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Abstract

We consider the optimization problem of determining schedules for shipments on known paths
within a terminal network in order to minimize vehicle transportation costs. We refer to this problem
as the Service Network Scheduling Problem and present two mixed integer programming formulations
of that problem. The first is based on the classical idea of a time-expanded network. The second
formulation is new and is based on sets of shipment consolidations. We show both analytically and
computationally that the consolidation-based formulation can be the superior of the two, but that its
enumerative nature renders it ineffective for instances with large numbers of shipments. Thus, we also
present a column generation-based algorithm for solving the consolidation-based formulation that
relies on solving relaxations that are integer programs. We demonstrate the superior performance of
this algorithm with a computational study wherein we compare it against applications of state-of-
the-art approaches from the literature.

1 Introduction

Consolidation carriers are transportation companies that transport shipments that are small relative to
vehicle capacity. Consolidation carrier is an umbrella term that covers companies participating in one
(or both) of the Less-than-truckload (LTL) freight and small package/parcel industries. Both industries
are large; in the United States the LTL industry was reported to be $46 billion in 2021 (Schulz 2021)
while UPS reported $69.44 billion in revenue from its US and international small package operations
in 2020 (UPS 2021). Many of these companies execute very large scale operations. For example, UPS
reports delivering 6.3 billion packages in 2020 (UPS 2021).

As transportation exhibits economies of scale, profitability for such carriers is driven by consolidation.
Specifically, dispatching vehicles that transport multiple shipments, each potentially associated with a
different customer. Such consolidation is typically enabled by routing shipments on paths through a
network of terminals as opposed to directly from customer origin to destination, as is often done in full
truckload transportation. For large-scale operations, small percentage improvements in consolidation
(typically measured by vehicle utilization) can lead to significant reductions in transportation costs.

Among the decisions that are taken by carriers to plan their network, a path has to be determined
for each shipment. A path is defined by the sequence of terminals it visits, with the sequence beginning
at the origin terminal for the shipment and ending at its destination terminal. Then, a schedule has
to be determined for the path of each shipment. This schedule determines the time at which each leg
of the path is executed. Finally, transportation moves of capacitated vehicles are planned to operate
these transportation legs. Transportation moves executed by a vehicle incur a cost that is independent
of the shipments it transports. Achieving high levels of consolidation of shipments in vehicles, and low
transportation costs, requires determining paths for shipments through such networks, and schedules for
those paths, that enable multiple shipments to dispatch on the same transportation move at the same
time. The determination of such paths and schedules can often be assisted by solving some variant of
the Scheduled Service Network Design Problem (SSNDP) (Crainic 2000, Jarrah et al. 2009, Zhu et al.
2014, Boland et al. 2017a,b, Hewitt 2019, Hewitt et al. 2019, Marshall et al. 2020).

We consider the case of a LTL freight transportation carrier that is reluctant to frequently changing
shipment paths. Generally speaking, consistency in operations reduces complexity and errors and in-
creases service quality. More specifically, the determination of shipment paths in a network can then trig-
ger additional planning processes such as the assignment of shipment destination terminals to outbound
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doors in a cross-dock. Changing paths may necessitate changing these assignments. Some terminals may
be equipped with information systems that facilitate changing these assignments with few subsequent
operational errors. Others may not, in which case frequent changes may lead to shipments being loaded
into vehicles at the wrong outbound door. Maintaining shipment paths, and hence door assignments,
does leave flexibility with respect to the dispatch times of vehicles (scheduling of paths), especially if it
allows to reduce the number of vehicle moves and transportation costs.

Hence, after solving a SSNDP based on a forecast, the carrier seeks to keep shipment paths constant
over some planning horizon (e.g. a week), in order to maintain consistency with the operations that
support the execution of those paths. However, in the near-term when more accurate estimates of
shipment volumes are known, the schedules of those path are adjusted to maximize consolidation. Thus,
we consider the problem of optimally determining shipment path schedules in order to minimize total
vehicle transportation costs. We refer to this problem as the Service Network Scheduling Problem (SNSP).

To summarize, both the SSNDP and SNSP determine the number of vehicles to be dispatched on each
transportation leg and the times of those dispatches. The SSNDP also determines a path and schedule
for each commodity on the network. The SNSP keeps the paths taken by each commodity fixed and
designs a new schedule for those paths. The SNSP can be seen as an operational adjustment of a load
plan generated by solving a SSNDP at a tactical level. In addition to being relevant to practice, the
SNSP can also appear as a subproblem of exact or heuristic algorithms for solving the SSNDP.

We propose two mixed integer programming formulations of the SNSP. The first is based on the
classical idea of a time-expanded network (Ford and Fulkerson 1958, 1962). The second is based on
enumerations of consolidations of shipments, wherein a consolidation of shipments represents a set of
shipments that are transported on the same move at the same time. We prove the equivalence of
the formulations. We also show both analytically and computationally that the consolidation-based
formulation can be the stronger of the two, but that its enumerative nature renders it computationally
ineffective for instances based on large numbers of shipments.

Thus, we present an algorithm for solving the consolidation-based formulation that does not enumer-
ate sets of consolidations a priori, but instead dynamically in the course of its execution. Clearly, one
framework for such an algorithm is Branch-and-Price (Barnhart et al. 1998, Desaulniers et al. 2006). As
such an algorithm involves solving linear relaxations of a formulation, many of the technical advancements
of today’s solvers at solving integer programs is lost. We present an algorithm that operates in a fashion
that is similar to Branch-and-Price, in that at each iteration it solves an optimization problem and then
uses information from the solution to that problem to determine variables to add to the optimization
problem. It differs from Branch-and-Price in that the optimization problem solved at an iteration is
an integer program that is formulated in such a manner as to be a relaxation of the original problem.
We refer to this algorithm as IP − ColGen, or, Integer Programming-based Column Generation. The
idea of Integral Column Generation has been applied to other transportation applications (Tahir et al.
2021). We prove the correctness of this algorithm and demonstrate with a computational study based
on a US-based LTL carrier its ability to solve instances derived from real-world operations in much less
time than applications of state-of-the-art methods from the literature.

We believe this paper presents multiple contributions to the literature on optimizing freight trans-
portation. First, to the best of our knowledge, this is the first paper to study the SNSP. Second, we
present a consolidation-based formulation of the SNSP that is new to the literature and computationally
superior to an approach based on classical techniques. Third, we present an algorithm for solving this
consolidation-based formulation that is very effective computationally in comparison to state-of-the-art
methods.

The rest of this paper is organized as follows. Section (2) discusses literature relevant to the problem
we consider. Section (3) describes the planning problem we consider in greater detail and presents two
mixed integer programming formulations of that problem. Section (3.4) presents a comparison of the two
formulations. Section (4) presents an algorithm for solving the consolidation-based formulation while
Section (5) presents a computational analysis of the performance of the proposed algorithm with other
methods. Section (6) concludes the paper and outlines future research directions extending the ideas
presented in this paper.

2 Literature review

Much of the academic literature relevant to planning freight transportation operations in a terminal
network focuses on determining paths and schedules by solving some variant of the Scheduled Service
Network Design Problem (SSNDP) (Crainic 2000, Jarrah et al. 2009, Zhu et al. 2014, Boland et al.
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2017a,b, Hewitt 2019, Hewitt et al. 2019, Marshall et al. 2020). A related problem, the Service Network
Design Problem (SNDP) determines shipment paths but not schedules (Wieberneit 2008, Andersen et al.
2009, 2011, Chouman and Crainic to appear, Baubaid et al. 2020). Both the SSNDP and SNDP have
primarily been used to plan long haul freight operations.

The literature typically views solving the SSNDP (and SNDP) as part of a tactical planning process,
meaning shipment paths and schedules are presumed fixed over some medium-term planning horizon
(Jarrah et al. 2009, Erera et al. 2013, Zhu et al. 2014). Some literature (Crainic and Sgalambro 2014,
Scherr et al. 2019, 2020) considers the applicability of these problems to urban logistics. Some literature
(Andersen et al. 2009, 2011, Crainic et al. 2014, Hewitt et al. 2019) expands the decision-making of the
SSNDP to include asset management considerations regarding vehicles such as the need to move a vehicle
empty to position it for a future move. As the SNSP focuses only on scheduling paths, it considers a
subset of the decisions prescribed by the SSNDP.

If one views vehicle transportation moves as machines, the SNSP is similar in nature to a Flow Shop
Scheduling Problem (FSSP) (Pinedo 2012). However, in the FSSP the number of machines is given,
whereas our problem seeks to minimize an objective that is a function of the number of machines used.
The formulation we propose for the SNSP is similar in spirit to the optimization problem solved in
Dynamic Discretization Discovery (Boland et al. (2017a)) to verify whether a given set of commodity
paths and consolidations of commodities on arcs of those paths is feasible. It is also similar in spirit
to the extended formulation of the Generalized Assignment Problem (GAP) presented in Savelsbergh
(1997). It is different in that the SNSP involves scheduling a sequence of activities (e.g. vehicle and
shipment dispatches).

The algorithm we propose for solving the SNSP follows a classical framework wherein a relaxation
of the problem is iteratively solved and refined until a solution to the relaxation is feasible (and hence
optimal) to the original problem. Examples of applications of this framework include cutting plane
algorithms such as Benders decomposition (Benders 1962) and Branch-and-Cut (Nemhauser and Wolsey
1988). The algorithm we propose is similar to Branch-and-Price (Barnhart et al. 1998, Desaulniers et al.
2006) in that it solves an optimization problem that is formulated (in most iterations) over a subset of
the variables in the original problem. The algorithm we propose is different from Branch-and-Price in
that the optimization problem it solves is an integer program that is formulated to be a relaxation of the
original problem. In this way, it is similar to the Dynamic Discretization Discovery (DDD) algorithm
proposed in (Boland et al. 2017a)). The algorithm we propose is different from DDD in that the domains
of the decision variables remain constant throughout its execution. It is also similar to Integral Column
Generation (Rönnberg and Larsson 2009, 2014, Tahir et al. 2019, 2021, 2022). It is different in that it is
not based on simplex-type pivots.

3 Problem description and mathematical programming formu-
lations

In this section, we first present a description of the transportation problem we seek to solve as well as
modeling constructs and notation common to the two mixed integer programming formulations of that
problem we propose. We then present those formulations. We finish with an analysis of the relative
strength of the two formulations.

