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A Robinson–Schensted–Knuth correspondence for
super tableaux with symmetry and the super

Littlewood–Richardson rule

Nohra Hage

Abstract – Robinson–Schensted–Knuth (RSK) correspondence is a bijective correspondence be-
tween two-rowed arrays of non-negative integers and pairs of same-shape semistandard tableaux.
This correspondence satisfies the symmetry property, that is, exchanging the rows of a two-rowed
array is equivalent to exchanging the positions of the corresponding pair of semistandard tableaux.
In this article, we introduce a super analogue of the RSK correspondence for super tableaux over a
signed alphabet using a super version of Schensted’s insertion algorithms. We give a geometrical in-
terpretation of the super-RSK correspondence by a matrix-ball construction, showing the symmetry
property in complete generality. We deduce a combinatorial version of the super Littlewood–
Richardson rule on super Schur functions over a finite signed alphabet. Finally, we introduce the
notion of super Littlewood–Richardson skew tableaux and we give another combinatorial interpre-
tation of the super Littlewood–Richardson rule.
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1. Introduction

1. Introduction

Schensted introduced in [27] a bijection between permutations over the totally ordered alpha-
bet [𝑛] := {1 < . . . < 𝑛} and pairs of same-shape standard Young tableaux over [𝑛] in order to
compute the length of the longest decreasing subsequence of a given permutation over [𝑛]. This
correspondence is described using Schensted’s insertion procedure that constructs a first standard
Young tableau by successively inserting the elements of the given permutation according to a
specific rule, while the second standard Young tableau records the evolution of the shape during
the insertion. This correspondence had been also described, in a rather different form, much
earlier by Robinson in [25] in an attempt to give a first correct proof of the Littlewood–Richardson
rule that provides an explicit combinatorial description for expressing a skew Schur function or a
product of two Schur functions as a linear combination of Schur functions. This correspondence
is then referred to as the Robinson–Schensted (RS) correspondence. Knuth generalized in [18]
this correspondence to a bijection between two-rowed arrays of elements of [𝑛] and pairs of
same-shape semistandard Young tableaux over [𝑛]. Knuth’s bijection is also constructed using
Schensted’s insertion algorithm that constructs a first semistandard Young tableau by successively
inserting the elements of the second row of the given two-rowed array from left to right, while
the second semistandard Young tableau records the evolution of the shape during this insertion
using the elements of the first row of the two-rowed array. This bijection is then known as the
Robinson–Schensted–Knuth (RSK) correspondence. An essential property of this correspondence
is that it satisfies the symmetry property, that is, under the RSK correpondence, exchanging the
rows of a two-rowed array is equivalent to exchanging the positions of the corresponding pair of
semistandard Young tableaux, [18]. This property is also proved by Viennot in [33] for the RS cor-
respondence, and by Fulton in [9] for the RSK correspondence, using geometrical interpretations
of these correspondences. Since then, the RSK correspondence has found rich applications on
representation theory, algebraic combinatorics and probabilistic combinatorics, [8, 9, 17, 32], and
it has found many generalizations on other structures of tableaux, [2, 3, 5, 24, 26, 30, 31].

Bonetti, Senato and Venezia introduced in [5] a super-RSK correspondence using super
Schensted’s right and left insertion on super Young tableaux over a signed alphabet. However, the
symmetry property holds only in special cases under this bijection as shown in [20]. A question
was to find a super-RSK correspondence satisfying the symmetry property in complete generality
and leading to the classical RSK correspondence as a particular case. Muth introduced in [24] a
super-RSK correspondence using Haiman’s mixed insertion algorithm on super Young tableaux
and proved that this correspondence satisfies the symmetry property in complete generality.
However, this correspondence is not related to the super plactic monoid of type A and to the
representations of the general linear Lie superalgebra, and then it does not yield to a combinatorial
description of the super Littlewood–Richardson rule. It is worth noting that Haiman’s mixed
insertion algorithm is used to define the shifted plactic monoid and allows to give a combinatorial
version of the shifted Littlewood–Richardson rule for shifted tableaux, [29]. We introduce in
this article a super version of the RSK correspondence on super Young tableaux that satisfies the
symmetry property in complete generality, using super Schensted’s insertion algorithms and the
properties of the super plactic monoid of type A. We deduce a combinatorial description of the
super Littlewood–Richardson rule for super tableaux over a signed alphabet.
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1. Introduction

Super plactic monoid and insertion. A signed alphabet is a finite or countable totally ordered
set S which is the disjoint union of two subsets S0 and S1. The super plactic monoid over S,
denoted by P(S), is the quotient of the free monoid S∗ over S by the congruence ∼P(S) generated
by the following family of super Knuth-like relations, [20]:

𝑥𝑧𝑦 = 𝑧𝑥𝑦, with 𝑥 = 𝑦 only if 𝑦 ∈ S0 and 𝑦 = 𝑧 only if 𝑦 ∈ S1,

𝑦𝑥𝑧 = 𝑦𝑧𝑥, with 𝑥 = 𝑦 only if 𝑦 ∈ S1 and 𝑦 = 𝑧 only if 𝑦 ∈ S0,

for any 𝑥 ⩽ 𝑦 ⩽ 𝑧 of elements of S. When S = S0 = [𝑛], we recover the notion of the plactic
monoid of type A introduced in [21] by Lascoux and Schützenberger, following the works of
Schensted [27] and Knuth [18] on the RSK correspondence. Schützenberger introduced in [28]
the jeu de taquin procedure on the structure of Young tableaux in order to give a correct proof of
the Littlewood–Richardson rule using the properties of the plactic monoid. Since then, plactic
monoids have found several applications in algebraic combinatorics, representation theory, prob-
abilistic combinatorics and rewriting theory, [4, 6–9, 11–16, 19, 23]. When S0 = {𝑚 < . . . < 1}
and S1 = [𝑛] with 1 < 1, we recover the reverse of the super Knuth relations obtained in [1]
where the super plactic congruence is described using Kashiwara’s theory of crystal bases for
the representations of the general linear Lie superalgebra 𝔤𝔩𝑚,𝑛 . The monoid P(S) also appeared
in [22] as a deformation of the parastatistics algebra which is a superalgebra with even parafermi
and odd parabose creation and annihilation operators. Moreover, super algebraic structures
have found many applications as combinatorial tools in the study of the invariant theory of
superalgebras, the representation theory of general Lie super algebras, and algebras satisfying
identities, [2, 3, 5, 10].

A partition of a positive integer 𝑛 is a weakly decreasing sequence 𝜆 = (𝜆1, . . . , 𝜆𝑘 ) ∈ N𝑘 such
that

∑
𝜆𝑖 = 𝑛. The transposed diagram {( 𝑗, 𝑖)

�� (𝑖, 𝑗) ∈ Y(𝜆)} defines another partition denoted
by 𝜆, called the conjugate partition of 𝜆. The Young diagram of a partition 𝜆 = (𝜆1, . . . , 𝜆𝑘 ) is the
set

Y(𝜆) :=
{
(𝑖, 𝑗)

�� 1 ⩽ 𝑖 ⩽ 𝑘, 1 ⩽ 𝑗 ⩽ 𝜆𝑖
}
,

that can be represented by a diagram by drawing a box for each pair (𝑖, 𝑗). A super tableau of
shape 𝜆 over S is a Young diagram of 𝜆 filled by elements of S such that the entries in each row are
weakly increasing allowing the repetition only of elements in S0 and the entries in each column
are weakly increasing allowing the repetition only of elements in S1. Denote by Yt(S) the set of
all super tableaux overS. Note that, whenS = S0 andS = S1, we recover the notion of row-strict
and column-strict semistandard tableaux of type A, respectively, [9]. Denote by R : Yt(S) → S∗
the column reading map that reads a super tableau column-wise from bottom to top and from left
to right. Schensted-like left and right insertion algorithms are introduced in [20], and consist in
inserting elements of S into super tableaux by rows and columns, respectively. For any word
𝑤 = 𝑥1 . . . 𝑥𝑘 over S, a super tableau T(𝑤) is computed from𝑤 by inserting its letters iteratively
from left to right using the right insertion ⇝starting from the empty super tableau:

T(𝑤) := (∅ ⇝

𝑤) = ((. . . (∅ ⇝

𝑥1)

⇝

. . .) ⇝

𝑥𝑘 ) .
Two words 𝑣 and𝑤 over S are super plactic congruent if and only if the equality T(𝑤) = T(𝑣)
holds, [20]. This is the cross-section property of super tableaux with respect to ∼P(S) . We deduce
that the internal product ★Yt(S) defined on Yt(S) by 𝑡 ★Yt(S) 𝑡

′ := (𝑡 ⇝R(𝑡 ′)), for all 𝑡 and 𝑡 ′
in Yt(S), is associative, and the monoids (Yt(S),★Yt(S) ) and P(S) are isomorphic.
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1. Introduction

Super jeu de taquin. Let 𝜆 and 𝜇 be two partitions such that the Young diagram of 𝜇 is contained
in that of 𝜆. A super skew tableau of shape 𝜆/𝜇 over S is a Young diagram of the following form

Y(𝜆/𝜇) :=
{
(𝑖, 𝑗)

�� 1 ⩽ 𝑖 ⩽ 𝑘, 𝜇𝑖 < 𝑗 ⩽ 𝜆𝑖
}

filled by elements of S such that the entries in each row are weakly increasing allowing the
repetition only of elements in S0 and the entries in each column are weakly increasing allowing
the repetition only of elements in S1. A super skew tableau of shape 𝜆/𝜇 which is not a super
tableau has at least one inner corner. An inner corner is a box in the diagram Y(𝜇) such that the
boxes below and to the right do not belong to Y(𝜇). An outer corner is a box such that neither
box below or to the right is in Y(𝜆/𝜇). We introduce in [13] the super jeu taquin as an algorithm
on the structure of super tableaux that consists in applying successively forward sliding operations
on a super skew tableau that move an inner corner into an outer position by keeping the rows
and the columns weakly increasing until no more inner corners remain in the initial super skew
tableau. We prove that the rectification of a super skew tableau 𝑆 by the super jeu de taquin is the
unique super tableau whose reading is equivalent to the reading of 𝑆 with respect to the super
plactic congruence. We deduce that the resulting super tableau does not depend on the order in
which we choose inner corners in the forward sliding procedure. Moreover, we relate the super
jeu de taquin to the insertion algorithms and we show how we can insert a super tableau into
another one by taquin. This interpretation of the insertion product ★Yt(S) by taquin will allow us
to give in Section 4 a combinatorial description of the super Littlewood–Richardson coefficient.
Moreover, we introduce in [13] the super analogue of the Schützenberger’s evacuation procedure
which transforms a super tableau 𝑡 over a signed alphabet S into an opposite tableau, denoted
by 𝑡op, over the opposite alphabet S𝑜𝑝 obtained from S by reversing its order. We show that the
super tableaux 𝑡 and 𝑡op have the same shape and that the map 𝑡 ↦→ 𝑡op is an involution on Yt(S)
that is compatible with the super plactic congruence. The super evacuation procedure will allow
us to construct in Subsection 3.4 a dual version of the super-RSK correspondence using the left
insertion algorithm on super tableaux.

Organization and main results of the article

We begin by recalling in Section 2 the notions of super Young tableaux, the super plactic monoid
and the super jeu de taquin from [13, 20]. We also give a super version of the Robinson–Schensted
correspondence for super tableaux over a signed alphabet.

A super-RSK correspondence. We introduce in Subsection 3.1 a super version of the RSK
correspondence over a signed alphabet. Let S and S′ be signed alphabets. A signed two-rowed
array 𝑤 on S and S′ is a 2 × 𝑘 matrix

𝑤 :=
(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
with 𝑥𝑖 in S and 𝑦𝑖 in S′, for all 𝑖 = 1, . . . , 𝑘 , that satisfies Conditions (6) and (7). Starting
from a signed two-rowed array𝑤 on S and S′, Algorithm 3.1.1 computes a pair of same-shape
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1. Introduction

super tableaux (T(𝑤),Q(𝑤)) whose entries are the ones of the second and the first row of 𝑤 ,
respectively. More precisely, the super tableau T(𝑤) is equal to T(𝑦1 . . . 𝑦𝑘 ), and Q(𝑤) is the
super tableau obtained by successively adding 𝑥1, . . . , 𝑥𝑘 in the same places as the boxes added
when computing T(𝑤) starting from an empty tableau. Moreover, Algorithm 3.1.3 allows us
to recover the initial signed two-rowed array 𝑤 starting from the same-shape pair of super
tableaux (T(𝑤),Q(𝑤)). This sets up a one-to-one correspondence between signed two-rowed
arrays on signed alphabets S and S′ and pairs of same-shape super tableaux on S and S′, that
we denote by

sRSK : 𝑤 ↦→ (T(𝑤),Q(𝑤)) .

Hence, we obtain the following first main result of the article:

Theorem 3.1.5[Super-RSK correspondence]. Let S and S′ be signed alphabets.
The map sRSK defines a one-to-one correspondence between signed two-rowed arrays
and pairs of super tableaux on S and S′, such that for any signed two-rowed array𝑤
on S and S′, we have that T(𝑤) andQ(𝑤) are same-shape super tableaux whose entries
are the ones of the second and the first row of𝑤 , respectively.

The symmetry property. Using a matrix-ball construction, we show in Subsection 3.2 that
the super-RSK correspondence satisfies the symmetry property in complete generality. Let𝑤 be
a signed two-rowed array on signed alphabets S and S′. The inverse of 𝑤 , denoted by 𝑤 inv, is
the signed two-rowed array on S′ and S obtained from𝑤 by exchanging the rows of𝑤 , and by
sorting the new couples on S′×S according to Conditions (6) and (7). The signed two-rowed
array𝑤 has symmetry with respect to the map sRSK if it satisfies the following property:

if sRSK(𝑤) = (T(𝑤),Q(𝑤)) then sRSK(𝑤 inv) = (Q(𝑤),T(𝑤)) .

