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Abstract

A path is isometric if it is a shortest path between its endpoints. In this article, we consider
the graph covering problem Isometric Path Cover, where we want to cover all the vertices of
the graph using a minimum-size set of isometric paths. Although this problem has been considered
from a structural point of view (in particular, regarding applications to pursuit-evasion games), it
is little studied from the algorithmic perspective. We consider Isometric Path Cover on chordal
graphs, and show that the problem is NP-hard for this class. On the positive side, for chordal graphs,
we design a 4-approximation algorithm and an FPT algorithm for the parameter solution size. The
approximation algorithm is based on a reduction to the classic path covering problem on a suitable
directed acyclic graph obtained from a breadth first search traversal of the graph. The approximation
ratio of our algorithm is 3 for interval graphs and 2 for proper interval graphs. Moreover, we extend
the analysis of our approximation algorithm to k-chordal graphs (graphs whose induced cycles have
length at most k) by showing that it has an approximation ratio of k + 7 for such graphs, and to
graphs of treelength at most ℓ, where the approximation ratio is at most 6ℓ+ 2.

1 Introduction

Problems involving paths in graphs are fundamental in theoretical computer science. A prominent ex-
ample is Path Cover, which asks whether the vertex set of an input graph can be covered by at most
k paths. This problem is NP-hard even for k = 1 as, in this case, it is Hamilton Path. Path Cover
is extensively studied and has many applcations, see [3, 5, 26]. A packing counterpart of Path Cover
is the well-known problem Disjoint Paths which asks, given pairs of terminal vertices of a graph G,
for disjoint paths joining the terminal pairs. Disjoint Paths has found many applications, due to its
connections to the Graph Minor project [29].

Certain types of paths are of special interest, in particular, shortest paths between vertex pairs are
important in many applications. A path is called isometric if it is a shortest path between two vertices.
The corresponding variant of Disjoint Paths, called Disjoint Shortest Paths, has recently gained
some attention [22]. The goal of this paper is to study the “shortest path” variant of Path Cover, which
was introduced in [13] with inspiration from earlier work on pursuit-evasion games [2].

∗This research was partially financed by the IFCAM project “Applications of graph homomorphisms”
(MA/IFCAM/18/39), the ANR project GRALMECO (ANR-21-CE48-0004) and the French government IDEX-ISITE ini-
tiative 16-IDEX-0001 (CAP 20-25).

†Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France
‡G-SCOP, Univ. Grenoble-Alpes, Grenoble, France
§Indian Statistical Institute, Kolkata, India
¶Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, Clermont-Auvergne-INP, LIMOS, 63000 Clermont-

Ferrand, France
‖Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, F-45067 Orléans Cedex 2, France

∗∗Ben-Gurion University of the Negev, Beer-Sheva, Israel
††Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, India

1



An isometric path cover of a graph G is a set of isometric paths such that each vertex of G belongs
to at least one of the paths. The isometric path number of G is the smallest size of an isometric path
cover of G. The algorithmic problem studied in this paper is as follows.

Isometric Path Cover
Input: A graph G, and a positive integer k.
Question: Does G have an isometric path cover of size at most k?

Isometric Path Cover was introduced in the context of the well-known Cops and Robber game
(where multiple cops try to catch a robber, each protagonist being able to move to an adjacent vertex
in each round of the game). Indeed, given an isometric path cover, one can assign a cop to “guard” each
isometric path: each cop patrols along its path, always staying as close as possible to the robber. This
strategy shows that the isometric path number of the graph is an upper bound to the cop number of the
graph (the smallest number of cops needed to catch one robber) [2, 13]. More sophisticated techniques,
still based on isometric paths, have been developed in this context, for example cop-decompositions, which
are tree decomposition where the subgraph induced by the vertices of each bag that are not present in
the parent’s bag has a small isometric path cover [1]. Isometric Path Cover plays a crucial role in the
proof of the Product Structure Theorem [11] of planar graphs. Isometric Path Cover is also studied
in the context of machine learning [30].

Surprisingly, the algorithmic complexity of Isometric Path Cover has not garnered much attention.
Its NP-hardness was recently posed as an open problem in both [23, 24]. The problem is easy to solve
on trees [3]. More generally, Isometric Path Cover is known to be polynomial-time solvable on block
graphs [27]. It can be approximated in polynomial time within a factor of log(d) for graphs of diameter d
by a greedy algorithm [30] and solved in polynomial time for every fixed value of k by an XP algorithm [12].
Isometric Path Cover has also been studied from a structural point of view: the optimal solution
sizes have been determined for square grids [13], hypercubes [14], complete r-partite graphs [28] and
Cartesian products of complete graphs [28], and it was recently proved that the pathwidth of a graph
is always upper-bounded by the size of its smallest isometric path cover [12]. The version where the
cover is actually a partition was also studied [23]. The variants where the set of endpoints of the paths
is prescribed in the input is studied in [8, 12, 21], and when the set of allowed paths is prescribed it is
studied on trees in [18].

Graph classes studied in this paper. Let us introduce the various graph classes studied in this
paper. See Figure 1 for a visualization of the inclusion diagram of the graph classes discussed in this
paper (and related ones). A chordal graph is a graph without any induced cycle of order at least 4. An
interval representation of a graph G is a set I = {[x−

u , x
+
u ] : u ∈ V (G)} of intervals where each interval

in I corresponds to a vertex, and two intervals intersect if and only if the corresponding vertices share
an edge. A graph is an interval graph if it has an interval representation. A graph is a proper interval
graph if it has an interval representation where no interval contains another interval as a subset. Interval
graphs are also chordal graphs. In fact, Fulkerson & Gross [15] proved that interval graphs are exactly
the chordal graphs without an asteroidal triple (three vertices a, b, c of a graph G form an asteroidal triple
if for any {w1, w2, w3} = {a, b, c}, there is a path between w1, w2 that does not contain any vertex from
the neighbourhood of w3.)

Even though the classes of AT -free graphs (i.e., graphs without an asteroidal triple) and chordal graphs
are incomparable, both of them have bounded chordality. A graph is k-chordal if it does not contain an
induced cycle of order greater than k. Chordal graphs are exactly the class of 3-chordal graphs, and all
AT-free graphs are 5-chordal. A superclass of AT -graphs are graphs that contain a dominating shortest
path [7]. A graph G has a dominating shortest path if there exists a shortest path P in G such that
the closed neighbourhood of any vertex of the graph intersects with the vertex set of P . Even though
graph classes with bounded chordality are incomparable with the class of graphs having a dominating
shortest path, both of these classes have bounded treelength, a parameter introduced by Dourisboure &
Gavoille [10]. A tree-decomposition of a graph G is a tree T where each vertex v of T is associated to a
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Figure 1: Inclusion diagram for graph classes discussed here (and related ones). If a class A has an
upward path to class B, then A is included in B. For graphs in the green classes, Isometric Path
Cover is polynomial-time solvable; for graphs in the red classes, it is NP-complete. The white classes
are still open. For all shown graph classes, Isometric Path Cover is constant-factor approximable in
polynomial time.

subset Xv of V (G) called bag, such that: (i)
⋃

v∈V (T )

Xv = V (G), (ii) for each edge xy ∈ E(G), there exists

a bag Xv such that {x, y} ⊆ Xv, and (iii) for every vertex x ∈ V (G), the vertices of T associated to the
bags containing x induce a connected subtree of T . Define length(T ) = max

v∈V (T )
u,v∈Xv

d (u, v), where the distance

d (u, v) denotes the number of edges in a shortest path between u and v in G. The treelength of G, denoted
as tl (G), is defined as minT length(T ), where the minimum is taken over all tree-decompositions of G.