3.1 Problem description and mathematical notation

We consider a company that transports shipments from customer origin to customer destination. The
transportation network of the company can be defined by a directed graph D = (N ,A), where N is a
set of nodes that model terminals in the network and A is a set of arcs that model transportation moves
within that network. Formally, the set A consists of pairs (i, j), i, j ∈ N that model physical travel from
terminal i to terminal j. We consider that the network is operated by a homogeneous fleet of vehicles
with identical capacities, speed and cost. Associated with each arc (i, j) ∈ A is a travel time denoted by
τij , a per-vehicle capacity denoted by uij , and a per-vehicle cost denoted by fij .

We presume that each shipment is associated with a commodity k ∈ K, with K the set of all ship-
ments/commodities that must be routed through the network. Associated with each commodity k ∈ K
is an origin terminal, ok, and destination terminal, dk. We let ek denote the earliest time at which com-
modity k is available at its origin terminal, ok, and lk denote the latest time at which k can be delivered
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to its destination terminal, dk. Lastly, associated with commodity k is the shipment size denoted qk,
quoted in the same unit as the vehicle capacity uij , (i, j) ∈ A associated with arcs.

In the problem we study, we presume a single path is given for each shipment. We let pk = vk1 , ..., v
k
rk

represent the sequence of nodes from N in the path of commodity k ∈ K, with vk1 = ok and vkrk = dk.
We let P = ∪k∈Kpk denote the set of all such shipment paths.

We seek to schedule the dispatch time of each shipment on each move in its path, and schedule
vehicle dispatches on moves to support shipment dispatches. We presume that a shipment must dispatch
entirely at the same time on each move in its path. More specifically, the problem seeks to determine
the times at which each shipment dispatches on each of the moves on its path, while ensuring that those
dispatch times agree with the shipment earliest available and latest due times, and the travel times for
those moves. In addition, the problem determines the dispatch times of vehicles with sufficient capacity
to transport those shipments. We presume that the time horizon during which commodity paths are to
be fixed can be discretized according to a time step (of e.g. 15 minutes) for which prescribed decisions
can be executed. The objective is to minimize the total transportation cost associated with the vehicle
moves needed to transport a known set of shipments over a fixed planning horizon. We refer to this
problem as the Service Network Scheduling Problem (SNSP).

As complementary notation, for each commodity k ∈ K we let the node set N k ⊆ N contain the
nodes vki in that path and the arc set Ak ⊆ A contain the arcs (vki , v

k
i+1) in that path. We also let

Kij = {k ∈ K : (i, j) ∈ Ak} denote the set of commodities with a path that contains arc (i, j) ∈ A.
Lastly, we note that given the path pk and earliest available and latest due times ek, lk for commodity
k, one can derive a time window [αk

v , β
k
v ] during which k can be at each node v in its path.

Having defined notation that is common to our two formulations of the SNSP, we next present a
mixed integer programming formulation that is based on a time-expanded network.

3.2 Time-expanded network formulation

For this formulation, we presume a discretization of time, T = {1, . . . , T}, of a planning horizon that is
T periods long. We model shipment and vehicle movements in both space and time with the directed
network DT = (NT ,AT ∪ HT ). Here, NT consists of nodes of the form (i, t), i ∈ N , t ∈ T , that model
actions that occur at terminal i during the time period represented by t. The set AT consists of arcs
of the form ((i, t), (j, t′)), (i, t), (j, t′) ∈ NT , i ̸= j, t′ = min(t′′ ∈ τ |t′′ − t ≥ τij) and model traveling
from terminal i at time t to arrive at terminal j at time t′. The set HT consists of arcs of the form
((i, t), (i, t + 1)), (i, t), (i, t + 1) ∈ NT and model waiting at terminal i from time t to time t + 1. Like
above, we let the sets N k

T = {(i, t) ∈ NT : i ∈ N k},Ak
T = {((i, t), (j, t′)) ∈ AT : (i, j) ∈ Ak}, and

Hk
T = {((i, t), (i, t+ 1)) ∈ HT : i ∈ N k} denote the portions of the time-expanded network that can be

used by commodity k.
With this notation, we let the binary decision variable xktt′

ij indicate whether commodity k ∈ K uses

arc ((i, t), (j, t′)) ∈ Ak
T ∪ Hk

T . We let the integer decision variable ytt
′

ij indicate the number of vehicles

that move on arc ((i, t), (j, t′)) ∈ Ak
T . The time-expanded network formulation of the SNSP based on the

network DT , that we refer to as TEN-SNSP(DT ), follows.

zTEN(DT ) = minimize
∑

((i,t),(j,t′))∈AT

fij y
tt′

ij (1)

subject to

∑
((i,t),(j,t′))∈Ak

T ∪Hk
T

xktt′

ij −
∑

((j,t′),(i,t))∈Ak
T ∪Hk

T

xkt′t
ji =


1 if (i, t) = (ok, ek)

−1 if (i, t) = (dk, lk)

0 otherwise.

∀k ∈ K,∀(i, t) ∈ N k
T (2)

∑
k∈K:((i,t),(j,t′))∈Ak

T

qkx
ktt′

ij ≤ uijy
tt′

ij ∀((i, t), (j, t′)) ∈ AT , (3)

xktt′

ij ∈ {0, 1} ∀((i, t), (j, t′)) ∈ Ak
T ∪Hk

T , k ∈ K, (4)

ytt
′

ij ∈ N ∀((i, t), (j, t′)) ∈ AT . (5)
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The objective (1) seeks to minimize the total costs associated with vehicle movements. Constraints (2)
are standard flow conservation constraints, ensuring that each commodity departs its origin terminal at
its earliest available time and arrives at its destination terminal at its latest due time. Constraints (3)
ensure sufficient vehicle capacity is scheduled to support shipment movements. Constraints (4) and (5)
define the decision variables and their domains. We note that the existence of a single path, pk, on which
commodity k may be routed is reflected in the domains defined in constraints (4).

One of the primary computational challenges associated with solving such a formulation is the size of
the complete time-expanded network, DT , and the resulting number of decision variables in the model.
However, similar to what was shown in Proposition 1 of Boland et al. (2017a) for the Scheduled Service
Network Design Problem, a reduced time-expanded network DR

T that consists of a well-chosen subset of
points (i, t) ∈ NT can be formed such that the optimal solution of the formulation TEN-SNSP(DR

T ) is
also an optimal solution to TEN-SNSP(DT ). We restate this Proposition, albeit stated in terms of the
SNSP below.

Proposition 1. Consider a time-expanded network DR
T based on a set NR

T that contains nodes of the

form (ok, ek) or (vkj , ek +
∑j−1

i=1 τvk
i v

k
i+1

), j = 2, . . . , rk, ∀k ∈ K and arc sets AR
T ,HR

T constructed ac-

cordingly. An optimal solution to the TEN-SNSP(DT ) can be determined by formulating and solving
TEN-SNSP(DR

T ).

Proposition 1 states that if the network is defined for a subset of nodes that represent terminals at
times that are the earliest at which some commodity could reach that terminal, then it is sufficient to
find the optimal solution to the SNSP.

We can also strengthen the formulation TEN-SNSP(DT ) with valid inequalities similar to the Arc-
Time-Window inequalities presented in Hewitt (2019). To define these inequalities, we let qij =

∑
k∈Kij

qk
denote the total size of all commodities whose path includes arc (i, j). Then, we must have∑

t,t′∈T :((i,t),(j,t′))∈AT

ytt
′

ij ≥ ⌈ qij
uij

⌉ ∀(i, j) ∈ A. (6)

We refer to these inequalities as Agg-Arc-Capacity inequalities.
Proposition 1 enables the TEN-SNSP(DT ) to be formulated in a static manner, albeit with a reduced

node set. That formulation can then be strengthened with the Agg-Arc-Capacity inequalities. However,
it is fairly easy to see that the Dynamic Discretization Discovery algorithmic framework presented in
Boland et al. (2017a), and enhanced in Hewitt (2019), can be applied with nearly no modification to
solve the SNSP.

3.3 Consolidation-based formulation

We next present a formulation of the SNSP that is based on sets of possible consolidations on each arc,
(i, j) ∈ A. After presenting the formulation, we prove its equivalence to TEN-SNSP(DT ).

To define the formulation we let Cij = {C1, . . . , Cnij}, Cg ⊆ Kij ∀g = 1, . . . , nij , denote all sets
of commodities that can dispatch on arc (i, j) at the same time. Recalling that [αk

i , β
k
i ] denotes the

time window during which commodity k must depart from node i, we have that Cg = {kg1 , . . . , kgmg
} ∈

Cij ∀g = 1, . . . , nij if and only if ∩mg

q=1[α
kq

i , β
kq

i ] ̸= ∅. In words, a consolidation is feasible on an arc if and
only if the time windows for all commodities in that consolidation overlap in at least one time point.
That said, Cij also contains all singleton sets. Namely, if k ∈ Kij , then there exists g ∈ [1, nij ] such that
Cg = {k}. In addition, we let C = ∪(i,j)∈ACij . Throughout this paper we will refer to “consolidation
Cg” as shorthand for the set of commodities {kg1 , . . . , kgmg

} contained in that consolidation. Regarding

data elements associated with these consolidation sets, we let the attribute ϕk
C ∈ {0, 1}, k ∈ K, C ∈ C

represent whether k ∈ C. We also let sC = ⌈
∑

k∈C qk
uij

⌉ represent the number of vehicles needed on arc

(i, j) ∈ A to transport consolidation C ∈ Cij .
To model the SNSP, we let the binary variable wC indicate whether the consolidation consisting of

commodities in set C ∈ Cij traveling together on arc (i, j) ∈ A is chosen. Note this choice implies that
the commodities must dispatch at the same time. We let the integer variable yij represent the number of
vehicles that dispatch on arc (i, j) ∈ A. We let the decision variables γk

vk
i v

k
i+1

, i = 1, . . . , rk − 1 prescribe

the time at which commodity k dispatches on the arc (vki , v
k
i+1), i = 1, . . . , rk −1 on its path. With these

sets and decision variables, we define the optimization problem Cons-SNSP(C), as
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zCons(C) = minimize
∑

(i,j)∈A

fijyij (7)

subject to∑
C∈Cij

ϕk
CwC = 1 ∀k ∈ K, (i, j) ∈ Ak, (8)

∑
C∈Cij

sCwC ≤ yij ∀(i, j) ∈ A, (9)

γk
ij − γk′

ij ≤ Mkk′

i (1−
∑

C∈Cij

ϕk
Cϕ

k′

CwC) ∀(i, j) ∈ A, k, k′ ∈ Kij , (10)

γk
vk
i v

k
i+1

+ τvk
i v

k
i+1

≤ γk
vk
i+1v

k
i+2

∀k ∈ K, i = 1, . . . , rk − 2, (11)

αvk
i
≤ γk

vk
i v

k
i+1

≤ βvk
i

∀k ∈ K, i = 1, . . . , rk − 1, (12)

γk
vk
i v

k
i+1

∈ N ∀(vki , vki+1) ∈ pk, k ∈ K, (13)

wC ∈ {0, 1} ∀C ∈ C, (14)

yij ∈ N ∀(i, j) ∈ A. (15)

The objective seeks to minimize the total costs associated with vehicle moves that transport con-
solidations of shipments. Constraints (8) ensure that a consolidation is chosen for each commodity on
each arc in its path. Constraints (9) ensure that sufficient capacity is paid for on each arc to support
the consolidations chosen for that arc. Constraints (10) ensure that all commodities in the consolidation
chosen for an arc dispatch at the same time. Constraints (11) ensure that the dispatch times for arcs
on the path of a commodity agree with their travel times. Constraints (12) ensure the dispatch time
decision variables occur within the corresponding time windows. Constraints (13), (14), and (15) define
the decision variables and their domains.