A signed ball array on signed alphabets S and S′ is a rectangular array of balls filled with positive
integers, whose rows and columns are indexed with elements of S and S′, respectively, allowing
the repetition only of elements in S1 and S′1, respectively, and where many balls can occur in
the same position. We show in 3.2.2 how to correspond to each signed two-rowed array𝑤 on S
and S′, a signed ball array, denoted by Ba(𝑤), whose rows and columns are indexed with the
elements of the first and second row of𝑤 , respectively, from the smaller to the bigger one, and
where the indices from S1 and S′1 are repeated as many times as they appear in 𝑤 . First, we
associate to each couple in𝑤 a ball in an empty signed ball array and then we order and number
these balls with positive integers. Secondly, we add new balls to the given signed ball array, we
order and number them and we repeat the same procedure until no more balls can be added.
This geometrical construction allows us to prove the symmetry property using the symmetry
of the resulting signed ball array Ba(𝑤). More precisely, we denote by T(Ba(𝑤)) and Q(Ba(𝑤))
the super tableau obtained from Ba(𝑤) whose 𝑘-th row lists the indices of the leftmost columns
and top-most rows, respectively, where each integer number occurs in the new added balls. We
show in Proposition 3.2.4 that (T(Ba(𝑤)),Q(Ba(𝑤))) = (T(𝑤),Q(𝑤)). Since the matrix-ball
construction is symmetric in the rows and columns of the resulting signed ball array, we deduce
the following result:
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1. Introduction

Theorem 3.1.10[Symmetry of the super-RSK correspondence]. Let S and S′
be signed alphabets. All signed two-rowed arrays on S and S′ have symmetry with
respect to the super-RSK correspondence map sRSK.

We end Subsection 3.4 by giving a dual way to construct the pair of super tableaux correspond-
ing to a signed two-rowed array with respect to the map sRSK using the left insertion algorithm
and the super evacuation procedure on super tableaux.

Super Littlewood–Richardson rule for super tableaux. We give in Section 4 a combinatorial
interpretation of the super Littlewood–Richardson rule using the super-RSK correspondence.
Let 𝜆, 𝜇 and 𝜈 be partitions such that the Young diagram of 𝜆 is contained in that of 𝜈 . We show
that the number 𝑐𝜈

𝜆,𝜇
of ways a given super tableau 𝑡 of shape 𝜈 can be written as the product of a

super tableau 𝑡 ′ of shape 𝜆 and a super tableau 𝑡 ′′ of shape 𝜇, does not depend on 𝑡 , and depends
only on the partitions 𝜆, 𝜇 and 𝜈 . Moreover, we show that 𝑐𝜈

𝜆,𝜇
is equal to the number of super

skew tableaux of shape 𝜈/𝜆 whose rectification is a given tableau of shape 𝜇. Hence, we obtain
the following result:

Theorem 4.2.1[The super Littlewood–Richardson rule]. Let 𝜆, 𝜇 and 𝜈 be
partitions such that the Young diagram of 𝜆 is contained in that of 𝜈 . The following
identities

𝑆𝜆𝑆𝜇 =
∑︁
𝜈

𝑐𝜈
𝜆,𝜇
𝑆𝜈 and 𝑆𝜈/𝜆 =

∑︁
𝜇

𝑐𝜈
𝜆,𝜇
𝑆𝜇

hold in the tableau Z-algebra rising from the super plactic monoid, where 𝑆𝜈/𝜆 , 𝑆𝜆 , 𝑆𝜇
and 𝑆𝜈 denote respectively the formal sum of all super tableaux of shape 𝜈/𝜆, 𝜆, 𝜇 and 𝜈
over a finite signed alphabet.

Super Littlewood–Richardson tableaux. We suppose in this final part that S1 = {1 < . . . < 𝑛}
and S0 = {𝑚 < . . . < 1} with 1 < 1. For any𝑤 in S∗, we denote by |𝑤 |𝑖 the number of times the
element 𝑖 of S appears in𝑤 , by |𝑤 | the number of elements of S1 that appear in𝑤 such that each
element is counted only once, and by wt(𝑤) the (𝑛 +𝑚)-uplet ( |𝑤 |𝑚, . . . , |𝑤 |1, |𝑤 |1, . . . , |𝑤 |𝑛). For
any super skew tableau 𝑆 over S, we will call wt(R(𝑆)) the weight of 𝑆 . A word𝑤 over S is a super
Yamanouchi word if for every right subword𝑤 ′ of𝑤 , we have |𝑤 ′ |𝑚 ⩾ . . . ⩾ |𝑤 ′ |2 ⩾ |𝑤 ′ |1 ⩾ |𝑤 ′ |,
and for every left subword𝑤 ′ of𝑤 , the following property |𝑤 ′ |1 ⩾ |𝑤 ′ |2 ⩾ . . . ⩾ |𝑤 ′ |𝑛 holds. A
super skew tableau 𝑆 over S is called a super Littlewood–Richardson skew tableau if its reading
word R(𝑆) is a super Yamanouchi word. For any partition 𝜇 ∈ N𝑘 , define 𝜇 := (𝜇1, 𝜇2) where 𝜇1 is
the partition formed by the first𝑚 parts of 𝜇 and 𝜇2 is the partition formed by its last 𝑘 −𝑚 parts,
such that if 𝑘 < 𝑚 + 𝑛 then some parts of 𝜇2 are zero and if 𝑘 < 𝑚 then some parts of 𝜇1 are zero
and all the parts of 𝜇2 are zero.

Using properties of the super plactic congruence and following Theorem 4.2.1, we deduce the
following result:

Theorem 4.3.5. The super Littlewood–Richardson coefficient 𝑐𝜈
𝜆,𝜇

is equal to the
number of super Littlewood–Richardson skew tableaux of shape 𝜈/𝜆 and of weight 𝜇.

This theorem allows us to compute the super Littlewood–Richardson coefficient 𝑐𝜈
𝜆,𝜇

by a new
combinatorial method as shown in Example 4.3.6.
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2. The super plactic monoid of type A

Notation. Let A be a totally ordered alphabet. We will denote by A∗ the free monoid of
words over A, the product being concatenation of words, and the identity being the empty word.
When A is finite, we will denote by #A its cardinal number. We will denote by𝑤 = 𝑥1 . . . 𝑥𝑘 a
word in A∗ of length 𝑘 , where 𝑥1, . . . , 𝑥𝑘 belong to A. The length of a word 𝑤 will be denoted
by |𝑤 |. Let𝑤 = 𝑥1 . . . 𝑥𝑘 be a word in A∗. For any 𝑖 ⩽ 𝑗 , a subword of𝑤 is a word𝑤 ′ = 𝑥𝑖 . . . 𝑥 𝑗
made up of consecutive letters of𝑤 . We will denote by [𝑛] the ordered set {1 < 2 < . . . < 𝑛} for
𝑛 in Z>0. Let S be a finite or countable totally ordered set and | |.| | : S → Z2 be any map, where
Z2 = {0, 1} denotes the additive cyclic group of order 2. The ordered pair (S, | |.| |) is called a signed
alphabet and the map | |.| | is called the signature map ofS. We also denoteS0 = {𝑎 ∈ S

�� | |𝑎 | | = 0}
and S1 = {𝑎 ∈ S

�� | |𝑎 | | = 1}. A monoidM is said a Z2-graded monoid or a supermonoid if a map
| |.| | : M→ Z2 is given such that | |𝑢.𝑣 | | = | |𝑢 | | + | |𝑣 | |, for all𝑢 and 𝑣 inM. We call | |𝑢 | | the Z2-degree
of the element𝑢. The free monoidS∗ overS is Z2-graded by considering | |𝑤 | | := | |𝑥1 | | + . . .+ ||𝑥𝑘 | |,
for any word𝑤 = 𝑥1 . . . 𝑥𝑘 in S∗. In the rest of this article, and if there is no possible confusion, S
denotes a signed alphabet.

2. The super plactic monoid of type A

In this section, we recall the notions of super Young tableaux, the super plactic monoid and the
super jeu de taquin from [13, 20]. Moreover, we give a super version of the Robinson–Schensted
correspondence for super tableaux over a signed alphabet.

2.1. Super Young tableaux. A partition of a positive integer 𝑛, denoted by 𝜆 ⊢ 𝑛, is a weakly
decreasing sequence 𝜆 = (𝜆1, . . . , 𝜆𝑘 ) ∈ N𝑘 such that

∑
𝜆𝑖 = 𝑛. The integer 𝑘 is called number of

parts or height of 𝜆. Denote by P𝑛 the set of partitions of a positive integer 𝑛, and set P =
⋃P𝑛
𝑛∈N

.

The (Ferrers)–Young diagram of a partition 𝜆 = (𝜆1, . . . , 𝜆𝑘 ) is the set

Y(𝜆) :=
{
(𝑖, 𝑗)

�� 1 ⩽ 𝑖 ⩽ 𝑘, 1 ⩽ 𝑗 ⩽ 𝜆𝑖
}
,

that can be represented by a diagram by drawing a box for each pair (𝑖, 𝑗). For instance, the Young
diagram for 𝜆 = (4, 3, 1, 1) is the following

.

The transposed diagram {( 𝑗, 𝑖)
�� (𝑖, 𝑗) ∈ Y(𝜆)} defines another partition 𝜆 ⊢ 𝑛, called the conjugate

partition of 𝜆, whose parts are the lengths of the columns of Y(𝜆). Let 𝜆 ⊢ 𝑛 be a partition. A
super semistandard Young tableau, or super tableau for short, over S is a pair 𝑡 := (𝜆,T) where
T : Y(𝜆) → S is a map satisfying the following two conditions:

i) T (𝑖, 𝑗) ⩽ T (𝑖, 𝑗 + 1), with T (𝑖, 𝑗) = T (𝑖, 𝑗 + 1) only if | | T (𝑖, 𝑗) | | = 0,

ii) T (𝑖, 𝑗) ⩽ T (𝑖 + 1, 𝑗), with T (𝑖, 𝑗) = T (𝑖 + 1, 𝑗) only if | | T (𝑖, 𝑗) | | = 1.

7



2. The super plactic monoid of type A

We will call Y(𝜆), T and 𝜆, the frame, the filing and the shape of the super tableau 𝑡 respectively.
When the map T is injective, we say that 𝑡 is a standard Young tableau, or standard tableau for
short, over S. Denote by ∅ the empty super tableau over S. Denote by Yt(S) (resp. Ys(S)) the set
of all super tableaux (resp. standard tableaux) over S and by Yt(S, 𝜆) the set of all super tableaux
of shape 𝜆 over S.

Let 𝜆 and 𝜇 be in P with heights 𝑘 and 𝑙 respectively such that 𝑙 ⩽ 𝑘 . We write 𝜇 ⊆ 𝜆 if 𝜇𝑖 ⩽ 𝜆𝑖 ,
for any 𝑖 , that is the Young diagram of 𝜇 is contained in that of 𝜆. In this case, the set

Y(𝜆/𝜇) :=
{
(𝑖, 𝑗)

�� 1 ⩽ 𝑖 ⩽ 𝑘, 𝜇𝑖 < 𝑗 ⩽ 𝜆𝑖
}

is called a skew diagram 𝜆/𝜇 or a skew shape. We denote 𝜆/0 := 𝜆 the skew shape corresponding
to the Young diagram Y(𝜆). Let 𝜆/𝜇 be a skew shape. A super semistandard skew tableau, or
super skew tableau for short, of shape 𝜆/𝜇 and frame Y(𝜆/𝜇) over S is a pair 𝑆 := (𝜆/𝜇,U) where
U : Y(𝜆/𝜇) → S is a map satisfying the following conditions:

i) U(𝑖, 𝑗) ⩽ U(𝑖, 𝑗 + 1), withU(𝑖, 𝑗) = U(𝑖, 𝑗 + 1) only if | | U(𝑖, 𝑗) | | = 0,

ii) U(𝑖, 𝑗) ⩽ U(𝑖 + 1, 𝑗), withU(𝑖, 𝑗) = U(𝑖 + 1, 𝑗) only if | | U(𝑖, 𝑗) | | = 1.

Denote by St(S) the set of all super skew tableaux over S and by St(S, 𝜆/𝜇) the set of all super
skew tableaux of shape 𝜆/𝜇 over S. Note that we will identify the set of super tableaux of shape 𝜆
with the set of super skew tableaux of shape 𝜆/0. A super skew tableau of shape 𝜆/𝜇 which is
not a super tableau has at least one inner corner. An inner corner is a box in the diagram Y(𝜇)
such that the boxes below and to the right do not belong to Y(𝜇). An outer corner is a box
such that neither box below or to the right is in Y(𝜆/𝜇). Note that in some cases inner corners
can be also outer corners. For instance, consider S = N with signature given by S0 the set of
odd numbers and S1 defined consequently. The red box in the following super skew tableau of
shape (7, 5, 5, 3, 1)/(4, 4, 4, 3) is an inner corner, the blue one is an inner and outer corner, and the
green one is an outer corner that is not an inner corner:

3 3 3
4
4

5

.

Denote by R : St(S) → S∗ the column reading map that reads a super tableau column-wise from
bottom to top and from left to right. For instance, consider the alphabet S = N with signature
given by S0 the set of even numbers and S1 defined consequently. The following diagram is a
super tableau of shape (3, 2, 2, 1) over S :

𝑡 =

1 2 3
1 3
2 4
4

with R(𝑡) = 42114323.
(1)

8



2.2. Super Robinson–Schensted correspondence

The following diagram is a super skew tableau of shape (6, 4, 2, 2, 1, 1)/(3, 2, 2, 1) over S :

𝑆 =

1 2 3
1 3

4
2
4

with R(𝑆) = 42413123.
(2)

2.2. Super Robinson–Schensted correspondence. From a super tableau we can obtain a
word over S by taking its column reading. The following algorithm will allow us to invert this
process and obtain a super tableau from any word over S.

Algorithm 2.2.1 ([20]). The right (or row) insertion, denoted by ⇝, inserts an element 𝑥 in S
into a super tableau 𝑡 of Yt(S) as follows:

Input: A super tableau 𝑡 and a letter 𝑥 ∈ S.
Output: A super tableau 𝑡 ⇝

𝑥 .
Method: If 𝑡 is empty, create a box and label it 𝑥 . Suppose 𝑡 is non-empty. If 𝑥 ∈ S𝑜

(resp. 𝑥 ∈ S1) is at least as large as (resp. larger than) the last element of the top row of 𝑡 , then
put 𝑥 in a box to the right of this row; otherwise let 𝑦 be the smallest element of the top row of 𝑡
such that 𝑦 > 𝑥 (resp. 𝑦 ⩾ 𝑥). Then replace 𝑦 by 𝑥 in this row and recursively insert 𝑦 into the
super tableau formed by the rows of 𝑡 below the topmost. Note that this recursion may end with
an insertion into an empty row below the existing rows of 𝑡 . Output the resulting super tableau.

