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Abstract
This paper is devoted to analyze the inverse problem of determining two space dependent ionic
parameters of a nonlinear reaction diffusion system described by a parabolic-elliptic one, modeling
the electrical activity in the heart. We consider the classical phenomenological model in cardiac
electrophysiology of FitzHugh-Nagumo to describe the ionic exchanges at the microscopic level.
Our main result is the uniqueness and a Lipschitz stability estimate for two ionic parameters (k, γ)
of the model using sub-boundary observations over an interval of time. The key ingredients are
global Carleman-type estimates with a suitable observations acting on a part of the boundary.
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ness, Stability result

I INTRODUCTION

Let Ω ⊂ R3 be a bounded connected open set whose boundary ∂Ω is regular enough and Γ0,Γ1

and Γ2 are nonempty sub-boundaries of ∂Ω. Given T > 0, in Ω we consider a modified version
of the bidomain model, it decribes the electrical activity of human induced pluripotent stem
cells-cardiomyocytes (hiPSC-CMs) based on multi-electrode array (MEA) experiments where
the drug acts directly on the maximal conductance of the targeted ion channel:
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

cm(1 + σ−1
e σi)∂tv − div(σi∇v) = (1 + σ−1

e σi)(Istim − Iion(v, w))

−A(x) · ∇ue in Q := Ω× (0, T ),

−div(σe∇ue) = cm∂tv − Istim + Iion(v, w), in Q := Ω× (0, T ),

∂tw + f(v, w) = 0 in Q := Ω× (0, T ),

σi∇v.ν + σi∇(ue).ν = 0 on Σ := ∂Ω× (0, T ),

ue = 0 on Σ0 := Γ0 × (0, T ),

σe∇(ue).ν = 0 on Σ2 := Γ2 × (0, T ).

σe∇(ue).ν =
9∑

k=1

Ikel
|ek|

χek on Σ1 := Γ1 × (0, T ) ,

v(., 0) = v0, w(., 0) = w0 in Ω a.e,

(I.1)

where

A(x) := −∇(σ−1
e σi)σe = σ−1

e (σi∇σe − σe∇σi). (I.2)

Functions ue and v are respectively the extracellular and transmembrane potentials. The con-
stant cm is the transmembrane specific capacitance, σi and σe are respectively the intracellular
and extracellular conductivities. |ek| denotes the surface of the electrode k, χek denotes its char-
acteristic function, i.e. the function equal to one inside the electrode and zero outside and Ikel
is the electric current measured by the kth electrode. In an isolated heart, no current flows out
of the heart, as expressed by the Neumann condition on Σ2. We use homogeneous Dirichlet
boundary condition for the extracellular potential (ue = 0) on the three edges connected to the
ground denoted by Γ0 which has a "U" shape on each of our 6 wells and Γ1 is the surface of our
nine electrodes. For the remaining surface denoted by Γ2, we use a non flux boundary condi-
tion. σe∇ue.ν = 0. The transmembrane ionic current Iion is provided by the FitzHugh-Nagumo
phenomenological model given by

Iion(v, w) = −kv(v − a)(1− v) + w, f(v, w) = γv + βw (I.3)

where k, a, γ, β only depend on space, belong to L∞(Ω) and satisfy

0 ≤ a(x) ≤ 1, k(x) ≥ k0 > 0, γ(x) ≥ 0, β(x) ≥ 0,∀x ∈ Ω (I.4)

and that there exists M > 0 such that

∥k∥L∞(Ω) + ∥γ∥L∞(Ω) + ∥β∥L∞(Ω) ≤M (I.5)

The variable w denotes the ionic variable. In the first and second equation of system (I.1), the
current Istim is an external stimulation, which can be applied at a certain location of the domain
for a certain duration.

The current Ikel is computed using the electric model of Figure 1, by solving the following
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Figure 1: The electrical circuit for the electrodes description

ODE:

dIkel
dt

+
Ikel
τ

=
Cel
τ

dUk

dt
With Uk =

1

|ek|

∫
ek

uedx (I.6)

where τ = (Ri + Rel)Cel, Ri standing for the inner resistance, Rel and Cel for the resistance
and the capacitance of the electrode. In Eq. (I.6) we have introduced Uk as the mean value
of the extracellular potential ue over the electrode k. We complete this model with initial data
ue(·, 0) = ue,0.