While the big-M value in constraints (10) may lead to a weak formulation, the formulation can be
tightened without rendering any solutions infeasible by setting Mkk′

i = βk
i − αk′

i . Lastly, we note that
we can strengthen the Cons-SNSP(C) formulation with the inequality yij ≥ ⌈ qij

uij
⌉,∀(i, j) ∈ A, which is

analogous to the Agg-Arc-Capacity inequality for the TEN-SNSP(DT ).
Solving the proposed consolidation-based formulation will yield the same optimal objective function

value as the time-expanded network-based formulation. More precisely, we have the following theorem.
Its proof can be found in Appendix A.

Theorem 1. zTEN(DT ) = zCons(C).

We note that if all travel times, τ, and commodity early, e, and late times, l, are integral the constraints
(13) can be relaxed to allow the γ variables to take on fractional values. This can be seen by first observing
that any solution with fractional values for some γ variables can be converted to another feasible solution
of Cons-SNSP(C) with integral values for all γ variables through rounding. Second, as the γ variables do
not appear in the objective, this rounding does not change the objective function value of the solution.

Lastly, we provide an example of the data derived to formulate the Cons-SNSP(C).

Example 1. Figure 1 illustrates a network, N , with four nodes and three arcs. All arcs have a travel
time of one. Three commodities are to be routed through this network. Solid arrows in the figure indicate
arcs in A, while dashed arrows indicate the origin and destination terminals for each commodity. Table
1 presents data regarding each commodity, including its origin and destination terminals, its early and
late times, its path, its size quoted as a fraction of vehicle capacity, and its time window at each terminal
on its path. The time windows identified in Table 1 for each commodity at each of the nodes a, b, and
c (if applicable) are derived from that commodity’s early and late times, knowledge of the path it must
take, and travel times on arcs in that path.

To construct the consolidation-based formulation, we enumerate all possible consolidations on arcs
(a, b), (b, c), and (c, d) given the time windows at nodes a, b, and c identified in Table 1. In addition to
displaying them in Figure 1 below each arc, we list them in Table 2 along with other attributes of each
consolidation.

The SNSP formulation for this example is detailed in Appendix B.
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a b c
τab = fab = 1 τbc = fbc = 1

d
τcd = fcd = 1

k = 1,e1 = 1,l1 = 5 k = 2,e2 = 4,l2 = 7

k = 3,e3 = 1,l3 = 7

𝒞ab = {{1}, {3}, {1,3}} 𝒞bc = {{1}, {2}, {3},
{1,3}, {2,3}}

𝒞cd = {{2}, {3}, {2,3}}

Figure 1: Network N and commodities K in Example 1

Table 1: Commodity attributes in Example 1

Time windows

k ok dk ek lk pk qk [αk
a, β

k
a ] [αk

b , β
k
b ] [αk

c , β
k
c ]

1 a c 1 4 a → b → c 0.75 1,2 2,3 -
2 b d 4 7 b → c → d 0.55 - 4,5 5,6
3 a d 1 7 a → b → c → d 0.65 1,4 2,5 3,6

Table 2: Consolidations C

Arc C
∑

k∈Cij
qk sCij

a → b C1
ab = {1} 0.75 1

a → b C2
ab = {3} 0.65 1

a → b C3
ab = {1, 3} 1.40 2

b → c C1
bc = {1} 0.75 1

b → c C2
bc = {2} 0.55 1

b → c C3
bc = {3} 0.65 1

b → c C4
bc = {1, 3} 1.40 2

b → c C5
bc = {2, 3} 1.20 2

c → d C1
cd = {2} 0.55 1

c → d C2
cd = {3} 0.65 1

c → d C3
cd = {2, 3} 1.20 2
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3.4 Analytical comparison of formulations

We next compare the linear relaxations of each formulation. More specifically, we prove in Theorem 2
that solving the linear relaxation of TEN-SNSP(DT ) can not yield a larger bound than solving the linear
relaxation of Cons-SNSP(C).

Theorem 2. Given the definitions of DT and C in Theorem 1, let LP-TEN and LP-Cons be the linear
relaxations of problems TEN-SNSP(DT ) and Cons-SNSP(C). Let z⋆LP-TEN and z⋆LP-Cons be the objective
function values of optimal solutions for each problem. Then z⋆LP-TEN ≤ z⋆LP-Cons.

Proof. We first consider LP-TEN and an optimal solution (x∗, y∗) to that linear program. As LP-
TEN is a minimization problem, in the absence of (6), the objective of LP-TEN implies that y∗tt

′

ij =∑
k∈K:((i,t),(j,t′))∈Ak

T
qkx

∗ktt′
ij

uij
.

Relatedly, for a given (i, j) ∈ A we have that
∑

((i,t),(j,t′))∈Ak
T
y∗tt

′

ij =
∑

((i,t),(j,t′))∈Ak
T

∑
k∈K:((i,t),(j,t′))∈Ak

T
qkx

∗ktt′
ij

uij

=
∑

k∈K:((i,t),(j,t′))∈Ak
T

qk
uij

∑
((i,t),(j,t′))∈Ak

T
x∗ktt′
ij =

∑
k∈K:((i,t),(j,t′))∈Ak

T

qk
uij

. The last equality is due to

the flow balance constraints (2) and the presumption that (i, j) is in the path already specified for
each commodity k ∈ Kij . As ⌈x⌉ ≥ x ∀x ∈ ℜ, when (6) is included in the formulation we have∑

((i,t),(j,t′))∈Ak
T
y∗tt

′

ij = ⌈ qij
uij

⌉. Thus, we have

z⋆LP-TEN =
∑

(i,j)∈A

fij⌈
qij
uij

⌉. (16)

Next, we consider LP-Cons, a single arc (i, j) ∈ A such thatKij ̸= ∅, and the constraints
∑

C∈Cij
ϕk
CwC =

1,∀k ∈ Kij (constraints (8) in the formulation). Summing constraints (8) over k ∈ Kij we have∑
k∈Kij

∑
C∈Cij

ϕk
CwC =

∑
C∈Cij

|C|wC = |Kij |. As |C| ≤ |Kij | we have
∑

C∈Cij

|C|
|Kij |wC = 1 and

thus
∑

C∈Cij
wC ≥ 1. From constraints (9) we have that yij ≥

∑
C∈Cij

sCwC =
∑

C∈Cij
⌈
∑

k∈C qk
uij

⌉wC .

Thus, as ⌈x⌉ + ⌈y⌉ ≥ ⌈x + y⌉ and
∑

C∈Cij
wC ≥ 1 we have that yij ≥ ⌈ qij

uij
⌉. As such, all solutions to

LP-Cons satisfy yij ≥ ⌈ qij
uij

⌉ and thus z⋆LP-Cons ≥
∑

(i,j)∈A fij⌈ qij
uij

⌉ = z⋆LP-TEN.

In addition, there are also instances wherein z⋆LP-Cons > z⋆LP-TEN. For example, consider an instance
of the LP-TEN derived from Example 1. In addition to constraints (6), which reflect the vehicle capacity
needed when all three commodities dispatch at the same time, one can examine the time windows at b
for commodities 1 and 3 to derive that y23bc + y34bc ≥ 1 and y45bc + y56bc ≥ 1.

We illustrate in Figure 2a an optimal solution to this linear program, including these two additional
inequalities. Recalling that in this example fij = 1, ∀(i, j) ∈ A, we see that z⋆LP-TEN = 6. We illustrate
an optimal solution to the corresponding formulation of the LP-Cons on a time-expanded network in
Figure 2b. We first note that the w variables naturally take on binary values in this solution. In addition,
as the sC coefficients associated with these variables are derived from applying the ⌈·⌉ operator, the
solution to this linear program better approximates the vehicle capacity needed. More precisely, we have
yab = 2, ybc = 3, and ycd = 2. Thus, we have z⋆LP-Cons = 7 > 6 = z⋆LP-TEN. In addition, as the values of
all decision variables in the solution to LP-Cons fall within the domains required by the Cons-SNSP(C),
the solution is also the optimal solution to Cons-SNSP(C).

1

a

b

c

d

2 3 4 5 6 7

x112
ab = x312

ab = 1

x245
bc = 1, x345

bc = .40/.65

x256
cd = x356

cd = 1

y12
ab = 2

y34
bc = 1

y56
cd = 2

y45
bc = 1

x134
bc = 1, x334

bc = .25/.65

(a) LP-TEN

1

a

b

c

d

2 3 4 5 6 7

w{1,3} = 1

w{1,3} = 1 w{2} = 1

w{2,3} = 1

s{1,3} = 2

s{1,3} = 2 s{2} = 1

s{2,3} = 2

yab = 2

ybc = 3

ycd = 2

(b) LP-Cons

Figure 2: Optimal linear relaxation solutions for Example 1

8



4 Integer programming-based column generation

The analysis in Section 3.4 suggests that Cons-SNSP(C) is the stronger formulation of the two proposed
in Section 3 for the SNSP. However, its enumerative nature of is likely to lead to computational challenges
when solving larger instances of the formulation. As such, in this section we present an algorithm for
solving the Cons-SNSP(C) that does not enumerate the set C a priori, but instead dynamically in the
course of its execution. In this section, we present an algorithm that at each iteration solves a relaxation
of the original problem and then uses information from the solution to that relaxation to determine
variables to add to the relaxation.

