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NONLINEAR DIFFUSION IN THE MULTI-PATCH LOGISTIC
MODEL *

BILEL ELBETCH 'AND ALI MOUSSAOUI* %

Abstract. In this work, we study a multi-patch model, where the patches are coupled by
nonlinear asymmetrical migration terms, and each patch follows a logistic law. First, used the
theory of a cooperative differential system, we prove the global stability of the model. Next, in the
case of perfect mixing, i.e when the migration rate tends to infinity, the total population follows a
logistic law with a carrying capacity which in general is different from the sum of the n carrying
capacities, and depends on the migration terms. Second, we determine, in some particular cases,
the conditions under which fragmentation and nonlinear asymmetrical migration can lead to a total
equilibrium population greater or smaller than the sum of the carrying capacities. Finally, for the
two-patch model, we give a complete classification of the model parameter space as to whether
nonlinear dispersal is beneficial or detrimental to the sum of two carrying capacities.

Key words. Population Dynamics, Logistic equation, Nonlinear diffusion, Slow-fast systems;
Tikhonov’s theorem, Perfect mixing.

AMS subject classifications. 37N25, 92D25, 34D23, 34D15.

1. Introduction. There are many factors affecting the growth and the general
dynamics of population. One such important factor is the dispersal amounts and in
random ways. These dispersal can cause disturbances to the various ecosystems as
well as to the persistence or extinction of organisms. Bibliographies can be found in
the work of Levin [27, 28], Holt [25], Allen [1, 2, 3], and Gurney and Nisbet[24].

In [1], Allen considered the n-patch general model given by the following equa-
tions:

d:l?i ZT;
1.1 =rr; |1 —— T;,(x), i=1,...,n,
(1) = (125 ) + Tito)
where r; and K; are positive constants; x = (x1,...,2,)7 where z; represents the

population density in the i-th patch. The function Y; represent one of the three types
of different mechanisms. The mechanism for linear diffusion is given by:

n
(1.2) Ti(x) = D Bylwy—vwym), i=1,....n,
=1
where 3;; and +;; are positive constants. Dispersal by linear diffusion implies that the

species is able to move to all locations within its environment with equal probability.
The mechanism for biased diffusion is given by:

(1.3) Tl(l‘) = Z Bijmi (.Tj — ’Yijxi) 5 ,i = 1, ey
J=1,j71

where 3;; and +;; are positive constants. Note that, the term 'biased’ means that the
diffusion rate is a function of population density. The diffusion rate is regulated by
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population density, increasing for large populations and decreasing for small popula-
tions. The third type of mechanism, is the directed diffusion which is formulated by
Gurney and Nisbet [24], given by:

(14) Tl(l') = Z Bij (353*’71;5”12)7 7i:17"',n7

j=1j#i

where §;; and y;; are positive constants. Dispersal by directed diffusion implies that
the individuals move from high population concentration to low ones, i.e., the move-
ment is a function of species density. For more information on the biological interpre-
tation and also the continuous version of those types of diffusion, we refer the readers
to [1] and [24].

The objective of the work of Allen [1] is to study the effect of different types
of the dispersion on the persistence and extinction of the species. The persistence
and extinction behavior is completely determined in a two-patch model (1.1)(1.2) for
n = 2 ( see Theorem 1 in [1]). For model (1.1)(1.3), Allen [1, Theorem 2] showed that
a population modelled with biased diffusion is always persistent and in fact represents
a strongly persistent population. For more details on the results of persistence and
extinction, see Theorem 3 of [1] for n-patch model (1.1)(1.3) and Proposition 1 of [1]
for 2-patch case; Theorem 4 of [1] for the n-patch model (1.1)(1.4).

Lu and Takeuchi [29] have also considered the multi-patch logistic model with
nonlinear diffusion terms, i.e the system (1.1)(1.4). They obtained the sufficient and
necessary conditions for the system to be globally stable ( see Theorem 3 in [29]).

DeAngelis and Zhang [12], DeAngelis et al. [13] and Zhang et al. [35] have
considered the model (1.1) with

(15) Tz(.’L‘) = Z (.’I]Z‘,1 — 2(E2 +$i+1)’ 1= ]_7. - ,mn,

j=1.j#i

where we denote g = z,, and z,41 = x1, allowing the patches to join in a circle so
that the same relationships hold between x;,x;—1 and x;1; for all values of i. An
interesting result of (1.1)(1.5) is that in the case r; = K;, for i = 1,--- ,n, the total
population at steady state satisfies

Our aim in this work is to study the model of n patches coupled by nonlinear
migration terms ( same type of dispersion (1.4)). In particular, we are interested
in studying the effect of nonlinear dispersion on the dynamics of population, and to
compare some results for the nonlinear dispersion with those obtained for the linear
dispersion in [14, 15] for the model (1.7). In 2021, Elbetch et al. [15] have considered
the model of multi-patch logistic growth, coupled by asymmetric linear migration
terms

dx; i - .
(17) TJ; = T;x; (1 — I.T{) + 5 Z (Gijxj — H.jixi) 5 1= 1, R N
! J=1.j#i

where n is the number of patches in the system. The parameters r; and K; are
respectively the intrinsic growth rate and the carrying capacity of patch i¢. The term
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on the right hand side of the system (1.7) describes the effect of the linear migration
between the patches, where § is the migration rate and © := (6;;) is the matrix
representing the migrations between the patches. Note that, the system (1.7) is
studied also by Elbetch et al. [14] and Takeuchi [31] in the case when the matrix ©
is symmetric. We recall that, when the matrix of migration © is irreducible, System
(1.7) admits a unique positive equilibrium which is globally asymptotically stable
(GAS), see [7, Theorem 2.2], [6, Theorem 1] or [14, Theorem 6.1], when 5 — oo, this
equilibrium tend to
2. 0t

> 07ay
where o; = % and (61,...,0,)T the vector which generate the vector space ker © (
see Section 3).

In [14, 15], Elbetch et al. have answered in some particular cases of the model
(1.7) to the following important question: Is it possible, depending on the migration
rate, that the total equilibrium population be larger than the sum of the capacities
>, K 7 This question is of ecological importance since the answer gives the conditions
under which the linear dispersal is either beneficial or detrimental to total equilibrium
population. Note that, this question has been studied by many researches ( see
[4, 5, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 22, 34, 35] and [20, 21] and on susceptible-
infected-susceptible (SIS) patch-model). They proved that, if all the patches do not
differ with respect to the intrinsic growth rate (i.e., 1 = ... = r,), then the effect
of linear migration is always detrimental. In the case when (Ki,...,K,)? € ker©®
(if the matrix © is symmetric, the condition (K1, ..., K,)T € kerT' means that the
patches do not differ with respect to the carrying capacity ), linear migration has
no effect on the total equilibrium population. An example when the effect of linear
migration is always beneficial, is in the case when © is symmetric and all the patches
do not differ with respect to the the parameter o = r/K quantifying intraspecific
competition (i.e., oy = ..., ay,) ( see also [15, Prop. 4.2]).

