
HAL Id: hal-03710508
https://hal.science/hal-03710508

Submitted on 9 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How to assist designers model learning games with Petri
nets?

Mathieu Muratet, Amel Yessad, Thibault Carron

To cite this version:
Mathieu Muratet, Amel Yessad, Thibault Carron. How to assist designers model learning games with
Petri nets?. Foundations of Digital Games 2022, Sep 2022, Athènes, Greece. �hal-03710508�

https://hal.science/hal-03710508
https://hal.archives-ouvertes.fr

How to assist designers to model learning games with Petri nets?
Mathieu Muratet

mathieu.muratet@lip6.fr
Sorbonne Université, CNRS, LIP6, IN-

SHEA
Paris / Suresnes, France

Amel Yessad
amel.yessad@lip6.fr

Sorbonne Université, CNRS, LIP6
Paris, France

Thibault Carron
thibault.carron@lip6.fr

Sorbonne Université, CNRS, LIP6, Uni-
versité Savoie Mont Blanc
Paris / Chambéry, France

ABSTRACT
In previous research, we presented a methodological framework
that provides players with adaptive feedback. The core of this frame-
work relies on modeling the learning game with a Petri net. How-
ever, this modeling is a challenging task. Indeed, Petri nets are
well adapted to model dynamic and complex systems but require a
mastery of the underlying mathematical formalism to build them
manually. In particular, when the learning game is characterized
by a large freedom of action. In this paper, we present an authoring
tool and its domain-specific language to assist designers to model
learning games with Petri nets. We carried out a case study where
our contribution was implemented. Results show that our contri-
bution helps designers to build the Petri net in combination with
classical Petri net editors which are still useful to visualize, to check
and to validate the Petri nets built.

KEYWORDS
Learning Game, Behavioral Model, Petri Net, Design Pattern, DSL
ACM Reference Format:
Mathieu Muratet, Amel Yessad, and Thibault Carron. 2022. How to assist
designers to model learning games with Petri nets?. In FDG ’22: Proceedings
of the 17th International Conference on the Foundations of Digital Games
(FDG ’22), September 5–8, 2022, Athens, Greece. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3555858.3555937

1 INTRODUCTION
Adaptive feedback in Technology-Enhanced Learning (TEL) is im-
portant to help learners acquiring competencies, progressing in
problem solving and improving the learning process [4, 13, 18].
In learning games, the adaptive feedback remains a challenging
issue because the analysis of the learner traces is complex. Indeed,
in learning games with a large amount of available actions, the
learners are free to interact with the game objects and to explore
the game environment. This makes it hard to understand and an-
alyze the learner’s traces and to answer questions like: Does the
learner progress to the solution? What is the player’s next action
to perform in order to progress towards the solution? Which feed-
back is relevant to help the learner solve the problem, acquire a
competency or break through erroneous cognitive reasoning?

To provide automatically hints adapted to the learner in learning
games and help the player to progress in problem solving, we need

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
FDG ’22, September 5–8, 2022, Athens, Greece
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9795-7/22/09. . . $15.00
https://doi.org/10.1145/3555858.3555937

to model the resolution process of the learning game. In previous
research [9, 16, 19], we proposed a methodological framework to
tackle this challenge by means of Petri nets (see Fig. 1). The frame-
work is divided in two workflows: the first deals with the use of
Petri nets to generate feedback adapted to the player difficulties
(the feedback loop), and the second is the workflow to model the
game with Petri nets.

We proposed a solution in [10] for the first workflow (the feed-
back loop) and detailed the algorithm that exploits Petri nets prop-
erties to analyze the learners’ actions, to characterize them with
pedagogical labels, and to calculate a label-based score. These ped-
agogical labels provide users, and particularly teachers, with in-
formation about the learner’s behavior such as, correct actions,
erroneous actions, actions taking place too late or too early in the
learner’s solving process.

In this paper we focus on the second workflow that aims to
assist designers to build the Petri net used by the feedback loop (see
FilteredPn in Fig. 1). When designers develop the learning game
and describe the different monitored interactions, as detailed in
this paper, they build the learning game and export automatically a
first Petri net called a full Petri net (see FullPn in Fig. 1). Afterward,
an expert plays the game (several times if there is more than one
solution available) and the traces are used to filter the full Petri
net in order to build the filtered Petri net automatically. The full
Petri net includes all monitored actions the learner can perform
and the filtered Petri net is a sub-part of the full Petri net including
only actions used by an expert to solve the game. Thus, it becomes
possible to compare between the experts’ solution and the player
solution in order to provide relevant feedback to the player.

A critical part of this second workflow is the building of the
FullPn. Indeed, modeling a complex system, like a game, with a
Petri net is not a trivial task [11].

Thus our main issue is: How to assist designers to model
complex environments like learning games with Petri nets? We
make the hypothesis that providing small patterns of Petri nets and
hiding mathematical formalism of Petri nets with domain-specific
language will help to model links between game objects. These
links are processed to automatically build the full Petri net that
models the entire learning game and thus avoids designers having
to build it manually.

