
HAL Id: hal-03710735
https://hal.science/hal-03710735

Submitted on 30 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of the impact of interaction patterns and IoT
protocols on energy consumption of IoT consumer

applications
Rodrigo Canek, Pedro Victor Borges Caldas da Silva, Chantal Taconet

To cite this version:
Rodrigo Canek, Pedro Victor Borges Caldas da Silva, Chantal Taconet. Analysis of the impact of
interaction patterns and IoT protocols on energy consumption of IoT consumer applications. DAIS
2022: 17th International Conference on Distributed Applications and Interoperable Systems, Jun 2022,
Lucca, Italy. pp.1-17. �hal-03710735�

https://hal.science/hal-03710735
https://hal.archives-ouvertes.fr


Analysis of the Impact of Interaction Patterns
and IoT Protocols on Energy Consumption of

IoT Consumer Applications

Rodrigo Canek, Pedro Borges, and Chantal Taconet

SAMOVAR, Télécom SudParis
Institut Polytechnique de Paris, France

Abstract. Nowadays, it is estimated that half the connected devices are
related to the Internet of Things (IoT). The IoT paradigm contributes to
the increase of the Information Technology energy demand. The energy
demand is due on one side to the huge number of IoT devices, and on
the other side to the plethora of IoT end user applications consuming
data produced by those devices. However, taking into account energy
consumption in the development of such applications, consuming data
produced by IoT devices is still challenging. There is a lack of knowledge
on what are the best practises to develop green IoT applications. The
work presented in this paper aims to raise the awareness of application
designers concerning the impact of the choice of IoT protocols and in-
teraction patterns on the energy consumption of the applications. For
this purpose, we have experimentally analysed the energy consumption
of HTTP and MQTT, which are two of the most popular, mature and
stable protocols for IoT consumer applications. For the HTTP proto-
col, we have studied both the publish-subscribe and the request-reply
interaction patterns. For MQTT, we have studied the publish-subscribe
interaction pattern with the three available Quality of Services. We also
examine the impact of message payload on energy consumption. The
results show that the publish/subscribe interaction pattern has lower
energy consumption (around 92% less) than the synchronous interaction
pattern and HTTP consumes 20% more energy than the MQTT protocol
for the publish/subscribe interaction pattern. Finally, we show that the
payload has a low impact on energy consumption, having a 9% overhead
on payloads ranging from 24 to 3120 bytes

Keywords: Middleware · Internet of Things applications · IoT protocols
· Interaction patterns · IoT Platforms · Energy Consumption · Green IT

This work is a contribution to the Energy4Climate Interdisciplinary Center
(E4C) of IP Paris and Ecole des Ponts ParisTech, supported by 3rd Programme
d’Investissements d’Avenir [ANR-18-EUR-0006-02]. It has been funded by the “Fu-
tur & Ruptures” program from Institut Mines Télécom, Fondation, Fondation Mines-
Télécom and Institut Carnot.



2 R. Canek et al.

1 Introduction

It is estimated that the number of Internet-connected devices will be 29.3 billion
in 2023, among them 50% will be IoT devices and 23% smartphones [4]. As the
number of IoT systems is one of the main causes of the growth of IT energy
consumption [9], handling IoT systems energy-efficiency is from now on a first
class imperative [20].

Because of their limited battery lifetime, energy-efficiency has firstly been
taken into account in the design of software deployed on IoT devices [12]. How-
ever, reducing software energy consumption should not be limited to IoT devices.
It has been estimated that around 67 zettabytes of data were generated by IoT
devices in 2020 [9]. Part of this volume of data has been consumed by IoT ap-
plications. Thus, carefully designing interactions between IoT applications and
IoT systems with a energy-efficiency concern is also essential.

Developers still lack knowledge about software energy consumption [18]. Mea-
suring experimentally software and hardware energy consumption participates
in providing this knowledge. Several approaches may be used for energy mea-
surement [15]. As most of the libraries that measure energy consumption at the
process level only consider the impact of CPU and memory (e.g., [1]), measuring
the cost of the interaction between distributed components is still a difficult task.
In this study, we propose to experimentally measure the cost of the interactions
between IoT consumer applications and IoT systems. These measures will guide
IoT consumer application developers in their design choices in terms of energy
consumption.

In our experiments, we consider consumer IoT applications connected with
a WiFi (802.11n) interface and that use MQTT and HTTP protocols. Those
technologies are commonly used for IoT consuming applications placed in dif-
ferent networks from the connected object ones, whereas other networks (e.g.
Bluetooth) and protocols (e.g. Zigbee, COAP) are used on the connected ob-
ject side. The conducted analysis answers the following questions: What is the
energy consumption impact of (RQ1) the publish/subscribe interaction pattern
vs request/reply, (RQ2) the HTTP protocol vs MQTT for the publish subscribe
interaction pattern, (RQ3) the Quality of service (QoS) level (in the case of
MQTT) and (RQ4) the size of the payload. From the analysis of the results of
the experiments, we propose guidelines to help developers to build low energy
consuming IoT applications.