This paper is organized as follows: in Section 2, we introduce the mathematical
model and we give some definitions and notations. Next, in Section 3, we study the
asymptotic behavior of the stability modulus of the matrix A given by (2.7), and we
prove that the stability modulus of A is strictly decreasing as function of the migration
rate and it is always negative. This result is used in Section 4 to prove the global
stability of the model (2.1). In Section 5, we study the behavior of the system (2.1) in
the case when the migration rate goes to infinity by direct method and also by using
perturbation arguments. In Section 6, we compare the total equilibrium population
with the sum of the n carrying capacities for some parameter space, and by using
the same method as Arditi et al. [5], we give a complete analysis of two-patch case
in Section 7. In Section 8, two-patch model where one growth rate is much larger
than the second one is considered, we compare the total equilibrium population with
the sum of two capacities in this case. We perform some numerical simulations to
illustrate our results in this paper and give a brief concluding remark.

(615, 0n),

2. The mathematical model. We consider the model of multi-patch logistic
growth, coupled by nonlinear migration terms given by:

i =

where x; is the population in patch ¢, the parameters r; and K; are respectively the
intrinsic growth rate and the carrying capacity patch 4, n is the number of the patches

3
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108 in the system. The parameter 3 represents the dispersal rate of the population; 6;; > 0
109 denotes the flux between patches j and i, for j # i. Note that if 6;; > 0 there is a
110 flux of migration between patches j and ¢ and if 6;; = 0 there is no migration. The
111 system (2.1) of differential equations can be written:

dx; Ty " 2 .
12 (2.2) = it <1K¢>+ﬂjzleijxj’ i=1,---,n,
113 where

114 (2.3) i = — Z b5, i=1--,n
=1,

115 denotes the outgoing flux of patch i. We denote by © the following matrix

— Ek;él 9;C1 (912 - Hln
021 DD L/ S Oon
116 (2.4) 0= ? . )
anl .o gn,nfl - Zk;ﬁn gkn
117 We call © the movement matrix of the system (2.1). Its columns sum to 0 since the

118 diagonal elements 6;; are defined by (2.3). The matrix
119 (2.5) O := O — diag(011, ... ,0un)

120 which is the same as the matrix ©, except that the diagonal elements are 0, is called
121 the connectivity matrix. It is the adjacency matrix of the weighted directed graph
122 G, which has exactly n vertices (the patches), and there is an arrow from patch j to
123 patch 4 precisely when 0;; > 0, with weight 6;; assigned to the arrow.

124 The system (2.1) can be also rewritten in matrix form as follow:
d
125 (2.6) d—f = diag(ry,...,7n)x + Ax?,
126 where x = (21,...,2,)7, 22 ;= (22,...,22)T and A the matrix defined by
127 (2.7) A= B0 —diag (a1,...,aq).

128  where o; = . First, we start by giving some definitions.
e : y giving

DEFINITION 2.1. A matriz M = (mj) is called cooperative if m;; > 0 for all
1 7.
Recall that the differential system

dx
_F
dt (@),

129 is said to be cooperative, if its jacobian matrix is cooperative, i.e., for all i # j;
130 (0F;/0z;) > 0, for all x positive.

131 DEFINITION 2.2. The stability modulus of a matriz M is given by
132 (2.8) s(M) = max{Re(\) : X is an eigenvalue of M} .

133 Note that, the matrix A is a non linear part of the system (2.1) and it is a cooperative
134  matrix.
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3. Asymptotic behavior of the stability modulus of the matrix A . Using
some results proven by Gao and Dong [22] on SIS patch-model. we give in this section
some proprieties of the stability modulus of the matrix A defined by (2.7), which is
a non linear part of the differential system (2.1). First for all, we recall that, if © is
irreducible, then 0 is a simple eigenvalue of © and all non-zero eigenvalues of © have
negative real part. Moreover, the kernel of the matrix © is generated by a positive
vector ( see Lemma 2 in [6]). In all of this paper, we denote by & := (J1,...,0,)T
this positive vector. For the existence , uniqueness, and positivity of § see Lemma
1 of Cosner et al. [9], Lemma 4.1 and Lemma 1 of Elbetch et al. [14, 15]. Note
that, if the matrix © is symmetric, then ker © is generated by § = (1,...,1)T. On
the other hand, it is shown in Guo et al. [23, Lemma 2.1] and Gao and Dong [22,
Lemma 3.1] that the vector (©%,,...,0% )T is a right eigenvector of © associated
with the zero eigenvalue. Here, O is the cofactor of the i-th diagonal entry of O,
and sgn(0©};) = (—1)"~!. As in our work, the matrix © is assumed to be irreducible,
then (—1)""1(07,,...,05,)7T is strictly positive, i.e §; = (=1)"710F > 0 for all 1.
Therefore, we have explicit formula for the components of the vector J, as functions
of the coefficients of O, at our disposal. For two patches we have § = (612, 021)7, and
for three patches we have § = (61, d2,63)7, where

01 = 612013 + 012023 + 0320,3,
(3.1) 02 = 021013 + 021023 + 031623,
03 = 021032 + 031012 + 031032.

In Lemma 2.1 of Guo et al. [23] gives explicit formulas of the components of the
vector &, with respect of the coefficients of © as follow:

(3.2) = [ 0 k=1,....n

TETs, (i,j)€E(T)
where 7 is the set of all directed trees of n vertices rooted at the k-th vertex, and
E(T) denotes the set of arcs in a directed tree T'.

PROPOSITION 3.1. The stability modulus A*(8) := s(A), with
A = pO —diag{ay,...,an} satisfies
1. \* is strictly decreasing in S € [0, 4+o0].

2. X* = —max{aq,...,an} as § — 0.
30N = N = =)0 il /Zl 190; as B — oo. In addition, if the matriz O is
symmetric, then X5, = -1 5" a;.