For any word 𝑤 = 𝑥1 . . . 𝑥𝑘 over S, a super tableau T(𝑤) is computed from 𝑤 by inserting
its letters iteratively from left to right using the right insertion starting from the empty super
tableau:

T(𝑤) := (∅ ⇝

𝑤) = ((. . . (∅ ⇝

𝑥1)

⇝

. . .) ⇝

𝑥𝑘 ) .

Moreover, for any 𝑡 in Yt(S), the equality T(R(𝑡)) = 𝑡 holds, [20].

Lemma 2.2.2 (Row-bumping lemma [20]). Let 𝑡 be in Yt(S) and 𝑥, 𝑥 ′ in S. Consider the po-
sition (𝑖, 𝑗) (resp. (𝑖 ′, 𝑗 ′)) of the new box added to the frame of 𝑡 (resp. (𝑡 ⇝

𝑥)) after comput-
ing (𝑡 ⇝

𝑥) (resp. ((𝑡 ⇝

𝑥) ⇝

𝑥 ′)). The following conditions are equivalent:

i) 𝑥 ⩽ 𝑥 ′, with 𝑥 = 𝑥 ′ only if | |𝑥 | | = 0,

ii) 𝑗 < 𝑗 ′, and 𝑖 ⩾ 𝑖 ′.

Algorithm2.2.3. Let𝑤 be inS. When computing the super tableauT(𝑤), a standard tableauQ(𝑤)
over [𝑛] can be also computed as follows:

Input: A word 𝑥1 . . . 𝑥𝑘 over S.
Output: A super tableau T(𝑥1 . . . 𝑥𝑘 ) over S and a standard tableau Q(𝑥1 . . . 𝑥𝑘 ) over [𝑛].
Method: Start with an empty super tableau 𝑇0 and an empty standard tableau 𝑄0. For each

𝑖 = 1, . . . , 𝑘 , compute𝑇𝑖−1

⇝

𝑥𝑖 as per Algorithm 2.2.1; let𝑇𝑖 be the resulting super tableau. Add a
box filled with 𝑖 to the standard tableau𝑄𝑖−1 in the same place as the box that belongs to𝑇𝑖 but not
to 𝑇𝑖−1; let 𝑄𝑖 be the resulting standard tableau. Output 𝑇𝑘 for T(𝑥1 . . . 𝑥𝑘 ) and 𝑄𝑘 as Q(𝑥1 . . . 𝑥𝑘 ).
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2. The super plactic monoid of type A

Example 2.2.4. For instance, consider the alphabet S = {1, 2, 3, 4, 5, 6} with signature given
by S0 = {1, 3, 4} and S1 defined consequently. The sequence of pairs produced during the
computation of T(𝑤) and Q(𝑤) starting from the word𝑤 = 2421456356431541 is

(
∅ , ∅

)
,
( 2 , 1 )

,
( 2 4 , 1 2 )

,

( 2 4
2 ,

1 2
3

)
,

( 1 4
2
2

,
1 2
3
4

)
,

( 1 4 4
2
2

,
1 2 5
3
4

)
,

( 1 4 4 5
2
2

,
1 2 5 6
3
4

)
,

( 1 4 4 5 6
2
2

,
1 2 5 6 7
3
4

)
,

(
1 3 4 5 6
2 4
2

,
1 2 5 6 7
3 8
4

)
,(

1 3 4 5 6
2 4 5
2

,
1 2 5 6 7
3 8 9
4

)
,

(
1 3 4 5 6
2 4 5 6
2

,
1 2 5 6 7
3 8 9 10
4

)
,

(
1 3 4 4 6
2 4 5 6
2 5

,
1 2 5 6 7
3 8 9 10
4 11

)
,

(
1 3 3 4 6
2 4 4 6
2 5
5

,
1 2 5 6 7
3 8 9 10
4 11
12

)
,

(
1 1 3 4 6
2 3 4 6
2 4
5
5

,
1 2 5 6 7
3 8 9 10
4 11
12
13

)
,

( 1 1 3 4 5
2 3 4 6
2 4 6
5
5

,

1 2 5 6 7
3 8 9 10
4 1114
12
13

)
,

( 1 1 3 4 4
2 3 4 5
2 4 6
5 6
5

,

1 2 5 6 7
3 8 9 10
4 1114
1215
13

)
,

(
T(𝑤) =

1 1 1 4 4
2 3 3 5
2 4 4
5 6
5 6

, Q(𝑤) =

1 2 5 6 7
3 8 9 10
4 1114
1215
1316

)
.

Algorithm 2.2.5 ([20]). Let 𝑡 be in Yt(S) and 𝑥 in S. Starting with the super tableau 𝑡

⇝

𝑥 ,
together with the outer corner that has been added to the frame of 𝑡 after insertion, we can recover
the original tableau 𝑡 and the element 𝑥 as follows.

Input: A super tableau 𝑡 and an outer corner of 𝑡 .
Output: A super tableau 𝑡 ′ and a letter 𝑥 ∈ S.
Method: Suppose that 𝑦 ∈ S0 (resp. 𝑦 ∈ S1) is the entry in the outer corner of 𝑡 . Find in the

row above this outer corner the entry farthest to the right which is strictly smaller (resp. smaller)
than 𝑦. Then this entry is replaced by 𝑦 and it is bumped up to the next row where the process is
repeated until an entry is bumped out of the top row. Output the resulting super tableau for 𝑡 ′
and the last element which is bumped out for 𝑥 .

Algorithm 2.2.6. Let𝑤 be in S. Starting from the pair of super tableaux (T(𝑤),Q(𝑤)) obtained
by Algorithm 2.2.3 we can recover the initial word𝑤 as follows:

Input: A pair (𝑇,𝑄) ∈ Yt(S) × Ys( [𝑛]) of same-shape super tableaux containing 𝑘 boxes.
Output: A word 𝑥1 . . . 𝑥𝑘 over S.
Method: Start with 𝑇𝑘 = 𝑇 and 𝑄𝑘 = 𝑄 . For each 𝑖 = 𝑘 − 1, . . . , 1, take the box filled by 𝑖 + 1

in 𝑄𝑖+1, and apply Algorithm 2.2.5 to 𝑇𝑖+1 with the outer corner corresponding to that box. The
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2.3. The super plactic monoid of type A

resulting tableau is𝑇𝑖 , and the element that is bumped out of the top row of𝑇𝑖+1 is denoted by 𝑥𝑖+1.
Remove the box containing 𝑖 + 1 from𝑄𝑖+1 an denote the resulting standard tableau by𝑄𝑖 . Output
the word 𝑥1 . . . 𝑥𝑘 .

This sets up a one-to-one correspondence between words over S, and pairs of same-shape
tableaux (𝑇,𝑄) in Yt(S) × Ys( [𝑛]):

Proposition 2.2.7. The map 𝑤 ↦→ (T(𝑤),Q(𝑤)) defines a bijection between words over S and
pairs consisting of a super tableau over S and a standard tableau over [𝑛] of the same shape.

This is the super version of the Robinson–Schensted correspondence between words over [𝑛]
and pairs consisting of a row-strict semistandard tableau and a standard tableau over [𝑛] of the
same shape, [9].

2.3. The super plactic monoid of type A. The super plactic monoid over S, denoted by P(S),
is the quotient of the free monoid S∗ by the congruence generated by the following family of
super Knuth-like relations, [20]:

𝑥𝑧𝑦 = 𝑧𝑥𝑦, with 𝑥 = 𝑦 only if | |𝑦 | | = 0 and 𝑦 = 𝑧 only if | |𝑦 | | = 1,
𝑦𝑥𝑧 = 𝑦𝑧𝑥, with 𝑥 = 𝑦 only if | |𝑦 | | = 1 and 𝑦 = 𝑧 only if | |𝑦 | | = 0, (3)

for any 𝑥 ⩽ 𝑦 ⩽ 𝑧 of elements of S. This congruence, denoted by ∼P(S) , is called the super plactic
congruence. Two words over S are super plactic equivalent if one can be transformed into the other
with respect the congruence ∼P(S) . For instance, consider the readings of the super tableau 𝑡

presented in (1) and the super skew tableau 𝑆 presented in (2), we have

R(𝑡) = 42114323 ∼P(S) 42141323 ∼P(S) 42411323 ∼P(S) 42413123 = R(𝑆) . (4)

Since the relations (3) are Z2-homogeneous, we have that P(S) is a supermonoid. For any𝑤 in S∗,
we have 𝑤 ∼P(S) R(T(𝑤)), [13]. Moreover, the set Yt(S) satisfies the following cross-section
property for ∼P(S) :

Property 2.3.1 ([20]). For all𝑤 and𝑤 ′ in S∗, we have𝑤 ∼P(S) 𝑤 ′ if and only if T(𝑤) = T(𝑤 ′).

Define now an internal product ★Yt(S) on Yt(S) by setting

𝑡 ★Yt(S) 𝑡
′ := (𝑡 ⇝R(𝑡 ′)) (5)

for all 𝑡, 𝑡 ′ in Yt(S). By definition the relations 𝑡 ★Yt(S) ∅ = 𝑡 and ∅ ★Yt(S) 𝑡 = 𝑡 hold, showing
that the product ★Yt(S) is unitary with respect to ∅. Following Property 2.3.1, we deduce that the
product ★Yt(S) is associative and the monoids (Yt(S),★Yt(S) ) and P(S) are isomorphic.

Lemma 2.3.2. Let𝑤 and 𝑣 be two words over S and let𝑤 ′ and 𝑣 ′ be the words obtained respectively
from𝑤 and 𝑣 after removing the 𝑖 largest and the 𝑗 smallest letters for any 𝑖 and 𝑗 . If𝑤 and 𝑣 are
super plactic congruent then𝑤 ′ and 𝑣 ′ are so.
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2. The super plactic monoid of type A

Proof. It is sufficient by induction to prove that the words obtained by removing the largest or the
smallest letters from𝑤 and 𝑣 are super plactic equivalent. We prove the case of the largest, the
other being similar. Suppose that𝑤 = 𝑢𝑥𝑧𝑦𝑢 ′ and 𝑣 = 𝑢𝑧𝑥𝑦𝑢 ′ (resp.𝑤 = 𝑢𝑦𝑥𝑧𝑢 ′ and 𝑣 = 𝑢𝑦𝑧𝑥𝑢 ′)
for all 𝑢,𝑢 ′ in S∗ such that 𝑥 ⩽ 𝑦 ⩽ 𝑧 in S with 𝑥 = 𝑦 only if | |𝑦 | | = 0 (resp. | |𝑦 | | = 1) and 𝑦 = 𝑧

only if | |𝑦 | | = 1 (resp. | |𝑦 | | = 0). We consider two cases depending on whether or not the element
that is removed from𝑤 and 𝑣 is one of the letters 𝑥 , 𝑦, or 𝑧. If this element is not one of the letters
𝑥 , 𝑦, or 𝑧, then the resulting words are obviously super plactic equivalent. Otherwise, the removed
letter must be the letter 𝑧 and then the resulting words are equal, showing the claim. □

2.4. The super jeu de taquin. Recall from [13] the super jeu de taquin procedure which
transforms super skew tableaux over S into super tableaux over S as follows. A sliding operation
belongs to one of the following two operations:

i) vertical sliding: 𝑦
𝑥

→ 𝑥 𝑦 , for any 𝑥 ⩽ 𝑦 with 𝑥 = 𝑦 only if | |𝑥 | | = 0,

ii) horizontal sliding: 𝑥
𝑦

→ 𝑥
𝑦

, for any 𝑥 ⩽ 𝑦 with 𝑥 = 𝑦 only if | |𝑥 | | = 1.

Note that if 𝑥 or 𝑦 in i) and ii) are empty, the following operations are performed:

𝑥
→ 𝑥 , 𝑥 → 𝑥 , → for any 𝑥 .

A forward sliding is a sequence of sliding operations starting from a super skew tableau and
one of its inner corners, and moving the empty box until it becomes an outer corner. The super
jeu de taquin on a super skew tableau 𝑆 consists in applying successively the forward sliding
algorithm starting from 𝑆 until we get a diagram without inner corners. The resulting diagram,
denoted by Rect(𝑆), is a super tableau called the rectification of 𝑆 , [13]. Two super skew tableaux 𝑆
and 𝑆 ′ are super jeu de taquin equivalent if and only if 𝑆 can be obtained from 𝑆 ′ by a sequence
of sliding operations. We show that if two super skew tableaux 𝑆 and 𝑆 ′ are super jeu de taquin
equivalent, then the words R(𝑆) and R(𝑆 ′) are super plactic equivalent, [13]. Moreover, we show
the following property:

Property 2.4.1 ([13]). For all 𝑆, 𝑆 ′ ∈ St(S), Rect(𝑆) = Rect(𝑆 ′) if and only if R(𝑆) ∼P(S) R(𝑆 ′).

As a consequence, we deduce that starting with a given super skew tableau, all choices of
inner corners lead to the same rectified super tableau. This is the confluence property of the super
jeu de taquin.

Example 2.4.2. For instance, the super jeu de taquin on the super skew tableau 𝑆 in (2) applies
eight occurrences of forward sliding:

𝑆 =

1 2 3
1 3

4
2
4

→
1 2 3

1 3
4

2
4

;
1 2 3

1 3
4

2
4

→
1 2 3

1 3
4

2

4

→
1 2 3

1 3
4

2
4

;
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2.4. The super jeu de taquin

1 2 3
1 3

4
2
4

→
1 2 3

1 3
2 4

4

→
1 2 3

1 3
2 4
4

;

1 2 3
1 3

2 4
4

→
1 2 3

1 3
2 4
4

→
1 2 3

1 3
2 4
4

;

1 2 3
1 3

2 4
4

→
1 2 3

1 3
2 4
4

→
1 2 3

1 3
2 4
4

→
1 2 3

1 3
2 4
4

;

1 2 3
1 3

2 4
4

→
1 2 3
1 3

2 4
4

→
1 2 3
1 3

2 4
4

→
1 2 3
1 3

2 4
4

;

1 2 3
1 3

2 4
4

→
1 2 3

1 3
2 4
4

→
1 2 3

1 3
2 4
4

;

1 2 3
1 3
2 4
4

→
1 2 3
1 3
2 4
4

→
1 2 3
1 3
2 4
4

→
1 2 3
1 3
2 4
4

= Rect(𝑆)

with R(𝑆) = 42413123 ∼P(S) 42114323 = R(Rect(𝑆)), as shown in (4).