The rest of this paper is structured as follows. Section 2 provides important
background concepts on IoT architectures, interaction patterns and IoT proto-
cols. Section 3 investigates the related works concerning the energy consumption
of the studied IoT protocols. Section 4 shows the setup of the hardware and soft-
ware for the experiments and discusses the threats to validity. Section 5 presents
the results of the experiments, analyses the results according to the four intro-
duced research questions and provides guidelines for IoT consuming application
developers. Finally, Section 6 draws conclusions and perspectives.



Title Suppressed Due to Excessive Length 3

2 Consuming IoT applications: architecture, interaction
patterns and Protocols

This section introduces the main concepts that will be used throughout the
article, concerning IoT distributed architecture and IoT protocols.

2.1 Distributed IoT Architecture

Figure 1 presents a classical IoT system architecture. According to the ISO-IEC
IoT reference architecture [10], an IoT system consists of (1) IoT devices (sensors
and actuators), (2) end user applications that may consume sensor data (called
IoT consumer applications in this paper), (3) IoT platforms and IoT gateways,
standardized intermediates for interacting with IoT devices that deal with the
high degree of hardware and software heterogeneity in IoT environments.

The usage of IoT platforms to support IoT systems is a recent trend: they
provide services to deploy and run applications on top of a hardware and/or soft-
ware suite in different application domains [13]. Their role is to decouple produc-
ers from consumers by providing an intermediary layer. Among the platforms,
we can cite FIWARE/Orion [6], an IoT platform supported by the European
Community, and OneM2M [17] a Machine-2-Machine standard.

Fig. 1. IoT distributed architecture

2.2 Interaction Patterns

An interaction pattern, or a Message Exchange Pattern [7], defines the structure
of the interactions between the two sides engaged in a communication. In the IoT,
two high level interaction patterns are commonly used between the consumers
of data and the providers of data [3]: Publish-Subscribe and Request-Reply.

Request-Reply As shown in Figure 2, the consumer (i.e. IoT consumer appli-
cation), sends a request message to the producer (e.g., the IoT platform). The
consumer is waiting for a reply from the producer (or a timeout). The producer
receives and processes the request and sends the consumer a reply message with
a given payload.



4 R. Canek et al.

Fig. 2. Request-Reply Pattern Fig. 3. Publish-Subscribe Pattern

Publish-Subscribe As shown in Figure 3 the consumer defines, with a sub-
scription, what kind of data it is interested in. The consumer is notified whenever
there is a message matching the subscription.

2.3 IoT Protocols

We consider the most mature and stable protocols for the interaction between
IoT consumer applications and IoT systems [5]: MQTT [16] and HTTP [14].

HTTP is supported by all the IoT platforms. When it comes to using the
protocol, it is mostly used in its Request/Reply interaction pattern. However,
the FIWARE platform also uses HTTP for the publish-subscribe interaction
pattern, where the client is an open listener and the server posts available data
(as shown in Figure 3).

MQTT is a lightweight protocol with the publish/subscribe interaction pat-
tern. IoT platforms host MQTT brokers that receive publications from connected
objects or gateways. Brokers are responsible to filter incoming messages and dis-
tribute them properly according to the message topics. MQTT implements three
different models of message exchange known as Quality of Service, where the de-
livery with QoS 0 being at most once, QoS 1 being at least once, and QoS 2
being exactly once.

In our experiments, MQTT and HTTP are above TCP/IP. TCP handles the
connections between the remote processes and reassembles the data in the correct
order.The Internet Protocol (IP) [19] is responsible for routing data. It provides
fragmentation and reassembly of long datagrams, if necessary according to the
Maximum Transmission Unit (MTU). We investigate in our experiments
whether having a message payload below or above the MTU impacts the energy
consumption.

3 Related Work

In this section, we present an analysis of the related works concerning the ef-
ficiency of IoT protocols used by IoT consumer applications. We have selected



Title Suppressed Due to Excessive Length 5

research papers that include energy consumption measures in the evaluation of
HTTP and/or MQTT. We have to mention that, to the best of our knowledge,
the number of papers on this subject is low, we only found 4 papers and the
measures do not isolate the consumption on the consumer side. Furthermore,
none of them study the impact of the interaction pattern.