Proof. The proof is derived from Corollary 3.5 in Gao and Dong [22]. Indeed,
it was shown by Gao and Dong [22] for a SIS patch model that, the function 8 —
s(F — D + ©) is strictly decreasing in 8 € [0, 00[ where F' and D be a two positive

diagonal matrix. Therefore, for F' =1 and D = diag(a, ..., an), we get
da*
0> %S(H—diag(al, co0m)+0) = e (1 + s(—diag(aq,...,an) + 80)) = 13 (8).
It is clear that limit A* tend to —max {aq,...,a,} as 8 — 0.
When 8 — oo, by Corollary 3.5 in Gao and Dong [22] for the choice F — D =
—diag(ay, ..., a,) we obtain the limit A%, of A*. In particular, if © is symmetric, one
has §; = 1 for all 7. 0

As corollary of the previous proposition, we have the result:

COROLLARY 3.2. Consider the matriz A defined by (2.7), then s(A) < 0.
5
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4. Global dynamics. In this section, our goal is to study the dynamics of
the system (2.1). Note that, in the absence of migration, i.e the case where § =
0, the system (2.1) admits (K7,...,K,) as a non trivial equilibrium point, which
furthermore is GAS, and the origin as trivial equilibrium which is unstable. The
problem is whether or not, the equilibrium continues to be exist and GAS for any
B > 0. First, we prove the following result:

PRropPoOsITION 4.1. The positive cone R} is positively invariant for the system
(2.1).
Proof. Suppose that, at a given time ¢, one of the state variables of the system

(2.1) is at a boundary of R}, meaning that at least one population is at 0. We suppose
that z; =0, and ; > 0 for all j # 4, then the dynamics of z; is given by

d.IZ‘ 2
dt = ,3;0”$J Z O

So each trajectory initiated at a boundary of R’} either remains at the boundary or
goes to the interior of R’ . According to [30, Proposition B.7, page 267], no trajectory
comes out of R”. Therefore, R} is positively invariant for (2.1). 0

To establish the boundedness of solutions of (2.1), we have the following result:

PROPOSITION 4.2. For any non negative initial condition, the solutions of the
system (2.1) remain non negative and positively bounded. Moreover, the set

(4.1) A—{(xl,...,xn)eR":OSZa:iS?}
i=1 1

is positively invariant and is a global attractor for (2.1), where £§ = minj<;<, r; and
& =2 i ik

Proof. To show that all solutions are bounded, we consider the quantity defined
by Xr(t) = >, z;(t). So, we have

(4.2) Xr(t) = 3 ria(t) (1 - ””;)) .
i=1 v

For all r;, K; € RY., we have the following inequality:
(4.3) TiZ ( - }%) < ri(KG — ).
Substituting Equation (4.3) into (4.2), we get

(4.4) Xp(t) < =& Xp(t) +&5 for all t > 0,

which gives

(4.5) Xr(t) < (XT(O) — gi) e &t 4 g—z, for all t > 0.
1 1
Hence,
4.6 Xp(t) < max [ Xp(0),22 ), for all t > 0.
6*
1
6

This manuscript is for review purposes only.



212

214

215
216
217
218
219

220

226
227

228

229

230

Therefore, the solutions of system (2.1) are positively bounded and defined for all
t > 0. From (4.5) it can be deduced that the set A is positively invariant and it is a
global attractor for the system (2.1). |

THEOREM 4.3. Assume that the matriz © = (0;j)nxn (or equivalently, the con-

nectivity matriz ¢ ) is irreducible. The model (2.1) has a unique positive equilibrium
point which is GAS in the positive cone R} \ {0}.

Proof. Consider the system (2.1). According to a result of Lu and Takeuchi [29,
Theorem 3] for the nonlinear diffusion system with logistic growth rate functions, the
system (2.1) possesses a globally stable positive equilibrium if the matrix A given by
(2.7) is stable, (i.e., there exists a positive diagonal matrix C such that CA + ATC
is negative definite), which equivalent s(4) < 0 by Lemma 3 of [29]. According to
Corollary 3.2, the model (2.1) has a unique positive equilibrium point which is GAS
in the positive cone R’ \ {0}. d

REMARK 1. The matriz © being irreducible means that the set of patches cannot
be partitioned into two nonempty disjoint subsets, I and J, such that there is no
migrations between a patch in subset I and a patch in subset J. The matriz © is
assumed to be irreducible throughout the rest of the paper. Therefore species can reach
any patch from any patch either directly or through other patches.

In all of this work, the GAS equilibrium of the system (2.1), whose existence is shown
in Theorem 4.3, is denoted by EX(8) = (z3(8),...,z5(8)), and by T(8) the total
equilibrium population

(4.7) Tr(8) = fo(ﬁ»

5. Large diffusion rate. In this section our aim is to study the behavior of
E*(B) and T(B), defined by (4.7), for large migration rate, i.e when 8 — oco.

5.1. The fast dispersal limit. We have the following result:

THEOREM 5.1. We have:

(51) im E(8) = 2= VO i

B—+oo Zi:1 div;

where «; = r;/K;. Moreover, if the matriz © is symmetric, then the equilibrium
E*(B) converges to an element of ker ©

. * _ Z?:l T

Proof. The equilibrium E7 is a solution of the algebraic system:

(53) 0= TiZT; (1 - I:L;) + 6 Z (9”1'3 - Gﬂxf), 1= 1, e, n.
' j=1.j#i

The sum of these equations shows that E* () satisfies the following equation

(5.4) Zn:m (1 - f{) = 0.
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Therefore E(3) belongs to the ellipsoid:

(5.5) Er ! = {x eR™: Zrm (1 - i> = 0} .

Note that, this ellipsoid is independent of the migration terms 5 and 6;;. The ellipsoid
E"~! passes through the points O, and A = (K1, ..., K,).

So, the equilibrium E7 is the solution in the positive cone, of the equation Fgg = 0,
where

(5.6) Fy(x) == (Ff(x), o F (@)Y i (1 - f{)) :
i=1 ¢

with

1 i g .
(5.7) Ff(x) = Brixi (1 - 2) + Z (91-]-:10? —0;27), i1=1,...,n—1.
Y =l

On the other hand, the limit equations (obtained when 8 — o0) are given by:

(5.8) Foo(z) = (Ffo(x), . .,Fg-;l(x),grixi (1 - 2)) ,

with
n

(59) Floo(l‘) = Z (QUZ‘? - Hﬂl‘?), 1= 1, ey, — 1.

j=Lj#i
According to Lemma B.1 of [15], the system (5.9) admits unique solution given by:
T; = \/gxn for all i = 1,--+ ,n — 1. So, the solutions of the equation F (z) = 0 is
given by the solutions of the following system:

(5.10) n v ,
Z L5 1— ﬂ =0

which admits z,, =0 and z,, = 2727
admits two solutions, 0 and N

Bi(oc) = S f (Vo1 50,

The ellipsoid E"~! is compact, so the equilibrium E?(3) has at least one limit
point in the ellipsoid, when S goes to infinity. By the same reason as in [15, Proof of
Theorem 3.3], we prove the convergence of E (5) to E}(c0).

If the matrix © is symmetric, one has §; = 1, for all 4. a

As a corollary of the previous theorem we obtain the following result which describes
the total equilibrium population for large growth rate:

8
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COROLLARY 5.2. We have

(5.11) T (+00) (Z f) iz Voirs

Yo 1(5041

Moreover, if the matriz © is symmetric, then:

D Ti

(5.12) T (+o00)=n
Zl 1 a"
Proof. The sum of the n components of the point E’(co) immediately gives the
equation (5.11). |

We remark that, the total equilibrium population for large migration rate (5.12) is
equal the total equilibrium population for large migration rate of the multi-patch
logistic model with linear diffusion obtained in [14, Equation 24 ]. This result show
that, if the movement between the n patches is symmetric, the nonlinear diffusion has
no influence on the total equilibrium population for large migration rate.

