).

- If the slope is irrational, each V ∩ f−1(c1) and V ∩ f−1(c2) is either an
isolated periodic orbit or an irrational torus.

Observe that in the rational case, the set V ∩ f−1(c1) (or V ∩ f−1(c2)) is not
necessarily a whole connected component of the level set f−1(ci), but instead a
connected substratum of it.

Our main tool follows from the proof of [11, Proposition 2.8].

Proposition 7.3. Let η0 be a closed 1-form defined in an open neighborhood of
a closed stratified subset Ki of Sci such that η0(X) > 0 and

∫
γ η0 = 1

dγ
for each

1-dimensional substratum γ (which is a periodic orbit) of Ki. Then η0 extends
to a closed-one form η in all Ni satisfying η(X) > 0 and

∫
γ η = 1

dγ
for each

1-dimensional substratum γ of Sci.

If η0 is not prescribed near Ki or Ki = ∅, Proposition 7.3 is exactly the statement
of [11, Proposition 2.8] that provides an η in Ni satisfying the claimed properties.

Proof. Here a closed stratified subset Ki will always be a collection of open
cylinders, open Möbius bands, and the circles in their closure.

From the proof of [11, Proposition 2.8], we deduce that one can prescribe η0
near a connected substratum. Indeed, given η0, we choose some closed one form η2
near each 1-dimensional substratum γ that is not in Ki, such that η2(X) > 0 and∫
γ η2 = 1

dγ
. Now we have a 1-form defined near each 1-dimensional substratum

of Sci and in the whole closed stratified subset Ki ⊂ Sci . It is shown in [11,
Section 2, p. 463-464] how to extend a given 1-form satisfying these two conditions
from a neighborhood of the boundary of a two-stratum to a neighborhood of its
interior. Hence, we apply this to each two-stratum that was not in Ki, to conclude
Proposition 7.3. �
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We start with the vertex v1 that corresponds to a connected component N1 of
N . Proposition 7.3, with K1 = ∅, gives a closed 1-form η1 such that η1(X) > 0 in
N1. Up to perturbing it, we can assume that η1 defines a rational cohomology class
so that it can be used to construct a global section Σ1 (a surface with boundary)
of X in N1. Observe that ∂Σ1 = Σ1 ∩ ∂N1.

We now consider the graph associated to the structural decomposition N , U and
choose an edge e1 incident on v1. Then e1 corresponds to a connected component
U1
∼= T 2 × I ⊂ U . Observe that U1 ⊂ V1 with V1 a connected component of

M \ (
⋃
Sci). Observe that e1 might have its two endpoints in v1. Since Σ1 is

defined in N1, it induces near at least one boundary component of U1 a section of
the flow: that is, a collection of circles in each torus fiber of U1 near that boundary
component. Denote by N2 the connected component of N that corresponds to the
other endpoint of e1. It could happen that N2 = N1.

Three things can occur: the slope of X in V1 is non-constant, constant rational
or constant irrational. If it is non-constant in V1, we can assume it is non-constant
in U1 up to shrinking a bit the domains N1 or N2 and enlarging U1.

The slope is non-constant. We can use Proposition 5.7 to find a Birkhoff
section in U1 that restricts to each torus fiber near the boundary component of
U1 ∩N2 as a given family of curves. Notice that the binding orbits will be ∂-strong.
Hence, if N2 = N1, then Σ1 is defined near each boundary component of U1 and
we can find a Birkhoff section that extends Σ1 inside U1. If N2 6= N1, we apply
Proposition 7.3 to N2, finding a closed form η2 near N2 that evaluates positively
on the Reeb vector field and can be assumed to define a rational cohomology class
in N2. In particular, a fiber of the fibration defines global section Σ2, which is
defined near U1 ∩N2. We can glue Σ1 and Σ2 with a Birkhoff section inside U2

using Proposition 5.7, adding ∂-strong binding components.

The slope is constant irrational. In this case, both N1 and N2 are diffeo-
morphic to a neighborhood of irrational tori or to a neighborhood of an isolated
periodic orbit. Thus N1 and N2 are either diffeomorphic to T 2 × I or to D2 × S1.

If N2 = N1, then N1 has at least two boundary components and thus N1
∼= T 2×I.