In this section, we first present the relaxation the algorithm solves. We then illustrate with an
example why it is a relaxation as well as formally prove this claim. We then outline the reasons why
solutions to that relaxation may not be feasible for the Cons-SNSP(C) and how the algorithm chooses
to strengthen the relaxation to render such solutions infeasible. We finish with a formal description of
the algorithm and a proof of its correctness.

4.1 Relaxation of Cons-SNSP(C)
In this section, we present an integer program that is similar in form to Cons-SNSP(C), but defined over
only a subset of C. Yet, the integer program is a relaxation of Cons-SNSP(C). We conclude this section
with a proof of this claim.

This formulation is defined on subsets, Cij = {C1, . . . , Cnij} ⊆ Cij , nij ≤ nij of the potential consoli-
dations for each arc (i, j) ∈ A. We note that while Cg ∈ Cij , it is not necessarily the case that Cg = Cg,
wherein Cg ∈ Cij . As in the presentation of Cons-SNSP(C), we let C = ∪(i,j)∈ACij . The formulation is

defined with the same yij and γk
vk
i v

k
i+1

variables as in Cons-SNSP(C). The binary variables wC are defined

as above, albeit only over the consolidations in sets Cij . The values ϕk
C are also defined as above.

However, the values sC are defined differently from the values sC used to formulate the Cons-SNSP(C).
Specifically, they are defined as

sC =

{
sC if ∀C ′ ⊆ C,C ′ ∈ Cij ,

minC′⊆C:C′ ̸∈Cij
sC′ o.w.

(17)

The if portion of equation (17) tests whether every subset of C is an element of Cij . In this case, the
vehicle capacity associated with C in Rel-Cons-SNSP(C) is the actual capacity needed to transport the
commodities of C. When this condition is not satisfied, sC is set to require the least vehicle capacity
required of any subset of C that is not an element of Cij . As a result, the calculation of sC ensures that
the number of vehicles needed to transport consolidation C is no greater than the number needed by
any subset of C that is not currently considered by the relaxation. Note, (17) implies that sC ≤ sC .

This definition is illustrated on the following example.

Example 2. We focus on a single arc (i, j) and four commodities with a path that contains that arc
(e.g. Kij = {1, 2, 3, 4}). Data for this example is provided in Tables 3, 4, and 5. Table 3 lists each
commodity k ∈ Kij and its size, qk. Table 4 lists each of the possible consolidations of those commodities
on arc (i, j), along with its total size and the number of vehicles it requires. We note that the set of
maximal consolidations is Cmax

ij = {{1, 2, 3}, {1, 3, 4}, {1, 4}, {3, 4}}. Table 5 provides a subset of these
consolidations that can be used when formulating Rel-Cons-SNSP(C). We note that each of the maximal
consolidations in Table 4 is listed in Table 5.

With these sets and decision variables we define the following optimization problem, which we refer
to as Rel-Cons-SNSP(C).

zRel−Cons(C) = minimize
∑

(i,j)∈A

fijyij

9



Table 3: Commodities Kij and
their sizes

Commodity k qk
1 0.80
2 0.20
3 0.20
4 0.20

Table 4: Possible consolida-
tions, Cij

C
∑

k∈C qk sC
1,2,3 1.20 2.00
1,3,4 1.20 2.00
1,2 1.00 1.00
1,3 1.00 1.00
1,4 1.00 1.00
2,3 0.40 1.00
3,4 0.40 1.00
1 1.00 1.00
2 1.00 1.00
3 1.00 1.00
4 1.00 1.00

Table 5: Subset of consolida-
tions, Cij

C sC
1,2,3 1
1,3,4 1
1,4 1
3,4 1
1 1
2 1
3 1
4 1

subject to∑
C∈Cij

ϕk
CwC ≥ 1 ∀k ∈ K, (i, j) ∈ Ak, (18)

∑
C∈Cij

sCwC ≤ yij ∀(i, j) ∈ A, (19)

γk
ij − γk′

ij ≤ M(1− ϕCkϕCk′wC) ∀(i, j) ∈ A, C ∈ Cij , k, k′ ∈ Kij such that C \ {k}, C \ {k′} ∈ Cij ,

(20)

γk
vk
i v

k
i+1

+ τvk
i v

k
i+1

≤ γvk
i+1v

k
i+2

∀k ∈ K, i = 1, . . . , rk − 2, (21)

αvk
i
≤ γk

vk
i v

k
i+1

≤ βvk
i

∀k ∈ K, i = 1, . . . , rk, (22)

γk
vk
i v

k
i+1

∈ N ∀(vki , vki+1) ∈ pk, k ∈ K, (23)

wC ∈ {0, 1} ∀(i, j) ∈ A, C ∈ Cij , (24)

yij ∈ N ∀(i, j) ∈ A (25)

Many of the constraints defining Rel-Cons-SNSP(C) are the same as those defining Cons-SNSP(C).
The constraints that differ are constraints (18), (19), and (20). Constraints (18) ensure a commodity
appears in at least one chosen consolidation for each arc in its path. Constraints (19) are of the same
form as constraints (9) of Cons-SNSP(C) only with the coefficients sC . Constraints (20) ensure that two
commodities dispatch on an arc at the same time under two conditions: (1) a consolidation is chosen for
that arc that contains those two commodities, and, (2) for each commodity the set C also contains that
consolidation without that commodity. The first condition is similar in spirit to what defines constraints
(10) of Cons-SNSP(C). The second plays a role in ensuring Rel-Cons-SNSP(C) is a relaxation, as we will
next see.

When Rel-Cons-SNSP(C) is defined with the appropriate set C (e.g. using the algorithms proposed
in Section 4.2), it can be shown to be a relaxation of Cons-SNSP(C). To be more precise, we let Cmax

ij

denote the set of maximal consolidations on arc (i, j) ∈ A. Formally, the consolidation C ∈ Cmax
ij if and

only if there does not exist C ′ ∈ Cij and C ⊂ C ′. We later prove that Rel-Cons-SNSP(C) is a relaxation
when formulated with a consolidation set for each arc that contains all the maximal consolidations for
that arc. More precisely, when formulated with sets Cij such that ∀C ∈ Cmax

ij , C ∈ Cij . The proof of this
statement involves showing that any solution to Cons-SNSP(C) can be used to construct a solution to
the Rel-Cons-SNSP(C) of equal objective function value. However, before formally proving this result
we illustrate why Rel-Cons-SNSP(C) is a relaxation in the case of Example 2.

Example 3. (continued from Example 2) Consider a solution (w̄, γ̄, ȳ) to Cons-SNSP(C) that involves
the consolidations {1, 2} and {3, 4}. Namely, w̄{1,2} = w̄{3,4} = 1. This in turn requires γ̄1

ij = γ̄2
ij and

γ̄3
ij = γ̄4

ij . Suppose that γ̄1
ij = γ̄2

ij = 1 and γ̄3
ij = γ̄4

ij = 3. Collectively, these two consolidations require two
vehicles to travel on arc (i, j) (i.e. ȳij = 2). We will use this solution to construct a solution (w, γ, y) to
the Rel-Cons-SNSP(C) of equal objective function value.

10



We start by setting y
ij

= ȳij = 2. Thus, the constructed solution uses the same amount of vehicle

capacity and the objective function values of the solution to the Cons-SNSP(C) and the constructed
solution will be the same. We next set γk

ij
= γ̄k

ij , k = 1, 2, 3, 4. In words, commodities dispatch at the

same times in the two solutions.
Regarding the w variables, for each consolidation chosen in the solution to the Cons-SNSP(C) we

identify a corresponding consolidation to be chosen in the solution to the Rel-Cons-SNSP(C). First, we
consider consolidation {3, 4}, as w̄{3,4} = 1. As {3, 4} ∈ Cij, we set w{3,4} = 1. We next consider
consolidation {1, 2}, as w̄{1,2} = 1. Here, we observe that {1, 2} ̸∈ Cij and thus we identify the minimal
consolidation in Cij that contains {1, 2}. That such a consolidation exists is guaranteed as Cij contains the
maximal consolidations {1, 2, 3}, {1, 3, 4}, {1, 4}, {3, 4}. In this case, {1, 2, 3} is the minimal consolidation
containing {1, 2} and we set w{1,2,3} = 1.

We next discuss why this solution is feasible for the Rel-Cons-SNSP(C). We note that while commodity
3 appears in two chosen consolidations, constraints (18) are defined in such a manner that this is feasible.
Next, we note that given the sizes of the commodities in the consolidations {1, 2, 3} and {3, 4} they
collectively require three vehicles (s{1,2,3} = 2, s{3,4} = 1). However, because the consolidation {1, 2} is
not present in Cij, Rel-Cons-SNSP(C) is formulated with s{1,2,3} = 1.

Thus, for constraints (19) we have s{1,2,3}w{1,2,3} + s{3,4}w{3,4} = 1+1 = 2 = y
ij

and the constraint

is satisfied.
We next consider constraints (20). Note these constraints are defined for a pair of commodities k, k′

and a given consolidation C only if the relaxation considers the consolidations C \ {k} and C \ {k′} (i.e.
they are in Cij). Regarding the chosen consolidation {3, 4} we note that as Cij contains the consolidations
{3} and {4} then the constraint is defined for commodities 3 and 4 and consolidation {3, 4}. Given that
γ3
ij
= γ̄3

ij = γ̄4
ij = γ4

ij
, the constraint is satisfied.

While w{1,2,3} = 1, as consolidation {1, 2} is not contained in Cij , constraint (20) is not defined for

commodities 2 and 3. Thus, w{1,2,3} can take on the value 1 even though γ3
ij
̸= γ2

ij
. Like vehicle capacity,

constraints (20) are defined based on the recognition that consolidation {1, 2, 3} may serve as a proxy
for consolidations it contains that are not represented in C. When it does, not all commodities in that
consolidation are required to dispatch at the same time.

Lastly, we note that as the commodities dispatch at the same time in the two solutions, the γ variables
satisfy constraints (21), (22), and (23) of the Rel-Cons-SNSP(C) because the γ̄ variables satisfy the
analogous constraints in the Cons-SNSP(C). Similarly, the domain constraints (24) and (25) are clearly
satisfied.

This example illustrates the logic of the proof of the following result.