2.4.3. The reverse sliding. A reverse sliding operation belongs to one of the following opera-
tions, [13]:

i) vertical reverse sliding: 𝑦
𝑥

→
𝑥 𝑦

, for any 𝑥 ⩽ 𝑦 with 𝑥 = 𝑦 only if | |𝑥 | | = 0,

ii) horizontal reverse sliding: 𝑥
𝑦

→ 𝑥
𝑦
, for any 𝑥 ⩽ 𝑦 with 𝑥 = 𝑦 only if | |𝑥 | | = 1.

A reverse sliding is a sequence of reverse sliding operations starting from a skew tableau and one
of its empty outer corners, and moving this box until it becomes an inner corner. Starting from
the resulting super skew tableau of a forward sliding, together with the outer corner that was
removed, and if we apply the reverse sliding, then we will obtain the initial super skew tableau
with the chosen inner corner.

2.4.4. Super jeu de taquin and insertion. Let 𝑆 and 𝑆 ′ be super skew tableaux in St(S) of shape
(𝜆1, . . . , 𝜆𝑘 )/(𝜆′1, . . . , 𝜆′𝑘′) and (𝜇1, . . . , 𝜇𝑙 )/(𝜇 ′1, . . . , 𝜇 ′𝑙 ′), respectively. We will denote by [𝑆, 𝑆 ′] the
super skew tableau of shape

(𝜇1 + 𝜆1, . . . , 𝜇𝑙 + 𝜆1, 𝜆1, . . . , 𝜆𝑘 )/(𝜇 ′1 + 𝜆1, . . . , 𝜇
′
𝑙 ′ + 𝜆1, 𝜆1, . . . , 𝜆1, 𝜆

′
1, . . . , 𝜆

′
𝑘′),
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obtained by concatenating 𝑆 ′ over the rightmost column of 𝑆 , as illustrated in the following
diagram:

[𝑆, 𝑆 ′] =
𝑆 ′

𝑆

.

In particular, if 𝑡 and 𝑡 ′ are super tableaux in Yt(S) of shapes 𝜆 = (𝜆1, . . . , 𝜆𝑘 ) and 𝜇 = (𝜇1, . . . , 𝜇𝑙 ),
respectively, then the super skew tableau [𝑡, 𝑡 ′] is of the following shape

(𝜇1 + 𝜆1, . . . , 𝜇𝑙 + 𝜆1, 𝜆1, . . . , 𝜆𝑘 )/(𝜆1, . . . , 𝜆1) .

Define the insertion product ★St(S) : St(S) × St(S) → Yt(S) by setting

𝑆 ★St(S) 𝑆
′ := (∅ ⇝R(𝑆)R(𝑆 ′))

for all 𝑆, 𝑆 ′ in St(S). The insertion product satisfies the following equality

𝑆 ★St(S) 𝑆
′ = Rect( [𝑆, 𝑆 ′])

in Yt(S), for all 𝑆 and 𝑆 ′ in St(S). In particular, we recover that this product is associative, [13].

3. A super-RSK correspondence with symmetry

In this section, we introduce a super version of the RSK correspondence over a signed version.
Using a matrix-ball interpretation, we show that this correspondence satisfies the symmetry
property in complete generality. We follow for this aim the approach developed in [9] for the
non-signed case.

3.1. Super-RSK correspondence. Let (S, | |.| |1) and (S′, | |.| |2) be signed alphabets. We define
an alphabet structure on the product set S ×S′ by considering the following order < defined by

(𝑥1, 𝑦1) < (𝑥2, 𝑦2) if 𝑥1 < 𝑥2 or
{
𝑥1 = 𝑥2 ∈ S0 and 𝑦1 < 𝑦2
𝑥1 = 𝑥2 ∈ S1 and 𝑦2 < 𝑦1.

(6)

Moreover, the signature map | |.| | : S ×S′→ Z2 is defined by | | (𝑥,𝑦) | | = | |𝑥 | |1 + ||𝑦 | |2. From now
on, and if there is no possible confusion, we will denote by | |.| | all the signature maps of S, S′
and S ×S′. A signed two-rowed array on the alphabets S and S′ is a 2 × 𝑘 matrix(

𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
with 𝑥𝑖 ∈ S and 𝑦𝑖 ∈ S′, for all 𝑖 = 1, . . . , 𝑘 , such that the following condition holds:

(𝑥𝑖 , 𝑦𝑖) ⩽ (𝑥𝑖+1, 𝑦𝑖+1), and (𝑥𝑖 , 𝑦𝑖) = (𝑥𝑖+1, 𝑦𝑖+1) only if | | (𝑥𝑖 , 𝑦𝑖) | | = 0. (7)
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3.1. Super-RSK correspondence

Algorithm 3.1.1. Let S and S′ be signed alphabets. Starting from a signed two-rowed array𝑤
on S and S′, we compute a pair of same-shape super tableaux (T(𝑤),Q(𝑤)) whose entries are
the ones of the second and the first row of𝑤 , respectively, as follows:

Input: A signed two-rowed array𝑤 =

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
on S and S′.

Output: A pair (T(𝑤),Q(𝑤)) ∈ Yt(S′) × Yt(S) of same-shape super tableaux with 𝑘 boxes.
Method: Start with an empty super tableau 𝑇0 and an empty super tableau 𝑄0. For each

𝑖 = 1, . . . , 𝑘 , compute 𝑇𝑖−1

⇝

𝑦𝑖 as per Algorithm 2.2.1 and let 𝑇𝑖 be the resulting super tableau.
Add a box filled with 𝑥𝑖 to the super tableau 𝑄𝑖−1 in the same place as the box that belongs to 𝑇𝑖
but not to 𝑇𝑖−1; let 𝑄𝑖 be the resulting super tableau. Output 𝑇𝑘 for T(𝑤) and 𝑄𝑘 as Q(𝑤).

Proposition 3.1.2. Algorithm 3.1.1 always halts with the correct output.

Proof. By construction, we have that T(𝑤) is a super tableau over S′ since it is equal to the super
tableau T(𝑦1 . . . 𝑦𝑘 ). We still have to show that Q(𝑤) is a super tableau over S. It is sufficient
to show by induction that each Q𝑖 , for 𝑖 = 1, . . . , 𝑘 , is a super tableau over S. By definition of
the signed two-rowed array, if 𝑥𝑖 ∈ S0 is placed to the right of (resp. under or to the right of)
an entry 𝑥𝑙 ∈ S0 (resp. 𝑥𝑙 ∈ S1) in 𝑄𝑖−1, then 𝑥𝑖 is larger (resp. strictly larger) than 𝑥𝑙 . Similarly,
if 𝑥𝑖 ∈ S1 is placed under (resp. under or to the right of) an entry 𝑥𝑙 ∈ S1 (resp. 𝑥𝑙 ∈ S0) in 𝑄𝑖−1,
then 𝑥𝑖 is larger (resp. strictly larger) than 𝑥𝑙 . Let us now show that if 𝑥𝑖 ∈ S0 is placed under
of an entry 𝑥𝑙 ∈ S0 in 𝑄𝑖−1, then 𝑥𝑖 is strictly larger than 𝑥𝑙 . Suppose the contrary. Then, we
have 𝑥𝑖 = 𝑥𝑙 and thus by Conditions (6) and (7) we have:

𝑦𝑙 ⩽ 𝑦𝑙+1 ⩽ . . . ⩽ 𝑦𝑖 ,

with 𝑦𝑙 = 𝑦𝑙+1 = . . . = 𝑦𝑖 only if | |𝑦𝑙 | | = 0. Hence, following the row insertion algorithm, all
the boxes added starting from the super tableau 𝑇𝑙 to the super tableau 𝑇𝑖 must be in different
columns which contradicts the fact that 𝑥𝑖 and 𝑥𝑙 belong to the same column. Similarly, we show
that if 𝑥𝑖 ∈ S1 is placed to the right of an entry 𝑥𝑙 ∈ S1 in 𝑄𝑖−1, then 𝑥𝑖 is strictly larger than 𝑥𝑙 .
Note finally that by construction the super tableaux T(𝑤) and Q(𝑤) are of the same shape and
contains 𝑘 boxes. □

Algorithm 3.1.3. Let𝑤 be a signed two-rowed array on two signed alphabets S and S′. Starting
from the pair of super tableaux (T(𝑤),Q(𝑤)) constructed by Algorithm 3.1.1, we can recover the
initial signed two-rowed array𝑤 as follows:

Input: A pair (𝑇,𝑄) ∈ Yt(S′) × Yt(S) of same-shape super tableaux containing 𝑘 boxes.

Output: A signed two-rowed array𝑤 =

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
on S and S′.

Method: Start with 𝑇𝑘 = 𝑇 and 𝑄𝑘 = 𝑄 . For each 𝑖 = 𝑘 − 1, . . . , 1, take the box filled by the
largest entry 𝑥𝑖+1 in 𝑄𝑖+1 and if there are several equal entries in S0 (resp. S1), the box that is
farthest to the right (resp. left) is selected; apply Algorithm 2.2.5 to 𝑇𝑖+1 with the outer corner
corresponding to that box. Let 𝑇𝑖 be the resulting super tableau and 𝑦𝑖+1 be the element that is
bumped out of the top row of 𝑇𝑖+1. Remove the box containing 𝑥𝑖+1 from 𝑄𝑖+1 and denote the

resulting super tableau tableau by 𝑄𝑖 . Output the 2 × 𝑘 matrix
(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
.
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3. A super-RSK correspondence with symmetry

Proposition 3.1.4. Algorithm 3.1.3 always halts with the correct output.

Proof. By construction, we have 𝑥1 ⩽ . . . ⩽ 𝑥𝑘 . Suppose now that 𝑥𝑖−1 = 𝑥𝑖 , for 𝑖 ∈ [𝑘]
with | |𝑥𝑖 | | = 0. Then by constructing, the box that is removed from 𝑇𝑖 lies strictly to the right
of the box that is removed from 𝑇𝑖−1 in the next step. Following Lemma 2.2.2, the entry 𝑦𝑖
removed first is at least as large as the entry 𝑦𝑖−1 removed second, with 𝑦𝑖 = 𝑦𝑖−1, only if | |𝑦𝑖 | | = 0.
Suppose now that 𝑥𝑖−1 = 𝑥𝑖 , for 𝑖 ∈ [𝑘] with | |𝑥𝑖 | | = 1. Then by constructing, the box that is
removed from 𝑇𝑖 lies strictly below the box that is removed from 𝑇𝑖−1 in the next step. Following
Lemma 2.2.2, we obtain that 𝑦𝑖−1 ⩾ 𝑦𝑖 , with 𝑦𝑖 = 𝑦𝑖−1, only if | |𝑦𝑖 | | = 1. Hence, the output 2 × 𝑘
matrix satisfies Conditions (6) and (7), and then it is a signed two-rowed array on S and S′. □

It is clear from the constructions that the two processes described in Algorithm 3.1.1 and
Algorithm 3.1.3 are inverse to each other. This sets up a one-to-one correspondence between
signed two-rowed arrays on signed alphabets S and S′ and pairs of same-shape super tableaux
on S and S′. We will denote by

sRSK : 𝑤 ↦→ (T(𝑤),Q(𝑤))

this mapping. Hence, we obtain the following first main result of this article:

Theorem 3.1.5 (Super-RSK correspondence). Let S and S′ be signed alphabets. The map sRSK
defines a one-to-one correspondence between signed two-rowed arrays and pairs of super tableaux
on S and S′, such that for any signed two-rowed array𝑤 on S and S′, we have that T(𝑤) and Q(𝑤)
are same-shape super tableaux whose entries are the ones of the second and the first row of 𝑤 ,
respectively.

This is the super version of the Robinson–Schensted–Knuth correspondence between two-
rowed arrays of non-negative integers and pairs of same-shape semistandard tableaux, [9]. More
precisely, when S = S′ = S0 = S′0 = [𝑛], we recover the classical RSK correspondence on the
structure of Young tableaux of type A.

Example 3.1.6. Consider S = S′ = [6] with signature given by S0 = S′0 = {1, 3, 4} and S1 = S′1
defined consequently. The sequence of pairs produced during the computation of T(𝑤) and Q(𝑤)
starting from the following signed two-rowed array:

𝑤 =

(
1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
2 4 2 1 4 5 6 3 5 6 4 3 1 5 4 1

)
on S and S′ is the following:

(
∅ , ∅

)
,
( 2 , 1 )

,
( 2 4 , 1 2 )

,

( 2 4
2 ,

1 2
2

)
,

( 1 4
2
2

,
1 2
2
2

)
,

( 1 4 4
2
2

,
1 2 3
2
2

)
,

( 1 4 4 5
2
2

,
1 2 3 3
2
2

)
,

( 1 4 4 5 6
2
2

,
1 2 3 3 3
2
2

)
,

(
1 3 4 5 6
2 4
2

,
1 2 3 3 3
2 4
2

)
,
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3.1. Super-RSK correspondence

(
1 3 4 5 6
2 4 5
2

,
1 2 3 3 3
2 4 4
2

)
,

(
1 3 4 5 6
2 4 5 6
2

,
1 2 3 3 3
2 4 4 4
2

)
,

(
1 3 4 4 6
2 4 5 6
2 5

,
1 2 3 3 3
2 4 4 4
2 5

)
,

(
1 3 3 4 6
2 4 4 6
2 5
5

,
1 2 3 3 3
2 4 4 4
2 5
5

)
,

(
1 1 3 4 6
2 3 4 6
2 4
5
5

,
1 2 3 3 3
2 4 4 4
2 5
5
5

)
,

( 1 1 3 4 5
2 3 4 6
2 4 6
5
5

,

1 2 3 3 3
2 4 4 4
2 5 6
5
5

)
,

( 1 1 3 4 4
2 3 4 5
2 4 6
5 6
5

,

1 2 3 3 3
2 4 4 4
2 5 6
5 6
5

)
,

(
T(𝑤) =

1 1 1 4 4
2 3 3 5
2 4 4
5 6
5 6

, Q(𝑤) =

1 2 3 3 3
2 4 4 4
2 5 6
5 6
5 6

)
.

Moreover, if we apply Algorithm 3.1.3 on the pair (T(𝑤),Q(𝑤)), we recover the initial signed
two-rowed array𝑤 .