5.2. Two time scale dynamics. We can use the theory of singular perturba-
tions to obtain a better understanding of the behavior of the system in the case of
perfect mixing. We have the following result:

THEOREM 5.3. Let (z1(t,B), ..., xzn(t,B)) be the solution of the system (2.1) with

initial condition (x9,---,20) satisfying 29 > 0 for i = 1,...,n. Let Y(t) be the

solution of the equation

dx X
(5.13) =X (1 - W) ,

where

i Vo Doy ik

Then, when 8 — 0o, we have

(5.14) and  «a; =1;/K;.

(5.15) ixi(t, B) =Y (t) +op(1) uniformly for t € [0, +00)

and, for any ty > 0, we have

(5.16)
gy = Vi
xz(tvﬂ) - E?:l \/E

Proof. Let X(t,8) = Y. i, x:(t,8). We rewrite the system (2.1) using the vari-
ables (X, 1, -+ ,op_1), and get:

Zrl‘rz (1 - ) 9
X; n ,
ar it (1 - K> + 52;':1,#1(9@'95? — 0jiz7), i=1L...,n—L
9

Y (t) + 0s(1) i=1,...,n, uniformly for t € [tg,+00).

(5.17)
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This system is actually a system in the variables (X, x1,--- ,x,_1), since, whenever
Z, appears in the right hand side of (5.17), it should be replaced by

(5.18) =X

When 8 — oo, (5.17) is a slow-fast system, with one slow variable, X, and n — 1 fast
variables, x; for i = 1...n — 1. As suggested by Tikhonov’s theorem [26, 32, 33], we
consider the dynamics of the fast variables in the time scale 7 = St. We get

das 1 ] n
(519) da: = B’I‘,‘Jﬁi (1 — ;;z) + Z (GU$3 — 9]1],‘12), 7 = 1, e, — 1.
Y =Ly

where x,, is given by (5.18). In the limit 8 — oo, we find the fast dynamics

dx; - )
dTZ = Z (71]1'3_7]7»%22)7 Z:L"' 777’_1'
J=1,j#i

This is an (n—1)-dimensional non linear differential system. According to [15, Lemma
B.1], we can deduced that, this system admits unique equilibrium GAS given by

\/E 671—1 !
(i)

Thus, the slow manifold of System (5.17) is given by

Vo
i Vi

As this manifold is GAS, Tikhonov’s theorem ensures that after a fast transition
toward the slow manifold, the solutions of (5.17) are approximated by the solutions
of the reduced model, which is obtained by replacing (5.20) into the dynamics of the
slow variable, that is:

" X X
Z Py 1\7 (1(2?—1@')&@)TX<1(Z?—1x/57)K>’

where r and K are defined in (5.14). Therefore, the reduced model is (5.13). The
system (5.13) admits

(S (S

as a positive equilibrium point, which is GAS in the positive axis, the approximation
given by Tikhonov’s theorem holds for all ¢ > 0 for the slow variable and for all ¢t >
to > 0 for the fast variables, where ¢, is as small as we want. Therefore, letting Y (¢)
be the solution of the reduced model (5.13) with initial condition Y (0) = X(0,8) =
> 22, then, when 8 — oo, we have the approximations (5.15) and (5.16). d

10

(5.20) z; = X, i=1,...,n—1
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Note that, in the case of perfect mixing, the approximation (5.15) shows that, the
total population behaves like the unique logistic equation (5.13) and then, when ¢ and
B tend to oo, the total population Y z;(¢, 8) tends toward

n n @71 51"’"1‘
(i) - (Tva) Sl

as stated in Theorem 5.1. The approximation (5.16) shows that, with the exception
of a thin initial boundary layer, where the density population z;(t, ) quickly jumps
from its initial condition 2 to the average v/8;Xo/ > i, v/, each patch of the model
behaves like the single logistic equation

d—u—ru 1—L =1 n
i K =1,...,n.

where r and K are given in (5.14). Hence, when ¢t and 8 tend to oo, the density
population z;(t, 3) tends toward K = \/Ez’iléi‘{lm as stated in Theorem 5.1.

As a corollary of the previous theorem we obtain the following result which de-
scribes the behavior of the system (2.1) for perfect mixing and nonlinear symmetrical

dispersal:

COROLLARY 5.4. Assume that the matriz © is symmetric. Let (x1(t, 5), ..., 20 (¢, 5))}

be the solution of the system (2.1) with initial condition (29, --- ,22) satisfying z? > 0
fori=1---n. Let Y(t) be the solution of the equation
dX X

21 —=rX|1—-—
(5:21) a < nK> ’
where
(5.22) r= M, K = % and  a; =1;/K;.

n Zi:l (67
Then, when 8 — oo, we have
(5.23) in(t, B) =Y (t) +os(1) uniformly for t € [0, +00)
i=1

and, for any ty > 0, we have

(5.24) xi(t, B) = % +op(1) 1 =1,...,n, uniformly for t € [tg,+00).

Proof. If © is symmetric, one has §; = 1 for all i. Therefore, the formulas (5.13),
(5.14), and the approximations (5.15), (5.16) for §; = 1, give the proof of the corol-
lary. 0

5.3. Comparison of T} (+o00) with ) . K;. According to Formula (5.11), it is
clear that the total equilibrium population at 3 = 0 and at 8 = 400 are different in
general.

In the remainder of this section, we give some conditions, in the space of param-
eters r;, K;, a; and §;, for limit of the total equilibrium population when 8 — oo to
be greater or smaller than the sum of the carrying capacities. We show that all three
cases are possible, i.e T¥(4+00) can be greater than, smaller than, or equal to T.%(0).
First, we start by giving some particular values of the parameters for which equality
holds.

11
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PROPOSITION 5.5. Consider the system (2.1). Let we denote Vker © the vector
space generated by the vector (\/81,...,v/0,)T. If the vector <o%’ o i)T lies in
Vker ©, then T} (+00) =3, K;.

Proof. Direct consequence of the equation (5.11). 0

Note that, if the matrix © is symmetric, then, Prop. 5.5 says that if all «; are equal,
then Ty (oc0) = Y, K;, which is [14, Prop 4.4] obtained for the multi-patch logistic
model with linear diffusion.

In the next proposition, we give two cases which ensure that T,5(0) can be greater
or smaller than T7(+00). This result can be stated as the following proposition:

PROPOSITION 5.6. Consider the system (2.1).