Theorem 3. Consider the directed network D and commodity set K. Let Cij = {C1, . . . , Cnij} ⊆
Cij , nij ≤ nij and C = ∪(i,j)∈ACij. If for each arc (i, j) ∈ A the set Cij contains all maximal consolida-
tions (e.g. ∀C ∈ Cmax

ij , C ∈ Cij), then zRel−Cons(C) ≤ zCons(C).

Proof. Consider a feasible solution (γ̄, w̄, ȳ) of Cons-SNSP(C). We will show that this solution can be
used to construct a feasible solution (γ,w, y) of Rel-Cons-SNSP(C) of the same objective function value.

First, we set y = ȳ and γ = γ̄. Next, ∀(i, j) ∈ A, consider all sets CCons ∈ Cij such that w̄CCons = 1.

If ∃CRel ∈ Cij such that CRel = CCons, then set wCRel = 1. If such a set CRel does not exist then

let CRel−min denote a minimal set in Cij such that CCons ⊆ CRel−min. Such a set CRel−min must

exist as either CCons is maximal, contradicting a premise of the theorem, or is contained in a maximal
consolidation that is a member of the set Cmax

ij . If there is more than one such minimal set, one is chosen

at random. We then set wCRel−min = 1. Next, ∀C
′
∈ Cij such that we have not yet set wC′ = 1 we set

wC
′ = 0. Observe that by construction, each consolidation CCons chosen in the solution to Cons-SNSP(C)

is mapped to a single consolidation CRel ∈ Cij such that wCRel = 1. However, the mapping is not one-

to-one. There may be multiple consolidations CCons chosen in the solution to Cons − SNDP (C) that
map to the same CRel ∈ Cij and such that wCRel = 1.

We next show that (γ,w, y) satisfy constraints (18) - (25). Regarding constraints (18) we first recall

that the values w̄ satisfy constraints (8), meaning that for each k ∈ K, (i, j) ∈ Ak,∃C ∈ Cij such
that k ∈ C and w̄C = 1. Next, we note that by construction, for each C ∈ Cij such that w̄C = 1

there is at least one CRel ∈ Cij , C ⊆ CRel, such that wCRel = 1. Thus, we can conclude that for each

k ∈ K, (i, j) ∈ Ak, ∃CRel such that k ∈ CRel and wCRel = 1. Thus, constraints (18) are satisfied.
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Next, consider constraints (19). We observe that as the values (w̄, ȳ) satisfy constraints (9) we have
that

∑
C∈Cij

sCw̄C ≤ ȳij . For a given CCons such that w̄CCons = 1, we consider the corresponding

set CRel ∈ Cij such that wCRel = 1 and the value sCRel . Recalling equation (17) that determines the

values sC we consider two cases. The first case is when CCons ⊂ CRel. In this case, we must have that

CCons ̸∈ Cij and sCRel = minC′⊆CRel:C′ ̸∈Cij
sC′ ≤ sCCons . The second case is when CCons = CRel. In this

case, we have sCRel ≤ sCRel = sCCons . As a result, we have yij = ȳij ≥
∑

C∈Cij
sCw̄C ≥

∑
C∈Cij

sCwC

and constraints (19) are satisfied.
Next, we consider constraints (20). We consider the set CRel ∈ Cij such that wCRel = 1 and

pairs of commodities k, k′ ∈ CRel such that constraints (20) are defined. We have wCRel = 1 because

∃CCons ∈ Cij , CCons ⊆ CRel, such that w̄CCons = 1. Because constraints (20) are defined and CRel is
chosen to be the minimal set that contains CCons we must have k, k′ ∈ CCons. Thus, we must have
γ̄k
ij = γ̄k′

ij as γ̄ satisfy constraints (10). Given that γ = γ̄ we have that γ satisfy constraints (20). Lastly,
as γ̄ satisfy constraints (11) and (12) and γ = γ̄, γ satisfy constraints (21) and (22). Clearly, (γ,w, y)
satisfy the domain constraints (23),(24), and (25).

Thus, (γ,w, y) is a feasible solution to Rel-Cons-SNSP(C) and as y = ȳ the objective values of
(γ,w, y) and (γ̄, w̄, ȳ) in the respective optimization problems are the same. As every feasible solution
to Cons-SNSP(C) can be mapped to a feasible solution of Rel-Cons-SNSP(C) of the same cost, we have
that Rel-Cons-SNSP(C) is a relaxation of Cons-SNSP(C).

In summary, there are three characteristics of the formulation that render it a relaxation, assuming
a suitable set C as indicated in Theorem 3. The first is that constraints (18) allow a commodity to
appear in more than one consolidation on an arc in its path. The second is that the computation of
sC may underestimate the number of vehicles required to transport a consolidation. The third is that
potentially defining constraints (20) over subsets of pairs of commodities in a consolidation allows for
two commodities to appear in a chosen consolidation on an arc but dispatch at different times.

4.2 Refining the relaxation with additional consolidations

As seen in the previous section, there are three characteristics of Rel-Cons-SNSP(C) that make it a
relaxation of Cons-SNSP(C), even though it may not consider the entire set of consolidations C. Relatedly,
there are three corresponding attributes of a solution (γ,w, y) to Rel-Cons-SNSP(C) that can render it
infeasible for Cons-SNSP(C). We next discuss for each attribute the method that is executed to add
consolidations to C to render such a solution infeasible when Rel-Cons-SNSP(C) is next solved. We note
that two of the methods rely on first finding the power set, P(Cij), of commodities in a consolidation,
Cij , for an arc.
Method 1: Insufficient capacity installed on an arc: Given equation (17) we know that sC ≤ sC .
As such, while we must have yij ≥

∑
C∈Cij

sCwC , we may also have
∑

C∈Cij
sCwC > yij . In other

words, because Rel-Cons-SNSP(C) may under-estimate the number of vehicles needed to transport a
consolidation on an arc, its solution may prescribe too few vehicles for the consolidations chosen for that
arc.

In this case, for each C ∈ Cij such that sC < sC and wC = 1 we add sufficient missing consolidations

in P(Cij) to Cij to ensure that after doing so sC increases by at least one vehicle. More precisely, if stC
is the value at iteration t then the method identifies all C ⊂ C such that C ̸∈ Cij and sC ≤ stC + 1 and

adds those consolidations to Cij . After doing so, st+1
C ≥ stC + 1. Alternately, we could add all missing

consolidations in P(C), leaving st+1
C = sC for each such C. In either case, when Rel-Cons-SNSP(C) is

next solved, the values (w, y) in the current solution no longer satisfy yij ≥
∑

C∈Cij
sCwC .

Returning to our example above, we have that y
ij

= 2, but s{3,4} = 1 and s{1,2,3} = 2. As such,

we have s{1,2,3}w{1,2,3} + s{3,4}w{3,4} = 2 + 1 = 3 > y
ij
. As it is consolidation {1, 2, 3} such that

s{1,2,3} < s{1,2,3}, the method adds consolidations {1, 2}, {1, 3}, and {2, 3} to Cij to increase s{1,2,3} to
2.
Method 2: Commodity appears in multiple consolidations on an arc: Consider a commodity k

and arc (i, j) ∈ Ak such that ∃Cg, Ch ∈ Cij , wCg = wCh = 1, and k ∈ Cg ∩ Ch. In other words, the
commodity k appears in multiple chosen consolidations for the same arc. Such values would cause w
to violate constraints (8) of Cons-SNSP(C). The method for handling such a solution is based on the
following proposition which identifies how such a solution can be transformed to another solution that
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is feasible to the relaxation, of equal or lesser objective function value, and with fewer violations of
constraints (8).

Proposition 2. Suppose C ∈ Cij such that ∀Cd ⊆ C,Cd ∈ Cij . Any solution (γ,w, y) to Rel-Cons-SNSP(C)
such that wCg = wCh = 1, Cg, Ch ⊆ Cij and Cg ∩ Ch ̸= ∅ can be transformed to another feasible so-

lution (γ
′
, w

′
, y

′
) of equal or lesser objective function value such that for all Cm, Cn ⊆ Cij wherein

w
′

Cm = w
′

Cn = 1, we have Cm ∩ Cn = ∅.

Proof. Let Cint = Cg ∩ Ch denote the consolidation containing the commodities that participate in
both chosen consolidations. Because we have ∀Cd ⊆ C,Cd ∈ Cij , we have sCg = sCg and sCh =

sCh . Thus, we have y
ij

≥ sCg + sCh = ⌈
∑

k∈Cg\Cint qk+
∑

k∈Cint qk

uij
⌉ + ⌈

∑
k∈Ch\Cint qk+

∑
k∈Cint qk

uij
⌉ ≥

⌈
∑

k∈Cg\Cint qk+
∑

k∈Cint qk

uij
⌉+ ⌈

∑
k∈Ch\Cint qk

uij
⌉.

Because we have ∀Cd ⊆ C,Cd ∈ Cij we have that Ch \ Cint ∈ Cij . Thus, the variable wCh\Cint is
defined for Rel − Cons− Sched(C) and setting wCh = 0, wuCh\Cint = 1 and setting remaining variables
to their values in (γ,w, y) yields a feasible solution of equal or lesser objective function value and one
fewer violation of constraints (8).

Thus, when we encounter such a solution to the Rel-Cons-SNSP(C) we construct the set Cu−gh =
Cg ∪ Ch. If we have Cm ∈ Cij ,∀C

m ⊆ Cu−gh we construct the alternative feasible solution as in the

proof of Proposition 2. Otherwise, we create all missing consolidations in P(Cu−gh) and add them to
Cij .

Returning to our example, we have Cg = {1, 2, 3} and Ch = {3, 4} and thus Cu−gh
ij = {1, 2, 3, 4}. The

method would then add the consolidations {1, 2}, {1, 3}, and {2, 3} to Cij .
Method 3: Pair of commodities in chosen consolidation but dispatch at different times: Con-
sider an arc (i, j) ∈ A and consolidation C ∈ Cij such that wC = 1. Next, suppose there exist commodities

k, k′ ∈ C such that γk
ij

̸= γk′

ij
, causing wCij

, γk
ij
, and γk′

ij
to violate constraints (10) of Cons-SNSP(C).

Given the definition of constraints (20) in Rel-Cons-SNSP(C), we must have either C \ k ̸∈ Cij , or
C \ k′ ̸∈ Cij , or both. Such a solution can be rendered infeasible for Rel-Cons-SNSP(C) by adding to Cij

whichever of the consolidations C \ k,C \ k′ are missing.
Returning to our example, we see that w{1,2,3} = 1 but γ1

ij
= γ2

ij
= 1 and γ3

ij
= 3. This is feasible

for Rel-Cons-SNSP(C) because consolidations {1, 2, 3} \ {3} = {1, 2} and {1, 2, 3} \ {2} = {1, 3} are not
contained in Cij and thus constraints (20) are not present in Rel-Cons-SNSP(C). Thus, the method would
add consolidations {1, 2} and {1, 3} to Cij .