Example 3.1.7. Let S = S′ = N with signature given by S0 (resp S′1) the set of even numbers
and S1 (resp. S′0) defined consequently. The sequence of pairs produced during the computation
of T(𝑤) and Q(𝑤) starting from the following signed two-rowed array

𝑤 =

(
1 1 2 2 3 3 4 4
3 2 1 2 4 3 1 2

)
on S and S′ is the following:

(
∅ , ∅

)
,
( 3 , 1 )

,
( 2

3
, 1

1
)
,

( 1
2
3

,
1
1
2

)
,

( 1 2
2
3

,
1 2
1
2

)
,

( 1 2 4
2
3

,
1 2 3
1
2

)
,

( 1 2 3
2 4
3

,
1 2 3
1 3
2

)
,

( 1 1 3
2 4
2
3

,
1 2 3
1 3
2
4

)
,

(
T(𝑤) =

1 1 2
2 3
2 4
3

, Q(𝑤) =
1 2 3
1 3
2 4
4

)
.

Moreover, if we apply Algorithm 3.1.3 on the pair (T(𝑤),Q(𝑤)), then we recover the initial signed
two-rowed array𝑤 .

3.1.8. The symmetry property. Let 𝑤 be a signed two-rowed array on signed alphabets S
and S′. The inverse of𝑤 , denoted by𝑤 inv, is the signed two-rowed array on S′ and S obtained
from 𝑤 by exchanging the rows of 𝑤 , that is writing the second row of 𝑤 as the first row and
the first row of 𝑤 as the second row, and by sorting the new couples on S′×S according to
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3. A super-RSK correspondence with symmetry

Conditions (6) and (7). For instance, the inverse of the signed two-rowed array𝑤 of Example 3.1.6
is the following

𝑤 inv =

(
1 1 1 2 2 3 3 4 4 4 4 5 5 5 6 6
2 5 6 2 1 4 5 2 3 5 6 6 4 3 4 3

)
and the inverse of the signed two-rowed array𝑤 of Example 3.1.7 is the following

𝑤 inv =

(
1 1 2 2 2 3 3 4
2 4 4 2 1 1 3 3

)
.

We say that the signed two-rowed array𝑤 has symmetry with respect to the super-RSK corre-
spondence map sRSK if it satisfies the following property:

Property 3.1.9. If sRSK(𝑤) = (T(𝑤),Q(𝑤)) then sRSK(𝑤 inv) = (Q(𝑤),T(𝑤)).

We show the following second main theorem of the article:

Theorem 3.1.10 (Symmetry of the super-RSK correspondence). Let S and S′ be signed alphabets.
All signed two-rowed arrays onS andS′ have symmetry with respect to the super-RSK correspondence
map sRSK.

The rest of this section is devoted to prove this result. We will give a geometrical construction
of the super-RSK correspondence based on Fulton’s matrix-ball construction, [9], for the non-
signed case. This construction will allow us to prove Theorem 3.1.10 using the symmetry of the
resulting signed ball array corresponding to a signed two-rowed array.

3.2. Super matrix-ball construction. Let S and S′ be two signed alphabets. A signed ball
array on S and S′ is a rectangular array of balls filled with positive integers, whose rows (resp.
columns) are indexed with elements of S (resp. S′), from the smaller to the bigger one, allowing
the repetition only of elements in S1 (resp. S′1) and where many balls can occur in the same
position. A signed ball array on S and S′ is empty if it does not contain any ball. For instance,
consider S = S′ = [4] with signature given by S0 (resp. S′1) the set of even numbers and S1
(resp. S′0) defined consequently. The rectangular array in Figure 1 is a signed ball array on S
and S′.

3.2.1. Positions in a signed ball array. We will use the following notations to describe the
relative positions of two boxes in a signed ball array. A box 𝑏 ′ isWest (resp. west) of a box 𝑏 if
the column of 𝑏 ′ is strictly to the left of (resp. left of or equal to) the column of 𝑏. A box 𝑏 ′ is
North (resp. north) of a box 𝑏 if the row of 𝑏 ′ is strictly above (resp. above or equal to) the row
of 𝑏. Similarly, we define the other positions corresponding to the east and south directions using
capital and small letters to denote strict and weak positions. A box 𝑏 ′ is Northwest of a box 𝑏 if
the row of 𝑏 ′ is strictly above to the row of 𝑏, and the column of 𝑏 ′ is left or equal to the column
of 𝑏. Similarly, we define the other combinations of positions corresponding to the four cardinal
directions using capital and small letters to denote strict and weak inequalities.
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1 2 2 2 3 4

1

1

2

3

3

4

2

1

2 3

3
4

1

2

1

1

1

1

1

1

3

2
1

3

2

2

Figure 1: Example of a signed ball array.

3.2.2. Thematrix-ball construction. LetS andS′ be two signed alphabets. Wewill correspond

to each signed two-rowed array𝑤 =

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
onS andS′, a signed ball array, denoted by Ba(𝑤),

whose rows (resp. columns) are indexed with the elements of the first (resp. second) row of𝑤 and
where the indices from S1 and S′1 are repeated as many times as they appear in𝑤 , as described
in the following three steps:

Step 1. We start with an empty signed ball array, whose rows (resp. columns) are indexed with the
elements of the first (resp. second) row of𝑤 and where the indices from S1 and S′1 are repeated
as many times as they appear in𝑤 . We then associate to each couple (𝑥𝑖 , 𝑦𝑖) in𝑤 for 𝑖 = 1, . . . 𝑘 , a
ball in a box of the initial empty signed ball array according to the following four cases:

i) Suppose (𝑥𝑖 , 𝑦𝑖) ∈ S0 ×S′0. Following Condition (7), equal couples of this form can occur
in𝑤 . For each couple (𝑥𝑖 , 𝑦𝑖) we associate a ball in the box corresponding to the row indexed
with 𝑥𝑖 and to the column indexed with 𝑦𝑖 in the signed ball array. In this case, the number
of balls in the same position (𝑥𝑖 , 𝑦𝑖) is equal to the multiplicity of the couple (𝑥𝑖 , 𝑦𝑖) in𝑤 .

ii) Suppose (𝑥𝑖 , 𝑦𝑖) ∈ S1 ×S′1. Following Condition (7), equal couples of this form can occur
in𝑤 . For each couple (𝑥𝑖 , 𝑦𝑖) we associate a ball in the empty box of the signed ball array
corresponding to the topmost row indexed with 𝑥𝑖 and the rightmost column indexed with 𝑦𝑖
such that only one ball can occur in the same position, and if there are many rows (rep.
columns) indexed with 𝑥𝑖 (resp. 𝑦𝑖 ) we choose the topmost (resp. rightmost) row (resp.
column) that does not contain any ball.

iii) Suppose (𝑥𝑖 , 𝑦𝑖) ∈ S0 ×S′1. Following Condition (7), we can not have equal couples of this
form in𝑤 . We add a ball in the empty box of the signed ball array that corresponds to the
row indexed with 𝑥𝑖 and to the rightmost column indexed with 𝑦𝑖 , and if there are many
columns that are indexed with 𝑦𝑖 we choose the rightmost one that does not contain any ball.
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3. A super-RSK correspondence with symmetry

iv) Suppose (𝑥𝑖 , 𝑦𝑖) ∈ S1 ×S′0. Following Condition (7), we can not have equal couples of this
form in𝑤 . We add a ball in the empty box of the signed ball array that corresponds to the
topmost row indexed with 𝑥𝑖 and to the column indexed with 𝑦𝑖 , and if there are many rows
that are indexed with 𝑥𝑖 , we choose the topmost one that does not contain any ball.

Step 2. If many balls occur in the same position, then we order them arbitrarily by arranging
them diagonally from NorthWest to SouthEast. A ball is northwest of another one if it is in the
same position and NorthWest in this arrangement, or its row and column positions are less than
or equal to those of the second ball with at least one inequality strict.

Working from the top-leftmost ball to the bottom-rightmost ball and starting with the first
row of the resulting signed ball array, we number all the balls with positive integers by filling
each ball by the smallest integer that is larger than all the integers occurring in the balls to the
northwest, such that the balls in the same position are numbered with consecutive integers. More
precisely, a ball is numbered with 1 if there are no balls northwest of it. A ball is numbered with a
positive integer 𝑖 if the preceding ball in the same position is numbered with the integer 𝑖 − 1, or
if the ball is the first one in a given position and the largest number occurring in a ball northwest
of the given position is the integer 𝑖 − 1. The resulting signed ball array is denoted by Ba1(𝑤).

For instance, Figure 2 (resp. Figure 3) represents the signed ball array Ba1(𝑤) corresponding
to the signed two-rowed array𝑤 of Example 3.1.6 (resp. Example 3.1.7).

1 2 2 3 4 5 5 5 6 6

1

2

2

2

3

4

5

5

5

6

6

6

1

2

3

1

1

2

3

2

3

4

5

5

4

4

5

5

Figure 2: Ba1(𝑤) corresponding to𝑤 of Example 3.1.6.

Step 3. If there are 𝑘 > 1 balls filled with the same integer 𝑖 in the resulting signed ball ar-
ray Ba1(𝑤), then they belong by construction to a string from SouthWest to NorthEast. We then
introduce new 𝑘 − 1 balls by putting a ball to the right of each ball in the string but the last,
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1 2 2 2 3 4
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Figure 3: Ba1(𝑤) corresponding to𝑤 of Example 3.1.7.

directly under the next ball. We will use a new color for the added balls as illustrated in Figure 4.
We do the same for all the balls filled with the same integer. We then number the new added balls

𝑖

𝑖

𝑖

𝑖

Figure 4: String for new colored balls

as per Step 2 without taking into consideration the numbering of the initial non-colored balls and
by just acting on the new balls from the top-leftmost ball to the bottom-rightmost one. We obtain
a new signed ball array, denoted by Ba2(𝑤), that contains the initial non-colored balls and the
new colored ones. We repeat the same process on the new added balls and we construct Ba3(𝑤)
from Ba2(𝑤) by adding new colored balls and by numbering them, and so on, stopping when no
two balls appear in Ba𝑘 (𝑤) for any 𝑘 > 1 with the same number. The resulting signed ball array
is denoted by Ba(𝑤). We will denote by Ba0(𝑤) the signed ball array obtained from Ba(𝑤) by
eliminating the initial non colored balls and by keeping only the new colored ones. Note that
we will use the same color for all the colored balls added to compute Ba𝑘 (𝑤) from Ba𝑘−1(𝑤) for
any 𝑘 > 1. We will denote by Ba1

0(𝑤) the signed ball array obtained from Ba0(𝑤) by keeping only
the colored balls added to compute Ba2(𝑤) from Ba1(𝑤) and by eliminating all the other colored
balls. The bottom-rightmost ball of a signed ball array is the ball in the position that corresponds
to the bottom-most row and to the rightmost column of the given signed ball array, and if many
balls occur in this position it corresponds to the last one to the southeast in the corresponding
diagonal arrangement.

For instance, Figure 5 (resp. Figure 6 ) represents the signed ball array Ba(𝑤) corresponding
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to the signed two-rowed array𝑤 of Example 3.1.6 (resp. Example 3.1.7).
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Figure 5: Ba(𝑤) corresponding to𝑤 of Example 3.1.6.
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Figure 6: Ba(𝑤) corresponding to𝑤 of Example 3.1.7.

3.2.3. Super tableaux for a signed ball array. Let 𝑤 be a signed two-rowed array on two
signed alphabets S and S′ and let Ba(𝑤) be its corresponding signed ball array. We denote
by T(Ba(𝑤)) (resp. Q(Ba(𝑤))) the super tableau obtained from Ba(𝑤) whose 𝑘-th row lists the
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3.2. Super matrix-ball construction

indices of the leftmost columns (resp. top-most rows) of Ba𝑘 (𝑤) where each integer number
occurs in the new added balls, that is, the 𝑖-th entry of its 𝑘-th row is equal to the index of the
leftmost column (resp. top-most row) in Ba𝑘 (𝑤) where a new colored ball filled with 𝑖 occurs.
Note that the 𝑖-th entry of the first row of T(Ba(𝑤)) (resp. Q(Ba(𝑤)))) is the index of the leftmost
column (resp. top-most row) in Ba1(𝑤) where a ball filled with 𝑖 occurs.

Proposition 3.2.4. Let 𝑤 be a signed two-rowed array on two signed alphabets S and S′. The
following equality (T(Ba(𝑤)),Q(Ba(𝑤))) = (T(𝑤),Q(𝑤)) holds.

Theorem 3.1.10 is then a direct consequence of this proposition, since the matrix-ball con-
struction is symmetric in the rows and columns of the resulting signed ball array. In the rest of
this subsection we will prove Proposition 3.2.4. But before that, we give the following example
that illustrates the symmetry property of the super-RSK correspondence for super tableaux.

Example 3.2.5. Consider the signed two-rowed array𝑤 of Example 3.1.6. The super tableaux
associated to its signed ball array Ba(𝑤) illustrated in Figure 5 are the following(

T(Ba(𝑤)) =

1 1 1 4 4
2 3 3 5
2 4 4
5 6
5 6

, Q(Ba(𝑤)) =

1 2 3 3 3
2 4 4 4
2 5 6
5 6
5 6

)

which are equal to the ones of𝑤 already computed in Example 3.1.6:

𝑤 =

(
1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
2 4 2 1 4 5 6 3 5 6 4 3 1 5 4 1

)
sRSK←→

(
T(𝑤) =

1 1 1 4 4
2 3 3 5
2 4 4
5 6
5 6

, Q(𝑤) =

1 2 3 3 3
2 4 4 4
2 5 6
5 6
5 6

)
.

Moreover, using the matrix-ball construction, we obtain:

𝑤 inv =

(
1 1 1 2 2 3 3 4 4 4 4 5 5 5 6 6
2 5 6 2 1 4 5 2 3 5 6 6 4 3 4 3

)
sRSK←→

(
Q(𝑤) =

1 2 3 3 3
2 4 4 4
2 5 6
5 6
5 6

, T(𝑤) =

1 1 1 4 4
2 3 3 5
2 4 4
5 6
5 6

)

by switching the roles of the rows and the columns of the signed ball array of Figure 5.
Consider now the signed two-rowed array𝑤 of Example 3.1.7. The super tableaux associated

to its signed ball array Ba(𝑤) illustrated in Figure 6 are the following(
T(Ba(𝑤)) =

1 1 2
2 3
2 4
3

, Q(Ba(𝑤)) =

1 2 3
1 3
2 4
4

)
which are equal to the ones of𝑤 already computed in Example 3.1.7:

𝑤 =

(
1 1 2 2 3 3 4 4
3 2 1 2 4 3 1 2

)
sRSK←→

(
T(𝑤) =

1 1 2
2 3
2 4
3

, Q(𝑤) =

1 2 3
1 3
2 4
4

)
.
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3. A super-RSK correspondence with symmetry

Moreover, using the super matrix-ball construction, we obtain:

𝑤 inv =

(
1 1 2 2 2 3 3 4
2 4 4 2 1 1 3 3

)
sRSK←→

(
Q(𝑤) =

1 2 3
1 3
2 4
4

, T(𝑤) =

1 1 2
2 3
2 4
3

)
by switching the roles of the rows and the columns of the signed ball array of Figure 6.