A synthesis of the study is presented in Table 1. For those related works,
the following points have been analyzed. Since our objective is to study the con-
sumer side of an IoT architecture, we indicate whether the study is conducted on
the producer side (P), on the consumer side (C), or on both sides. We mention
which IoT protocols were compared in the work. We also indicate the experi-
mental conditions: the device where the measure was conducted and the type
of network. The last aspect concerns type of the evaluation, analytical or ex-
perimental energy evaluation and, if experimental, the tool they have used to
measure the energy consumption.

Bandyopadhyay and Bhattacharyya present an analysis of MQTT and CoAP [2].
They examine the resource usage including energy consumption according to the
message size and the packet loss ratio. The energy consumption of the most re-
liable configurations was measured on a Wide Area Network: CoAP and MQTT
with QoS 2. They show that with a perfect network without any loss, MQTT
with QoS2 is more than ten times more consuming than CoAP. Concerning en-
ergy efficiency, they only study MQTT with QoS2. They do not define whether
the measures are done on the producer or/and consumer side, which makes it
difficult to know which side of the architecture was studied. They also do not
mention how the energy consumption was measured.

Toldinas et al. perform a dedicated study of MQTT QoS levels and their en-
ergy consumption [21]. They use a ESP-WROOM-02 hardware device connected
to the network through Wifi 802.11 and acting both as producer and consumer.
For each level of QoS, the remaining battery voltage level was measured using a
digital multimeter as an indicator of energy consumption. This study provides a
good indication of the percentage increase in energy consumption for each level
of the QoS compared to the previous one. However, it does not allow effective
energy-consumption conclusions to be drawn about the behavior of a consumer
or a producer as the same device is used for both tasks.

Hofer and Pawaska studied the impact of MQTT and HTTP protocols on
CPU, RAM, and energy consumption [8]. The device used is a Raspberry Pi
connected by Ethernet, that acts both as a producer and a consumer, as a
consequence they can not isolate the energy consumption on the consumer side.
They do not mention what QoS was used for MQTT. For the energy evaluation,
the authors studied the Ampere per second in the device using an oscilloscope.
The study proved that MQTT outperformed HTTP RESTful in terms of data
overhead which is the amount of extra data needed to be sent to a client (e.g
HTTP Headers, MQTT headers, etc), a nearly four times higher throughput.
Furthermore, MQTT also had lower resource consumption and significantly lower
energy consumption. As HTTP is used with the synchronous interaction pattern
and MQTT is used with the publish/subscribe interaction pattern, it is not



6 R. Canek et al.

possible to isolate the impact of the interaction pattern from the impact of the
protocol.

Joshi et al. presented a comparison in terms of protocol impact on through-
put and battery consumption between MQTT (QoS not specified), CoAP and
HTTP RESTful [11]. The device used was a Raspberry Pi, which acted only
as a producer. For energy consumption, the percentage of battery consumption
per hour was taken as a reference. However, it was not mentioned how it was
calculated. The conclusions are: (i) HTTP consumes more energy than MQTT,
and (ii) with the same amount of battery it is possible to send 100 times more
messages with MQTT compared to HTTP. Although the work was not dedicated
to the study of energy consumption, it lacks details on how the measures were
implemented as well as the conditions of the experiment (e.g. network type).

Ref Network P/C
MQTT QoS HTTP

Evaluation
0 1 2 Sync Pub/sub

[2] WAN em. ? ˆ ˆ
‘

ˆ ˆ ?

[21] Wifi P+C
‘ ‘ ‘

ˆ ˆ simulation

[8] Ethernet P+C ? ? ?
‘

ˆ oscilloscope

[11] Wifi P
‘

ˆ ˆ
‘

ˆ calculated

this Wifi C
‘ ‘ ‘ ‘ ‘

wattmeter
Table 1. Synthesis of the related work

Compared to the presented works, the experiments we have conducted al-
low to isolate the cost of the consumer application side of an IoT architecture.
Furthermore as we test the HTTP protocol with the request/reply and pub-
lish/subscribe interaction patterns, we are able to study the impact of the inter-
action pattern separately from the impact of the protocol.

4 Experimental methodology

This section presents the methodology used in the experiments. We present the
experimental conditions in terms of computer, network, energy measurement
tool, software and algorithms in Section 4.1. We continue by presenting the
process allowing to isolate the energy consumption of the communication part
in Section 4.2. Then we present the experimental plan in Section 4.3. Finally,
we discuss the threats that may affect the validity of the experimentation in
Section 4.4.