In the two next sections, we introduce the Petri net formalism
and we give an overview of the existing research and related work.
Section 4 deals with the contribution of this paper: the domain-
specific language that helps designers to model links between game
objects. Section 5 presents a case study in which our contribution
was implemented and discusses the results. Finally, we conclude
the paper and present some future works identified as useful to
pursue this research.

https://doi.org/10.1145/3555858.3555937
https://doi.org/10.1145/3555858.3555937

FDG ’22, September 5–8, 2022, Athens, Greece Muratet, et al.

Authoring
Tool

Serious
Game

Trace analyzer Student’s
traces

Labels

Workflow to model expert’s problem solving

Learner’s feedback loop
activity analyser

Filtering
module FullPn

Expert’s
traces

FilteredPn

Learner Expert

Expert’s data flow (second)

Designers’ data flow (first)

Designers

Export

Learner’s data flow (third)

Feedback builder
Feedbacks

Figure 1: Global architecture of the framework

2 PETRI NET FORMALISM
Petri net is a graphical and mathematical modeling tool useful to
simulate the dynamics of complex systems. As a graphical model,
it is readable by human modelers and can be used as a visual com-
munication aid similar to flow charts. A Petri net (PN) is a bipartite
graph with two disjoint sets of vertices 𝑃 and 𝑇 . It is a 5-tuple [8]
𝑃𝑁 = (𝑃,𝑇 , 𝐹,𝑊 ,𝑀0) where:

• 𝑃 = 𝑝1, 𝑝2, . . . , 𝑝𝑚 is a finite set of places,
• 𝑇 = 𝑡1, 𝑡2, . . . , 𝑡𝑛 is a finite set of transitions,
• 𝐹 ⊂ (𝑃 ×𝑇)𝑈 (𝑇 × 𝑃) is a set of arcs (flow relation),
• 𝑊 : 𝐹 ↦→ N∗ is a weight function,
• 𝑀0 : 𝑃 ↦→ N is the initial marking or state,

𝑃 ∩𝑇 = ∅ and 𝑃 ∪𝑇 ≠ ∅.
The behavior of many systems can be described in terms of

system states and their changes. To simulate the dynamic behavior
of a system, a state (or a marking) is changed according to the
following transition (firing) rule:

(1) A transition 𝑡 is said to be enabled if each input place 𝑝 of 𝑡
is marked with at least𝑤 (𝑝, 𝑡) tokens, where𝑤 (𝑝, 𝑡) is the
weight of the arc from 𝑝 to 𝑡 .

(2) An enabled transition may fire (depending on whether or
not the corresponding event takes place in the simulated
system).

(3) The firing of an enabled transition 𝑡 removes𝑤 (𝑝, 𝑡) tokens
from each input place 𝑝 of 𝑡 , and adds𝑤 (𝑡, 𝑝) tokens to each
output place 𝑝 of 𝑡 , where 𝑤 (𝑡, 𝑝) is the weight of the arc
from 𝑡 to 𝑝 .

The set of all markings (states) that are reachable from the ini-
tial marking of a Petri net by firing the transitions represents the
range of states of the system and is called the reachability graph.
This graph is the core model we use to analyze the players’ ac-
tions. In case the number of game states is infinite, particularly for
unbounded Petri nets (some places become unbounded because
of the increasing number of their tokens), the reachability graph
cannot be calculated and is replaced by another graph called the
coverability graph. More details about the Petri net formalism can
be found in [8, 12].

In the context of this work, the places represent the states of the
game objects and the transitions the actions that the player can

perform in the game objects. Then, performing game actions can
be simulated with a Petri net by triggering (firing) the transition
associated with the game action according to the previous rule. This
trigger will fire transition in the Petri net and change the current
Petri net marking to keep it synchronized with the game state.

In the Petri nets we use to model games, we include “inhibitor”
arcs that have a different pattern of operation compared to the
standard arcs. In the case of an “inhibitor” arc, the transition 𝑡 is
enabled if each input place 𝑝 of 𝑡 is marked with less than𝑤 (𝑝, 𝑡)
tokens. This kind of arc is interesting to model games, especially
to model actions that are not possible if the game state exceeds a
threshold. For instance, considering a simple game where players
can be attacked (they lose 1 health point for any damage) and have
the power to heal themselves (they get 10 health points back). Play-
ers can heal themselves only if their health points are less than or
equal to 90 (to avoid exceeding the maximum of 100 health points).
In this example, an inhibitor arc avoids creating an artificial place
to store the number of health points lost (see Fig. 2). Saving this
artificial place is crucial in our case because it avoids mixing the
healing action and another game action, such as the attack in this
example. In this context, using inhibitor arcs enables designers to
simplify their work. Indeed, in this example, the designers will be
able to express a constraint on the healing action without consider-
ing side effects to other game actions (see section 4 for details on
how to express these constraints).

In sum, we use the Petri net formalism to model learning games
and we use the coverability graph to check properties about the
player’s game solving. Thus, for example, we can answer questions
like: is the game end reachable from the current state of the game
(there is a sequence of enabled transitions from the current state to
the final state)? Is the player stuck and can no longer progress in
the game (no transition is reachable from the current game state)?
See [10] for more details.