Kl Kn . Kl Kn
1. If —= < < d o < ... <\bhap, —> ... > d
f 5 S ST an 100 < < Qp, or if 5 5 an
Voo > > \/On 0, then T (+00) > T:(0).
K, K K,
2 If—(;1 > ... > 5 and /oo < ... < Vopan, orif—;l <...< 5 and
Voiag > .0 > Voo, then T (+00) < T(0).
In both items, if at least one of the inequalities in — < ... < or
- Vo1 V4
—_— > > 18 strict, then the inequality is strict in the conclusion.
V01 Von
K;
Proof. Apply Lemma B.2 in [15] with the following choice: w; = v/d;, u; = 75
and v; = /0, for alli =1,...,n. O

If the matrix © is symmetric, one has §; = 1, for all ¢, and Prop. 5.6 becomes

COROLLARY 5.7. Consider the system (2.1). Assume that © is symmetric.
1. fKG<...<Kpanday <...<ap,orif K1>...>K, anday > ... >
ap, then T (400) > T(0).
2. IfKh > ...>2 Kpanday < ...<ap,orif K1 <...< K,anday > ... > ay,
then T (+00) < T:(0).

6. Effect of nonlinear dispersal on total population size. In this section,
we will investigate how non linear dispersal affects the total population in all patches.
In particular, when is it detrimental or beneficial to the sum of carrying capacities?
Mathematically speaking, we will compare, in some particular cases of the system
(2.1), the total equilibrium population T;(5) , with the sum of carrying capacities
T (0) = >, K;, when the rate of migration § varies from zero to infinity. We show
that the total equilibrium population, 7,5 (3), can either be greater than, smaller than,
or equal to the sum of the carrying capacities 7.¥(0) (non dispersal).

6.1. Nonlinear dispersal my be unfavorable to T} . In the next proposition,
we show that if the growth rates are equal in all patches, then the total equilibrium
population is always smaller than the sum of the carrying capacities:

PROPOSITION 6.1. Ifr; = --- = ry,, then the total equilibrium population, defined
by (4.7) satisfies T (8) < > iy K;, for all B € [0, 00].

Proof. The equation of the tangent space to the ellipsoid E*~!, defined by (5.5),
12
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363

364

365

at point A = (K,...,K,) is given by

- oY
(6.1) > (@i - Ki)T(A) =0,
i=1 Ti
where T is given by (5.5). Since %(A) = —ry, (6.1) can be written as follows:

(6.2) > i (w— K;) = 0.
i=1

If we take r; = --- = r,, in (6.2), we get that the equation of the tangent plane to

E"~! at the point A is
n n
S-Sk,
=1 i=1

By the convexity of E"~!, any point of E"~! lies in the half-space defined by the
inequation Y., x; < >.i_ | K;. Therefore E*(J3) satisfies

ixj(ﬂ)gim for all 8 > 0.
i=1 i=1

Which completes the proof of the proposition. 0

The result of the previous proposition is the same as Prop. 3.1 and Prop. 6.2 in [14]
for the linear diffusion.

6.2. Independence of 7)Y with respect to nonlinear dispersal . In the
next proposition we give sufficient and necessary conditions for the total equilibrium
population not to depend on the migration rate.

PROPOSITION 6.2. The equilibrium E(8) does not depend on B if and only if
(K%,...,K2)T € ker©. In this case we have E*(B8) = (K1, ..., K,) for all 3 > 0.

Proof. The equilibrium E () is the unique positive solution of the equation
(6.3) f(2) + 0% =0,

where f(z) = (fi(z1),..., falzx)T, and fi(x) = rxi(l — 2;/K;), i = 1,...n.
Suppose that the equilibrium E(8) does not depend on 3, then we replace in Equation
(6.3):

(6.4) FE*(B)) + BO(E;(8))* = 0.
The derivative of (6.4) with respect to 8 gives
(6.5) O(E;(8))* = 0.

Replacing the equation (6.5) in the equation (6.4), we get f(E(8)) =0, so E*(5) =
(Ki,...,K,). From the equation (6.5), we conclude that (K?,..., K2)T € ker ©.
Now, suppose that (K?,...,K2)T € ker ©, then (K1,..., K,,) satisfies the equa-
tion (6.3), for all 8 > 0. So, EX(8) = (Ky,...,K,), for all § > 0, which proves that
the total equilibrium population is independent of the migration rate 3. 0

If the matrix © is symmetric, the previous proposition asserts that, the K;, for
i=1,...,n, are equal if and only if E = (K, ..., K), where K is the common value
of the K;. This is [14, Proposition 3.2].

13
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391
392

393

394

396

397
398

399

6.3. Nonlinear dispersal my be favorable to 7); . In this section, we give a
situation where the non linear dispersal is favorable to the total equilibrium popula-
tion. Mathematically speaking:

PROPOSITION 6.3. Assume that for all j <1, c;\/0;j = aj\/04i. Then
n
B)=> K; for all B> 0.

Moreover, if there exist i and jo # io such that vy, # rj,, then T (8) > Yi_ | K;, for
all B > 0.

Proof. The equilibrium point E () satisfies the system

(6.6) 0=z} (B) (K —ai(B))+ 8 Y (0i5(a})°(8) = 0,u(27)*(B)), i=1---n.

j=1,j#i

Dividing (6.6) by «;x}, one obtains

)? = 0;i(z}(B))*
xf(B)=K;+p .
J lzu:#z @il (5)

Taking the sum of these expressions shows that the total equilibrium population 7}
satisfies the following relation:

(6.7)

B))? — 0;:(x7(8))*

ZK *52 127& o
)? = 05i(2;(B))*  05i(x7(B))? — 055(x5(B))?
,ZK +BZ< =) + 22 (5) )
91].’17’; — Hﬂx;‘
-3k +/3Z( Vi (9) ( et
V05w (8) — /0i7; (B

" O‘ij(/B) ) ZK

9”1'; - Gﬂxf ij.’E; — O[i.’E;k
82 (VB55(8) + v/05025(8)) ( ) ajaix,g%x(*(ﬂ) ) ),

The conditions a;+/0;; = a;4/0;; can be written w;; = «;/\/8;; = a;/+/0;; for all

j <1, such that 0;; # 0 and 6;; # 0. Therefore, there exists w;; > 0 such that

a5 = Wijy/ 01']‘ and a; = wij\/Oji for all i,j with 0,']‘ 75 0 and 9]'1' 7& 0.
Replacing «; and «; in (6.7), one obtains
(6.8)

w” Ux (B) + /0jiw; ( )(\/7 (B) — Qﬂxf(ﬂ))2
ZK > a0t} (5)25 (9) |

14

This manuscript is for review purposes only.



107
408
409
410
411

412

413
414
115
416
417
418
119
420
421
423
424
425
126
427
428
129

430

431

432
433

434

Therefore, T (8) > > K; for all 3> 0. As the matrix © is assumed irreducible,
then the equality holds if and only if 8 = 0 or \/QTJ:C;(ﬂ) —/bxf(B) =0, for all
i and j. Let us prove that if at least two patches have different growth rates, then
equality cannot hold for 8 > 0. Suppose that there exists f* > 0 such that the
positive equilibrium satisfies

(6.9) Vi,j, /0ia}(8) = /052 (%) == Vi, j,  035(25)*(8%) = 05:(7)*(B7).-
Replacing the equation (6.9) in the system (6.6), we get that «}(5*) = K, for all
i. Therefore, from (6.9), it is seen that, for all ¢ and j, K?Hij = K?20j;. From these
equations and the conditions a;+/0;; = oj1/0;;, we get r; = r;, for all 4 and j. This is
a contradiction with the hypothesis that there exist two patches with different growth
rates. Hence the equality in (6.8) holds if and only if 8 = 0. ]
As corollary of the previous proposition, we obtain the following result:

COROLLARY 6.4. Assume that © is symmetric. If a; = ... = a,, then
T:(8) > ¥, Ki for all B> 0.