4.1 Experimental setup

Computers and network As shown in Figure 4, three computers were used to
perform the experiments. 1) The Consumer Computer used for running the



Title Suppressed Due to Excessive Length 7

Fig. 4. Experimental setup

consumer application. A wattmeter measures its energy consumption. The Con-
sumer is connected to the network through a Wifi interface. The characteristics
of this computer are the following : Dell Latitude E6320 v:01 with 5.68GiB of
RAM, a Broadcom (BCM4313 802.11bgn) Wireless Network Adapter driver and
Ubuntu 20.10 Operating system. Furthermore, the battery was fully charged and
the computer was always plugged to the electricity. 2) The Producer Com-
puter used for simulating an IoT platform. It runs a process that produces data.
It is a fixed computer connected to the Internet through an Ethernet interface.
3) The Script Computer was used (i) running the scripts responsible for start-
ing all applications on the client and server computers, and (ii) for reading the
energy consumption measures.

For MQTT, we use the Mosquitto broker version 3. The producer and
the consumer were developed using the open-source Eclipse Paho library for
Java. For HTTP Request/Reply, the consumer use HTTP/1.1 with the
java.net.http.HttpClient Java library. For HTTP Publish/Subscribe we also
use HTTP/1.1 and the consumer includes an Undertow Server to receive HTTP
publications. We have to mention that in a real scenario, the consumer appli-
cation does not choose the version of the HTTP protocol used by the server
neither the configuration of the server concerning the connection management.
In this context, the usage of HTTP/1.1 is widely supported by servers and clients
whereas other versions such as HTTP//2 are still less common.

Energy consumption measurements Currently there is no library that in-
cludes the consumption of the network interface in the energy consumption mea-
surements. Some libraries such as RAPL are able to make energy measurements,
but are limited to the CPU and memory consumption. In the case for communi-
cations over the internet, the hardware that need to have its energy-consumption
measured is the network interface, making it difficult the usage of RAPL in our
case. As a consequence, it was decided to use a Yocto wattmeter [22] to measure
the energy consumption of the consuming application.

As shown in Figure 4, the Yocto-wattmeter is located between the consumer
computer power cable and the wall power outlet. The Yocto-wattmeter is con-



8 R. Canek et al.

nected to the energy measurement computer via a USB cable. It uses the Yocto
software API to read energy consumption measures.

Algorithms We provide below the algorithms used in the experiments.
On the consumer side, Algorithm 1 is used for the Request/Reply interac-

tion pattern, it takes as an input parameter the period between two requests.
Algorithm 2 is used for the publish/subscribe interaction pattern and registers
the handler to be called on the reception of a notification and runs forever.

Algorithm 1: Consumer
Request/Reply

Main(period)
begin

producer Ð
httpInitialisationpURIq

while true do
valueÐ
producer.getV aluepq

sleeppperiodq

end

end

Algorithm 2: Consumer
publish/subscribe

Main(void)
begin

server Ð
initializeServerpURI, handlerq

end
handler(receiver)
begin

valueÐ
receiver.getV aluepq

end

On the producer side, the Algorithm 3 is used to simulate IoT data publica-
tions. It takes as input the period between two publications and the size of the
payload to be sent periodically.

Finally a script runs on the measuring computer. It takes as input the pe-
riod between two publications, the payload size and the duration of the experi-
ment.The script starts the consumer and the producer, then sleeps for one minute
for initialization and consumer warmup purposes. Then, the energy meter on the
wattmeter is reset and is ready to start gathering new energy measures for the
duration of the experiment. Finally, the script reads the consumed energy on
the consumer application from the wattmeter and stops the producer and the
consumer.

4.2 Process to isolate the communication energy consumption

Using a wattmeter has the following disadvantage: There is no isolation of the
application or any particular process in the measurement, as the wattmeter mea-
sures the energy consumption of the computer as a whole. For a proper mea-
surement of the impact of an application, it is necessary to make two measures:
(1) the measure of the energy consumption without the application and (2) the
measure of the energy consumption with the application.

In Figure 5, we present, for the 5 families of experiments in Table 2, the
following measures of energy consumption of the consumer computer:



Title Suppressed Due to Excessive Length 9

Algorithm 3: Producer

Main(period, payload)
begin

dest=initializeServer(URI)
while true do

dest.send(payload)
sleeppperiodq

end

end

– Midle`jvm: we start the Consumer computer with the consumer application
but without any interaction with the producer application (blue + orange
on Figure 5)

– Midle`jvm`interactions: we start the Consumer computer with the full con-
sumer application (blue + orange +green on Figure 5)

Fig. 5. Energy consumption measures

The results that are presented in Section 5 only show the interaction cost
(the upper part in green on Figure 5). We obtain this value with this formula :
Midle`jvm`interactions´Midle`jvm. As a consequence, the standard deviation of
the result is the addition of the standard deviation of the two measures.