3 POSITIONING
As we introduced in section 2, Petri net is a powerful tool to simu-
late the dynamics of complex systems. In his thesis, Dormans [6]
reviews several approaches to assist game designers and shows
that Petri net is one of the most promising simulation tool but is
less accessible to designers. This has been a known difficulty for

How to assist designers to model learning games with Petri nets? FDG ’22, September 5–8, 2022, Athens, Greece

Attack Heal

40

Health points lost

60

Remaining health points

60

Health points

Attack Heal

91

10

10
10

Regular arc

Inhibitor arc

Legend

(a) (b)

Figure 2: An attack/heal system modeled with inhibitor arc
(a) and without inhibitor arc (b)

quite some time, Naedele and Janneck [11] identify in 1998 that “it
is easy to grasp the basic concepts of places, transitions, and concur-
rent sequences, and that one is very quickly able to apply this to the
modeling of systems that have an internal structure that only consists
of applications of those basic concepts. The situation changes when
one tries to model complex technical systems”. Their contribution
to help in this field was to identify and describe several design
patterns such as removing all tokens stored in a particular place
or synchronizing two concurrent sub-nets. These design patterns
are very interesting but no hints are provided to help designers to
connect patterns together.

Gomes and Barros [7] have the same comment “Petri nets are
often difficult to use in practice due to the problem of rapid model
growth”. Authors present a condensed view of the main structuring
mechanisms for general system modeling with Petri nets. They
introduce composition and refinement/abstraction strategies. Com-
position strategy includes fusion of Petri nets (called horizontal
composition, as the nets are glued together at specific points, places
or transitions) and folding that consists in identifying structural
symmetries inside Petri nets. Refinement/abstraction strategy in-
cludes static macros (a place or a transition model a sub-net) and
dynamic invocations (when a transition fires, a new net is dynami-
cally created). One of their conclusions is that work on simple and
intuitive notations for set modification would be interesting for
further research.

Abstraction strategy was also studied with hierarchical Petri
nets. Balas et al. [2] explain how they use hierarchical Petri nets
to model plots and control their evolution in games emphasizing
a story and featuring large worlds inhabited by virtual characters.
Araújo and Roque [1] discuss the applicability of Petri nets to model
game systems and game flows compared with other languages such
as UML and show that it is possible to model game systems with
hierarchical Petri nets. A lot of tools enable designers to edit and
analyze Petri nets [17], but all of them require mastering Petri net
mathematical formalism.

Dormans [5], inspired by Petri nets, proposes the Machination
framework that allows designers to model and simulate games
in an early stage of development. The author indicates that this

Disabled

Enabled

Disable

Enable

1

(a) (b)

1

Grab Use

OnTheGround

InInventory

InHand

Discard PutAway

Figure 3: Activable behavior pattern (a) and pickable behav-
ior pattern (b) modeled with Petri nets formalism

framework seems to bemore relevant for strategy games, simulation
games, and board games, mainly because the internal economy of
these types of games plays a more important role than in certain
other types of games. Machinations framework uses foreground
feedback structures that play an important role in the design process.
Like Petri net editors, modelingwithMachinations requires mastery
of formalism and graphical operators. Moreover, Machinations was
designed for an early stage of development while we need a model
that can process in live game sessions.

All these research inspired us. We used the design pattern ap-
proach of Naedele and Janneck [11] to provide small and reusable
Petri nets to designers rather than asking them to model the game
from scratch. We also use hierarchical Petri nets to model the game
at various levels, especially the macro-transition approach [7] that
abstracts sub-nets by transition inside the super-net. Finally, we pro-
pose a domain-specific language to help designers to update Petri
nets. This domain-specific language implements the AND-split,
AND-join, and OR-split introduced by Sun et al. [14].

4 CONTRIBUTION
In section 1 we introduced the global architecture of the framework
and we noticed that a key part of this framework was the building
of a Petri net that models the learning game. In this section, we
detail the method and tools we designed to tackle this challenge.

Our approach consists of asking designers to build manually
small Petri nets. Each one of these small Petri nets models a behav-
ior pattern that can be linked to a game object. We assume that
this effort is much less than if we ask them to build a full Petri
nets manually (which can be composed of several hundred places
and transitions). We designed a set of generic Petri nets: activable,
pickable, activationCount, exclusiveChoice, unique action, etc. The
objective is to capitalize on all these small Petri nets to avoid to
create them from scratch for each new game level. Fig. 3 depicts the
two first examples previously cited. A game object can be linked
with several behavior patterns and a behavior pattern can be linked
with several game objects.

4.1 A domain-specific language to describe
links between game objects

Each game object the designer decides to include in the Petri net
is called a “monitored object”. If a game object is monitored, all
learner interactions with this object are considered in the feedback
loop (see Fig. 1). We propose connecting the small Petri nets by

FDG ’22, September 5–8, 2022, Athens, Greece Muratet, et al.

formally explaining the links between the monitored entities with
a domain-specific language.

To illustrate the process of using the full Petri net building we
focus on an example (see Fig. 5), which presents a game level where
the player has to open a locked frozen door. A key and a boiler are
available in the scene to use in opening the door. The player has to
pick up the key and turn on the boiler to melt the ice on the lock
then use the key to unlock the door. The player can grab the key
and turn on the boiler in any order, but opening the door has to be
done last. In this example, we have three monitored game objects:
the key, the boiler and the door.