Proof. When the matrix © is irreducible and symmetric, the hypothesis of Prop.
6.3 implies that o; = o5 for all 4 and j. Indeed if two patches ¢ and j are connected
(i.e 8;; = 6;; # 0), then we have a; = ;. As the matrix © is irreducible, for two

arbitrary patches, there exists a finite sequence (i,...,j) which begins in 7 and ends
in 7, such that 6,5, # 0 for all successive patches a and b in (i,..., 7). Hence ag = v
for all @ and b in (4,...,7). Hence, a; = ;. |

The result of the corollary 6.4 says that if all a; are equal, non linear dispersal enhances
population growth, which is [14, Prop. 3.3], which has been proven for the multi-patch
logistic model with linear diffusion.

REMARK 2. For three patches or more, if the matriz © does not verify the condi-
tion (Yi,j, 6;; =0 <= 0;; = 0), then the hypothesis of Prop. 6.3, that for all j < i,
i/ 0i5 = oz]\/ ;i cannot be satisfied. Note that the hypotheszs oi\/0i5 = 0aj/0;

implies that a30;; = o2 Qﬂ, which implies, for alli=1,...,n, one has
" 0. L/ LR " a0 — a0,
e A S A D D e Ry
o? o? o? a?a?
G=170 g=Lg#i o j=lggi b j=lj#i i

Therefore, the hypothesis of Prop. 6.3 implies that (- %) € ker ©.

HN‘H

6.4. Derivative of T* at 5 = 0.

PROPOSITION 6.5. The derivative of the total equilibrium population T (3) at
B =0 is given by:

(6.10)

Proof. By differentiating the equation (6.7) at 8 = 0, we get:

dT* )? — 0;:(27(0))
Z Z a;x} (O) ’

=1 j=1,j#1i

which gives (6.10), since x}(0) = K, for all i =1,...,n. d
15
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The derivative (6.10)can be written in matrix form as follows:

drr
2 (0)=RTOK?,
2(0)
T
with R = <%, e i) and K2 = (K2,...,K2)T. Note that, if the growth rates are
equal in all patches, or, (KZ,..., K2) lies in the vector space ker ©, then the derivative

of the total equilibrium population T} at 5 = 0 equal to zero.

7. Two-patch case. In this section, we concentrate on the two-patch model:

d
e (1-2) 48 (01223 — O2127) ,
’ d332 To

W =roro |1 — E + B (921.1‘? — 912%‘%) .

The total equilibrium population of the model (7.1) in the perfect mixing case (i.e
B — o) is given by the following formula:

. B VOiar1 + V02172
(7.2) 15 (400) = (\/9EJF 921) O12m1 /K1 + 02172/ Ko’

and the derivative of the total equilibrium population 75 (3) at 8 = 0 becomes

Ty
dg

The equilibrium of the system (2.1) is the solutions of the following algebraic system:

(0) = (01253 — 0, K7) <1 _ 1) ,

1 T2

(7.3)

X
- O=mrmax [1— fll + 5 (912$§ - 92196%) )
7.4
X
O0=1rox9 (1 — fé + B (Hglx% — 912%%) .

The sum of two equations of (7.4) shows that the equilibrium points are in ellipse
noted [E, where its equation is given by:

1 €2
7.5 E: 11— — 1——)=0.
(7.5) 11 ( K1> + rox2 ( K2>

The ellipse E passes through the points (0,0), (K71,0), (0, K2) and A = (K1, K>).
Note that, it is independent of migration rate 8 and 6;; (shown in red in Fig. 1).
Solving the first equation of system (7.4) for x5 yields a hyperbola noted Hg

defined by
1 T x
Hp : hg(z1) == \/912 (92133% — Elxl (1 - K11>>

As our study is limited in the positive cone, then we are interested only in the positive
branch of Hg. The hyperbola Hs ( shown in blue in Fig. 1) depend on the migration

rate §. It always passes through the origin and the point 5 := (K LK 1). Notice

012
that, the hyperbola Hg intersect the axis (Oz1) at 0 and a second positive point
T = % which always smaller than K;. So, the equilibrium points are the

16
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176

A77

T2

X, 5(9)

Fi1G. 1. The ellipse E and the hyperbola Hg. The equilibrium points are the intersection in the
positive cone between E and Hg, this intersections contains the origin and a second positive point

E*(B).

non negative intersection between the ellipse E and Hg. There are two equilibrium
points. The first is the trivial point (0,0) and the second is a non trivial point
E3(B) = (z5(B), z3(B)) whose position depend on migration rate 8 ( see Fig. 1).
When g — 0, the left branch of hyperbola Hg tend to the vertical line z; = 0
and the right branch into the vertical line Hg : 1 = K;. Moreover, EN Hyg =
{(K1,0), (K1, K2)}. In the case when 8 — oo, the hyperbola Hg tend to the oblique

line Hoo : 9 = ,/%xl. Moreover,

V0 V0 Vo V0
ENH. — {(0,0)’ (\/@ 1271 + V02172 N 1271 + V02172 >}
01271/ K1 + 02179/ Ko 01271/ K1 + 02172/ Ko

It was shown by Arditi et al. [4, Proposition 2, page 54] that only three situations
can occur: the case where the total equilibrium population is always greater than the
sum of carrying capacities, the case where it is always smaller, and a third case, where
the effect of migration is beneficial for lower values of the migration coefficient g and
detrimental for the higher values. More precisely, it was shown in [4] that, if n = 2 in
(1.7), the following trichotomy holds

o If T (400) > K + K3 then T5(8) > K; + K for all 5 > 0.
o If ddTﬁ; (0) > 0 and T5(+o0) < K; + K», then there exists Sy > 0 such that
T5(B) > K1 + Ky for 0 < B8 < fBo, T5(8) < K1 + Ko for § > [y and
T35 (Bo) = K1 + Ka.
o If ddTBz (0) < 0, then T3 (8) < K1 + K for all 8 > 0.
Therefore, the condition T5(8) = K; + K3 holds only for f = 0 and at most for

2(0) > 0 and T3 (+00) <

one positive value y. The value Sy exists if and only if
K, + K.