4.3 Experimental plan

Table 2 presents the combinations of interaction patterns and protocols for which
we have handled the experiments. That gives 5 families of experiments. We
measure: (1) the impact of the interaction pattern through families F1 and F2;



10 R. Canek et al.

Family Interaction pattern Protocol

F1 Synchronous HTTP

F2 Publish/Subscribe HTTP

F3 Publish/Subscribe MQTT QoS0

F4 Publish/Subscribe MQTT QoS1

F5 Publish/Subscribe MQTT QoS2
Table 2. Families of experiments

(2) the impact of the protocol with families F2 and F3 and (3) the impact of the
QoS for MQTT with families F3, F4 and F5.

The message rates used in the experiments were of 1, 2, 4, 8 and 16 messages
by second. The tests at 32, 64 and 128 messages per second with both interaction
patterns using HTTP started to receive a significantly lower amount of messages,
as a consequence we did not keep those results.

The payload used in the experiments were of 24, 48, 240, 1320 and 1560 bytes.
We start with 24 bytes, since it is assumed that this payload is about the usual
value for an IoT payload. The last two values were chosen considering the MTU,
which was measured at 1500 bytes for our experiments. One lower than this
value and the other higher for comparison purposes on the energy-consumption
influence of such scenario.

We did 125 experiments: 5 families of experiments (see Table 2)* 5 message
rates * 5 payloads. For each experiment, we used 30 tests. Three more measures
were done with the consumer application also running Wireshark in order to
explain the obtained results. As the usage of Wireshark increases the energy
consumption of the machine, we do not include those tests for computing the
mean and the standard deviation. In total we realized 33*125= 4 125 tests.

Each test had a total duration of 8 minutes. This was organized with one
minute for warm up, where the producer started the message exchange with the
consumer. Followed by a measurement of the energy consumption for 5 minutes
while the producer was exchanging data with the consumer. Finally, two more
minutes of sleep time to reset the experiment and the network conditions before
starting the following test. 4 125 tests of duration 8 minutes necessitate around
one full month of experiments. Additionally, for Midle`jvm, 60 tests were realized,
we double the number of tests to obtain low standard deviation and confidence
intervals.

4.4 Threats to validity

We present below potential threats to the validity of our study and how we
propose to minimize their effects.

Computer conditions: The activity of the computer can not be totally con-
trolled, as a consequence we report some discrepancies in the measured values.
To reduce these discrepancies, we have shut down or disabled all unnecessary
processes of the operating system as well as using the lowest brightness and con-
necting to the device via ssh to reduce user tampering. In order to minimize the



Title Suppressed Due to Excessive Length 11

standard deviation and obtain a more consistent result, each of the experiments
were run a total of 30 times.

Network conditions: The conditions of the network while doing the tests were
optimal. The gathered data showed that there was no packet loss during the tests
and the latency remained low and stable at around 23ms.

Temperature at which the experiments are conducted: During the initial ex-
periments, the climate did not rise above 25 degrees Celsius. However, on some
days when the external temperature rose between 28 and 32 degrees, the fluc-
tuations in energy consumption increased. These fluctuations may be due to
the need for the equipment cooling systems to increase their output in order to
keep the components of the equipment in the correct temperature conditions.
To address this threat, the client computer was moved to an air-conditioned
room where the computer was always at a cold temperature. This resulted in a
reduction of the standard deviations of the measurements, making the results
more stable. The experiments realized in the air-conditioned room were for the
message rate of 8m/s and the payloads of 1320B, 1560B, and 3120B.

5 Analysis

We organize the analysis of the results of the experiments according to the four
tackled research questions presented in the introduction. As an outcome of the
analysis, Section 5.5 presents guidelines dedicated to developers of IoT consumer
applications.

5.1 (RQ1) Impact of the interaction pattern

For a fair comparison of the interaction patterns, we compared only the results
obtained with the HTTP protocol for which we have measured the two interac-
tion patterns.

Figure 6 presents the results of the energy consumption for a 24Bytes payload
for both interaction patterns. Table 3 presents in percentage the synchronous
pattern overhead over the publish/subscribe pattern. This is a synthesis of all
the realized measures (all the message rates).

The results of the experiments show that with the same number of received
observations, the synchronous pattern consumes around 92% (mean of all the
message rates and payloads results) more energy than the publish/subscribe
interaction pattern, being almost two times less efficient. This happens as the
client needs to process the request for the server and wait for a reply whereas in
pub/sub it will only need to wait for notifications from the server.

5.2 (RQ2) Impact of the application protocol

For the comparison of the protocols, it was desired to do a fair comparison of the
two protocols, comparing the MQTT QoS 0 and HTTP Pub/Sub as they both
propose an “at most once” semantics. As observed in Figure 7 and in Table 4,



12 R. Canek et al.

Fig. 6. Energy consumption 24B, Inter-
action Pattern Comparison

Payload Overhead in %

24B +94.03%
48B +89.96%
240B +106.90%
1320B +85.16%
1560B +85.50%

Mean +92.31%

Table 3. Synchronous pattern aver-
age overhead over the publish/subscribe
pattern

MQTT outperforms HTTP in terms of energy consumption and number of bytes
by Joule.