4.3 Algorithm description and proof of correctness

In this section, we present a formal description of the algorithm we propose for solving Cons-SNSP(C),
which we refer to as IP − ColGen. We note that we include in the description some steps that are
not necessary for its correctness, but speed up its convergence. For example, at each iteration, the
algorithm solves Cons-SNSP(C) to heuristically generate a primal solution. In addition, by ensuring that
Cij contains both maximal consolidations and singletons, the Cons-SNSP(C) solved at an iteration is
guaranteed to be feasible. We note that through a tuning exercise we determined that performing the
refinement methods in the order Method 3, Method 1, and then Method 2 lead to the best performance
of the algorithm.

In the interest of brevity, we do not provide a detailed description of how Step 6 of IP − ColGen
is performed. However, we note that identifying aspects of a solution (γ,w, y) to the relaxation that
render it infeasible for Cons-SNSP(C) can be done via simple inspection. For example, checking to see
whether constraints (8) are satisfied can be done by looking at all consolidations Cg, Ch ∈ Cij such that
wCg = wCh = 1 and checking that their intersection is empty. Checking whether constraints (9) are
satisfied can be done by computing

∑
C∈Cij

sCwC and observing whether it exceeds the value y
ij
. Finally,

checking whether constraints (10) are satisfied can be done by looking at all consolidations C ∈ Cij such

that wC = 1 and all commodities k, k′ ∈ C and checking whether γk
ij
= γk′

ij
.

We next prove the correctness of IP − ColGen.

Proposition 3. IP −ColGen is guaranteed to terminate with an optimal solution to Cons-SNSP(C) in
a finite number of iterations.
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Algorithm 1 IP-ColGen

Input: Time limit τ , Optimality tolerance ϵ
Input: Flat network D = (N ,A), commodity set K
1: for all (i, j) ∈ A do
2: Set Cij = Cmax

ij ∪k∈Kij {k} {Initialize consolidation set for each arc with maximal consolidations
and singletons}

3: end for
4: while not solved and elapsed time < τ do
5: Solve Rel-Cons-SNSP(C) for dual bound lbCons

6: Determine whether solution to Rel − Cons− SNDP (C) is feasible for Cons-SNSP(C)
7: if feasible then
8: Stop. Solution is optimal.
9: else

10: Add consolidations to C via Method 3 to rectify consolidated commodities that dispatch at
different times

11: Add consolidations to C via Method 1 to rectify insufficient capacity
12: Add consolidations to C via Method 2 to rectify commodities that appear in multiple consolida-

tions
13: end if
14: Solve Cons-SNSP(C) for primal bound ubCons

15: if (ubCons − lbCons)/ubCons < ϵ then
16: Stop. Current best primal solution is ϵ−optimal.
17: end if
18: end while

Proof. As Rel-Cons-SNSP(C) is a relaxation of Cons-SNSP(C) any optimal solution to Rel-Cons-SNSP(C)
that is feasible for Cons-SNSP(C) is also optimal for Cons-SNSP(C). However, when an optimal solution
to Rel-Cons-SNSP(C) is not feasible for Cons-SNSP(C), at least one of Steps 10, 11, or 12 of IP−ColGen
will add a consolidation to C. As consolidations are never removed from C and C is finite, IP − ColGen
must ultimately produce a set C that is equal to C.

When C = C, we have sC = sC ∀(i, j) ∈ A, C ∈ C. We also have constraints (20) defined for all
k, k′ ∈ C, (i, j) ∈ A, C ∈ C. Finally, as noted in Proposition (2), any solution to Rel-Cons-SNSP(C)
such that a commodity participates in multiple consolidations on a given arc can be transformed to
another feasible solution of equal or lesser objective function value where this does not occur. As such,
any optimal solution to Rel-Cons-SNSP(C) is either feasible and optimal for Cons-SNSP(C), or can be
converted to a feasible and optimal solution for Cons-SNSP(C).

4.4 Other enhancements

In this section, we identify other enhancements to IP−ColGen that computational experiments indicated
improved its performance. These enhancements involve adding additional consolidations to C at an
iteration above and beyond what is necessary for its correctness.
Adding consolidations based on commodities that dispatch at the same time: We recall that
in a solution to Rel-Cons-SNSP(C) we may have wC = 1 for consolidation C but not all commodities
k ∈ C dispatch at the same time. In this case, we partition C into sets of commodities that dispatch at
the same time in the solution and add a consolidation to Cij for each set of commodities that is not in Cij .

More precisely, we add sets Cg, g = 1, . . . , nij such that C = ∪nij

g=1C
g, Cg∩Ch = ∅, g = 1, . . . , nij−1, h =

g+1, . . . , nij and γk
ij = γk”

ij ∀k, k′ ∈ Cg
ij . In this case, we add to Cij the sets C

g that it does not currently

contain. Returning to our example, we have w{1,2,3} = 1 but γ1
ij
= γ2

ij
= 1 and γ3

ij
= 3. As commodities

1 and 2 dispatch together in this solution and {1, 2} ̸∈ Cij , the method would add consolidation {1, 2}
to Cij .
Adding missing subset consolidations: Recalling the computation of sC in equation (17), we see
that when adding consolidation C to Cij we will have sC < sC if there exists a subset consolidation,

C
′
⊆ C, such that C

′
̸∈ Cij and sC′ < sC . Thus, we add to Cij all consolidations C ′ ⊆ C such that

|C ′| ≤ κ and C
′
̸∈ Cij . Here, κ is an algorithm parameter.
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5 Computational analysis

In this computational study we compare four methods for solving the SNSP. The first two methods are
static in that they involve instantiating a mixed integer programming formulation of the SNSP that is
then solved. The first, labeled Cons-SNSP(C), consists of enumerating the set C and solving the resulting
consolidation-based formulation, Cons-SNSP(C). The second, labeled “Reduced T-E Network + Agg-Arc-
Capacity” consists of generating a reduced time-expanded network DR

T as described in Proposition 1 and
then solving the resulting TEN-SNSP(DR

T ) formulation, albeit strengthened with the Agg-Arc-Capacity
inequalities (6). The second two methods are dynamic, in that they involve iteratively solving integer
programs that are modified at each iteration in a manner that guarantees their solution will ultimately
produce a provably optimal solution. More precisely, the third method is to solve the Cons-SNSP(C)
with the IP − ColGen approach described in Section 4. The fourth, labeled “DDD-SNSP,” is to solve
the TEN-SNSP(DT ) with the enhanced dynamic discretization discovery algorithm of Hewitt (2019).
We first describe the experimental setting underlying the computational analysis and then the results of
those experiments.

5.1 Computational setting

To perform our computational analysis, we generated a set of instances based on a portion of the
network of a United States-based LTL carrier. Specifically, we considered a portion of the network that
consists of 25 terminals (e.g. |N | = 25) and 530 physical moves between terminals (e.g. |A| = 530).
Cost, capacity, and travel time data were provided by the carrier. In addition, the carrier provided a
load plan that prescribed paths through the terminal network for pairs of terminals (o, d) ∈ N based
on their customer base at the time. We randomly generated instances that vary in the number of
commodities (100,150,200,250,300,350,400,450, and 500) and the width lk − ek of the delivery window
of each commodity. Specifically, we considered four widths, with the first corresponding to the delivery
window quoted by the carrier. The remaining three consist of the length of that path (in time) plus
three, six, or nine hours. For each of the nine numbers of commodities and four delivery window widths,
we generated five instances. When doing so, the size of each commodity was randomly drawn from
distributions fit to carrier historical data of shipment sizes. In total, our instance set consists of 225
instances.

All experiments were run on a computer equipped with 64 Intel Xeon Gold 6130 CPU processors
operating at 2.10GHz and running the Ubuntu distribution of the Linux operating system. The DDD ap-
proach was implemented in C++, which solved optimization models with CPLEX 12.10 (Studio-CPLEX
2013). For the other approaches, the formulations and code to instantiate them were implemented in
Python 3.7 (VanRossum and Drake 2010). For those approaches, optimization models were solved with
CPLEX 12.10 (Studio-CPLEX 2013). All code was run for two hours, or, 7,200 seconds. All optimization
models were solved to a 1% tolerance. MIPs solved in the course of executing IP −ColGen were solved
with the same limits. When executing IP − ColGen a limit of 5,000 was placed on the total number of
consolidations added to C at an iteration. The parameter κ for that algorithm was given the value 7.
The values of 5,000 and 7 were determined through a parameter tuning exercise. All times reported are
in seconds.

5.2 Computational results

We first compare the four methods on two dimensions: (1) the percentage of instances the method could
solve within the 7,200 second time limit, and, (2) the average time the method needed to terminate. We
report these percentages and times to termination, averaged over all instances, in Table 6.

Table 6: % solved, time to termination, averaged over all instances

Type Method % Solved Time (sec.)

Static
Cons-SNSP(C) 77.78% 1,770.94

Reduced T-E Network + Agg-Arc-Capacity 66.67% 2,531.47

Dynamic
IP − ColGen 100.00% 28.40
DDD-SNSP 100.00% 97.63

We see that of the two static methods, solving the consolidation-based formulation enabled the largest
percentage of instances to be solved and required less time to do so. However, neither static method is
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able to solve every instance. We also see that both dynamic methods are able to solve every instance.
In addition, of the two dynamic methods, IP −ColGen does so in less than a third of the time required
by DDD-SNSP.

We next report in Table 7 the average times to completion for each method and each number of
commodities in an instance. We see that for every number of commodities, IP − ColGen requires the
least time to finish. For instances with 250 commodities or fewer, Cons-SNSP(C) is the second fastest
method. However, for instances with more than 250 commodities, DDD-SNSP is the second fastest
method.