Our results. We first settle the question of the complexity of Isometric Path Cover, showing it is
NP-hard even for chordal graphs.

Theorem 1. Isometric Path Cover is NP-hard, even for chordal graphs with a dominating vertex.

To complement the above results, we design a constant-factor approximation algorithm for Isometric
Path Cover for graph classes that strictly contain chordal graphs, and other related ones. We summarize
these results in Theorem 2.

Theorem 2. There is a polynomial-time approximation algorithm that computes a valid solution for
Isometric Path Cover for every input graph, and has performance ratio of:

(a) 2 on proper interval graphs,

(b) 3 on interval graphs,

(c) 4 on chordal graphs,

(d) 5 on graphs with a dominating shortest path,

(e) (k + 7) on k-chordal graphs, for k ≥ 4, and

(f) (6ℓ+ 2) on graphs with treelength at most ℓ.

Theorem 2 is proved by analyzing one algorithm, which is based on constructing a suitable directed
acyclic graph by breadth-first-search, and a reduction to the directed path covering problem for this
digraph. We also prove that our analysis is tight for items (a), (b) and (c).

3



We then show that, on chordal graphs, one can solve Isometric Path Cover in linear time when
the treewidth (i.e., the clique number) is bounded, which implies that Isometric Path Cover is fixed-
parameter-tractable (FPT) on this class for parameter solution size.

Theorem 3. On chordal graphs of order n and treewidth w, Isometric Path Cover can be solved in
time 2k2

O(w)

n and in time 22
O(k)

n, where k is the solution size.

Organisation of the paper. We first prove our hardness result in Section 2. We then describe and
analyze our approximation algorithm for Isometric Path Cover in Section 3. The FPT algorithm for
Isometric Path Cover on chordal graphs is described in Section 4. We conclude in Section 5.

General notations. A sequence of vertices forms a path P if any two consecutive vertices are adjacent.
Whenever we fix a path P of G, we shall refer to the subgraph formed by the edges between the consecutive
vertices of P . For a path P of a graph G between two vertices u and v, the vertices V (P ) \ {u, v} are
internal vertices of P . A path between two vertices u and v is called a (u, v)-path. Similarly, we have
the notions of isometric (u, v)-path and induced (u, v)-path.

2 NP-hardness of Isometric Path Cover on chordal graphs

In this section, we prove that Isometric Path Cover is NP-hard, answering a question raised in
both [24, 23]. In fact, we prove that Isometric Path Cover is NP-hard for chordal graphs. To prove
this, we reduce Induced P3-Partition on chordal graphs to Isometric Path Cover on chordal graphs
(in fact the reduction is the same as the one in [23]). Given a graph G, the objective of Induced P3-
Partition is to decide if there exists a partition P of V (G) such that each set in P induces a path on
three vertices in G. We use the following result, which is implied from a result of van Bevern et al. [31,
Theorem 9] (their result does not concern induced paths, but one can easily check that their reduction
holds with this restriction too).

Proposition 4 ([31]). Induced P3-Partition is NP-hard even if the input is a chordal graph with 3k

vertices for some integer k.

Proof of Theorem 1: To prove this, we give a reduction from Induced P3-Partition on chordal
graphs to Isometric Path Cover on chordal graphs. Let G be a chordal graph such that |V (G)| = 3k

for some integer k ≥ 1. Let G′ be the graph whose vertex set is V (G′) = V (G) ∪ {u, v, w}, where u, v, w

are three new vertices. The edge set of G′ is E(G′) = E(G) ∪ {(u, v), (v, w)} ∪ {(v, x) | x ∈ V (G)}. It is
easy to see that G′ is a chordal graph, and that v is a dominating vertex.

We shall show that G is a yes-instance of Induced P3-Partition if and only if G′ has an isometric
path cover of cardinality k+1. We have the following observation, due to the fact that G′ has diameter 2.

Observation 5. Any isometric path of G′ contains at most three vertices.

First, let P be a partition of V (G) such that each set P ∈ P induces a path on three vertices. Observe
that for any two vertices u, v ∈ V (G′), the isometric (u, v)-path in G′ contains at most three vertices.
Therefore, each path P ∈ P is in fact an isometric path in G′. Hence, P ∪ {uvw} is a set of isometric
paths with cardinality k + 1 that covers all vertices of G′.

To prove the reverse direction, assume that G′ has an isometric path cover C of size at most k + 1.
We now have the following observation.

Observation 6. There is an isometric path in C that covers both u and w in G′.

Proof. Otherwise, let P,Q ∈ C be two distinct isometric paths that cover u and v, respectively and
S = V (G′)\(P ∪Q). Observe that |S| ≥ 3k−2 and C contains a subset with C′ containing k−1 isometric
paths and covering all vertices of S. Therefore, C′ contains an isometric path that covers at least four
vertices of S. But this contradicts Observation 5.
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Algorithm 1: An algorithm for Isometric Path Cover
Input : A graph G and a vertex v ∈ V (G).
Output: An isometric path cover of G.

1 Construct the graph
−→
Gv using a BFS starting at v;

2 Pv ← directed path cover of
−→
Gv with minimum cardinality, computed using the reduction to

bipartite matching;
3 return the set of paths obtained from Pv by removing all orientations.

Now consider the set C′ = C \ {P} where P ∈ C that covers both u and w. Observe that C′ contains
k paths that must cover all vertices of V (G′) \ {u, v, w}, i.e., of V (G). Due to the facts that |V (G)| = 3k

and any isometric path in G′ contains at most three vertices of G′ (Observation 5), we have that C′ is a
partition of V (G), and therefore G is a yes-instance of Induced P3-Partition.

3 An approximation algorithm for Isometric Path Cover

In this section, we will describe our approximation algorithm and prove Theorem 2. We will need the
following definitions. For a vertex r of G and a set S of vertices of G, the distance of S from r, denoted as
d (r, S), is the minimum of the distance between any vertex of S and r. For a subgraph H of G, the distance
of H w.r.t. r is d (r, V (H)). Formally, we have d (r, S) = min{d (r, v) : v ∈ S} and d (r,H) = d (r, V (H)).