The anisotropic properties of the two media are modeled by an intracellular and extracellular
conductivity tensors σi(x) and σe(x). Generally, the conductivities σi and σe are two matrices
given by

σj(x) = σtj(x)I + (σlj(x)− σtj(x))al(x)a
T
l (x),

where σlj and σtj , j ∈ {i, e} are the intra- and extracellular conductivities along and transversal
to the direction of the fiber (parallel to al(x)), respectively. In the case of equal anisotropy, i.e
the so-called anisotropy ratios σti/σ

l
i = σte/σ

l
e = 1, the σi and σe are simplified as σi(x) =

σi(x)I and σe(x) = σe(x)I with σi(x) = σti(x), σe(x) = σte(x), which is the case we discussed.

The purpose of this work is to give an answer to the following question: Is it possible to identify
simultaneously, the parameters k and γ, from observed data of the solution v, ue, w and Iel on
a sub-boundary of ∂Ω and some measurement at fixed times t0 and t1. The proof of the results
relies on Carleman estimates and a certain regularity of solutions for the MAE/ hiPSC-CM
assays.

II INVERSE PROBLEM: MAIN RESULTS

Let (v(n), u(n)e , w(n)) be solutions to our problem (I.1) respectivly with initial conditions (v(n)0 , u
(n)
e,0 , w

(n)
0 )

and ionic parameters (k(n), γ(n)) for n = 1, 2 and they are both under hypothesis of assumptions
of property (I.4)-(I.5).

Our first main result in this work gives a Carleman estimate for the Problem (I.1).
Let t0 and t1 two different times between 0 and T such that t0 < t1 and t1 − t0 <

t0
2

, without
loss of generality we assume that t0+ t1 ≤ T (by changing the scale of t and modifying slightly
the definition of the weight functions θm in what follows). We put T0 = t0 + t1, δ := t1−t0

4
and
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from now on, we denote by T := T0 (for notation simplicity). This estimate involves a function
ψ in Ω such that

ψ ∈ C2(Ω) , ψ > 0 in Ω , ψ = 0 on ∂Ω \ Γ0 , |∇ψ(x)| > 0 in Ω .

Then we define, for all λ > 0 and s > 0 the weight functions:

φm(x, t) = eλψ(x)θm(t) , ηm(x, t) = (e2λ∥ψ∥∞ − eλψ(x))θm(t) ,m = 1, 2 ,

the weighted integral:

Iψ(v, ue) =

∫
Q

{
sφm(|∂tv|2 + |div(σi∇v)|2) + (sφm)

3λ2 |∇v|2 + (sφm)
5λ4 |v|2

+ |div(σe∇ue)|2 +(sφm)
2λ2 |∇ue|2 + (sφm)

4λ4 |ue|2
}
e−2sηmdx dt,

and the weighted local function of observations:

NΓ0,ψ(v, ue, Iel) =

∫
Q

(sφm)
2
∣∣Iion(k(1), v(1), w(1))− Iion(k

(2), v(2), w(2))
∣∣2 e−2sηmdx dt

+

∫
Σ0

{
|∂tv|2 + |∇v|2 + |v|2 + |∇ue|2

}
dSdt+

∥∥Iel∥∥H1(0,T )
.

Here v = v(1) − v(2), ue = u
(1)
e − u

(2)
e and Iel := (Iel

1
, . . . , Iel

9
) = (I

1,(1)
el − I

1,(2)
el , . . . , I

9,(1)
el −

I
9,(2)
el ) ∈ (C1(0, T ))9 and θ0, θ1 ∈ C1(0, T ) defined by:

θ0(t) =


1

(t(2t0−t))2 , 0 < t ≤ t0 + δ
t20+δ

2−2(T
2
−t)2

(t20−δ2)3
t0 + δ < t ≤ T

2

θ0(T − t), T
2
< t < T

and θ1(t) =


θ0(t), 0 < t ≤ t0

constant, t0 < t ≤ t1

θ0(t), t1 < t < T

.