We observe that in terms of energy, the MQTT protocol outperforms HTTP
by 20% on average while having the same interaction pattern and the same
semantics. This happens because of the purpose of each protocol. While HTTP
has more processing on top of the data received by the client, as it needs to look
into further validations (e.g size variable header, parameters, etc), MQTT is
proposed with a more lightweigth structure that, for example, has fixed headers,
enabling a less intensive processing by the client.

Fig. 7. Energy consumption for a 24B
payload, Protocol Comparison

Payload HTTP vs MQTT in %

24B +28.07%
48B +23.40%
240B +31.05%
1320B +2.58%
1560B +18.63%

Mean +20.75%

Table 4. HTTP vs MQTT average
overhead with all the message rates

5.3 (RQ3) Impact of the QoS in MQTT

In Figure 8, we compare the measures of energy consumption for the three
MQTT QoS with the 24B payload. Table 5 presents a synthesis of the overheads
for all the payloads.



Title Suppressed Due to Excessive Length 13

Fig. 8. Energy consumption for a 24B
payload, QoS Comparison

Payload QoS1/QoS0 QoS2/QoS1 QoS2/QoS0
24B +24.64% +46.58% +79.72%
48B +17.76% +51.09% +78.20%
240B +58.67% +27.08% +104.46%
1320B +12.16% +88.10% +111.76%
1560B +21.83% +53.31% +86.45%
Mean +27.01% +59.77 % +92.12%

Table 5. MQTT QoS overheads

Taking into consideration all the measures realized, meaning all the message
rates and payloads, the comparison of the QoS shows that QoS 0 consumes
around 27% less energy than QoS 1 and 92% compared to QoS 2 with the same
number of received observations. QoS 2 consumes 60% more energy than QoS 1.
Having similar results in the comparisons of QoS 0, QoS 1 and QoS 2, to what
was observed in the related work [21]. The difference is that we are able to
measure the consumer side only while they use the same device as producer and
consumer and as a result can not differentiate consumer from producer energy
consumption.

A deeper look at the results shows that the impact of the QoS using MQTT is
related to the amount of messages exchanged during the experiment. QoS 0 had
the smallest amount of messages exchanged between the broker and the consumer
because of the fire and forget mechanism (Sending messages and not verifying
the arrival) it implements and resulted in the lowest energy consumption. MQTT
QoS 1 followed a similar path but as it increased the amount of messages, due
to the acknowledgments of the client, it resulted in a bigger energy consumption
when compared to MQTT QoS 0. Finally, QoS 2 with its bigger amount of
messages exchanged between the broker and the client doubled the amount of
packets exchanged and ended up almost doubling the amount of energy used.

5.4 (RQ4) Impact of the payload

Figure 9 presents the bytes/Joule for different payloads for the fixed rate of 8
messages per second for the 5 families of experiments.

The usage of a payload up to 3120 bytes, presented a moderate increase in the
experiments (mean 9%), having cases with even lower consumption for HTTP.
The fragmentation of the messages according to the MTU (1500 bytes) does
not seem to have a relevant impact on the energy consumption. The experiment
impacted the most by the increase was MQTT QoS 0, having up to 21.89%
more energy consumption. Concerning HTTP publish-subscribe and request-
reply, both seemed unaffected by the changes in the payload as the payload of



14 R. Canek et al.

Fig. 9. Bytes Received by Joule Pay-
load Comparison

Family of experiment Overhead in %

HTTP synchronous -1.36%
HTTP Pub/sub -1.32%

MQTT QoS0 +21.89%
MQTT QoS1 +15.45%
MQTT QoS2 +11.24%

Mean +9,18%

Table 6. Payload overhead from 24Bytes
to 3120Bytes

24B was slightly higher than the one with 3120B (Table 6), which had the mes-
sage broken into 3 fragments according to the size of the MTU. The behaviour
of the payload seen in HTTP is further confirmed when checking the amount of
TCP connections with 24 bytes and 3120 bytes which remained the same. Fur-
thermore, MQTT is more impacted by the payload because the protocol created
only one TCP connection through all the test phases and exchanged messages
in this established connection. This causes the payload to become a bigger part
of the energy consumption considering that MQTT has a 2 bytes fixed header,
while the HTTP header does not have a limit (A limit can be set by the server),
but in the case of the tests done, it is around 106 Bytes. Besides those differ-
ences by family of experiment, the lesson of this comparison is that the number
of Bytes by Joule is augmented significantly for all the families while augmenting
the payload. An explanation for this result comes from the cost of the software
call stack necessary to handle one message whatever the size of the message is.