In the remainder of this section, we analyze the effect of nonlinear dispersal on
the total equilibrium population for the two-patch system (7.1). Using the method of
Arditi et al. [5], we describe the position affects the equilibrium E*(5) of (7.1) when

17
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the migration rate varies from zero to infinity, we will give the condition whether T4
is greater or smaller than sum of carrying capacity Ty (0) = K; + K5. We prove there
are only three cases as in the 2-patch logistic model with linear diffusion can occur.
We consider the regions in the set of the parameters 65 and 615, denoted Jy, J1
and Js, depicted in Fig. 2 and defined by:

_ 0.0 . 012 ol
T =3 (621, 12)-g>;§
2 2
_ ey f12 Ky
If’f‘2>7"1 then jo—{(agl,glg).a% 2921 > K%}
K2
J2 = {(9217912) CRE > %}
7.6
o T ={(021,002) : 22 < %3
1 21,Y12) - 021 o(%
o . a2 9 K2
If ro < ry then \70—{(9217912)-07§§ﬁ<1(—;2}
K? 0
J2 = {(921,‘912) txs < ﬁ}
9 010 _ 03 01 _ K} 9 01, _ K}
12 621 a? 621 K3 12 21 K3
Ji T2
Jo 012 _ 03
B B
T2
Ji
0 921 0 921

Case ro > 1

Case ry < 11

Fi1G. 2. The domains Jo, J1 and J2. In the figure a1 = r1/K1 and ag = r2/K>.

We have the following result which gives the conditions for which patchiness is
beneficial or detrimental in model (7.1).

THEOREM 7.1. The total equilibrium population of (7.1) satisfies the following

properties

1. If ri =19 then Ty (8) < K1 + K for all 8 > 0.
2. If rg # ry, let Jo, J1 and Jo, be defined by (7.6). Then we have:
o if (021,012) € Ty then T3 (8) > K1 + Ko for any 8> 0
° Zf (921,012) € J1 then TQ*(B) > K+ Ko for 0< B < By and TQ*(B) <
Ky + Ks for B > By, where

ﬁ To —T1 1
0 V012 _ V021 + g
a9 [e5]

° Zf (921,012) € Jo then T;(ﬁ) < K1+ K> fOT’ any ,8 >0

01, _ K}

b If921 = K2

T5(8) = K1+ Ky for all 8 > 0.

18

then x3(B8) = K1 and 25(8) = K3 for all § > 0. Therefore
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Proof. To facilitate comparison of the total equilibrium population Ty (8) and
T5(0) = K1 + Ky, we define a straight line A : 1 + 29 = K7 + K. If the intersection
of the ellipse E and the hyperbola Hg , i.e., the equilibrium (z7(5), x5(8)), is on or
below the line A, then Ty (8) < T5(0), whereas if the intersection is above the line,
then T3 (8) > T5(0). The equilibrium point E}(3) is always in ellipse , then, for
B = 0, the equilibrium point states at A , and when § increases, E3(8) describes an
arc of the ellipse and ends at point E3(00).

If we take ry = ro, we get that the equation of tangent space to the ellipse E at
point A is the equation of A. By Prop. 6.1, we deduce T3 () < T3 (0) for all 5 > 0.

In the case when 11 # 19, direct calculation finds that the ellipse E and the line
A have two intersections:

K K K K
A= (K1, K»), andC:<a2 1+ 2 a 1+ 2).

s b1
a1+ ag a1 + ag

We denote by ¥ the straight line joint the origin and C. The slope of X is equal to
2
%. We distinguish three cases relative position of the three points A, E3(o0), and C,

or equivalently, the three lines [O.A), Hoo and X whose slopes are

K2 /021 and 22
Kl’ 012 041.

By the method graphic of Arditi et al. [5], we conclude the complete proof. 0

The result of the previous theorem show that the nonlinear dispersal can lead to an
increased, a decreased the total population size in two patches. This prove that, the
effect of nonlinear dispersal is the same as the effect of linear dispersal in two-patch
logistic model [4, 5]. Moreover, if the movement between two patches is symmetric,
then we have the same results. In particular, Theorem 7.1, formula of equilibrium for
large migration rate.

For the two-patch model (7.1), we plot in the figure 4.2, the curves of the total
equilibrium population 75 and the line K; + K5 in term of the migration rate 3, for
the sets of parameters choosing in Table 1.

TABLE 1
Parameters values of the three case used in Fig. 3-a,3-b and Fig 3-c. The perfect mizing
abundance T3 (+00) is computed with Eq. (7.2) and the derivative of the total equilibrium population
at B =0 is computed with Eq. (7.3).

Figure | r;y ro K; Ky 015 0 dT;(O) T3 (+00)

dp_
3-a 1 2 35 1 1 1 —5.62 2.62
3-b 6 2 55 1 1 1 3.75 4.30
3-c 5 1 35 1 1 1 9.00 4.94

8. Two-patch model where one growth rate is much larger than the
second one. Recently, in [16], Elbetch is interested in some biological situations
that can be found in the nature, that is, the case where several sub-populations grow
with different speed. Mathematically speaking, he studied the system (1.7) under the
hypothesis that some growth rates tend to infinity (i.e r; — oo for some ). In this
section, we consider the two-patch model (2.1) and we assume that the growth rate

19
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F1G. 3. Total equilibrium population Ty of the system (7.1) as a function of the migration rate
B for the sets of the parameter values given in Table 1. The horizontal line is K1 + Kao. .

ro is much larger than r;. For simplicity we denote 65 := 615 > 0 the migration rate
from patch 2 to patch 1 and 6; := 631 > 0 from patch 1 to patch 2. The model is
written:

d

a1 = rx <1 — ) + 3 (921’2 — 9156’1)
1) di K

@ = 7;21‘2 1—7 —1—6(9190 —921})

dt € K2 ! 2

where € is assumed to be a small positive number. Denote E3(3,¢€) = (5 (5,¢€), 25(5,¢€))l}
the positive equilibrium of (8.1), and T5 (8, €), the total equilibrium population. We
recall that the derivative of T5 (8, €) with respect to 5 at § = 0 is written as follow:

T
ap

The total equilibrium population of the model (8.1) for perfect mixing (i.e 8 — o)
is given by the following formula:

(8.2)

(0.0 = (0253 - 0u53) (= ©).

1 T2

(8.3) T3 (400,¢) = (/1 + /35) Y 02riEVours.

€locr1 + 0109
20
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where «; = r;/K;. First, we have the result:

THEOREM 8.1. Let (x1(t,€),x2(t, €)) be the solution of the system (8.1) with ini-
tial condition (29,23) satisfying 2 > 0 for i = 1,2. Let u(t) be the solution of the
differential equation

dxr T
(8.4) d—tl = (1 — K11> + ﬁ(QgKQQ — 0193%) =: p(z1),

with initial condition u(0) = 9. Then, when € — 0, we have

(8.5) x1(t,€) = u(t) + o.(1), uniformly for t € [0, +00)
and, for any ty > 0, we have
(8.6) xo(t,€) = Ko +0.(1),  uniformly for t € [tg, +00).