Table 7: Average time to termination (seconds)

Static Dynamic
# Commodities Cons-SNSP(C) Reduced T-E Network + Agg-Arc-Capacity IP − ColGen DDD-SNSP

100 0.52 8.09 0.52 26.05
150 1.41 34.26 1.10 43.90
200 3.00 59.16 1.58 51.25
250 5.43 1,856.19 2.79 73.15
300 1,807.23 521.28 6.52 99.90
350 1,857.88 2,110.91 8.16 112.65
400 606.80 5,516.23 28.56 133.75
450 5,462.01 5,477.16 75.16 161.35
500 6,194.21 7,200.00 131.18 176.70

Average 1,770.94 2,531.47 28.40 97.63

We also see that the time required by Cons-SNSP(C) rises dramatically as the number of commodities
in an instance increases. Not surprisingly, this can be attributed to the need to enumerate all possible
consolidations of commodities in order to formulate Cons-SNSP(C). We study the effort associated with
this enumeration in Table 8. This table reports, by number of commodities in an instance, the percentage
of instances wherein all consolidations could be enumerated within the two hour time limit. It also reports
the average time needed for the enumeration when it could be completed within the two hour limit. We
see a general rise in the average time needed by the enumeration as the number of commodities in
an instance increases. For the 300 and 350 commodity instances, we observe that it is impossible to
enumerate all consolidations for the instances with the widest delivery windows. For the 450 and 500
commodity instances, the feasible consolidations could be enumerated only for the narrowest delivery
window setting.

Table 8: Effort to enumerate consolidations

|K| 100 150 200 250 300 350 400 450 500 Average

% instances 100.00% 100.00% 100.00% 100.00% 75.00% 75.00% 100.00% 25.00% 25.00% 77.78%
Time (sec.) 0.09 0.36 1.75 3.56 6.58 67.76 583.30 232.15 3,143.07 212.66

However, Table 7 indicates that formulating and solving the Cons-SNSP(C) can be computationally
effective when the number of commodities in an instance is not too large. To understand why, we
formulated and solved the linear relaxations associated with the two static methods. We compare the
objective function value, zMeth

LP , of the linear relaxation associated with method Meth (e.g. Cons −
SNSP (C)) with the objective function value, zCons(C), of the optimal solution to the integer program
Cons-SNSP(C). We report in Table 9 averages of the gap (zCons(C) − zMeth

LP )/zCons(C) and the time
required to formulate and solve linear relaxations. We note we only consider instances wherein the set
C could be enumerated and the resulting linear programming relaxation of Cons-SNSP(C) solved in the
two hours time limit. We see that solving the Cons-SNSP(C) yields a much stronger lower bound than
the linear relaxation of TEN-SNSP(DR

T ). However, it also takes much more time to solve. Note that the
time recorded for solving the linear programming relaxation of Cons-SNSP(C) includes the time needed
to enumerate the consolidations needed by the formulation.

Table 9: Strength of LP bound and time to solve LP, averaged over all instances

Reduced T-E Network + Agg-Arc-Capacity Cons-SNSP(C)
Gap with best IP sol’n 5.23% 1.64%
Time (sec.) to solve LP 186.10 1,047.20
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We next turn our attention to the two dynamic methods. Another parameter defining an instance is
the number of hours added to the delivery window offered by the carrier. To understand the impact of
this parameter value on the performance of the two dynamic methods we report in Table 10 the average
time to termination, averaged over instances with the same number of additional hours.

We see that the behavior of DDD-SNSP and IP − ColGen differs with respect to this parameter.
Specifically, for IP − ColGen the time it requires to solve an instance increases in the number of hours
added to a delivery window. However, for DDD-SNSP, the time (mostly) decreases. That the time
required by IP − ColGen increases is likely due to the fact that the wider the delivery windows the
greater the number of consolidations that the algorithm may need to consider. On the other hand,
DDD-SNSP requires fewer iterations when the delivery windows are wide.

Table 10: Average time to termination, by number of additional hours in delivery window

Hours added
to delivery window IP − ColGen DDD-SNSP

0 11.59 125.07
3 24.12 90.18
6 22.97 86.6
9 54.91 88.69

Next, we analyze in Table 11 the performance of IP−ColGen in more detail. In column “# Iterations”
of Table 11 we report the average number of iterations IP − ColGen executed before termination. We
also report in Table 11 the quality of the first lower bound and primal solution produced by IP−ColGen.
Specifically, if lbfirst is the lower bound derived from solving Rel-Cons-SNSP(C) in the first iteration and
ublast is the upper bound reported at its termination then we measure the quality of the initial lower
bound with the gap (ublast − lbfirst)/ublast. With lblast and ubfirst defined similarly, we measure the
quality of the initial upper bound produced by IP − ColGen with the gap (ubfirst − lblast)/ubfirst.

Table 11: Performance of IP − ColGen in detail

# Commodities Iterations Quality init. LB Quality init. UB

100 1 0.22% 0.22%
150 1 0.24% 0.24%
200 1 0.09% 0.09%
250 1 0.41% 0.41%
300 1.25 0.30% 0.60%
350 1.25 0.69% 0.84%
400 2 0.98% 1.06%
450 1.75 1.30% 1.26%
500 3.25 1.39% 1.13%

Average 1.5 0.63% 0.65%

We first observe that IP −ColGen is able to produce a provably optimal solution in a small number
of iterations. This is likely because the quality of the initial lower and upper bounds IP − ColGen
produces are quite high, with the lower bound of slightly higher quality than the upper bound. On
average, after its first iteration IP −ColGen has found a primal solution and dual bound that together
yield an optimality gap of 0.85%.

6 Conclusion and future work

In this paper, we present two mixed integer programming (MIP) formulations of a scheduling problem
that can be solved to plan the operations of freight transportation carriers. More specifically, carriers
that transport shipments that are small relative to vehicle capacity. Given these small sizes, the carriers
seek to route and schedule shipments through a terminal network such that they may consolidate, i.e.
be transported by the same vehicle. The literature generally views determining routes and schedules as
a tactical planning problem, with most papers on this topic discussing some variant of the Scheduled
Service Network Design Problem (SSNDP). We consider a more operational problem wherein shipment
paths have already been determined and thus it is the shipment and vehicle schedules that need to be
optimized. We call this problem the Service Network Scheduling Problem (SNSP).
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One of the MIP formulations is based on the idea of a time-expanded network. The other is based on
enumerating all sets of shipments that can dispatch at the same time when traveling from one terminal to
the next (i.e. “consolidations.”). With a computational study we show that when enumerating all such
sets is not too time-consuming, solving the consolidation-based formulation was much more effective.
This is in part because its linear programming relaxation provides a much stronger lower bound on
the objective function value of the optimal solution to the integer program. However, for instances
with larger sets of shipments, the enumerative nature of the consolidation-based formulation renders it
computationally ineffective.

We also propose an algorithm for solving the consolidation-based formulation without generating all
sets of consolidations a priori. The algorithm instead generates these sets dynamically and follows an
algorithmic strategy that is similar in spirit to Branch-and-Price, but solves optimization problems at
iterations that are integer programs instead of linear programs. We prove the correctness of this algorithm
and with an extensive computational study illustrate its superior performance to the previously presented
methods as well as a state-of-the-art benchmark from the literature, Dynamic Discretization Discovery.

Regarding future work, a Branch-and-Price-based algorithm for the problem is likely worth devel-
oping, potentially in the context of a hybrid method that alternates between Branch-and-Price and the
method we propose in this paper. Solution methods can also be developed for other planning problems
encountered by consolidation carriers that rely on solving the SNSP as a subroutine. Heuristics for the
SSNDP could be developed that evaluate a neighboring solution by first routing commodity flows in the
terminal network and then scheduling them via the SNSP. Given that heuristics often perform best when
solution evaluation is fast, executing just the first iteration of IP −ColGen may be an effective strategy,
particularly given the computational results that indicate the high quality of the primal solution and
dual bound produced at the first iterations of IP − ColGen.

The consolidation-based formulation and algorithm proposed in this paper can be adapted/incorporated
into exact methods for the SSNDP. For example, solving a hybrid formulation wherein some arcs in the
network are modeled on a time-expanded network and others are modeled as in the Cons-SNSP(C) may
be computationally effective. Such a formulation may be particularly appropriate for carriers that op-
erate networks that have a hub-and-spoke-type structure, with spokes connecting to few hubs. With
such a network, it is not uncommon for all potential paths for a shipment that originates at a spoke to
first move to the same hub. Thus, the arc that models this first move is amenable to the consolidation-
based formulation of the Cons-SNSP(C). A similar observation can be made regarding shipments that
are destined for a common spoke.

Aknowledgment

We would like to acknowledge the support of a 2018 Cross Regional Grant from the INFORMS Trans-
portation Science & Logistics Society.

References

Jardar Andersen, Teodor Gabriel Crainic, and Marielle Christiansen. Service network design with asset manage-
ment: Formulations and comparative analyses. Transportation Research Part C: Emerging Technologies,
17(2):197–207, 2009.

Jardar Andersen, Marielle Christiansen, Teodor Gabriel Crainic, and Roar Grønhaug. Branch and price for
service network design with asset management constraints. Transportation Science, 45(1):33–49, 2011.

Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Martin WP Savelsbergh, and Pamela H Vance. Branch-
and-price: Column generation for solving huge integer programs. Operations research, 46(3):316–329, 1998.

Ahmad Baubaid, Natashia Boland, and Martin Savelsbergh. The value of limited flexibility in service network
designs. Transportation Science, 2020.

J. F. Benders. Partitioning procedures for solving mixed-variables programming problems. Numerische Mathe-
matik, 4:238–252, 1962.

Natashia Boland, Mike Hewitt, Luke Marshall, and Martin Savelsbergh. The continuous-time service network
design problem. Operations Research, 65(5):1303–1321, 2017a.

Natashia Boland, Mike Hewitt, Luke Marshall, and Martin Savelsbergh. The prize of discretizing time: A study
in service network design. Submitted, 2017b.

Mervat Chouman and Teodor Gabriel Crainic. Cutting-plane matheuristic for service network design with design-
balanced requirements. Transportation Science, to appear.

18



Teodor Gabriel Crainic and Antonino Sgalambro. Service network design models for two-tier city logistics.
Optimization Letters, 8(4):1375–1387, 2014.

Teodor Gabriel Crainic, Mike Hewitt, Michel Toulouse, and Duc Minh Vu. Service network design with resource
constraints. Transportation Science, 50(4):1380–1393, 2014.

T.G. Crainic. Service network design in freight transportation. European Journal of Operations Research, 122
(2):272–288, 2000.

Guy Desaulniers, Jacques Desrosiers, and Marius M Solomon. Column generation, volume 5. Springer Science
& Business Media, 2006.

Alan Erera, Michael Hewitt, Martin Savelsbergh, and Yang Zhang. Improved load plan design through integer
programming based local search. Transportation Science, 47(3):412–427, 2013.