3.2.6. Proof of Proposition 3.2.4. Let 𝑤 =

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
be a signed two-rowed array on two

signed alphabets S and S′. We will show the result by induction on the number of couples in𝑤 ,
which is equal to the number of balls in Ba1(𝑤). The result is obvious when𝑤 contains zero or
one couple. Let

𝑤0 :=
(
𝑥1 . . . 𝑥𝑘−1
𝑦1 . . . 𝑦𝑘−1

)
be the signed two-rowed array obtained from 𝑤 by eliminating its rightmost couple (𝑥𝑘 , 𝑦𝑘 ).
By the induction hypothesis, we have T(𝑤0) = T(Ba(𝑤0)) and Q(𝑤0) = Q(Ba(𝑤0)). Then it is
sufficient to prove the following property.

Property 3.2.7. The following equality

T(Ba(𝑤)) = T(Ba(𝑤0))
⇝

𝑦𝑘

holds in Yt(S′), and the super tableau Q(Ba(𝑤)) is obtained from Q(Ba(𝑤0)) by placing 𝑥𝑘 in
the box that belongs to T(Ba(𝑤)) but not to T(Ba(𝑤0)).

By construction, the signed ball array Ba1(𝑤) contains one ball that is not in Ba1(𝑤0), and
which we denote by 𝐵, and we suppose is filled with an integer 𝑗 . This ball is the bottom-rightmost
ball of Ba1(𝑤) which belongs to the position corresponding to the bottom-most row indexed by 𝑥𝑘
and to the rightmost (resp. leftmost) column indexed by 𝑦𝑘 if 𝑦𝑘 ∈ S0 (resp. 𝑦𝑘 ∈ S1). Moreover,
the integer 𝑗 is larger than all the numbers of the balls in its position.

Suppose first that there are no more balls filled with 𝑗 in Ba1(𝑤). In this case, all the remaining
balls in Ba1(𝑤) are to the NorthWest of 𝐵, and then they are all filled with integers that are strictly
smaller than 𝑗 . Hence when computing Ba𝑖 (𝑤), for 𝑖 > 1, no colored balls will be added using 𝐵,
and all the rows of T(𝑤) and T(𝑤0) (resp. Q(𝑤) and Q(𝑤0)) below the top-most row are the same.
Moreover, the first row of T(Ba(𝑤)) is obtained from that of T(Ba(𝑤0)) by adding 𝑦𝑘 to the end,
since 𝑗 is the largest integer in Ba1(𝑤), and then Q(𝑤) is obtained from Q(𝑤0) by adding 𝑥𝑘 to
the end of its first row, showing Property 3.2.7.

Suppose now that there are other balls in Ba1(𝑤) filled with 𝑗 . By construction, all these balls
are to the NorthEast of 𝐵. Consider the ball filled with 𝑗 in the position corresponding to the
row indexed with 𝑥 and the column indexed with 𝑦 such that 𝑥 ⩽ 𝑥𝑘 is maximal with 𝑥 = 𝑥𝑘
only if 𝑥 ∈ S′1 and 𝑦 ⩾ 𝑦𝑘 is minimal with 𝑦 = 𝑦𝑘 only if 𝑦 ∈ S1. When 𝑦𝑘 is inserted in the first
row of T(Ba(𝑤0)), the letter 𝑦 is then bumped from the 𝑗-th box of this row. Indeed, the entries
of the first row of T(Ba(𝑤0)) are the indices of the left-most columns of Ba1(𝑤0) that contains
balls filled with 1, 2, . . .. The first 𝑗 − 1 entries of this row are less than or equal to 𝑦𝑘 , but the
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𝑗-th entry is 𝑦 which is the minimal index that satisfies 𝑦 ⩾ 𝑦𝑘 with 𝑦 = 𝑦𝑘 only if 𝑦 ∈ S1, then
the entry 𝑦 is bumped from the 𝑗-th box when inserting 𝑦𝑘 in the first row of T(Ba(𝑤0)). Hence
the top-most row of T(Ba(𝑤)) is the top-most row of T(Ba(𝑤0))

⇝

𝑦𝑘 . Moreover, the super
tableau formed by the rows of T(Ba(𝑤)) below its top-most row is by construction the super
tableau T(Ba0(𝑤)), and the super tableau formed by the rows of T(Ba(𝑤0)) below its top-most
row is the super tableau T(Ba0(𝑤0)). Then it is sufficient to prove the following property.

Property 3.2.8. The following equality

T(Ba0(𝑤)) = T(Ba0(𝑤0))

⇝

𝑦

holds in Yt(S′), and the new box from this insertion is the box that belongs to Q(Ba0(𝑤)) but
not to Q(Ba0(𝑤0)).

This property follows from Property 3.2.7, assumed by induction for the signed ball array
Ba1(𝑤0), provided with the fact that (𝑥𝑘 , 𝑦) is the position of the bottom-rightmost ball of the
signed ball array Ba1

0(𝑤). Indeed, by construction, there is no entries below the 𝑥𝑘-th row
of Ba1

0(𝑤). Moreover, if there is other ball in the 𝑥𝑘 -th row of Ba1
0(𝑤), then this ball is added using

two balls of Ba1(𝑤) filled with an integer 𝑖 < 𝑗 . The first ball belongs to the row indexed by 𝑥𝑘 ,
and the second one lies NorthEast of it, but it is NorthWest of the bottom-rightmost ball filled
with 𝑗 , and then this second ball cannot lie in a column indexed larger than 𝑦, showing the claim.

3.3. Super-RSK correspondence and taquin. Before we proceed to the construction of the
dual super-RSK correspondence, we will prove the following result which relates the super-RSK
correspondence to the super jeu de taquin. This result will be useful for the sequel.

Proposition 3.3.1. Let 𝑤 =

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
be a signed two-rowed array on two signed alphabets S

and S′ such that sRSK(𝑤) = (T(𝑤),Q(𝑤)), and let 𝑡 be any super tableau in Yt(S′). Compute the
following super tableau over Yt(S′):

((. . . (𝑡 ⇝

𝑦1)

⇝

. . .) ⇝

𝑦𝑘 )

and add 𝑥1, . . . , 𝑥𝑘 successively in the new boxes starting with an empty Young diagram of the same
shape as 𝑡 . Then the entries 𝑥1, . . . , 𝑥𝑘 form a super skew tableau 𝑆 such that Rect(𝑆) = Q(𝑤).

Proof. Consider a super tableau 𝑡 ′ over Yt(S<) of the same shape as 𝑡 , where S< is a signed
alphabet whose elements are all smaller than the ones of S. Following Theorem 3.1.5, the pair of
super tableaux (𝑡, 𝑡 ′) corresponds to some signed two-rowed array(

𝑥 ′1 . . . 𝑥
′
𝑙

𝑦 ′1 . . . 𝑦
′
𝑙

)
.

Hence, the following signed two-rowed array

𝑊 :=
(
𝑥 ′1 . . . 𝑥

′
𝑙
𝑥1 . . . 𝑥𝑘

𝑦 ′1 . . . 𝑦
′
𝑙
𝑦1 . . . 𝑦𝑘

)
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3. A super-RSK correspondence with symmetry

corresponds to the pair ( (
𝑡

⇝R(T(𝑤)
)
, 𝑄 ′

)
,

where 𝑄 ′ a super tableau over Yt(S< ∪S) whose entries 𝑥 ′1, . . . , 𝑥 ′𝑙 are the ones of 𝑡
′, and whose

entries 𝑥1, . . . , 𝑥𝑘 are the ones of 𝑆 . Consider now𝑊 inv the inverse of𝑊 . Following Theorem 3.1.10,

the signed two-rowed array𝑊 inv corresponds to the pair
(
𝑄 ′,

(
𝑡

⇝R(T(𝑤)
) )
, and the signed

two-rowed array obtained from 𝑊 inv by eliminating the couples (𝑦 ′𝑖 , 𝑥 ′𝑖 ) corresponds to the
pair (Q(𝑤),T(𝑤)). The word of the second row of 𝑊 inv is then super plactic equivalent to
the word R(𝑄 ′), and when we remove the 𝑦 ′𝑗 ’s from this word we obtain a word that is super
plactic equivalent to the word R(Q(𝑤)). However, by construction of the super tableau 𝑄 ′, when
we remove the 𝑙 smallest letters from R(𝑄 ′), we recover the word R(𝑆). Hence, we deduce by
Lemma 2.3.2 that the words R(𝑆) and R(Q(𝑤)) are also super plactic equivalent, showing by
Property 2.4.1 that the equality Rect(𝑆) = Q(𝑤) holds in Yt(S). □

Example 3.3.2. Consider the signed two-rowed array𝑤 of Example 3.1.7. We have shown the
following:

𝑤 =

(
1 1 2 2 3 3 4 4
3 2 1 2 4 3 1 2

)
sRSK←→

(
T(𝑤) =

1 1 2
2 3
2 4
3

, Q(𝑤) =

1 2 3
1 3
2 4
4

)
.

Consider now the following super tableau

𝑡 =

1 1 1
2 3
4 5
4

.

We insert the elements of the second row of𝑤 into the super tableau 𝑡 , and we place the elements
of the first row of𝑤 in the new added boxes starting from an empty tableau of the same shape
as 𝑡 . We obtain:

1 1 1 3
2 3
4 5
4

→
1

;
1 1 1 2
2 3 3
4 5
4

→
1

1 ;
1 1 1 1
2 3 3
2 5
4
4

→
1

1

2

;

1 1 1 1 2
2 3 3
2 5
4
4

→
1 2

1

2

;
1 1 1 1 2 4
2 3 3
2 5
4
4

→
1 2 3

1

2

;

1 1 1 1 2 3
2 3 3 4
2 5
4
4

→
1 2 3

1 3

2

;
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3.4. A dual super-RSK correspondence

1 1 1 1 1 3
2 3 3 4
2 5
2
4
4

→
1 2 3

1 3

2
4

;
1 1 1 1 1 2
2 3 3 3
2 4
2 5
4
4

→
1 2 3

1 3

4
2
4

= 𝑆.

Moreover, we shave shown in Example 2.4.2 that Rect(𝑆) = Q(𝑤).

3.4. A dual super-RSK correspondence. We recall in this subsection the left insertion al-
gorithm on super tableaux which gives us a dual way to construct the pair of super tableaux
corresponding to a signed two-rowed array with respect to the super-RSK correspondence map.
We first begin by recalling the super evacuation procedure on super tableaux introduced in [13].

3.4.1. Super evacuation on super tableaux. Denote by Sop the opposite alphabet obtained
from a signed alphabet S by reversing its order. Denote by 𝑥∗ the letter in Sop corresponding
to 𝑥 in S where | |𝑥∗ | | = 0 (resp. | |𝑥∗ | | = 1) if | |𝑥 | | = 0 (resp. | |𝑥 | | = 1). For all 𝑥,𝑦 in S, we
have 𝑥 < 𝑦 if and only if 𝑥∗ > 𝑦∗. For any word 𝑤 = 𝑥1 . . . 𝑥𝑘 over S, denote by 𝑤∗ = 𝑥∗

𝑘
. . . 𝑥∗1

the corresponding word over Sop, called the opposite of 𝑤 . Then, for all 𝑣 and 𝑤 in S∗, the
equality (𝑣𝑤)∗ = 𝑤∗𝑣∗ holds, inducing an anti-isomorphism between the free monoids over Sop

and S. By identifying (Sop)op with S, the equality (𝑤∗)∗ = 𝑤 holds, for any𝑤 in S∗. Moreover,
we show the following property:

Property 3.4.2 ([13]). For all 𝑣 and𝑤 in S, the following equivalence holds:

𝑣 ∼P(S) 𝑤 if, and only, if 𝑣∗ ∼P(Sop) 𝑤
∗. (8)

Algorithm 3.4.3 ([13]). Let 𝑡 be in Yt(S). An opposite tableau in Yt(Sop), denoted by 𝑡op, is
constructed from 𝑡 using the super jeu de taquin as follows:

Input: A super tableau 𝑡 in Yt(S).
Output: A super tableau 𝑡op in Yt(Sop) with the same shape as 𝑡 .
Method: Start with an empty Young diagram with the same frame as 𝑡 . Remove the box

containing the top-leftmost element 𝑥 in 𝑡 , and perform a forward sliding on the resulting super
skew tableau. We obtain a super tableau, denoted by 𝑡∗, whose frame has one box removed from
the frame of 𝑡 . Put the letter 𝑥∗ in the initial empty Young diagram in the same place as the box
that was removed from the frame of 𝑡 . Repeat the algorithm on 𝑡∗ and continue until all the
elements of 𝑡 have been removed and the initial empty Young diagram has been filled by their
corresponding letters in Sop. Output the resulting super tableau for 𝑡op.

The procedure of construction 𝑡op from 𝑡 is called the super evacuation. This is the super
analogue of the Schützenberger’s evacuation procedure, [28]. Moreover, we show the following
property:

Property 3.4.4 ([13]). For any 𝑡 in Yt(S), the super tableau 𝑡op satisfies the following equivalence:

(R(𝑡))∗ ∼P(Sop) R(𝑡op) . (9)

Moreover, the map 𝑡 ↦→ 𝑡op is an involution on Yt(S).
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Let𝑤 =

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
be a signed two-rowed array on two signed alphabets S and S′. Define

𝑤∗ :=
(
𝑥∗
𝑘
. . . 𝑥∗1

𝑦∗
𝑘
. . . 𝑦∗1

)
to be the signed two-rowed array on Sop and (S′)op whose first and second rows are the opposites
of the ones of𝑤 . In particular, by definition, the equality (𝑤∗)inv = (𝑤 inv)∗ holds.

Proposition 3.4.5. Let S and S′ be signed alphabets and 𝑤 be a signed two-rowed array on S
and S′. If sRSK(𝑤) = (T(𝑤),Q(𝑤)) then sRSK(𝑤∗) = (T(𝑤)op,Q(𝑤)op).