Fig. 4 models relations to express links between MonitoredOb-
jects. An object, like the door, is considered “monitored” if it con-
tains at least oneMonitoredComponent. EachMonitoredCom-
ponent contains a small Petri net (the “Activable behavior pattern”
to the door, see Fig. 3) and a list of MonitoredActions. EachMon-
itoredAction has a reference to the monitored Transition (the
gameAction) in the small Petri net (here the action “open” is asso-
ciated to the transition “Enable” in the Activable behavior pattern)
and a list of links. Links define constraints with other monitored
objects (the key and the boiler). A Link is composed of four main
attributes: a Verb to express the type of the constraint (REQUIRE
AT LEAST, REQUIRE LESS THAN, GET or PRODUCE), a weight
to value the constraint, a gameState that references a place of the
Petri net in a monitored component and a label to rename the link.
A monitored action can include several links with other monitored
actions. The logicRel inside MonitoredAction enables to com-
bine links with an AND/OR expressions. A logicRel has to follow
a simple formal grammar where 𝐿 is the set of available labels:

LogicRel ::= Label | (LogicRel Op LogicRel)
Op ::= + | *
Label ::= L

The logicRel is distributed of ∗ (AND) over + (OR) to process
expressions like (𝑙𝑥 ∗ 𝑙𝑦) + (𝑙𝑥 ∗ 𝐿𝑧) rather than 𝑙𝑥 ∗ (𝑙𝑦 + 𝐿𝑧).
Then logic relation enables to link automatically small Petri nets
together with basic Petri nets patterns (AND-split, AND-join, and
OR-split [14]). An operator ∗ connects all links to the gameAction
of the MonitoredAction, whereas an operator + duplicates the
gameAction of the MonitoredAction and applies links to each
copy.

Fig. 6 depicts several scenarios depending on AND/OR occur-
rences inside logicRel. The first scenario (S1) is the basic Petri net
that models a simple counter that adds one token inside Counter
place each time the GameAction is fired. The second (S2) is the
adapted Petri net automatically built with a AND constraint: “re-
quire at least 1 token in State1 AND 15 tokens in State3” (𝑙𝑖𝑛𝑘1 ∗
𝑙𝑖𝑛𝑘2), in the resulting Petri net two arcs was added to link the
GameAction with its input states. The third (S3) is the same as
the second, but with an OR constraint: “require at least 1 token in
State1 OR 15 tokens in State3” (𝑙𝑖𝑛𝑘1+ 𝑙𝑖𝑛𝑘2), in this case the Game-
Action was copied and each copy was linked with its appropriate
input state. The fourth scenario (S4) illustrates a more complex
constraint that combines AND and OR operators: “Require at least
1 token in State1 OR (15 tokens in State3 AND 2 tokens in State4)”
(𝑙𝑖𝑛𝑘1 + (𝑙𝑖𝑛𝑘2 ∗ 𝑙𝑖𝑛𝑘3)), in this case the output Petri net contains
a copied GameAction (+ operator), on the first copy one arc was

linked with State1 (𝑙𝑖𝑛𝑘1) and on the second copy two arcs was
linked with State3 and State4 (𝑙𝑖𝑛𝑘2∗𝑙𝑖𝑛𝑘3). The last scenario shows
simply all kind of verbs to see their instance in Petri net formalism.

In our example of the locked frozen door (see Fig. 5), first, we
link the key to the pickable behavior pattern and the door and
the boiler with the actionable behavior pattern. Then, we define
the opening of the door with the following constraint: “the boiler
must be enabled AND the key must be in the avatar’s hand”. The
output Petri net of this game level automatically built based on
the behavior patterns selected and the links defined is shown in
Fig. 7 (a).

Expressing a link obeys the following outlines:
(1) Selecting the action to apply a constraint on. This action

refers to a transition included in one of the behavior patterns
attached to a first game object.

(2) Selecting the state linked to this constraint. This state refers
to a place included in one of the behavior patterns attached
to a second game object.

(3) Selecting the type of link and its weight. We defined three
kinds of links:
• The “Get” link refers, in the Petri net formalism, to an arc
that from the input place consumes tokens equal to the
weight of the arc.

• The “Require” link offers two possibilities:
– The “at least” constraint refers to a “read” arc (in Petri
net formalism) that does not consume tokens, but en-
ables the output transition if the number of tokens inside
the input place is greater than or equal to the weight of
the arc.

– The “less than” constraint refers to an “inhibitor” arc (in
Petri net formalism) that does not consume tokens but
disables the output transition if the number of tokens
inside the input place is greater than or equal to the
weight of the arc.

• The “Produce” link refers, in the Petri net formalism, to
an arc that produces tokens equal to its weight inside its
output place.

To summarize, a link enables to create arcs between a gameAc-
tion and a gameState, the Verb defines the type of arc, and the
weight specify the amount of tokens in play. Several links define
several constraints on a same gameAction. The logicRel struc-
tures the links and how to connect the gameActionwith all linked
gameStates.