For a graph G and a vertex r ∈ V (G), consider the following operations on G. First, remove all
edges xy from G such that d (r, x) = d (r, y). Let G′

r be the resulting graph. Then, for each edge
e = xy ∈ E(G′

r) with d (r, x) = d (r, y) − 1, orient e from y to x. Let
−→
Gr be the directed acyclic graph

formed after applying the above operation on G′. Note that this digraph can easily be computed in linear
time using a Breadth-First Search (BFS) traversal with starting vertex r.

In a digraph, a directed path is a path in the underlying undirected graph, such that all arcs are
oriented in the same direction. A directed path cover of

−→
Gr is a set of directed paths such that each

vertex of
−→
Gr belongs to at least one of the paths. We have the following observation, which holds because

any directed path of
−→
Gr is an isometric path in G.

Observation 7. For any vertex r of a graph G, a directed path cover of
−→
Gr is an isometric path cover

of G.

The directed path cover problem in directed acyclic digraphs is the subject of Dilworth’s theorem [9]
(phrased in the equivalent language of partially ordered sets), which states that the size of an optimal
solution is equal to the maximum size of an antichain, that is, a set of vertices in which no two vertices
have a directed path connecting them. In a constructive proof of this theorem, Fulkerson [16] showed
that the problem can be reduced to the maximum matching problem in a suitable bipartite graph, and
thus, can be solved optimally in polynomial time.

The pseudocode of our algorithm for Isometric Path Cover is given in Algorithm 1. Even though
our algorithm will remain the same for all the considered graph classes, the analysis will differ. We will
show that, depending on the graph class of the input graph G, there exists a “favourable choice” of a
vertex v such that a directed path cover of

−→
Gv is an isometric path cover of G, whose cardinality is not

too far away from the isometric path number of G. To analyse the performance of our algorithm, we
need the following definitions.

Definition 8. For a graph G and a vertex r ∈ V (G), two vertices x, y ∈ V (G) are antichain vertices if
there are no directed paths from x to y or from y to x in

−→
Gr. A set X of vertices of G is an antichain

set if any two vertices in X are antichain vertices. The cardinality of the largest antichain set in
−→
Gr will

be denoted by β
(−→
Gr

)
. The cardinality of the largest antichain set of G, is defined as

β (G) = min
{
β
(−→
Gr

)
: r ∈ V (G)

}
5



Definition 9. Let r be a vertex of a graph G. For a path P , Ar (P ) shall denote the maximum antichain
set of P in

−→
Gr. The isometric path antichain cover number of

−→
Gr, denoted by ipacc

(−→
Gr

)
, is defined as

follows:
ipacc

(−→
Gr

)
= max {|Ar (P ) | : P is an isometric path}

The isometric path antichain cover number of graph G, denoted as ipacc (G), is defined as the minimum
over all possible antichain covers of its associated directed acyclic graphs:

ipacc (G) = min
{
ipacc

(−→
Gr

)
: r ∈ V (G)

}
We will use the next lemma that follows directly from Dilworth’s Theorem [9], Observation 7, and

Definitions 8 and 9.

Lemma 10. Let G be a graph and P be any isometric path cover of G with minimum cardinality. We
have:

β (G)

ipacc (G)
≤ |P| ≤ β (G) .

Proof. Let r be a vertex of G such that β (G) = β
(−→
Gr

)
. Then, by Observation 7, we have that |P| ≤

β
(−→
Gr

)
= β (G). Now, let r′ be a vertex of G such that ipacc (G) = ipacc

(−→
Gr′

)
. Since any isometric

path in P contains at most ipacc
(−→
Gr′

)
many elements of β

(−→
Gr′

)
, we have

β
(−−→
Gr′

)
ipacc

(−−→
Gr′

) ≤ |P|. Finally,

since β (G) ≤ β
(−→
Gr′

)
, we have β(G)

ipacc(G) ≤ |P|.

In the next section, we will prove upper bounds on the isometric path antichain cover number of
various graph classes, implying the approximation ratios fulfilled by Algorithm 1.

3.1 Lemmas on the isometric path antichain cover number

In this section, we shall prove some lemmas relating the isometric path antichain cover number with other
parameters. We begin by establishing a relationship between the length of an isometric path P and the
size of Ar (P ), which will be crucial for our analysis of Algorithm 1.

Lemma 11. Let G be a graph and r, an arbitrary vertex of G. Consider the directed acyclic graph−→
Gr, and let P be an isometric path between two vertices x and y in G with d (r, x) ≤ d (r, y). Then
|P | ≥ d (r, y)− d (r, x) + |Ar (P ) | − 1.

Proof. Orient the edges of P from y to x in G. First, observe that P must contain a set E1 of oriented edges
such that |E1| = d (r, y)−d (r, x) and for any

−→
ab ∈ E1, d (r, a) = d (r, b)+1. Let the vertices of the largest

antichain set of P in
−→
Gr, i.e., Ar (P ), be ordered as a1, a2, . . . , at according to their occurrence while

traversing P from y to x. For i ∈ [2, t], let Pi be the subpath of P between ai−1 and ai. Observe that for
any i ∈ [2, t], since ai and ai−1 are antichain vertices, there must exist an oriented edge

−→
bici ∈ E(Pi) such

that either d (r, bi) = d (r, ci) or d (r, bi) = d (r, ci)− 1. Let E2 = {bici}i∈[2,t]. Observe that E1 ∩ E2 = ∅
and therefore |P | ≥ |E1|+ |E2| = d (r, y)− d (r, x) + |Ar (P ) | − 1.

Next, we shall relate isometric path antichain cover number with a parameter called cluster diameter,
introduced in [10]. Let G be a graph and r be an arbitrary vertex of G. For a non-negative integer
i, let Gi(r) denote the graph induced by the vertices whose distance from r is at least i. Formally,
Gi(r) = G[{u : d (r, u) ≥ i}]. A cluster is a set S of vertices such that all vertices of S are at the same
distance from r and any two vertices of S lie in the same connected component of Gi(r), where i = d (r, S).
The cluster diameter of G with respect to r, denoted as ∆r (G), was defined in [10] as follows:

∆r (G) = max{d (u, v) : u, v lie in the same cluster with respect to r}

6



We shall use the following technical lemma to prove bounds on the isometric path antichain cover
number of graphs with bounded treelength and on graphs with bounded chordality in Lemma 16 and
Lemma 18, respectively.

Lemma 12. Let G be a graph, r be an arbitrary vertex of G, and let P be an isometric path such that
|Ar (P ) | ≥ α in

−→
Gr. Then ∆r (G) ≥

⌈
α
2

⌉
− 1.