Proof. When € — 0, the system (8.1) is a slow-fast system, with one slow variable,
x1, and one fast variable, 5. Tikhonov’s theorem [26, 32, 33] prompts us to consider
the dynamics of the fast variables in the time scale 7 = %t. One obtains

dl’g T2
. =2 - 1- 22
(8.7) dr 2P < K,

In the limit € — 0, we find the fast dynamics

dxg Z9
. — = 1-—=].
(8 8) dr T2X9 < KQ)

The slow manifold is given by the positive equilibrium of the system (8.8), i.e zo = Ko,
which is GAS in the positive axis. When ¢ goes to zero, Tikhonov’s theorem ensures
that after a fast transition toward the slow manifold, the solutions of (8.1) converge
to the solutions of the reduced model (8.4), obtained by replacing xs = K into the
dynamics of the slow variable.

The differential equation (8.4) admits as a positive equilibrium

> + eﬂ(@le — 02.%%)

9 K1+ V2K 2 + 48 K02 Ky r) + 4 32K,205 K520,
r1+ K10

As ¢(z1) > 0 for all 0 < zy < 25(3,07) and p(x1) < 0 for all z; > z}(8,07) then,
the equilibrium z%(3,07") is GAS in the positive axis, so, the approximation given by
Tikhonov’s theorem holds for all ¢ > 0 for the slow variable and for all ¢ >ty > 0 for
the fast variable, where t is as small as we want. Therefore, let u(t) be the solution
of the reduced model (8.4) of initial condition u(0) = x9, then, when ¢ — 0, we have
the approximations (8.5) and (8.6). |

(89)  21(8,07) =1/

As a corollary of the previous theorem, we have the following result which give
the limit of the total equilibrium population 75 (5, €) of the model (8.1) when € goes
to zero:

COROLLARY 8.2. We have:
(8.10)

T3(5,0) = lnn Ty (5, €) = lim (@ (8, €) + 3(5, )

T1K1 —|— \/T12K12 —|— 4BK102K22T1 —|— 4ﬂ2K1292K2201 +

T+ B K10,
21

:1/2 KQ.
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Proof. According to the equations (8.5), (8.6) and (8.9), when € goes to zero, the
equilibrium E3 (8, €) of the model (8.1) is converge to E}(3,07) := (27(8,07), K3),
where z7(8,07) is given in (8.9).The sum of the coordinates of E3(53,0") gives the
formula (8.10). 0

In the following proposition, we calculate the derivative and the formula of perfect
mixing (i.e when  — o00) of the total equilibrium population defined by (8.10).

PROPOSITION 8.3. Consider the total equilibrium population (8.10). Then,

dTs —0,K? 4+ 0,K2
11 2 Y= 1 - T2
(8 ) dﬂ (070 ) Tl )
and
Vo V0
(8.12) Ty (400, 0F) 1= YT V02

VoL
Proof. The derivative of the total equilibrium population X% (3,0%) defined by
(8.10) with respect to 3 is
(8.13)
dTy (5.0%) = _1/2 (TlK1 + V2K + 48 K 05K, + 452K1292K2291) K16,
dp (r1 + B K161)
4K102K227"1 + 85K1292K2201
(ri + BE161) V12K > + 4 8 K105, + 4 2K, %0, K2°6, .

+1/4

In particular, the derivative of the total equilibrium population at § = 0 is given by
the formula (8.11).

By taking the limit of (8.10) when 8 — oo, we get that the total equilibrium
population X4(8,07) tend to (8.12). O

REMARK 3. We can deduce ddTﬂ?* (0,0%) by using the equation (8.2). Indeed, the
limit of (8.2) when € goes to zero gives:

Ty 1« —0.K? + 0,K2  dTy
= 1 K20k | —-—])| = —L - — +).
e—0 dﬁ ( ) lm |:(02 2 91 1 ) (/,11 /,12 ):l /,11 dﬁ (0? O )

We can also deduce Tj (+00,0") by compute the limit of (8.3) when € goes to zero:

hmT2 (00, €) = hm [ (Vb1 + \/65) 6{;;1 1(0[;«2] = \/Eja\/glﬁ = T3 (00,0T).

We consider the regions in the set of the parameters 6; and 65, denoted Jy and
J1 defined by:

% K? [% K?
(814) jo—{(01,92) 9i>}, jl—{(01,02) 9i<}

We have the following result which gives the conditions for which patchiness is bene-
ficial or detrimental in model (8.1) when e goes to zero.

THEOREM 8.4. Let Jo and Ji be the domains defined in (8.14). Consider the
total equilibrium population Ty (B3,0%) given by (8.10). Then, we have:

22
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o If (01,02) € Jo then Ty (B8,0%) > Ky + Ko, for all 8 > 0.

(61,02)
o If (01,02) € J1 then Ty (3,07) < Ky + Ky, for all B > 0.
2
° If% = %5, then z3(8,07) = Ky and 25(B,0") = Ky for all B > 0. Therefore
T3 (B,0%) = Ky + Ky for all 8> 0.

73;

Proof. First, we try to solve the equation T5(8,0") = K + K» with respect to (3,
the solutions of this last equation give the points of intersection between the curve of
the total equilibrium population 8 — Ty (3,07) and the straight line 8 — K; + Ks.
For any 8 > 0, we have

T3 (8,0) = K, + K,
1Ky + V2K 2 4+ 48 K10, Koy + 4 32K, 205K5%60,
2 r1+ B K10:
=48 K10:K2%r + 482 K120, K520, — 4r K20, — 4 82K,%0,>
= = (0o K3 — 0, K7) (46, K?8* + 4r K1 8) =0
—=0,K3 = 0, K?
dTy
dp

:Kl

—=—2(0,0") = 0.

So, if d;g (0,07) # 0 then 8 = 0 and the curve of the total equilibrium population
intersects the straight line 8 +— Kj + K3 in a unique point which is (0, K7 + K>).

Therefore, we conclude that the first and second items of the theorem are hold. 0

9. Concluding remarks. In summary, this work was aimed to find out whether
the total equilibrium population of the n patches connected by nonlinear migration
asymmetrical migrations can be greater than the sum of the carrying capacities of the
n isolated patches, i.e. at equilibrium. Is there a way to make connections between
patches that increases the total population? we have assumed that the population
obey a logistic type growth at each patches.

We have shown that if the growth rates are equal in all patches, then the total
equilibrium population on the n connected patches is always less than or equal to the
sum of carrying capacity of the isolated patches.This result can be seen as negative
but constitutes in our eyes an interesting result. We then addressed this issue in the
general case when the growth rates are different, we have determined criteria for which
the total population size of the n connected patches at equilibrium may be greater
than the sum of carrying capacities of n isolated patches. we have shown that for high
movement rates between the patches, the total equilibrium population cloud exceed
total carrying capacity of the n patches for certain combinations of the parameters
ri, K; and §;. For two-patch model, the parameter space is fully classified as to
whether nonlinear dispersal is beneficial or detrimental to the sum of two carrying
capacities.
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