4.2 A plugin for Unity to monitor game
entities and build the Petri net model

Fig 8 presents a screenshot of the monitoring module1 that we
integrate into the Unity environment. In this screenshot we imple-
mented previous example and we changed the constraint of the
previous example (the frozen door): “opening the door requires the
boiler enabled OR the key in the avatar’s hand”. Formally, first we
select the game object to apply the constraint on, the Door (1). Then
we select one of its action, the turnOn action, renamed “Open” (2)
and we add two constraints, the first is linked with the Key and
1The monitoring module used in this research is part of the FYFY project:
https://github.com/Mocahteam/FYFY, accessed March 11, 2022

How to assist designers to model learning games with Petri nets? FDG ’22, September 5–8, 2022, Athens, Greece

MonitoredComponent

MonitoredAction

Transition gameAction

String logicRel

0..*

1

Link

String label

Verb constraint

int weight

Place gameState

PetriNet
1

1

1

0..*

Transition

int transitionId

Place

int placeId

0..*

1

0..*
1

<<Enumeration>>

Verb

REQUIRE AT LEAST
REQUIRE LESS THAN

GET
PRODUCE

MonitoredObject

1..*

1

Figure 4: Monitoring model

Figure 5: Screenshot of “The frozen door” game level

“requires at least 1 (Key) inHand” (3) (this link is noted “𝑙0”), the
second is linked with the Boiler and “requires at least 1 (Boiler)
on” (4) (this link is noted “𝑙1”). At least one of these two links is
required to open the door, so the logic expression is: “𝑙0 + 𝑙1” (5).
We can translate this expression “𝑙0 + 𝑙1” like: “Open the frozen
door Requires at least 1 Key inHand OR Requires at least 1 Boiler
on”. Then the resulting full Petri net with an OR operator is quite
different in comparison with the AND version (see Fig. 7).

Thus, the monitoring module integrated into Unity provides the
following functionalities:

• Selecting game objects to bind with the monitoring system.
• Associating small Petri nets to each monitored game object.
• Defining links between monitored elements.
• Building the Petri net with all links previously defined.

5 CASE STUDY
We have experimented with our proposition during the develop-
ment of an open source virtual escape game called E-LearningScape2
(see fig. 9). E-LearningScape is a numerical adaptation of a physical
escape game3. In this numerical adaptation, the participants (in
teams of 2 to 5 players) play the role of a sandman immersed in the
dream of Camille. Their challenges will be to help Camille structure
her thought in her dream by solving enigmas. The team members
gather around a computer. One player controls the game and moves
inside the virtual universe in a first-person navigation to discover
interactive game objects and fragments of dreams giving access
to clues in the real world. All members of the team solve enigmas
inside and outside the game, these two facets feeding each other.
E-LearningScape has two objectives, the main one is to introduce
learners to concepts in one of the three knowledge domains con-
sidered in the game (pedagogy, accessibility or computer science),
and the second objective is to promote team work and cohesion.

E-LearningScape is made up of 17 enigmas that require the play-
ers to combine more than 40 game objects found into the game.
Without being exhaustive, here are some examples of enigmas: find-
ing a wire to connect words on a pin panel; deciphering a message
with a cylinder mirror; revealing hidden clues with a black light;
etc.

As in classic escape games, several enigmas can be performed
in parallel and the players have to associate found clues to resolve
them. Themonitoringmodule wework on aims to generate in-game
hints to help players to solve enigmas. As we explain in previous
sections, the monitoring module require Petri nets and we focus
this case study on the enigmas modeling.

2E-LearningScape: https://github.com/Mocahteam/E-LearningScape, accessed Febru-
ary 03, 2022
3https://sapiens-uspc.com/projets-innovants/learningscape-2/, accessed February 03,
2022

FDG ’22, September 5–8, 2022, Athens, Greece Muratet, et al.

GameAction

State1 State2 State3 State4

Counter GameAction

link1: Require at least 1 in State1
link2: Require at least 15 in State3

logicRelation: link1 * link2

State1 State2 State3 State4

15

Counter
GameAction_1

link1: Require at least 1 in State1
link2: Require at least 15 in State3

logicRelation: link1 + link2

State1 State2 State3 State4

Counter

GameAction_2

15

GameAction_1
link1: Require at least 1 in State1
link2: Require at least 15 in State3

logicRelation: link1 + (link2 * link3)

State1 State2 State3 State4

Counter

GameAction_2

15

link3: Require at least 2 in State4

2

GameAction

link1: Require at least 5 in State1
link2: Require less than 6 in State2

logicRelation: link1 * link2 * link3 * link4

State1 State2 State3 State4

5 7

Counter

link3: Get 7 in State3
link4: Produce 8 in State4

6 8

No constraints

Legend
Regular arc
Read arc
Inhibitor arc

S1 S2 S3

S4 S5

Figure 6: Examples of Petri net adaptations depending on logic relations

5.1 Enigmas modeling
The developer, who has coded the game, masters Unity and knows
the Petri nets principle (he is not an expert of Petri nets). He had to
model the 17 enigmas with the help of our Unity plugin and Tina
editor [3].