Proof. Consider𝑤 =

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
a signed two-rowed array on S and S′. Following Subsection 2.3,

the following equivalence R(T(𝑤)) ∼P(S) 𝑦1 . . . 𝑦𝑘 holds. Then we have

R(T(𝑤∗)) ∼P(Sop) 𝑦
∗
𝑘
. . . 𝑦∗1 = (𝑦1 . . . 𝑦𝑘 )∗

(8)∼P(Sop) (R(T(𝑤)))∗
(9)∼P(Sop) R(T(𝑤)op) .

We deduce by Property 2.3.1 that the equality T(𝑤∗) = T(𝑤)op holds in Yt((S′)op). Hence, we
obtain sRSK(𝑤∗) = (T(𝑤)op,Q(𝑤∗)). Similarly, we show that

sRSK((𝑤∗)inv) = sRSK((𝑤 inv)∗) = (Q(𝑤)op,T(𝑤∗)) .

We deduce by Theorem 3.1.10 that (Q(𝑤)op,T(𝑤∗)) = (Q(𝑤∗),T(𝑤)op), showing the claim. □

3.4.6. A dual construction of the super RSK-correspondence. We will present a dual way
to construct the super RSK-correspondence using the following left insertion algorithm on super
tableaux.

Algorithm 3.4.7 ([20]). The left (or column) insertion, denoted by⇝, inserts an element 𝑥 in S
into a super tableau 𝑡 of Yt(S) as follows:

Input: A super tableau 𝑡 and a letter 𝑥 ∈ S.
Output: A super tableau 𝑥 ⇝ 𝑡 .
Method: If 𝑡 is empty, create a box and label it 𝑥 . Suppose 𝑡 is non-empty. If 𝑥 ∈ S𝑜

(resp. 𝑥 ∈ S1) is larger than (resp. at least as large as) the bottom element of the leftmost column
of 𝑡 , then put 𝑥 in a box to the bottom of this column; Otherwise, let 𝑦 be the smallest element
of the leftmost column of 𝑡 such that 𝑦 ⩾ 𝑥 (resp. 𝑦 > 𝑥). Then replace 𝑦 by 𝑥 in this column
and recursively insert 𝑦 into the super tableau formed by the columns of 𝑡 to the right of the
leftmost. Note that this recursion may end with an insertion into an empty column to the right of
the existing columns of 𝑡 . Output the resulting super tableau.

Property 3.4.8. As a consequence of Property 2.3.1, the following commutation property holds
in Yt(S), for all 𝑡 in Yt(S) and 𝑥,𝑦 in S:

𝑦 ⇝ (𝑡 ⇝

𝑥) = (𝑦 ⇝ 𝑡) ⇝

𝑥 .

In particular, for any word𝑤 = 𝑥1 . . . 𝑥𝑘 in S∗ the super tableau T(𝑤) can be also computed by
inserting its elements iteratively from right to left using the left insertion starting from the empty
super tableau:

T(𝑤) = (𝑤 ⇝ ∅) := (𝑥1 ⇝ (. . .⇝ (𝑥𝑘 ⇝ ∅) . . .)) .
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Algorithm 3.4.9. Let S and S′ be two signed alphabets. Starting from a signed two-rowed
array𝑤 on S and S′, we can compute the pair of super tableaux sRSK(𝑤) = (T(𝑤),Q(𝑤)) using
the left insertion, as follows:

Input: A signed two-rowed array𝑤 =

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
on S and S′.

Output: A pair (T′(𝑤),Q′(𝑤)) ∈ Yt(S′) × Yt(S) of same-shape tableaux containing 𝑘 boxes.
Method: Start with an empty super tableau 𝑇 ′

𝑘+1 and an empty super tableau 𝑄 ′
𝑘+1. For each

𝑖 = 𝑘, . . . , 1, compute 𝑦𝑖 ⇝ 𝑇 ′𝑖+1 as per Algorithm 3.4.7 and let 𝑇 ′𝑖 be the resulting super tableau.
Let 𝑄 ′𝑖 be super tableau obtained from 𝑄 ′𝑖+1, by performing the reverse sliding algorithm (2.4.3),
using the box that belongs to 𝑇 ′𝑖 but not to 𝑇 ′𝑖+1, and then place 𝑥𝑖 in the top-leftmost corner of
the result. Output 𝑇 ′1 for T′(𝑤) and 𝑄 ′1 as Q′(𝑤).
Proposition 3.4.10. The output of Algorithm 3.4.9 is equal to sRSK(𝑤) = (T(𝑤),Q(𝑤)).
Proof. Following Property 3.4.8, the super tableaux T(𝑤) and T′(𝑤) are equal. We still have
to show that Q(𝑤) = Q′(𝑤). We will proceed by induction on the number of couples in 𝑤 .
The result is obvious when 𝑤 contains zero or one couple. Let 𝑤 ′ be the signed two-rowed
array obtained from 𝑤 by eliminating its first couple (𝑥1, 𝑦1). By the induction hypothesis,
we have Q(𝑤 ′) = Q′(𝑤 ′). Moreover, on the one hand, and since the super tableau Q′(𝑤) is
computed using the reverse sliding algorithm, we have that Q′(𝑤 ′) = (Q′(𝑤))∗, with the property
that Q′(𝑤) has 𝑥1 in its top-leftmost corner. On the second hand, by applying Proposition 3.3.1
to the signed two-rowed array 𝑤 ′ and the super tableau containing one box filled with 𝑦1, we
obtain that Q(𝑤 ′) = (Q(𝑤))∗, and then Q′(𝑤 ′) = (Q(𝑤))∗, with the property that Q(𝑤) has 𝑥1
in its top-leftmost corner, showing that Q(𝑤) = Q′(𝑤). □

Example 3.4.11. Consider the signed two-rowed array 𝑤 =

(
1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
2 4 2 1 4 5 6 3 5 6 4 3 1 5 4 1

)
of

Example 3.1.6. The sequence of pairs produced during the computation of T(𝑤) and Q(𝑤) as per
Algorithm 3.4.9 starting from𝑤 is the following:(
∅ , ∅

)
,

( 1 , 6 )
,

( 1
4

, 6
6

)
,

( 1
4
5

,
6
6
6

)
,

( 1 1
4
5

,
5 6
6
6

)
,

( 1 1
3 4
5

,
5 6
5 6
6

)
,

( 1 1
3 4
4 5

,
5 6
5 6
5 6

)
,

( 1 1
3 4
4 5
6

,
4 6
5 6
5 6
5

)
,

(
1 1
3 4
4 5
5 6

,
4 4
5 6
5 6
5 6

)
,

(
1 1 4
3 3
4 5
5 6

,
4 4 4
5 6
5 6
5 6

)
,

(
1 1 4
3 3
4 5
5 6
6

,
3 4 4
4 6
5 6
5 6
5

)
,

(
1 1 4
3 3
4 5
5 6
5 6

,
3 3 4
4 4
5 6
5 6
5 6

)
,

(
1 1 4
3 3 5
4 4
5 6
5 6

,
3 3 3
4 4 4
5 6
5 6
5 6

)
,

(
1 1 1 4
3 3 5
4 4
5 6
5 6

,
2 3 3 3
4 4 4
5 6
5 6
5 6

)
,

( 1 1 1 4
2 3 3 5
4 4
5 6
5 6

,

2 3 3 3
2 4 4 4
5 6
5 6
5 6

)
,

( 1 1 1 4
2 3 3 5
4 4 4
5 6
5 6

,

2 3 3 3
2 4 4 4
2 5 6
5 6
5 6

)
,

29



4. The super Littlewood–Richardson rule

(
T(𝑤) =

1 1 1 4 4
2 3 3 5
2 4 4
5 6
5 6

, Q(𝑤) =

1 2 3 3 3
2 4 4 4
2 5 6
5 6
5 6

)
.

Consider now the signed two-rowed array𝑤 =

(
1 1 2 2 3 3 4 4
3 2 1 2 4 3 1 2

)
of Example 3.1.7. The sequence

of pairs produced during the computation of T(𝑤) and Q(𝑤) as per Algorithm 3.4.9 starting
from𝑤 is the following:(
∅ , ∅

)
,
( 2 , 4 )

,
( 1 2 , 4 4 )

,

( 1 2
3 ,

3 4
4

)
,

( 1 2
3
4

,
3 4
3
4

)
,

( 1 2
2 3
4

,
2 3
3 4
4

)
,

( 1 1 2
2 3
4

,
2 2 3
3 4
4

)
,

( 1 1 2
2 3
2 4

,
1 2 3
2 3
4 4

)
,

(
T(𝑤) =

1 1 2
2 3
2 4
3

, Q(𝑤) =
1 2 3
1 3
2 4
4

)
.

4. The super Littlewood–Richardson rule

In this section, we apply the super-RSK correspondence in order to give a combinatorial version
of the super Littlewood–Richardson rule on the multiplicity of the decomposition of a super
Schur function as a linear combination of the product of two super Schur functions over a signed
alphabet. In a final part, we introduce the notion of super Littlewood–Richardson skew tableaux
and we give another version of the super Littlewood–Richardson rule.

In the sequel, we will assume that S is finite.

4.1. Super Littlewood–Richardson coefficients. Let 𝜆, 𝜇 and 𝜈 be in P such that 𝜈/𝜆 is a
skew shape. We want to compute the number of ways a given super tableau 𝑡 in Yt(S, 𝜈) can be
written as the product of a super tableau 𝑡 ′ in Yt(S, 𝜆) and a super tableau 𝑡 ′′ in Yt(S, 𝜇).

For any super tableau 𝑡 in Yt(S, 𝜈), we set

Yt(S, 𝜆, 𝜇, ⊣ 𝑡) :=
{
(𝑡 ′, 𝑡 ′′) ∈ Yt(S, 𝜆) × Yt(S, 𝜇)

�� 𝑡 ′ ★Yt(S) 𝑡
′′ = 𝑡

}
,

and we will call the integer
𝑐𝜈
𝜆,𝜇

:= # Yt(S, 𝜆, 𝜇, ⊣ 𝑡)

the super Littlewood–Richardson coefficient.
Using the super jeu de taquin and as discussed in 2.4.4, the integer 𝑐𝜈

𝜆,𝜇
is equal to the number

of super skew tableaux of the following form:

[𝑡 ′, 𝑡 ′′] =
𝑡 ′′

𝑡 ′
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4.2. Super Littlewood–Richardson rule

whose rectification is 𝑡 . We will prove that the integer 𝑐𝜈
𝜆,𝜇

is equal to the number of super skew
tableaux in St(S, 𝜈/𝜆) whose rectification is a given tableau of shape 𝜇.

For any 𝑇 in Yt(S, 𝜇), we set

St(S, 𝜈/𝜆, ⊣ 𝑇 ) :=
{
𝑆 ∈ St(S, 𝜈/𝜆)

�� Rect(𝑆) = 𝑇
}
.

We prove in Theorem 4.2.1 that there is a canonical one-to-one correspondence between the
sets Yt(S, 𝜆, 𝜇, ⊣ 𝑡) and St(S, 𝜈/𝜆, ⊣ 𝑇 ). We deduce that the super Littlewood–Richardson coeffi-
cient 𝑐𝜈

𝜆,𝜇
does not depend on 𝑡 and𝑇 , and depends only on 𝜆, 𝜇 and 𝜈 . Note that the later property

is proved in [13] using an interpretation of the super jeu de taquin in terms of Fomin’s growth
diagrams.

4.2. Super Littlewood–Richardson rule. Starting from the super plactic monoid P(S), we
construct a Z-algebra, denoted by 𝑅S , whose linear generators are the monomials in the monoid
P(S). This is an associative and unitary ring that is not commutative. A generic element in 𝑅S
can be realized by a formal sum of super plactic classes with coefficients from Z. Since every super
plactic class can be represented by a super tableau, a typical element in 𝑅S is a formal sum of
super tableaux. There is a canonical homomorphism from 𝑅S onto the ring of polynomials Z[𝑋 ]
that takes a super tableau 𝑡 to its monomial 𝑥𝑡 , where 𝑥𝑡 is the product of the variables 𝑥𝑖 , each
occurring as many times in 𝑥𝑡 as 𝑖 occurs in 𝑡 . For instance, the following monomial

𝑥T(𝑤) = 𝑥3
1𝑥

2
2𝑥

2
3𝑥

4
4𝑥

3
5𝑥

2
6 (resp. 𝑥Q(𝑤) = 𝑥1

1𝑥
3
2𝑥

3
3𝑥

3
4𝑥

3
5𝑥

3
6)

corresponds to the super tableau T(𝑤) (resp. Q(𝑤)) computed in Example 3.1.6. Moreover, the
following monomial

𝑥T(𝑤) = 𝑥2
1𝑥

2
2𝑥

2
3𝑥4 (resp. 𝑥Q(𝑤) = 𝑥2

1𝑥
2
2𝑥

2
3𝑥

2
4)

corresponds to the super tableau T(𝑤) (resp. Q(𝑤)) computed in Example 3.1.7.
Define 𝑆𝜆 (resp. 𝑆𝜆/𝜇) in 𝑅S to be the sum of all super tableaux (resp. super skew tableaux)

of shape 𝜆 (resp. 𝜆/𝜇) and entries in S, with 𝜆 ∈ P (resp. 𝜆/𝜇 is a skew shape). The image
of 𝑆𝜆 (resp. 𝑆𝜆/𝜇) in Z[𝑋 ] gives rise to the so-called super Schur function (resp. super skew Schur
function) 𝑠𝜆 (𝑋 ) (resp. 𝑠𝜆/𝜇 (𝑋 )).

Theorem 4.2.1 (The super Littlewood–Richardson rule). Let 𝜆, 𝜇 and 𝜈 be partitions in P such
that 𝜈/𝜆 is a skew shape. The following identities

𝑆𝜆𝑆𝜇 =
∑︁
𝜈

𝑐𝜈
𝜆,𝜇
𝑆𝜈 and 𝑆𝜈/𝜆 =

∑︁
𝜇

𝑐𝜈
𝜆,𝜇
𝑆𝜇 (10)

hold in 𝑅S .