The Carleman inequality is then the following:

Theorem II.1:
Then there exists a number λ0 > 0 such that for an arbitrary λ ≥ λ0, we can choose a constant
s0(λ) ≥ 1 satisfying: there exists a constant C = C(s0, λ0) > 0 such that, for all s > s0,

Iψ(v, ue) ≤ CNΓ0,ψ(v, ue, Iel). (II.1)

The constant C > 0 depends continuously on λ0 but it is independent of s, and λ0 depends
continuously on γ̃.

Proof The proof of Theorem II.1 is very much technical, follwing Fursikov-Immanuvilov [2]
and based on integrations by parts and bounded functions.

The next second main result gives a positive answer to the question made above. Then, using
the classical Bukhgeim-Klibanov method [1], we show Lipschitz stability inequalities on the
two reaction parameters k and γ simultaneously which appears in the first three equations of
(I.1).
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Theorem II.2:
Let (v(n), u

(n)
e , w(n)) be solutions to our problem (I.1) respectivly with initial conditions

(v
(n)
0 , u

(n)
e,0 , w

(n)
0 ) and ionic parameters (k(n), γ(n)) for n = 1, 2 and they are both under hy-

pothesis of assumptions of property (I.4)-(I.5). In addition to that we assume that there exists
t0 ∈ (0, T ) such that:

∣∣g(v(2)(x, t0))∣∣ ̸= 0 ∀x ∈ Ω., then there exists a constant C > 0 which
depends only on Ω, T , M,M, k0,Istim and initial data of solutions (v(n), u(n)e , w(n)), n = 1, 2 to
our problem (I.1), such that:∥∥γ(1) − γ(2)

∥∥
L2(Ω)

+
∥∥k(1) − k(2)

∥∥
L2(Ω)

≤ CNT,Γ0(v, ue, w, Iel) ,

where

NT,Γ0(v, ue, w, Iel) =
∥∥v(1) − v(2)

∥∥
X
+
∥∥u(1)e − u(2)e

∥∥
X
+
∥∥∥I(1)el − I

(2)
el

∥∥∥
H2(0,T )

+
∥∥(u(1)e − u(2)e )(·, t1)

∥∥
H2(Ω)

+
1∑
i=0

∥∥(w(1) − w(2))(·, ti)
∥∥
L2(Ω)

.

Here X is the vector space H2(0, T ;H
1
2 (Γ0)) ∩ H1(0, T ;H

3
2 (Γ0)) equipped with the norm

∥u∥X =
(
∥u∥2H2(0,T ;L2(Γ0))

+ ∥∇u∥2H1(0,T ;L2(Γ0))

)1/2

and t1 is sufficiently close to t0.

By Theorem II.2, we can readily derive the uniqueness in the inverse problem.

Corollary II.3:
Under the same assumptions as in Theorem II.2 and if

w(1)(x, t0) = w(2)(x, t0) for all x ∈ Ω (II.2)
(u(1)e (x, ti), w

(1)(x, ti)) = (u(2)e (x, ti), w
(2)(x, ti)) for all x ∈ Ω, i = 0, 1 (II.3)

v(1) = v(2), ∇u(1)e = ∇u(2)e in Γ0 × [0, T ] (II.4)

I
(1)
el = I

(2)
el in x ∈ (0, T ) (II.5)

then γ(1) = γ(2) and k(1) = k(2) in Ω.

III DISCUSSION AND CONCLUSION

In this work, we use a mathematical model of the field potential recorded by the MEA device
which results in a system of partial differential equations with boundary conditions acting on
the four edges of our multi-electrode array device. We proved that the parameter identification
inverse problem is stable under certain conditions. These conditions have to be satisfied in
order to proceed to the computational estimation. Our approach is based on a new Carleman
inequality for the MEA/hiPSC-CM assays. We established a new global Carleman estimate
for solutions to a boundary value problem of a linear parabolic equation with Robin boundary
condition. This Carleman inequality is crucial for solving the parameter identification stability
problem. In order to prove the stability estimate for our ionic parameters k and γ at the same
time, we began by establishing the first stability estimate of parameter k only, then we used both
types of weight functions e−sη0 and e−sη1 to establish the last estimate of both k and γ using
that the second weight function is constant with respect to time between t0 and t1. This result
is a very important step in order to numerically solve the parameters identification problem in
cardiac electrophysiology because it provides the condition in which this problem is stable.
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