The current model of the game is composed of 23 full Petri nets
with a sum of 297 places, 231 transitions, and 558 arcs. All these
full Petri nets were built from eight small Petri nets. From these
eight small Petri nets, the developer reused four generic Petri nets
we introduced in section 4 (“activable”, “activationCount”, “exclu-
siveChoice”, and “unique action”) and designed with Tina four
new small Petri nets. The first, “activableAndCount” is a merge
between “activable” and “activationCount” patterns, it allows to
count how many time a game object has been activated. The sec-
ond, “answerQuestion” models question validation options (right
and wrong answer). The last two are a simple place and a simple

transition used to complete specific behavior. Fig. 10 shows these
eight small Petri nets used to model E-LearningScape.

We do not show full Petri nets of all enigmas in this paper due
to place limitation, but the reader can download and open each
enigma’s PNML files available at [15] with Tina tool. We show just
one example in Fig. 11 that illustrates what a full Petri net looks like,
this full Petri net models the pin panel enigma that we mentioned
in section 5.

Yet we present some interesting parts of Petri nets that were
built. The game was not modeled with a unique Petri net for two
main reasons: the first is a technical reason, computing the cover-
ability graph of this Petri net would take too much time; the second
is a usability reason, checking the validity of such model seemed
very complex to the developer. Then, the developer chose to model
enigmas’ sequence with a super-net with only “unique action” pat-
terns. For example, a gears enigma (the players have to select the
right gear to unlock a mechanism) is available after resolving three

How to assist designers to model learning games with Petri nets? FDG ’22, September 5–8, 2022, Athens, Greece

1

BoilerEnabled

BoilerDisabled

DisableBoiler

EnableBoiler

1

GrabKey

UseKey

KeyOnTheGround

 KeyInInventory

KeyInHand

DiscardKey

PutAwayKey

 DoorClosed DoorOpen

CloseDoor

OpenDoor

1

Regular arc

Read arc

Legend

BoilerEnabled

BoilerDisabled

DisableBoiler

EnableBoiler

1

1

GrabKey

UseKey

KeyOnTheGround

 KeyInInventory

KeyInHand

DiscardKey

PutAwayKey

 DoorClosed DoorOpen

CloseDoor

OpenDoor_1

1

OpenDoor_2

(a) (b)

Figure 7: Petri net of “The frozen door” game level built automatically with a AND constraint “The door can be opened if the
boiler is enabled AND the key is in hand” (a) and with an OR constraint “The door can be opened if the boiler is enabled OR
the key is in hand” (b)

2

1

3

4

5

Figure 8: Screenshot of the user interface of the monitoring
module integrated into Unity

previous enigmas. To model this constraint, the developer attached
the “unique action” pattern to the four enigmas and add links to
the “perform” action of the gears enigma (see Fig. 12).

Each transition of this super-net models an entire enigma. The
details to resolve each enigma are defined in dedicated full Petri
nets. The full Petri net presented in Fig. 11 is one example. We
discuss the conception of these full Petri nets in the next section.

5.2 Discussion
First of all, we notice 17 enigmas and 23 Petri net (6 Petri nets in
addition). Five enigmas were modeled with two Petri nets. The last

Figure 9: Screenshot of “E-Learning Scape”, a virtual escape
game on teaching skills

additional Petri net is the super-net that structures which enigma
is available depending on the others.

Among the enigmas that require two Petri nets, we found the
last four enigmas of the game. For these enigmas the answers can
be entered freely in four input fields, but when an answer was
excepted in one input field it will no longer be accepted in the
others. The case of these last four enigmas is interesting because
the monitoring module has to know which enigma is validated.
Then the developer chose to model the heart of each enigma in its
own Petri net and the validation mechanism in different Petri nets.
We focus on this validation mechanism. The developer used the
“exclusiveChoice” and “answerQuestion” patterns. We present in
Fig. 13 a simplified example including only two choices instead of
four. The two “exclusiveChoice” patterns model the two possible
input fields and the “answerQuestion” pattern the answer of one
enigma. “choice1” of each “exclusiveChoice” models that the asso-
ciated input field was chosen to validate the answer of this enigma
and “choice2” models that the associated input field was chosen to
answer to another enigma. Selecting “choice1” in one enigma has to
inhibit others “choice1”. To integrate this constraint, the developer

FDG ’22, September 5–8, 2022, Athens, Greece Muratet, et al.

turnOn

1

off activate

ActivationCount pattern

activationCount

choice2

1

start

choice1

Activable pattern

on

turnOff

ExclusiveChoice pattern

perform

1

start end

UniqueAction pattern

turnOn

1

ActivableAndCount pattern

on

turnOff

activationCount

correct

1

answering answered

wronglocker

AnswerQuestion pattern

place

Place pattern Transition pattern

transition

Figure 10: The eight small Petri nets used to model the 17
enigmas of E-LearningScape

added the following links on each “choice1”: “Require less than 1
answer in answering AND produce 1 answer in answering”. Then,
“choice1” will be enabled if the “answering” place does not contain
tokens. We notice that this modeling is not perfect because once the
“correct” action will be fired, the “answering” place will be emptied
and unlock the second “choice1”. Developer would have to add
another constraint on “answered” place like: “Require less than 1
answer in answered”. In this case this mistake is not a problem be-
cause when the enigma is validated it is saved inside the super-net,
then full Petri nets of this enigma will not be used anymore.