Then U = U1 diffeomorphic to T 2 × I and M is obtained by gluing N1 and U
along their boundaries. Cutting along one of the boundary components of N1, we

obtain M̃ ∼= T 2 × I and the flow is irrational in each fiber. Any homology class
defines a global section, which induces a Birkhoff splitting for X.

Assume that N2 6= N1, we can begin by extending Σ1 over U1. If N2 is a
neighborhood of an irrational torus, then Σ1 trivially extends to N2. If N2

∼=
D2 × S1, the section Σ1 induces a collection of embedded circles in ∂N2. If these
circles are not meridian circles, then Σ1 extends to a ∂-strong Birkhoff section in
D2×S1 whose binding is the core orbit {0}×S1. Otherwise Σ1 ∩D2×S1 induces
circles which are up to isotopy of the form {r = ct} × S1 × {q}. In this last case,
we simply extend Σ1 as the disk D2 × {q}, which is transverse to the flow, and
hence no new binding components arise. Observe that we can isotope the section
so that it is smooth.
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The slope is constant rational. As in the previous Σ1 extends trivially to
U1. If N2 = N1, we cut along one of the connected components of ∂N1, as in the
previous case.

If N2 6= N1, then we proceed as follows. Let η1 be the rational closed 1-form
defined in N1 ∪ U1 dual to Σ1, it is then defined near one boundary component
of N2 and η1(X) > 0. Then η1 can be further extended to V 1. Consider now a
neighborhood of V 1 which contains a connected substratum K2 of Sc2 ∩N2 that
is not necessarily equal to the connected set Sc2 ∩N2.

We want to apply Proposition 7.3 to extend η1 to all N2. Choose a 1-dimensional
substratum γ of K2, we can choose a positive constant c such that cη1 satisfies∫
γ cη1 = 1

dγ
. Let κ be another 1-dimensional substratum of K2, we claim that∫

κ cη1 = 1
dκ

. Indeed, as argued in the beginning proof of [11, Proposition 3.2], the
homology class of dγγ and dκκ are both equal to that of any simple closed orbit
of the integrable region U1. Hence [dγγ] = [dκκ], and since η1 is closed it follows

that
∫
κ cη1 =

dγ
dκ

∫
γ cη1 = 1

dκ
. We can apply Proposition 7.3 to cη1, obtaining as

a byproduct an extension as well of η1 to a closed 1-form positive on X near
N1 ∪ U1 ∪N2. If η1 does not define a rational cohomology class in N1 ∪ U1 ∪N2,
we perturb it so that it does and still evaluates positively on the Reeb vector field.
A fiber of the fibration defined by this new 1-form is a global section of the Reeb
vector field in N1 ∪ U1 ∪N2. We keep the notation η1 for this rational 1-form on
N1 ∪ U1 ∪N2.

We have now a ∂-strong Birkhoff section in the domain N1 ∪ U1 ∪N2 that is
either connected or disconnected according to the cases above. We want to iterate
the construction following a different edge of v2, corresponding to a domain U2

attached to N1 ∪ U1 ∪N2.
Let N3 be the connected component of N corresponding to the other vertex of

v2. In N1 ∪ U1 ∪N2 we either have a section dual to the 1-form η1 or a ∂-strong
Birkhoff section. In the second case, we start by blowing up the binding orbits
to obtain a section in the resulting manifold with boundary. In both cases, we

denote the corresponding manifold with boundary M̃1 endowed with a rational

1-form η1. All the arguments we used for (N1, η1) apply to (M̃1, η1): if N3 intersects
N1 ∪U1 ∪N2 and in U2 the slope of X is constant we cut along an invariant torus
and if it not we extend η1.

Doing this for each edge of the graph we end up with a Birkhoff section of X in

a manifold M̃ that is connected and obtained by cutting M along a finite number
of invariant tori. Thus, we have shown that X admits a Birkhoff splitting. �

Corollary 7.4. Let (H, f) be an integrable system on a 4-dimensional symplectic
manifold (W,Ω). Let M be a (connected component) of a regular energy level set
of H such that f |M is an analytic non-constant function in M . If the Hamiltonian
flow of H restricted to M has no invariant Reeb cylinders, then it admits a Birkhoff
splitting in M .
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Proof. The analysis carried out in [11, Sections 2 and 3] shows that M is a stable
energy level set: the Hamiltonian flow is parallel to the Reeb flow of a SHS on M .
It has an analytic integral, so by Theorem 7.2 it admits a Birkhoff splitting. �
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