5.5 Guidelines for IoT consumer application designers

We provide in this section guidelines for IoT consumer application designers to
reduce the energy consumption at the end user device side.

Group several observations in one message We have shown that using
different payloads, from 24 up to 3120 bytes, has a small impact on the energy
consumption of the application. If the application necessitates multiple sensor
observations, we advise combining the different observations into one single mes-
sage. Some IoT platforms, such as Fiware/Orion, provide the possibility to query
(or subscribe to) a group of sensors. This possibility has clearly to be chosen by
application developers.

Favor the Publish-Subscribe interaction pattern The comparison of inter-
action patterns showed that for the same frequency of requests and notifications,



Title Suppressed Due to Excessive Length 15

the publish/subscribe pattern consumed on average 92% less energy than the re-
quest/reply pattern. As a consequence, we advise to favor the publish/subscribe
pattern.

We have to mention that this advice may depend on the IoT application and
the IoT platform. If the frequency of requests is far lower than the frequency of
publications, the synchronous pattern can be an option because the client can
better control the amount of messages being exchanged.

Favor the MQTT protocol over the HTTP protocol For the publish/subscribe
pattern, the comparison of the MQTT and HTTP protocols shows that MQTT
has 20% less energy overhead in comparison to HTTP. The advice is then to
favor the MQTT protocol for the publish/subscribe pattern.

Choose the QoS appropriate for your application If your IoT application
supports losing some observations, prefer QoS 0 since it involves less energy
consumption. If the application cannot afford to lose observations, use QoS 1
instead of QoS 0 as it provides a complementary service to TCP’s reliability by
ensuring that each message is received at least once. Keep the QoS2 for exactly
once semantics requirement as it presents an overhead of 92% and should be
used in conditions that require no duplication of messages.

Guideline example The benefits of guidelines to develop IoT applications can
be better seen when viewing with a bigger space of time. As an example, an
IoT application running for one year using HTTP pub/sub sending 4 messages
per second with a payload of 24B will consume around 31,01 MegaJoules while
another application running with the same parameters but using MQTT QoS 0
will consume around 8,40 MegaJoules. Furthermore, if the messages are grouped
into a single message, and sent once per second, we can achieve a consumption
of around 4,20 MegaJoules for both HTTP pub/sub and MQTT QoS 0 with
a payload of 24 Bytes. As an example, for a regular notebook battery with
around 360 KiloJoules, an IoT application using HTTP or MQTT and grouping
messages could lead to a lifetime of around 31 hours, on the other hand, without
grouping and using HTTP synchronous we have around 9 hours of battery (71%
less).

6 Conclusions

Energy consumption is a first class concern in the development of future IoT
applications. As the amount of devices and the amount of applications related
to IoT will keep growing in the near future, there is a new requirement for the
developers and the users to regulate and improve the energy consumption of
IoT applications not only on the connected object side but also on the consumer
application side.



16 R. Canek et al.

In this paper, we have measured the energy consumption of IoT consumer ap-
plications on user devices connected with WiFi (802.11n). We have been able to
show the impact on energy consumption on different interaction choices summa-
rized below. The results show that for the same amount of received observations,
the publish/subscribe interaction pattern has lower energy consumption (around
92% lower) than the synchronous interaction pattern. We have also shown that,
for the publish/subscribe interaction pattern, MQTT consumes less than the
HTTP protocol (around 20% less). Finally, we have shown that the payload has
a low impact on energy consumption having a 9% overhead from 24 to 3120 bytes
payloads. From the above results, we have been able to provide guidelines for
IoT consumer application designers, for example we advise developers to favor
the publish/subscribe pattern and to group several observations in one message
when possible.

As a future work, we plan to investigate the cost of the software call stack to
better guide the developers of IoT consumer applications. We plan to investigate
the impact of data representation on the cost of marshalling and unmarshalling
data in IoT applications. We also plan to follow the guidelines for the design of
a middleware used by IoT applications to transparently interact with multiple
IoT platforms. Implementing those strategies at the middleware level may have
a strong impact for reducing IoT application energy consumption while keeping
a low development effort.