Proof. Let the two endpoints of P be u and v and, without loss of generality, assume d (r, u) ≤ d (r, v).
Let A = Ar (P ), and let a be a vertex of P such that d (r, a) = d (r, P ). Let Pu (resp. Pv) denote the
subpath of P between u and a (resp. between v and a). Observe that there exists a path Q ∈ {Pu, Pv}
such that Q contains an antichain set of cardinality

⌈
α
2

⌉
. Notice that a is one of the endpoints of Q

and d (r,Q) = d (r, a). Let c be the other endpoint of Q. Let a1 be the first vertex of A which is
encountered while traversing Q starting from c and ending at a. If d (r, a1) = d (r, a), then let b = a1.
Otherwise, consider a vertex b such that d (r, b) = d (r, a) and there is an oriented path from a1 to b

in
−→
Gr. Clearly, a and b lie in the same cluster of G with respect to r. If d (a, b) ≤

(⌈
α
2

⌉
− 2

)
, then

d (a, a1) ≤ d (a, b) + d (b, a1) ≤
(⌈

α
2

⌉
− 2

)
+ d (r, a1)− d (r, b) < |Ar (Q) | − 1+ d (r, a1)− d (r, a). But this

contradicts Lemma 11. Hence, d (a, b) ≥
⌈
α
2

⌉
− 1.

Next, we state the following definition.

Definition 13. For an integer t ≥ 1, a graph G is t-slender if there exists a vertex r ∈ V (G) such that,
for all vertices u, v ∈ V (G) with d (r, u) = d (r, v), we have d (u, v) ≤ t.

Observe that if a graph G is t-slender, then, there exists a vertex r ∈ V (G) such that ∆r (G) ≤ t.
Lemma 12 then implies ipacc (G) ≤ 2t+2. However, the following lemma will help us prove better upper
bounds for graphs that are t-slender.

Lemma 14. Let G be a t-slender graph for some integer t ≥ 1. Then, ipacc (G) ≤ t+ 1.

Proof. By definition, there exists a vertex r ∈ V (G) such that for any u, v ∈ V (G) with d (r, u) = d (r, v),
we have d (u, v) ≤ t. Let P be an isometric path between two vertices x and y with, without loss of
generality, d (r, x) ≤ d (r, y). If d (r, x) < d (r, y), then let y′ be a vertex such that d (r, y′) = d (r, x) and
there is a path between y to y′ in

−→
Gr. Otherwise, let y′ = y. Since d (x, y′) ≤ t, d (x, y) ≤ t + d (r, y) −

d (r, x). On the other hand, due to Lemma 11, we have |P | = d (x, y) ≥ d (r, y)− d (r, x) + |Ar (P ) | − 1.
Hence, |Ar (P ) | ≤ t+ 1.

In particular, we shall use the above lemma to prove better upper bounds for the isometric anti chain
path cover number of graphs containing a dominating shortest path, interval graphs and proper interval
graphs in Lemma 20, 21, and 22, respectively.

3.2 Upper bounds on the isometric path antichain cover number

In this section, we will first show that ipacc (G) can be bounded by a linear function of tl (G). We will
use the following result of Dourisboure & Gavoille [10], which was restated in the following form by
Abdulhakeem & Dragan [25].

Proposition 15 ([10, 25]). Let r be an arbitrary vertex of a graph G with treelength at most ℓ. Then
∆r (G) ≤ 3ℓ.

Lemma 16. If G is a graph with treelength at most ℓ, then ipacc (G) ≤ 6ℓ+ 2.

Proof. Assume that there exists a vertex r of G and an isometric path P of G such that |Ar (P ) | ≥ 6ℓ+3

in
−→
Gr. Then, by Lemma 12, there are two vertices a and b such that d (r, a) = d (r, b), d (a, b) ≥⌈

6ℓ+3
2

⌉
− 1 ≥ 3ℓ + 1, and a, b lie in the same cluster with respect to r. Hence, ∆r(G) ≥ 3ℓ + 1. This

contradicts Proposition 15.
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Now, we will prove an upper bound for the isometric path antichain cover number of k-chordal graphs.
Note that the treelength of k-chordal graphs is at most k

2 [17]. Therefore, Lemma 16 implies that the
isometric path antichain cover number of a k-chordal graph is at most 3k + 1. To prove a better upper
bound, we will also use the following result of Dourisboure & Gavoille [10].

Proposition 17 ([10]). Let r be any vertex of a k-chordal graph G. Then, ∆r (G) ≤ k
2 + 2.

Lemma 18. If G is a k-chordal graph with k ≥ 4, then ipacc (G) ≤ k + 7.

Proof. Assume that there exists a vertex r of G and an isometric path P of G such that |Ar (P ) | ≥ k+8 in−→
Gr. Then, by Lemma 12, there are two vertices a and b such that d (r, a) = d (r, b), d (a, b) ≥

⌈
k+8
2

⌉
−1 ≥

k
2 + 3, and a, b lie in the same cluster with respect to r. This contradicts Proposition 17.

Now, we will prove upper bounds on the isometric path antichain cover number of graphs with a
dominating shortest path. Recall that a shortest path P of a graph G is dominating if any vertex of the
graph is either in P or adjacent to at least one of the vertices of P . Note that the class of graphs with a
dominating shortest path is incomparable with the class of k-chordal graphs for any fixed integer k. We
can now prove the following lemma.

Lemma 19. If a graph G has a dominating shortest path, then G is 4-slender.

Proof. Let r, s be the endpoints of a dominating shortest path P . Let x0 = r, x1, x2, . . . , xi = s be the
vertices of P ordered as they are encountered while traversing P from r to s. Let a, b be two vertices of
G such that d (r, a) = d (r, b). If d (r, a) = i+ 1, then d (a, b) is at most 2 as both a, b will be adjacent to
xi. If d (r, a) = i, then d (a, b) is at most 3 since {a, b} ⊂ N [xi]∪N [xi−1]. Otherwise, 0 < d (r, a) ≤ i− 1.
In this case, d (a, b) is at most 4 since {a, b} ⊂ N [xi−1] ∪N [xi] ∪N [xi+1].

Taken together, Lemmas 14 and 19 imply the following lemma which we will use again in Section 3.3.

Lemma 20. If G has a dominating shortest path, then ipacc (G) ≤ 5.

We will prove an improved version of Lemma 20 for interval graphs.

Lemma 21. If G is an interval graph, then ipacc (G) ≤ 3.

Proof. Due to Lemma 14, we will be done by showing that if G is an interval graph, then, G is 2-
slender. Let I = {[x−

u , x
+
u ] : u ∈ V (G)} be an interval representation of G. Let v be the vertex such

that x+
v = min{x+

a : a ∈ V (G)}. In other words, v corresponds to the interval with the leftmost right
endpoint. For a vertex w, define rw = z such that x+

z = max{x+
z′ : z′ ∈ N [z]}. In other words, z is

the neighbour of w that has the rightmost right endpoint. Observe that G has a dominating shortest
path x0 = v, x1, x2, . . . , xi such that for each 1 ≤ j ≤ i, xi = rxi−1

. Now, consider two vertices a, b

with d (v, a) = d (v, b) = j. Observe that {a, b} ⊂ N [xj−1]. Hence, d (a, b) ≤ 2 and therefore, G is
2-slender.