Lester Randolph Ford and Delbert Ray Fulkerson. Constructing maximal dynamic flows from static flows.
Operations research, 6(3):419–433, 1958.

Lester Randolph Ford and Delbert Ray Fulkerson. Flows in networks. Princeton University Press, 1962.

Mike Hewitt. Enhanced dynamic discretization discovery for the continuous time load plan design problem.
Transportation Science, 53(6):1731–1750, 2019.

Mike Hewitt, Teodor Gabriel Crainic, Maciek Nowak, and Walter Rei. Scheduled service network design with
resource acquisition and management under uncertainty. Transportation Research Part B: Methodological,
128:324–343, 2019.

Ahmad Jarrah, Ellis Johnson, and Lucas Neubert. Large-scale, less-than-truckload service network design. Op-
erations Research, 57(3), 2009.

Luke Marshall, Natashia Boland, Martin Savelsbergh, and Mike Hewitt. Interval-based dynamic discretization
discovery for solving the continuous-time service network design problem. Transportation Science, 2020.

George L Nemhauser and Laurence A Wolsey. Integer and combinatorial optimization, volume 18. Wiley New
York, 1988.

Michael Pinedo. Scheduling, volume 29. Springer, 2012.
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A Proof of Theorem 1

We next provide a formal proof that solving the consolidation-based formulation yields the same optimal
objective function value as solving the time expanded-network based formulation.

Theorem 4. 1 zTEN(DT ) = zCons(C).

Proof. We begin by showing that any solution (xTEN , yTEN ) to TEN-SNSP(DT ) can be transformed
to a solution (γCons, wCons, yCons) of Cons-SNSP(C) of equal cost. First, for each k ∈ K and arc
((i, t), (j, t′)) ∈ Ak

T such that xktt′

ij = 1 we set γkCons
ij = t. Given that DT is constructed such that when

((i, t), (j, t′)) ∈ AT , t
′ ≥ t+ τij and the presence of the flow balance constraints (2) in TEN-SNSP(DT ),

these γkCons
ij values satisfy constraints (11), (12), and (13) of Cons-SNSP(C). Regarding vehicle moves,

for all (i, j) ∈ A, let yCons
ij =

∑
((i,t),(j,t′))∈AT

ytt
′TEN

ij . Clearly, the values yCons
ij satisfy constraints (15).

We next consider constraints (8) of Cons-SNSP(C). Consider a given (i, j) ∈ A and times t, t′ such
that ((i, t), (j, t′)) ∈ AT and ∃k ∈ Kij such that xktt′TEN

ij = 1. For such a t, consider the maximal

set of commodities Kt
ij = {k′ ∈ Kij : xk′tt′TEN

ij = 1} that dispatch at time t. In other words, ∀k′′ ∈
Kij \ Kt

ij , x
k′′tt′

ij = 0. As all the time windows for commodities in Kt
ij overlap in the time t, there must

exist a set Cqt
ij ∈ Cij that equals Kt

ij . Let wCons
C

qt
ij

= 1. Next, consider k ∈ Kt
ij . Note that because the

values xktt′TEN
ij satisfy the flow balance constraints (2) in TEN-SNSP(DT ) associated with nodes of the

form (i, ·) ∈ NT , there is exactly one t such that xktt′TEN
ij = 1. Since Kt

ij is maximal, there is exactly

one set Cqt
ij such that wCons

C
qt
ij

= 1 for time t. Thus, we must have
∑

Cij∈Cij
ϕk
Cij

wCij
= 1 ∀k ∈ Kij . More

generally, because the values xktt′TEN
ij satisfy the flow balance constraints (2) in TEN-SNSP(DT ), for a

given k and arc (i, j) in its path there must be a single t such that xktt′TEN
ij = 1. Hence, these wCons

values satisfy constraints (8) of Cons-SNSP(C).
Similarly, note that by the construction of the variable values γkCons

ij , the values γkCons
ij , γk′Cons

ij , wC
qt
ij

satisfy constraints (10) for all k, k′ ∈ Cqt
ij . Regarding constraints (9), recall that sCqt

ij
= ⌈

∑
k∈Kt

ij
qk/uij⌉.

As (xTEN , yTEN ) is feasible for TEN-SNSP(DT ) we have y
tt′TEN
ij ≥ ⌈

∑
k′∈Kt

ij
qk′/uij⌉. Considering all t̃

such thatKt̃
ij ̸= ∅ we have yCons

ij =
∑

((i,t),(j,t′))∈AT
ytt

′TEN
ij ≥

∑
t̃∈T :Kt̃

ij ̸=∅ y
t̃t̃′TEN
ij ≥

∑
t̃∈T :Kt̃

ij ̸=∅
∑

k′∈Kt̃
ij
qk′/uij =∑

t̃∈T :Kt̃
ij ̸=∅ sC

q
t̃

ij
w

C
q
t̃

ij
and constraints (9) are satisfied. Set the value of all (γCons, wCons, yCons) vari-

ables not already given a value to zero. The resulting values (γCons, wCons, yCons) are feasible for
Cons-SNSP(C) and have objective function value

∑
(i,j)∈A fijy

Cons
ij =

∑
(i,j)∈A fij

∑
((i,t),(j,t′))∈AT

ytt
′TEN

ij .

In the second part of the proof, let us consider a solution (γCons, wCons, yCons) to Cons-SNSP(C).
We show that it can be transformed to a feasible solution of the TEN-SNSP(DT ). Consider a given
k ∈ K and dispatch variable values γkCons

vk
i v

k
i+1

. Let t = γkCons
vk
i v

k
i+1

and for all i = 1, . . . , rk − 1 find the smallest

t′ such that ((vki , t), (v
k
i+1, t

′)) ∈ AT . Note such a t′ must exist by construction of DT and because

the variable values γCons satisfy constraints (11) and (12) of Cons-SNSP(C). Set xktt′TEN
vk
i v

k
i+1

= 1. Note

that when γkCons
vk
i v

k
i+1

+ τvk
i v

k
i+1

< γkCons
vk
i+1v

k
i+2

the values of some variables xktt+1TEN
vk
i+1v

k
i+1

associated with waiting

arcs ((vi+1, t), (vi+1, t + 1)) ∈ HT will have to be set to 1 as well. A similar statement holds when
γkCons
vk
rk−1v

k
rk

+ τvk
rk−1v

k
rk

< dk. Set all other values xktt′

ij = 0. The resulting values xTEN satisfy the flow

balance constraints (2) and domain constraints (4) in TEN-SNSP(DT ).
Next, consider an arc (i, j) ∈ A and consolidation Cij ∈ Cij such that wCons

Cij
= 1. Let t = γk

ij

for some k ∈ Cij . Note that, because the variable values γCons, wCons satisfy constraints (10), we

have xktt′TEN
ij = 1 ∀k ∈ Cij by construction. Let Cij(t) denote the set of consolidations Cij ∈ Cij

such that wCons
Cij

= 1 and γk
ij = t ∀k ∈ Cij . Let ytt

′TEN
ij =

∑
Cij∈Cij(t)

sCij for the smallest t′

such that ((i, t), (j, t′)) ∈ AT . Such a t′ must exist by construction of DT . The values ytt
′TEN

ij sat-
isfy the domain constraints (5) of TEN-SNSP(DT ). Recalling that sCij

= ⌈
∑

k∈Cij
qk/uij⌉, we have that

uijy
tt′TEN
ij = uij

∑
Cij∈Cij(t)

sCij
≥

∑
Cij∈Cij(t)

∑
k∈Cij

qkx
ktt′TEN
ij and the values (xTEN , yTEN ) satisfy

constraints (3). Set all variables ytt
′TEN

ij not already given a value to zero. The resulting variable val-

ues (xTEN , yTEN ) are feasible for TEN-SNSP(DT ) with objective value
∑

((i,t),(j,t′))∈AT
fijy

tt′TEN
ij =∑

(i,j)∈A fij
∑

t∈T
∑

Cq
ij∈Cij(t)

sCq
ij
=

∑
(i,j)∈A fijyij .

We have that any feasible solution to TEN-SNSP(DT ) can be converted to a feasible solution of
Cons-SNSP(C) with the same objective value and vice versa. Thus, zTEN (DT ) = zCons(C).
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B Cons-SNSP(C) formulation for Example 1

Given the consolidations enumerated in Table 4, the Cons-SNSP(C) formulation for Example 1 is below.

zCons(C) = minimize fabyab + fbcybc + fcdycd

subject to

wC1
ab

+ wC3
ab

= 1, wC2
ab

+ wC3
ab

= 1,

wC1
bc
+ wC4

bc
= 1, wC2

bc
+ wC5

bc
= 1, wC3

bc
+ wC4

bc
= 1,

wC1
cd

+ wC3
cd

= 1, wC2
cd

+ wC3
cd

= 1,

wC1
ab

+ wC2
ab

+ 2wC3
ab

≤ yab,

wC1
bc
+ wC2

bc
+ wC3

bc
+ 2wC4

bc
+ wC5

bc
≤ ybc,

wC1
cd

+ wC2
cd

+ wC3
cd

≤ ycd,

γ1
ab − γ3

ab ≤ 1(1− wC3
ab
), γ3

ab − γ1
ab ≤ 4(1− wC3

ab
),

γ1
bc − γ3

bc ≤ 2(1− wC4
bc
), γ3

bc − γ1
bc ≤ 3(1− wC4

bc
),

γ2
bc − γ3

bc ≤ 3(1− wC5
bc
), γ3

bc − γ2
bc ≤ 1(1− wC5

bc
),

γ2
cd − γ3

cd ≤ 3(1− wC3
bc
), γ3

cd − γ2
cd ≤ 1(1− wC3

cd
),

γ1
ab + 1 ≤ γ1

bc, γ
2
bc + 1 ≤ γ2

cd,

γ3
ab + 1 ≤ γ3

bc, γ
3
bc + 1 ≤ γ3

cd,

1 ≤ γ1
ab ≤ 2, 2 ≤ γ1

bc ≤ 4,

4 ≤ γ2
bc ≤ 5, 5 ≤ γ2

cd ≤ 6,

1 ≤ γ3
ab ≤ 4, 2 ≤ γ3

bc ≤ 5, 3 ≤ γ3
cd ≤ 6,

wC1
ab
, wC2

ab
, wC3

ab
, wC1

bc
, wC2

bc
, wC3

bc
, wC4

bc
, wC5

bc
, wC1

cd
, wC2

cd
, wC3

cd
∈ {0, 1}, yab, ybc, ycd ∈ Z.
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