References

1. PowerAPI. http://powerapi.org/, accessed: 2022-02-15
2. Bandyopadhyay, S., Bhattacharyya, A.: Lightweight internet protocols for web

enablement of sensors using constrained gateway devices. In: 2013 International
Conference on Computing, Networking and Communications (ICNC). pp. 334–340
(2013). https://doi.org/10.1109/ICCNC.2013.6504105

3. Bouloukakis, G., Georgantas, N., Ntumba, P., Issarny, V.: Auto-
mated synthesis of mediators for middleware-layer protocol interoper-
ability in the IoT. Future Generation Computer Systems 101, 1271–
1294 (2019). https://doi.org/https://doi.org/10.1016/j.future.2019.05.064,
https://www.sciencedirect.com/science/article/pii/S0167739X18323586

4. Cisco Annual Internet Report (2018–2023). https://www.cisco.com/c/en/us/

solutions/collateral/executive-perspectives/annual-internet-report/

white-paper-c11-741490.html (2020)
5. Dizdarević, J., Carpio, F., Jukan, A., Masip-Bruin, X.: A survey of communication

protocols for internet of things and related challenges of fog and cloud comput-
ing integration. vol. 51. Association for Computing Machinery, New York, NY,
USA (Jan 2019). https://doi.org/10.1145/3292674, https://doi.org/10.1145/

3292674
6. FIWARE: What is fiware? https://www.fiware.org/
7. Garbarino, E.: Message exchange patterns (meps) (2013), https://garba.org/

article/general/soa/mep.html#top
8. Hofer, J., Pawaskar, S.: Impact of the application layer protocol on energy con-

sumption, 4g utilization and performance. In: 2018 3rd Cloudification of the Inter-
net of Things (CIoT). pp. 1–7 (2018). https://doi.org/10.1109/CIOT.2018.8627133



Title Suppressed Due to Excessive Length 17

9. directed by Hugues Ferreboeuf, S.P.: Lean ict – towards digital so-
briety. https://theshiftproject.org/wp-content/uploads/2019/03/

Lean-ICT-Report\_The-Shift-Project\textunderscore2019.pdf (2019)
10. ISO/IEC: Internet of things (IoT) - reference architecture. ISO/IEC JTC 1/SC 41

- Internet of Things and Digital Twin p. 84 (8 2018)
11. Joshi, J., Rajapriya, V., Rahul, S., Kumar, P., Polepally, S., Samineni, R., Ka-

mal Tej, D.: Performance enhancement and IoT based monitoring for smart home.
In: 2017 International Conference on Information Networking (ICOIN). pp. 468–
473 (2017). https://doi.org/10.1109/ICOIN.2017.7899537

12. Munoz, D.J., Montenegro, J.A., Pinto, M., Fuentes, L.: Energy-
aware environments for the development of green applications for cy-
ber–physical systems. Future Generation Computer Systems 91, 536 –
554 (2019). https://doi.org/https://doi.org/10.1016/j.future.2018.09.006,
http://www.sciencedirect.com/science/article/pii/S0167739X18307295

13. Nakhuva, B., Champaneria, T.: Study of various internet of things platforms. In-
ternational Journal of Computer Science & Engineering Survey 6(6), 61–74 (2015)

14. Nielsen, H., Mogul, J., Masinter, L.M., Fielding, R.T., Gettys, J., Leach, P.J.,
Berners-Lee, T.: Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Jun 1999).
https://doi.org/10.17487/RFC2616, https://rfc-editor.org/rfc/rfc2616.txt

15. Noureddine, A., Rouvoy, R., Seinturier, L.: A review of energy measurement ap-
proaches. ACM SIGOPS Oper. Syst. Rev. 47(3), 42–49 (2013)

16. OASIS: MQTT version 3.1.1 plus errata 01. https://docs.oasis-open.org/mqtt/
mqtt/v3.1.1/mqtt-v3.1.1.pdf (12 2015), accessed on 21-05-2021

17. oneM2M: Who we are. https://www.onem2m.org/harmonization-m2m
18. Pang, C., Hindle, A., Adams, B., Hassan, A.E.: What do programmers know

about software energy consumption? IEEE Software 33(3), 83–89 (May 2016).
https://doi.org/10.1109/MS.2015.83

19. Postel, J.: Internet Protocol. RFC 791, RFC Editor (09 1981).
https://doi.org/10.17487/RFC0791, https://www.rfc-editor.org/info/rfc791

20. Shaikh, F.K., Zeadally, S., Exposito, E.: Enabling technologies for
green internet of things. IEEE Systems Journal 11(2), 983–994 (2017).
https://doi.org/10.1109/JSYST.2015.2415194

21. Toldinas, J., Lozinskis, B., Baranauskas, E., Dobrovolskis, A.: MQTT quality of
service versus energy consumption. In: 2019 23rd International Conference Elec-
tronics. pp. 1–4 (2019). https://doi.org/10.1109/ELECTRONICS.2019.8765692

22. YoctoPuce: Who are we? https://www.yoctopuce.com/EN/aboutus.php, accessed
on 17-10-2021