In Observation 27 we show that that the bound proved in the above lemma is essentially tight by
constructing an interval graph whose isometric path antichain cover number is exactly three. Any proper
interval graph G has a vertex v such that the spanning tree Tv obtained from a BFS starting at v is 1-
slender [19], and thus, G is 1-slender as well. An immediate consequence of this result, due to Lemma 14,
is the following.

Lemma 22. If G is a proper interval graph, then ipacc (G) ≤ 2.

In Observation 28 we show that that the bound proved in the above lemma is essentially tight.
Interval graphs are a subclass of chordal graphs (i.e., graphs with chordality 3). Since chordal graphs

are exactly the graphs with treelength 1, Lemma 16 implies that the isometric path antichain cover
number of chordal graphs is at most 7. Below, we prove a better upper bound using the two following
properties of chordal graphs.
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Figure 2: Proof of Claim 25.1. Path P ′ is dotted, and path Pj is red.

Observation 23. Let r be an arbitrary vertex of a chordal graph G. Let u, v ∈ V (G) be two vertices such
that d (r, u) = d (r, v) = i and there exists an (u, v)-path P such that V (P − {u, v}) ⊆ V (Gi+1

r ). Then
uv ∈ E(G).

Proof. If P has length one, the result is obvious, thus, we can assume that P has length at least 2.
Assume for contradiction that uv /∈ E(G). Let P1 be an isometric (u, v)-path in the graph induced by
V (G−Gi(r))∪{u, v}. Consider another isometric (u, v)-path Q such that d (r,Q− {u, v}) = d (r, u)+1.
Note that the existence of P guarantees that there is at least one such path. For any two nonconsecutive
vertices ui, uj ∈ Q, uiuj /∈ E(G). Since uv /∈ E(G), note that P1 and Q are induced paths. Moreover,
since, for any vertex p ∈ V (P1 −{u, v}) and q ∈ V (Q−{u, v}), d (r, q)− d (r, p) ≥ 2, the paths P1 and Q

are internally disjoint. Therefore, P1 ∪Q induces a cycle of length at least 4, which contradicts the fact
that G is a chordal graph.

Observation 24. Let r be an arbitrary vertex of a chordal graph G, and let P be an isometric path of
G. Let u, v ∈ V (P ) be two distinct vertices of P such that d (r, u) = d (r, v). Then, there cannot be any
vertex w in the (u, v)-subpath of P such that d (r, w) > d (r, v).

Proof. Assume for contradiction that such a path P and vertices u, v, and w exist, and let d (r, u) =

d (r, v) = i. Consider the (u, v)-subpath Q of P , and let u = v1, . . . , vℓ = v be the ordering of vertices
of Q, along the path Q. Moreover, let the alias of the vertex w in this ordering be vb. Then, observe
that there exist two vertices va, vc ∈ V (Q), where 1 ≤ a < b < c ≤ ℓ, such that d (r, va) = d (r, vc) = i,
vavc /∈ E(G), and there is a (va, vc)-subpath Q′ of Q such that V (Q′ − {va, vc}) ⊆ V (Gi+1

r ). However,
this contradicts Observation 23.

Lemma 25. If G is a chordal graph, then, ipacc (G) ≤ 4.

Proof. Let r be an arbitrary vertex of G. Now, assume by contradiction that there is an isometric path
P in G with endpoints u and v, such that |Ar (P ) | ≥ 5 in

−→
Gr. Let a1, . . . , a5 ∈ Ar (P ) be five antichain

elements, that appear in this order while traversing P from u to v. We will eventually show that the
existence of P implies that ∆r(G) ≥ 4, contradicting Proposition 17. Let d (r, P ) = i and xu (resp. xv)
be a vertex such that d (r, xu) = i (resp. d (r, xv) = i) and there is an oriented path from u (resp. v) to
xu (resp. xv) in

−→
Gr (possibly, u = xu or v = xv). Observe that xu and xv lie in the same cluster with

respect to r. First, we prove the following claim.
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Claim 25.1. d (r, P ) = d (r, a3).

Proof. Assume by contradiction that d (r, P ) < d (r, a3). Refer to Figure 2 for an illustration of the
different notations for this proof. Let top ∈ V (P ) be a vertex such that d (r, top) = d (r, P ). Recall that
d (r, top) = i. Now, let Pu be the (u, top)-subpath of P , and let Pv be the (v, top)-subpath of P . Observe
that either a3 ∈ V (Pu) or a3 ∈ V (Pv). Without loss of generality, assume that a3 ∈ V (Pu).

Let P ′ be the (top, a3)-subpapth of Pu, and let top = u1, . . . , uℓ = a3 be the ordering of vertices of
V (P ′), along the path P ′. Let uj , for j ≥ 1, be the vertex with minimum index j such that d (r, uj) = i

and d (r, uj+1) = i+ 1. Note that uj is distinct from a3, and uj can be the same as top.

(+) The (uj , u)-subpath of Pu, say Pj , satisfies V (Pj − {uj}) ⊆ V (Gi+1
r ).

To prove (+), assume by contradiction that there is a vertex w ∈ V (Pj−{uj}) with d (r, w) = i. Then, due
to the definition of uj , uj+1 is in the (uj , w)-subpath, with d (r, w) = d (r, uj) = i and d (r, uj+1) = i+ 1.
But this contradicts Observation 24 and completes the proof of (+).

Let q be a vertex such that d (r, q) = i and there is an oriented path
−→
Q in

−→
Gr from u to q. Due to (+),

q is distinct from u. Let Q be the path obtained after removing the orientation of
−→
Q . Note that Q is an

isometric (q, u)-path in G. Also, note the following:

(++) V (Q− {q}) ⊆ V (Gi+1
r ).

Now, let us consider the (uj , u)-subpath Pj of Pu defined above. Combining (+) and (++), we
have that V (Q) ∪ V (Pj) forms a (uj , q)-path, say T , such that V (T − {uj , q}) ⊆ V (Gi+1

r ). Due to
Observation 23, ujq ∈ E(G). This implies that d (u, uj) ≤ d (r, u) − d (r, q) + 1. But, since Pj is
an isometric (uj , u)-path and |Ar (Pj) | ≥ 3 (indeed a3, a2, a1 lie in Pj), due to Lemma 11, we have
d (u, uj) ≥ d (r, u)− d (r, uj) + 2 = d (r, u)− d (r, q) + 2, which is a contradiction.