Proof. Prove that for any super tableau 𝑡 in Yt(S, 𝜈) and any super tableau 𝑇 in Yt(S, 𝜇), there is
a canonical one-to-one correspondence between the sets Yt(S, 𝜆, 𝜇, ⊣ 𝑡) and St(S, 𝜈/𝜆, ⊣ 𝑇 ). Start
with (𝑡 ′, 𝑡 ′′) in Yt(S, 𝜆, 𝜇, ⊣ 𝑡) and let (

𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
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4. The super Littlewood–Richardson rule

be the signed two-rowed array on the signed alphabet S corresponding to the couple (𝑡 ′′,𝑇 ). By
inserting the letters 𝑦𝑖 , for 𝑖 = 1, . . . , 𝑘 , into the super tableau 𝑡 ′, we form a super skew tableau 𝑆
by successively placing the letter 𝑥𝑖 , for 𝑖 = 1, . . . , 𝑘 , into the new boxes starting with an empty
Young diagram of the same shape as 𝑡 ′. Since the super tableau 𝑡 = 𝑡 ′ ★Yt(S) 𝑡

′′ has shape 𝜈 ,
then the super skew tableau 𝑆 has shape 𝜈/𝜆 and we deduce by Proposition 3.3.1 that 𝑆 belongs
to St(S, 𝜈/𝜆, ⊣ 𝑇 ).

Conversely, start with a super skew tableau 𝑆 in St(S, 𝜈/𝜆, ⊣ 𝑇 ), and let𝑇 ′ be in Yt(S, 𝜆) such
that all its entries are smaller than the ones of 𝑆 . Let 𝑇 ′′ be the super tableau in Yt(S, 𝜈) that
contains the super tableau 𝑇 ′ such that when we remove 𝑇 ′ from 𝑇 ′′ we obtain the super skew
tableau 𝑆 . By Theorem 3.1.5, the couple (𝑡,𝑇 ′′) corresponds to a unique signed two-rowed array
of the following form (

𝑥 ′1 . . . 𝑥
′
𝑙
𝑥1 . . . 𝑥𝑘

𝑦 ′1 . . . 𝑦
′
𝑙
𝑦1 . . . 𝑦𝑘

)
.

Then the signed two rowed array (
𝑥 ′1 . . . 𝑥

′
𝑙

𝑦 ′1 . . . 𝑦
′
𝑙

)
corresponds to the couple (𝑡 ′,𝑇 ′), and the signed two-rowed array(

𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
corresponds to the couple (𝑡 ′′, 𝑆), for some super tableaux 𝑡 ′ in Yt(S, 𝜆) and 𝑡 ′′ in Yt(S, 𝜇), such
that 𝑡 ′★Yt(S) 𝑡

′′ = 𝑡 . Hence, we obtain a pair (𝑡 ′, 𝑡 ′′) in Yt(S, 𝜆, 𝜇, ⊣ 𝑡). We deduce that the cardinal
number of the set St(S, 𝜈/𝜆, ⊣ 𝑇 ) is equal to the super Littlewood–Richardson coefficient 𝑐𝜈

𝜆,𝜇
,

showing the claim. □

Since neither the set Yt(S, 𝜆, 𝜇, ⊣ 𝑡) nor the set St(S, 𝜈/𝜆, ⊣ 𝑇 ) in the correspondence of the
proof of Theorem 4.2.1 depends on the contents of the super tableaux used to define the other, we
deduce the following result:

Corollary 4.2.2. The cardinal number 𝑐𝜈
𝜆,𝜇

of the sets Yt(S, 𝜆, 𝜇, ⊣ 𝑡) and St(S, 𝜈/𝜆, ⊣ 𝑇 ) is inde-
pendent of choice of 𝑡 and 𝑇 and depends only on 𝜆, 𝜇 and 𝜈 .

4.3. Super Littlewood–Richardson skew tableaux. In this final part, we introduce the notion
of super Littlewood–Richardson skew tableaux and we give a new combinatorial description of
the super Littlewood–Richardson coefficient.

We will suppose that
S = {𝑚 < . . . < 1 < 1 < . . . < 𝑛}

with S1 = {1 < . . . < 𝑛} and S0 = {𝑚 < . . . < 1}. For any 𝑤 in S∗, we will denote by |𝑤 |𝑖 the
number of times the element 𝑖 of S appears in𝑤 , and by |𝑤 | the number of elements of S1 that
appear in𝑤 such that each element is counted only once. The weight map is the map

wt : S∗ →
(
N ∪ {0}

)𝑚+𝑛
defined by wt(𝑤) = ( |𝑤 |𝑚, . . . , |𝑤 |1, |𝑤 |1, . . . , |𝑤 |𝑛), for all𝑤 in S∗. For any super skew tableau 𝑆
over S, we will call wt(R(𝑆)) the weight of 𝑆 .
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4.3. Super Littlewood–Richardson skew tableaux

4.3.1. Super Yamanouchi words. A word𝑤 over S is a super Yamanouchi word if it satisfies
the following two conditions:

i) for every right subword𝑤 ′ of𝑤 , the following property holds:

|𝑤 ′ |𝑚 ⩾ . . . ⩾ |𝑤 ′ |2 ⩾ |𝑤
′ |1 ⩾ |𝑤

′ |,

ii) for every left subword𝑤 ′ of𝑤 , the following property holds:

|𝑤 ′ |1 ⩾ |𝑤 ′ |2 ⩾ . . . ⩾ |𝑤 ′ |𝑛 .

When S = S0, we recover the notion of Yamanouchi words that describe the elements of highest
weights for the crystal structure of the general Lie algebra of type A, [23].

For instance, suppose S = {2 < 1 < 1 < 2}. The word 122 1 1 2 2 is a super Yamanouchi
word over S. However, the word𝑤 = 11221 2 2 is not a super Yamanouchi word over S because
for its right subword𝑤 ′ = 1221 2 2, we have |𝑤 ′ |1 < |𝑤 ′ |.

Lemma 4.3.2. Let 𝑤 and 𝑣 be words in S that are super plactic equivalent. Then 𝑤 is a super
Yamanouchi word if and only if 𝑣 is a super Yamanouchi word.

Proof. Suppose first that 𝑤 = 𝑢𝑥𝑧𝑦𝑢 ′ and 𝑣 = 𝑢𝑧𝑥𝑦𝑢 ′ for all 𝑢,𝑢 ′ in S∗ such that 𝑥 ⩽ 𝑦 ⩽ 𝑧

in S with 𝑥 = 𝑦 only if | |𝑦 | | = 0 and 𝑦 = 𝑧 only if | |𝑦 | | = 1. If 𝑥 < 𝑦 < 𝑧, there is no changes
in the numbers of consecutive elements of S0 (resp. S1) in each right (resp. left) subword of𝑤
and 𝑣 . If 𝑥 = 1 and 𝑦 = 𝑧 = 1 or 𝑥 = 𝑦 = 1 and 𝑧 = 1 such that 𝑤 is a super Yamanouchi word.
Then |𝑢 ′ |1 ⩾ |𝑢 ′ |, and hence 𝑣 is a super Yamanouchi word. Similarly, we show that if 𝑣 is a super
Yamanouchi word, then 𝑤 is so. If 𝑥 = 𝑦 = 𝑘 ∈ S0, and 𝑧 = 𝑘 + 1 ∈ S0 such that 𝑤 is a super
Yamanouchi word. Then by definition, the following property |𝑢 ′ |𝑘 ⩾ |𝑢 ′ |𝑘+1 holds, showing
that 𝑧𝑥𝑦𝑢 ′ is a super Yamanouchi word, and then 𝑣 is so. Similarly, we show that if 𝑣 is a super
Yamanouchi word, then 𝑤 is so. If 𝑥 = 𝑘 ∈ S1 and 𝑦 = 𝑧 = 𝑘 + 1 ∈ S1 such that 𝑤 is a super
Yamanouchi word. Then the following property |𝑢 |𝑘 > |𝑢 |𝑘+1 holds, showing that 𝑢𝑧𝑥𝑦 is a super
Yamanouchi word, and hence 𝑣 is so. Similarly, we show that if 𝑣 is a super Yamanouchi word,
then𝑤 is so.

Suppose now that 𝑤 = 𝑢𝑦𝑥𝑧𝑢 ′ and 𝑣 = 𝑢𝑦𝑧𝑥𝑢 ′ for all 𝑢,𝑢 ′ in S∗ such that 𝑥 ⩽ 𝑦 ⩽ 𝑧 in S
with 𝑥 = 𝑦 only if | |𝑦 | | = 1 and 𝑦 = 𝑧 only if | |𝑦 | | = 0. If 𝑥 < 𝑦 < 𝑧, there is no changes in the
numbers of consecutive elements of S0 (resp. S1) in each right (resp. left) subword of𝑤 and 𝑣 .
Suppose 𝑥 = 𝑦 = 𝑘 ∈ S1, and 𝑧 = 𝑘 + 1 ∈ S1 such that𝑤 is a super Yamanouchi word. Then by
definition, the following property |𝑢 |𝑘 > |𝑢 |𝑘+1 holds, showing that 𝑢𝑦𝑧𝑥 is a super Yamanouchi
word, and hence 𝑣 is so. Similarly, we show that if 𝑣 is a super Yamanouchi word, then𝑤 is so.
Suppose now that 𝑥 = 𝑘 ∈ S0 and 𝑦 = 𝑧 = 𝑘 + 1 ∈ S0 such that 𝑤 is a super Yamanouchi word.
Then by definition, the following property |𝑢 ′ |𝑘 > |𝑢 ′ |𝑘+1 holds, showing that 𝑦𝑧𝑥𝑢 ′ is a super
Yamanouchi word, and then 𝑣 is so. Similarly, we show that if 𝑣 is a super Yamanouchi word,
then𝑤 is so. □
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4. The super Littlewood–Richardson rule

4.3.3. Super Littlewood–Richardson skew tableaux. A super skew tableau 𝑆 overS is called a
super Littlewood–Richardson skew tableau if its reading word R(𝑆) is a super Yamanouchi word. For
instance, the following super tableau over S = {2 < 1 < 1 < 2} is a super Littlewood–Richardson
skew tableau of shape (7, 5, 3, 3, 2, 1, 1)/(4, 3, 2, 2, 1) and of weight (3, 2, 3, 2):

2 2 2
1 1

2
2

1
1
1

For any partition 𝜇 of height 𝑘 , define

𝜇 := (𝜇1, 𝜇2)

where 𝜇1 is the partition formed by the first𝑚 parts of 𝜇 and 𝜇2 is the partition formed by its
last 𝑘 −𝑚 parts, such that if 𝑘 < 𝑚 + 𝑛 then some parts of 𝜇2 are zero and if 𝑘 < 𝑚 then some
parts of 𝜇1 are zero and all the parts of 𝜇2 are zero. For instance, suppose S = {2 < 1 < 1 < 2}
and 𝜇 = (3, 2, 2, 2, 1). Then 𝜇 = (3, 2, 3, 2) with 𝜇1 = (3, 2), 𝜇2 = (2, 2, 1) and 𝜇2 = (3, 2).

Let 𝜇 be a partition. Denote by 𝑇 (𝜇) the super tableau of shape 𝜇 whose first row contains
only𝑚, the second row contains only𝑚 + 1, and so on row by row, until the𝑚-th row that contains
only 1, and starting from the nonempty (𝑚 + 1)-th box of each column, the corresponding 𝑖-th
column contains only 𝑖 . Then, the super tableau 𝑇 (𝜇) can be divided into two super tableaux: the
first one of shape 𝜇1 that contains only the elements of S0 and the second one of shape 𝜇2 that
contains only the elements of S1, such that the following equality

wt(R(𝑇 (𝜇))) = (𝜇1, 𝜇2) = 𝜇

holds. For instance, suppose S = {2 < 1 < 1 < 2} and 𝜇 = (3, 2, 2, 2, 1). Then the super
tableau 𝑇 (𝜇) is the following:

2 2 2
1 1
1 2
1 2
1

such that 𝜇1 = (3, 2), 𝜇2 = (2, 2, 1) and 𝜇 = (3, 2, 3, 2) = wt(R(𝑇 (𝜇))).
It is clear from the definition of 𝑇 (𝜇), that the super tableau 𝑇 (𝜇) is the only super tableau of

shape 𝜇 whose reading is a super Yamanouchi word. Hence, following Lemma 4.3.2, we deduce
the following result.

Lemma 4.3.4. Let 𝜇 be a partition. A super skew tableau 𝑆 is a super Littlewood–Richardson skew
tableau of weight 𝜇 if and only if its rectification is the super tableau 𝑇 (𝜇).

As a consequence, following Theorem 4.2.1 we deduce the following result.

Theorem 4.3.5. The super Littlewood–Richardson coefficient 𝑐𝜈
𝜆,𝜇

is equal to the number of super
Littlewood–Richardson skew tableaux of shape 𝜈/𝜆 and of weight 𝜇.
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Example 4.3.6. Suppose S = {2 < 1 < 1 < 2}, 𝜈 = (5, 4, 3, 2) and 𝜆 = (3, 3, 1). The super
Littlewood–Richardson skew tableaux of shape (5, 4, 3, 2)/(3, 3, 1) are the following:

2 2
1

2 2
1 1

2 2
1

2 2
2 1

2 2
1

2 2
1 1

2 2
1

2 2
2 1

2 2
1

2 1
2 1

2 2
1

2 1
2 1

2 2
1

2 1
1 2

2 2
1

2 1
1 1

2 2
1

2 1
1 1

Following Theorem 4.3.5, we have:

i) 𝑐𝜈
𝜆,𝜇

= 1, for 𝜇 = (5, 2), 𝜇 = (5, 1, 1), 𝜇 = (3, 3, 1),

ii) 𝑐𝜈
𝜆,𝜇

= 2, for 𝜇 = (4, 3), 𝜇 = (4, 2, 1), 𝜇 = (3, 2, 2),

iii) 𝑐𝜈
𝜆,𝜇

= 0, for other 𝜇.

Hence, we obtain the following decomposition in 𝑅S :

𝑆 (5,4,3,2)/(3,3,1) = 𝑆 (5,2) + 𝑆 (5,1,1) + 2𝑆 (4,3) + 2𝑆 (4,2,1) + 2𝑆 (3,2,2) + 𝑆 (3,3,1) .

Note finally that the readings of the genuine highest weight super tableaux introduced in [1]
as highest weight vectors for the crystal graph for the representations of the general linear Lie
superalgebra of type A are super Yamanouchi words. A future work would be to investigate the
combinatorial properties of the representations of the general linear Lie superalgebra 𝔤𝔩𝑚,𝑛 using
the constructions developed in this article.
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