Another interesting modeling choice is the collecting behavior.
Developer did not choose to use the “pickable” pattern we intro-
duced in Fig. 3. He preferred using “uniqueAction” and “activable”
patterns because, in E-LearningScape, a pickable game object can’t
be discarded and principally because it was implemented with two
game objects, the “world object” and the “inventory object”. Once
the player clicks on the world object, it is disabled and inventory
object is enabled. Then player believes he grabbed the object. Then
developer attached the “unique action” pattern to the world object
because it can be clicked once and the “actionable” pattern to in-
ventory object because it can be selected and unselected. To model
the constraint that the inventory game object can be used only
when the word object was clicked he added a simple link to the two
“actionable” actions (turnOn and turnOff). For instance, for a wire
available in the game: “turnOn InventoryWire requires at least 1
WordWire picked”. Fig. 14 shows how this constraint is defined in
Unity and dotted area in Fig. 11 shows output result in full Petri
net.

Finally, developer used the Unity plugin to associate small Petri
nets with game objects and to define links between game objects
to reflect game simulation. He exported regularly the Petri net he
worked on with the Unity plugin and checked it with the simulator
functionality of Tina. When he detected some inconsistencies with
game simulation, he did not edit the Petri net with Tina and pre-
ferred to make modifications with the Unity plugin. He explained
this choice because he was not sure how to update the Petri nets in
particular for cases that contain complex relations. In this case, he
preferred using the AND/OR expressions of the plugin.

We also identified situations not easy to model with current tool:
(1) managing game objects that could appear dynamically in the
game (not specified in the initial Petri net) and (2) simplifying the
constraints defined on a minimum and maximum game object state,
for instance to constrain a game action if the state of a game object
is included between two values. These perspectives will enable us
to improve current framework.

6 CONCLUSION AND FUTURE RESEARCH
In this paper, we presented a contribution to help learning game
designers to model learning games. We based our work on Petri
nets and we defined a domain-specific language to describe the
links between small and reusable Petri net patterns that can be
easily built. Based on this logical description we built automatically
a full Petri net that models the player interactions in the game.

The tool we designed makes our conceptual approach opera-
tional. We experimented with our contribution by reviewing usage
in a professional context. This case study shown a loop between
the Unity plugin and Tina. The game developer designed 23 full
Petri nets with a sum of 297 places, 231 transitions, and 558 arcs
with only 8 small Petri net patterns. The plugin helps developer to
build the Petri net thanks to the domain-specific language and Tina
enables them to visualize, to check and to validate the resulting
Petri nets.

The work done with E-LearningScape is a first step to imple-
ment a feedback loop inside the game. Currently the 17 enigmas

How to assist designers to model learning games with Petri nets? FDG ’22, September 5–8, 2022, Athens, Greece

Figure 11: Full Petri net of the pin panel built from “unique action”, “activable”, “activationCount” and “answerQuestion”
patterns (dotted area is detailed in section 5.2)

R1-Q1_perform_144

1

R1-Q1_start_144 R1-Q1_end_144

R1-Q2_perform_145

1

R1-Q2_start_145 R1-Q2_end_145

1

R1-Q3_start_146 R1-Q3_end_146

Gears_perform_147

1

Gears_start_147 Gears_end_147

R1-Q3_perform_146

link1: Require at least 1 in R1-Q1_end_144 (first enigma)
link2: Require at least 1 in R1-Q2_end_145 (second enigma)
link3: Require at least 1 in R1-Q3_end_146 (third enigma)

LogicRelation on Gears_perform_147: link1 * link2 * link3

Figure 12: Part of the super-net to show constraints added
(bold arcs) to Gears enigma (Gears_perform_147) that will
be available when enigmas R1-Q1, R1-Q2 and R1-Q3 will be
resolved (end state reached)

of the game are modeled and learners’ traces are analyzed accord-
ingly. Next steps will be to assess feedback efficiency depending on
learner’s needs.

Currently we designed a small set of Petri nets patterns and we
believe that an interesting research direction is to identify core
design patterns of Petri net for a broad games mechanics.

ACKNOWLEDGMENTS
The authors would like to thank Jessica Lament, Séverine Maillet,
Sophie Delamasantière-Boutal and John James Boutal for their
contributions to reviewing and improving this paper.

REFERENCES
[1] Manuel Araújo and Licínio Roque. 2009. Modeling Games with Petri Nets. In

2009 Digital Games Research Association Conference. Brunel Univ.

inputField1_choice2

1

inputField1_start

inputField1_choice1

correctanswering answered

wronglocker

inputField2_choice2

1

inputField2_start

inputField2_choice1

exclusiveChoice

exclusiveChoice

answerQuestion

Figure 13: Inhibit choice1 if another was selected before

[2] Daniel Balas, Cyril Brom, Adam Abonyi, and Jakub Gemrot. 2008. Hierarchical
Petri Nets for Story Plots Featuring Virtual Humans. In Proceedings of the Fourth
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(Stanford, California) (AIIDE’08). AAAI Press, 2–9.