Using Claim 25.1, we can now prove that d (xu, xv) ≥ 4. Since P is an isometric (u, v)-path and
a3 ∈ V (P ), we have:

d (u, v) = d (u, a3) + d (a3, v) (1)

cObserve that the (u, a3)-subpath of P contains at least three antichain elements of
−→
Gr. Lemma 11

then implies d (u, a3) ≥ d (r, u) − d (r, a3) + 2 = d (r, u) − d (r, xu) + 2. Since xu belongs to an isometric
(r, u)-path, we have d (xu, u) = d (r, u)− d (r, xu), and therefore:

d (u, a3) ≥ d (xu, u) + 2 (2)

By symmetry, we have:
d (v, a3) ≥ d (xv, v) + 2 (3)

Combining the fact that d (u, v) ≤ d (u, xu)+d (xu, xv)+d (xv, v) with Equations 1-3, we have d (xu, xv) ≥
4. This implies ∆r(G) ≥ 4, which contradicts Proposition 17. This completes the proof.

In Observation 26 we show that that the bound proved in the above lemma is essentially tight by
constructing a chordal graph whose isometric path antichain cover number is exactly four.

3.3 Proof of Theorem 2

In this section we complete the proof of Theorem 2. Recall that Algorithm 1 takes as input a graph G

and a vertex v. Then, it constructs the directed acyclic graph
−→
Gv and a directed path cover of

−→
Gv.

First, we will prove Theorem 2(a). Let G be a proper interval graph. Then, due to Lemma 22, G has
a vertex v such that for any isometric path P of G, the cardinality of Av (P ) in

−→
Gv is at most two. Let

Pv be the isometric path cover returned by Algorithm 1 with G and v as input. Let A be the largest
antichain set of

−→
Gv and OPT be a minimum cardinality isometric path cover of G. Due to Lemma 10,

we have |Pv| ≤ |A| ≤ 2|OPT |. This completes the proof.
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Figure 3: A tight-approximation example for chordal graphs

Proofs of Theorem 2(b)-(f) follow from similar arguments. In particular, by combining Lemmas 10
and 21 we have the proof of Theorem 2(b). Combining Lemmas 10 and 25 we have the proof of The-
orem 2(c). Combining Lemmas 10 and 20 we have the proof of Theorem 2(d). Combining Lemmas 10
and 18 we have the proof of Theorem 2(e). Combining Lemmas 10 and 16 we have the proof of Theo-
rem 2(f).

3.4 Tightness of our analysis

In this section, we show that the analysis of our algorithm is tight for chordal graphs, interval graphs,
and proper interval graphs.

Observation 26. There exist chordal graphs whose isometric path antichain cover number is 4. More-
over, for any c < 4, Algorithm 1 cannot guarantee an approximation ratio of c for chordal graphs.

Proof. For integers ℓ and k, consider the following construction for graph Gℓ
k. Let V (Gℓ

k) =

{w} ∪ {ui, vi : i ∈ [ℓ]} ∪ {aij , bij , cij , dij : i ∈ [ℓ], j ∈ [k]} and E(Gℓ
k) = {wui, wvi : i ∈ [ℓ]} ∪

{uiaij , u
ibij , u

icij , v
ibij , v

icij , v
idij : i ∈ [ℓ], j ∈ [k]} ∪ {aijbij , bijcij , cijdij : i ∈ [ℓ], j ∈ [k]}. See Figure 3 for

reference. Note that Gℓ
k is a chordal graph and ipacc

(
Gℓ

k

)
= 4. Observe that the isometric path cover

number of G is at most ℓk + ℓ+ 1. Indeed one such isometric path cover can be constructed as follows.
For i ∈ [ℓ] and j ∈ [k], consider the isometric paths P i

j = aij bij cij dij . Also consider, for i ∈ [ℓ], the
isometric paths Qi = ui vi. Observe that

P = {w}
⋃
i∈[ℓ]

Qi

⋃
i∈[ℓ]
j∈[k]

P i
j

is an isometric path cover of Gℓ
k of size ℓk + ℓ + 1. Moreover, Algorithm 1 will return a solution of size

at least 4k(ℓ− 1) for Gℓ
k. Indeed if Algorithm 1 has Gℓ

k and w as the input, then it will return a solution
of size 4ℓk. Otherwise, there exists a i ∈ [ℓ], j ∈ [k] such that Algorithm 1 has Gℓ

k and z as the input
where z ∈ {ui, vi} ∪ {aij , bij , cij , dij}. In this case, Algorithm 1 will return a solution of cardinality at least
4k(ℓ− 1). This gives us an approximation ratio of 4k(ℓ−1)

ℓ(k+1)+1 . Now, for any c < 4, we can set k and ℓ such
that the approximation ratio is greater than c.

Observation 27. There exist interval graphs whose isometric path antichain cover number is 3. More-
over, for any c < 3, Algorithm 1 cannot guarantee an approximation ratio of c for interval graphs.

Proof. To see this, consider the following graph. Let Pk be a path on k vertices v1, . . . , vk (where k is a
multiple of 3). Let G be the graph obtained by adding a universal vertex v to Pk (i.e., V (G) = V (Pk)∪{v}
and E(G) = E(Pk) ∪ {vvi : i ∈ [k]}). See Figure 4 for reference. Note that G is an interval graph and
ipacc (()G) = 3. Moreover, isometric path cover number of G is k

3 + 1, and Algorithm 1 returns an
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Figure 4: A tight-approximation example for interval graphs

isometric path cover of size at least k− 3. Now, for any c < 3, we can set k such that the approximation
ratio

(
3(k−3)
k+1

)
is greater than c.

Observation 28. There exist proper interval graphs whose isometric path antichain cover number is 2.
Moreover, for any c < 2, Algorithm 1 cannot guarantee an approximation ratio of c for proper interval
graphs.

Proof. Let G be the complete graph on k vertices (where k is even). Note that G is a proper interval
graph. Moreover, isometric path cover number of G is k

2 , and Algorithm 1 returns an isometric path

cover of size k−1. Now, for any c < 2, we can set k such that the approximation ratio
(

2(k−1)
k

)
is greater

than c.

4 An FPT algorithm for solution size on chordal graphs

In this section, we prove Theorem 3 using dynamic programming on tree decompositions. As the problem
deals with shortest paths, it seems difficult to generally solve it on graphs of bounded treewidth, as it is
not straightforwardly expressible in monadic second-order logic. Certain related problems like Geodetic
Set are in fact W-hard for treewidth [20]. For chordal graphs however, we can exploit the structural
properties of shortest paths to design such an algorithm. As a corollary, we show that this yields an FPT
algorithm for the parameter solution size alone.

Indeed, we will prove the first part of Theorem 3 that Isometric Path Cover can be solved in time
2O(2kw2) · n on chordal graphs of order n and treewidth w, where k is the solution size. To obtain the
running time 22

O(k) · n as a corollary, note first that for chordal graphs, the treewidth w is equal to the
clique number minus one (and the latter can be determined in polynomial time on this class). However,
an isometric path can cover at most two vertices of any clique. Thus, if k < (w+1)/2, then we can return
NO. Otherwise, the running time follows from the first running time.