[3] Bernard Berthomieu, P.-O Ribet, and F Vernadat. 2004. The tool TINA – con-
struction of abstract state spaces for Petri nets and time Petri nets. Interna-
tional Journal of Production Research - INT J PROD RES 42 (07 2004), 2741–2756.
https://doi.org/10.1080/00207540412331312688

[4] Andrew Thomas Bimba, Norisma Idris, Ahmed Al-Hunaiyyan, Rohana Binti
Mahmud, and Nor Liyana Bt Mohd Shuib. 2017. Adaptive feedback in computer-
based learning environments: a review. Adaptive Behavior 25, 5 (2017), 217–234.

[5] Joris Dormans. 2011. Simulating Mechanics to Study Emergence in Games. In
Proceedings of the 19th AIIDE Conference on Artificial Intelligence in the Game
Design Process (AIIDE’11-19). AAAI Press, 2–7.

[6] Joris Dormans. 2012. Engineering emergence: applied theory for game design. Ph.D.
Dissertation. Institute for Logic, Language and Computation.

[7] L. Gomes and Joao Paulo Barros. 2005. Structuring and composability issues
in Petri nets modeling. IEEE Transactions on Industrial Informatics 1, 2 (2005),
112–123. https://doi.org/10.1109/TII.2005.844433

[8] Tadao Murata. 1989. Petri nets: Properties, analysis and applications. Proc. IEEE
77, 4 (1989), 541–580.

https://doi.org/10.1080/00207540412331312688
https://doi.org/10.1109/TII.2005.844433

FDG ’22, September 5–8, 2022, Athens, Greece Muratet, et al.

Figure 14: Wire constraint defined in Unity

[9] Mathieu Muratet, Amel Yessad, and Thibault Carron. 2016. Framework for
Learner Assessment in Learning Games. In Adaptative and Adaptable Learning:
11th European Conference on Technology Enhanced Learning, EC-TEL 2016 (Lyon,
France), Mike Sharples, Katrien Verbert, and Tomaž Klobučar (Eds.). Springer.

[10] Mathieu Muratet, Amel Yessad, and Thibault Carron. 2016. Understanding Learn-
ers’ Behaviors in Serious Games. In ICWL 2016 - International Conference on
Web-based Learning. Rome, Italy. https://doi.org/10.1007/978-3-319-47440-322
Best paper award.

[11] Martin Naedele and Jorn Janneck. 1998. Design Patterns in Petri Net System
Modeling. 47–54. https://doi.org/10.1109/ICECCS.1998.706655

[12] James Lyle Peterson. 1981. Petri Net Theory and the Modeling of Systems. Prentice
Hall PTR, Upper Saddle River, NJ, USA.

[13] Valerie J Shute. 2008. Focus on formative feedback. Review of educational research
78, 1 (2008), 153–189.

[14] Weixiang Sun, Tao Li, Wei Peng, and Tong Sun. 2007. Incremental Workflow
Mining with Optional Patterns and Its Application to Production Printing Process.
INTERNATIONAL JOURNAL OF INTELLIGENT CONTROL AND SYSTEMS VOL
12 (01 2007), 45–55.

[15] Mocah team. 2021. Full Petri nets of E-LearningScape. https://github.com/
Mocahteam/E-LearningScape/tree/master/completeNets. [Online; accessed 03-
September-2021].

[16] Pradeepa Thomas, Amel Yessad, and Jean-Marc Labat. 2011. Petri Nets and
Ontologies: Tools for the "Learning Player" Assessment in Serious Games. In
ICALT. 415–419.

[17] Weng Jie Thong and Mohamed Ameedeen. 2015. A Survey of Petri Net Tools.
Lecture Notes in Electrical Engineering 315 (01 2015), 537–551. https://doi.org/10.
1007/978-3-319-07674-4_51

[18] Kurt VanLehn, Collin Lynch, Kay Schulze, Joel A Shapiro, Robert Shelby, Linwood
Taylor, Don Treacy, Anders Weinstein, and Mary Wintersgill. 2005. The Andes
physics tutoring system: Lessons learned. International Journal of Artificial
Intelligence in Education 15, 3 (2005), 147–204.

[19] Amel Yessad, Pradeepa Thomas, Bruno Capdevila Ibáñez, and Jean-Marc Labat.
2010. Using the Petri Nets for the Learner Assessment in Serious Games. In ICWL.
339–348.

https://doi.org/10.1007/978-3-319-47440-3 22
https://doi.org/10.1109/ICECCS.1998.706655
https://github.com/Mocahteam/E-LearningScape/tree/master/completeNets
https://github.com/Mocahteam/E-LearningScape/tree/master/completeNets
https://doi.org/10.1007/978-3-319-07674-4_51
https://doi.org/10.1007/978-3-319-07674-4_51

	Abstract
	1 Introduction
	2 Petri net formalism
	3 Positioning
	4 Contribution
	4.1 A domain-specific language to describe links between game objects
	4.2 A plugin for Unity to monitor game entities and build the Petri net model

	5 Case study
	5.1 Enigmas modeling
	5.2 Discussion

	6 Conclusion and future research
	Acknowledgments
	References