Nice tree decompositions are a well-known tool for designing dynamic programming algorithms for
graphs of bounded treewidth, see [4]. Let us start by properly defining what is a nice tree decomposition
of a chordal graph (those can be constructed in linear time, see [4, Section 4]).

Definition 29. A nice tree decomposition of a chordal graph G is a rooted tree T where each node v is
associated to a subset Xv of V (G) called a bag, and each internal node has one or two children, with the
following properties.

1. The nodes of T containing a given vertex of G form a nonempty connected subtree of T .

2. Any two adjacent vertices of G appear in the bag of a common node of T .

3. For each node v of T , Xv is a clique.

4. Each node of T belongs to one of the following types: introduce, forget, join or leaf.

5. A join node v has two children v1 and v2 such that Xv = Xv1 = Xv2 .
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6. An introduce node v has one child v1 such that Xv \ {x} = Xv1 , for some vertex x ∈ Xv.

7. A forget node v has one child v1 such that Xv = Xv1 \ {x}, for some vertex x ∈ Xv1 .

8. A leaf node v is a leaf of T with Xv = {x} for some vertex x of G.

9. The tree T is rooted at a leaf node r.

For a nice tree decomposition and a node v, we define G≤v as the subgraph of G induced by the
vertices of the subtree of the decomposition rooted at v. We can similarly define G<v = G≤v − Xv,
G≥v = G−G<v, and G>v = G−G≤v.

Note that for a clique X and a vertex y, X can be partitioned into two (not necessarily both nonempty)
sets of vertices according to their distances to y, as y has at most two distinct distance values to the
vertices of X, with a difference of at most 1 between these values. Based on this, we give the following
definition, inspired from [6].

Definition 30. For a clique X and a vertex y of G, we denote by close(X, y) the set of vertices of X
that have minimal distance to y among the vertices of X, that is, for every vertex z of X, d (y, z) = d if
z is in close(X, y), and d (y, z) = d+ 1 otherwise. We say that y is close to the set close(X, y).

In a chordal graph, every maximal clique forms a clique cutset, and that clique will be associated to
some node of the tree decomposition. As in most treewidth-based dynamic programming schemes, we
will compute the potential solutions by bottom-up traversal of the tree decomposition. For this, we will
define some types of solutions of Isometric Path Cover, depending on how they interact with a given
bag of the tree decomposition. The number of types is bounded by a function of k and w. We must then
show how local solutions of a given type (if they exist) can be computed using the already computed
information from the children.

Let us first give the key ideas needed for the dynamic programming scheme. We name the k paths
P1, . . . , Pk. A partial solution for Isometric Path Cover with respect to a bag Xv of a node v of
T , consists of k (possibly empty) subsets P v

1 , . . . , P
v
k of Xv of size at most 2, each representing the

intersection of a path Pi with Xv, whose union equals Xv.
Making sure that an existing partial solution is extended so as to give an induced path cover is not too

difficult, indeed, since the graph is chordal, if a path has a chord, that would give a cycle and thus there
would be a triangle consisting of three vertices of the path. Necessarily, this triangle would be included
in some bag, a contradiction. However, to make sure that the computed path is isometric is less trivial,
but can be done due to the above definition of closeness. Indeed, we have the following lemma.

Lemma 31. Let G be a chordal graph and P be a path in G. The path P is isometric if and only if, for
every clique X of G intersecting P and for every vertex y of P , there is exactly one vertex of V (P ) ∩X

in close(X, y).

Proof. Assume that P is a path of G.
For the first implication, assume that P is isometric, and let X be a clique of G intersecting P . If, for

some vertex y of P , there are two vertices of V (P ) ∩X in close(X, y), then both have the same distance
to y. Thus, y is in the middle of the two vertices with respect to P , but then there is a chord on P , which
is not isometric, a contradiction.

For the reverse direction, assume that the condition holds for every clique X of G. Assume by
contradiction that P is not isometric, which means that there are two vertices of P whose distance in
G is less than their distance in P . Let x1, x2 be two such vertices with the smallest possible distance
in P , and let us call P ′ the (x1, x2)-subpath of P . Thus, any proper subpath of P ′ is isometric. Note
that P ′ has at least two edges. Let P ′′ be a shortest path from x1 to x2. By the choice of x1, x2, we
have V (P ′) ∩ V (P ′′) = {x1, x2}. Let z′ be the neighbour of x2 in P ′. Since P ′ is not isometric, we have
z′ ̸= x1. Let z′′ be the neighbour of x2 on P ′′ (possibly, z′′ = x1).

We claim that z′ and z′′ are adjacent in G. If z′′ = x1 and z′ is a neighbour of x1, this is true. Note
that P ′∪P ′′ form a cycle. Since any proper sub-path of P ′ is isometric, if z′′ = x1 (that is, d (x1, x2) = 1)
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but P ′′ has length at least 3, then this cycle is an induced cycle of length at least 4, a contradiction.
Thus, we can next assume that P ′′ has at least two edges (then P ′ has at least three edges). Since any
proper sub-path of P ′ is isometric and d (x1, x2) ≥ 2, x1, x2 are not adjacent, and so P ′ is an induced
path. Since P ′′ is isometric, P ′′ is induced as well. Thus, since G is chordal, each internal vertex of P ′ has
a neighbour in V (P ′′) \ {x1, x2}, each internal vertex of P ′′ has a neighbour in V (P ′) \ {x1, x2}, and x1,
x2 have exactly one neighbour in each of P ′, P ′′. Thus, z′ and z′′ are adjacent, as claimed (otherwise z′

forms an induced cycle of length at least 4 with its neighbour in P ′′ that is closest to x2 and the sub-path
of P ′′ from that neighbour to x2, a contradiction).

Now, consider the clique consisting of x2 and z′. Then, close({x2, z
′}, x1) contains both x2 and z′,

which contradicts the condition of the statement. This completes the proof.

Thus, following Lemma 31, for every bag Xv and for every subset X of Xv, we will keep track of
whether each path Pi contains a vertex y with close(Xv, y) = X in the previously computed partial
solutions that can lead to the current partial solution. We will also keep track whether the future partial
solutions contain such a vertex. This information can be propagated along the bottom-up dynamic pro-
gramming, together with the fact that the computed solutions must form a path cover. By Lemma 31, it
will then be enough to check whether two partial solutions are compatible with respect to this information,
to make sure they form a valid partial solution to Isometric Path Cover.

More formally, for a partial solution of node v, we define its type by the following information.

• The partial solution on Xv (i.e.the intersection of the k paths with Xv).

• For each path Pi and each vertex y of Pi in the partial solution of Xv, whether y is an endpoint of
Pi, has a neighbour in Pi in G<v, or in G>v (one can check that there are six distinct possibilities).

• For each path Pi, if Pi is not represented in the partial solution, a bit indicating whether Pi has
been present in G<v or not (if yes, it can never be used in a future partial solution).

• For each path Pi, for each subset X of Xv, whether Pi has a vertex y in G<v with close(Xv, y) = X.

• For each path Pi, for each subset X of Xv, whether Pi has a vertex y in G>v with close(Xv, y) = X.

Note that the number of possible types for a node v is at most kO(w2) × 6kw × 2k × k2
O(w) × k2

O(w)

,
which is dominated by 2k2

O(w)

.
We now give more details on how to compute the admissible types of partial solutions for a node of

T , given that the ones of its children are already computed. The algorithm will consist of computing all
tables in a bottom-up manner, and return YES if and only if the root node has an admissible partial
solution type. To compute the table of a node, for each possible type, we need only to consider all (pairs
of) types of the children nodes, and check their compatibility.

Leaf node. For a leaf node v, we have Xv = {x} for some vertex x of G, and the admissible types can
easily be computed.

Introduce node. Let v be an introduce node with child v1, and Xv = Xv1 ∪{x} for some vertex x of G.
Here it suffices to extend the partial solutions in every possible way. To do so, for each possible type for
node v, we check whether it forms a valid partial solution for the clique Xv, and whether it is compatible
with some type of the child node. In particular, if G<v is not empty, note that x cannot belong to any
set close(Xv, y) for a vertex y of G<v since y has no edge to any vertex of G<v, and thus a shortest path
from x to y must go through another vertex of Xv. Thus the types where x are in close(Xv, y) for a
vertex y of G<v must be discarded.

Forget node. Let v be an introduce node with child v1, and Xv1 = Xv ∪ {x} for some vertex x of
G. Here, we take the admissible partial solution types of the child and we restrict them to the partial
solutions where x is removed. Note that here, we must discard the types where x belongs to close(Xv, y)

for a vertex y of G>v (if G>v is not empty), since x has no edge to any vertex of G>v, and thus a shortest
path from x to y must go through another vertex of Xv.
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Join node. Let v be an introduce node with children v1 and v2, and Xv1 = Xv2 = Xv. Here, for
each possible partial solution type τ of v, we have to check whether it is consistent with some admissible
types τ1 and τ2 of the two children nodes. First of all, we must only consider such triples which have
the same intersection of the solution paths with Xv, and the same sets of endpoints of these paths. If
in τ , we require a vertex y in G>v with close(Xv, y) = S, then we must either have such a vertex in
exactly one of τ1 (with G>v1

) and τ2 (with G>v2
), or in none of them, otherwise the three types are not

compatible. Indeed, we have G>v = G>v1 − G<v2 and vice-versa. Similarly, if we require a vertex y in
G<v with close(Xv, y) = S, then we must have such a vertex in exactly one of τ1 (with G>v1) and τ2
(with G>v2), since G<v = G<v1

∪G<v2
. Similarly, if for a path Pi not represented in Xv, we require that

Pi has already been present in G<v, it must hold for exactly one of τ1 and τ2 (not both). Similar facts
must hold for the requirements whether each path Pi has a neighbour in G<v or in G>v.

The case of interval graphs. When the input graph G is an interval graph, the nice tree decomposition
of G does not contain any join nodes. Moreover, the linear structure of interval graphs helps us to reduce
the time complexity of the dynamic programming algorithm proposed above. Essentially, we shall show
that the number of different types associated with a node v is at most O(2kω

2

). We shall use the following
lemma.

Lemma 32. Let X be a clique cutset of an interval graph G. There exists a collection A of subsets of X of
size O(|X|) such that for each vertex v ∈ V (G), if v is close to A with respect to X, then close(X, v) ∈ A.

Proof. If v ∈ X, then A = {v}. Without loss of generality, assume now that min(v) < min(X) (where
min(v) denotes the left endpoint of the interval associated to v, and min(X), the leftmost left endpoint
of an interval of X). If u ∈ X such that d(v, u) = d, then for every w ∈ X such that min(w) ≤
min(u), d(v, w) ≤ d. Indeed, take a shortest path from v to u and let z be the neighbour of u in
this path. Then, z is also a neighbour of w. This implies that close(X, v) is one of the following sets:⋃
u∈X

{{w ∈ X|min(w) ≤ min(u)}}. Hence,

A =
⋃
u∈X

{{w ∈ X|min(w) ≤ min(u)} , {w ∈ X|max(w) ≥ max(u)} , {u}}

Observe that |A| is O(|X|).

The above lemma implies that for an interval graph, the set of partial solutions is 2O(kω2) for interval
graphs. This proves the statement of Theorem 3 for interval graphs.

5 Conclusion

We have studied the problem Isometric Path Cover in many subclasses of graphs of bounded tree-
length. Our main contribution is a polynomial-time algorithm to solve the problem, that provides a
constant-factor approximation on a very large class of graphs. Note that our algorithm is not a constant-
factor approximation in general. Indeed, it was proved that the hypercube Hd on n = 2d vertices can
be covered with 2d

d+1 isometric paths whenever d + 1 is a power of 2 [14]. However, on this graph, our

algorithm would return a solution of size
(

d
⌊d/2⌋

)
by Sperner’s lemma, which is Θ

(
2d√
d

)
using Stirling’s

approximation. Thus, our algorithm cannot have a better approximation ratio than
√
log n on general

graphs of order n.
It remains an interesting open question whether, for general graphs, there exists a polynomial-time

constant-factor approximation algorithm for Isometric Path Cover, and whether Isometric Path
Cover is FPT for solution size or treewidth. We also leave the complexity of Isometric Path Cover
on interval graphs open. As these questions are all answered in the negative for the related problem
Geodetic Set [6, 20], possibly the same holds for Isometric Path Cover as well. Other interesting
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classes on which to study Isometric Path Cover, and which seem challenging, can be found in Figure 1,
for example split graphs or proper interval graphs.

We remark that Isometric Path Cover remains NP-hard on apex graphs, i.e. graphs which can
be made planar by the removal of just one vertex. Indeed, the construction used to prove Theorem 1 can
be used to reduce from Induced P3-Partition on subcubic grid graphs (a special subclass of planar
graphs), which is NP-hard [31]. However, the complexity of Isometric Path Cover on planar graphs
remains unknown.

Finally, we remark that some of our results also hold for the partition version of Isometric Path
Cover, called Isometric Path Partition [23], where the isometric paths must be pairwise vertex-
disjoint. This is the case for our NP-hardness proof for chordal graphs (indeed all considered isometric
path covers are in fact isometric path partitions), and the FPT algorithm for treewidth (indeed it is
not difficult to include in the constraints the fact that the paths must form a partition). However, our
approximation algorithm does not return a feasible solution for Isometric Path Partition, since in
general it can produce overlapping isometric paths.

Acknowledgements. We thank Vincent Limouzy, Joydeep Mukherjee, Lucas Pastor and Jean-
Florent Raymond for initial discussions on the topic of this paper.
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