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Abstract

Acoustic noise is a big challenge for speaker recognition sys-
tems. The state-of-the-art speaker recognition systems are
based on deep neural network speaker embeddings called x-
vector extractor. A noise-robust x-vector extractor is highly de-
manded in speaker recognition systems. In this paper, we in-
troduce Barlow Twins self-supervised loss function in the area
of speaker recognition. Barlow Twins objective function tries to
optimize two criteria: Firstly, it increases the similarity between
two versions of the same signal (i.e. the clean and its augmented
noisy version) to make the speaker embedding invariant to the
acoustic noise. Secondly, it reduces the redundancy between
dimensions of the x-vectors that improves the overall quality of
speaker embeddings. In our research, Barlow Twins objective
function is integrated with the ResNet-based speaker embed-
ding system. In the proposed system, the Barlow Twins ob-
jective function is calculated in the embedding layer and it is
optimized jointly with the speaker classifier loss function. The
experimental results on Fabiole corpus show 22 % relative gain
in terms of EER in the clean environments and 18% improve-
ment in the presence of noise with low SNR and reverberation.
Index Terms: Speaker recognition, ResNet, Barlow Twins, Ro-
bustness

1. Introduction

A speaker recognition system authenticates the user’s identity
from speech utterances. The state-of-the-art speaker recogni-
tion systems are mainly based on DNNss to extract a fixed-size
compact representation from variable-length speech utterances
known as speaker embedding or x-vector. The TDNN [1], CNN
[2], ResNet [3], and VGGVox [3] speaker embedding systems
are among widespread and successful architectures.

Although, the DNN-based speaker embedding systems
have given a degree of robustness against acoustic noises, there
is a significant degradation of their performance in the pres-
ence of background noise, reverberation and other variabilities
[4] [5] [6]. Various approaches have been proposed to handle
these variabilities in different parts of the system such as: sig-
nal level [7], feature level [8], speaker modeling level [9], x-
vector level [6] and scoring technique level [10]. Addressing
the variabilities at each step has its own advantage and disad-
vantages in terms of data, computational resources, efficiency,
etc. In this paper we chose to make the ResNet-based speaker
embedding system more robust against background noise and
reverberation with a self-supervised objective function named
Barlow Twins [11] . In the current work we worked on speaker
modeling level. Because reducing the impact of noise and rever-
beration in higher levels is limited [12], having a noise robust
speaker embedding system is highly demanded.

The goal of self-supervised learning (SSL) is to learn ro-
bust and invariant representation of the same data samples in the
presence of different distortions (i.e. additivee noise and rever-
beration in our case). Several self-supervised learning methods
are proposed for robust data representation [13] [14] . Among
the proposed methods contrastive loss function is applied in ro-
bust speaker recognition system [3] and language adaptation
[15]. Although the contrastive loss function has given promis-
ing results in domain adaption and robust speaker recognition,
it has some limitations such as necessity for large batch size and
the way of defining the negative pairs [16].

In this paper, we introduce the Barlow Twin objective
function in the domain of speaker recognition systems. Bar-
low Twins is a self-supervised objective function that has two
goals. Firstly, it increases the similarity between two ver-
sions of the same signal to give invariant representation. Sec-
ondly, it reduces the redundancy between different dimensions
of x-vectors. The first goal makes the speaker representations
more robust against variabilities and the second goal improves
the discriminability of representations that improves the overall
quality of the representations [11] [17]. The Barlow Twins ob-
jective function is integrated with the ResNet-based speaker em-
bedding system. In the proposed system, the Barlow Twins ob-
jective function is jointly optimized with the Arc Margin Soft-
Max loss function. The Arc Margin SoftMax is obtained from
the last layer of the ResNet system that classifies the speakers
and the Barlow Twins function is calculated over the clean ver-
sion and its noisy corresponding version of x-vectors extracted
at the embedding layer of the ResNet network at each mini-
batch.

In the following parts of this paper, firstly the related works
are reviewed in section 2. The proposed method is described in
section 3. The experiments setup is explained in section 4 and
results are discussed in section 5.

2. Related works

Noise and reverberation are treated in the different parts of
speaker recognition systems. In this section, we review works
in the speaker modeling level (x-vector extractor), which are
directly related to our work.

Some self-supervised learning methods are used for domain
adaptation in speaker recognition systems. In a self-supervised
approach, [?] the SoftMax loss function is trained with the con-
trastive loss. Because joint training of SoftMax loss function
and contrastive function is intricate, they optimized the con-
trastive loss to fine-tune a network that is pretrained with Soft-
Max loss function. In [18] a domain adaptation technique is
proposed that uses mean discrepancy distance (MMD) as a reg-
ularizer integrated with speaker embedding that performs the



Table 1: The baseline ResNet-34 architecture.

Layer name Structure Output

Input - 60 x 400 x 1

Conv2D-1 3 x 3, Stride 1 60 x 400 x 32
3 x 3,32 .

ResNetBlock-1 x 3,Stridel 60 x 400 x 32
3x 3,32

ResNetBlock-2 3 3,64 x 4, Stride 2 30 x 200 x 64
13 x 3,64

ResNetBlock-3 g i g: gg X 6, Stride 2 15x 100 x 128

ResNetBlock-4 g i g ggg x 3,Stride2 8 x 50 x 256

Pooling - 8 x 256

Flatten - 2048

Densel - 256

Dense2 (Softmax) - N

Total - -

adaptation between source and target domain. In this paper the
proposed method is tested on language adaptation and its effi-
ciency for noise and reverberation adaptation is not examined.

In another line of research, adversarial training is used to
make the speaker embeddings more robust against domain mis-
match. In [19] an adversarial strategy was proposed to make the
speaker embedding more robust against noise. In the standard
x-vector extractors, after the embedding layer, a DNN speaker
classifier is optimized. In this work, a second classifier is trained
adversarially to classify the type of noise. In another work, a
GAN-based speaker embedding proposed that uses a binary dis-
criminator to discriminate noisiness of the x-vector alongside
the speaker recognition classifier [20]. The main deficiency of
adversarial speaker embedding systems is the labels that should
be used in the discriminator. Moreover, training the speaker em-
bedding network in a manner that can not discriminate the type
of noise or the noisiness of an x-vector doesn’t guarantee that
noisy x-vectors are close enough to their clean version.

To the best of our knowledge the current paper is first at-
tempt of using Barlow Twins in speech processing applica-
tions in general and specifically in the domain of robust speaker
recognition.

3. Proposed approach
3.1. Baseline system

The baseline embedding extractor used in this paper is a variant
based on ResNet [21]. The ResNet model for extracting em-
beddings consists of three modules: a set of ResNet Blocks, a
statistics-level layer, and segment-level representation layers.

* ResNet (Residual Network) uses stack of many Resid-
ual Blocks. A Residual Block is made up of two 2-
dimensional convolutional Neural Networks (CNN) lay-
ers separated by a non-linearity (ReLU). The input of
Residual Block is added to its output in order to consti-
tute the input of the next Residual Block.

* The statistics-level component is an essential component
to convert a variable length speech signal into a single
fixed-dimensional vector. The statistics-level is com-
posed of one layer: the statistics-pooling, which aggre-
gates over frame-level output vectors of the DNN and
computes their mean and standard deviation.
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Figure 1: Robust SR with Barlow Twins Loss function.

* The segment-level component maps the segment-level
vector to speaker identities. The mean and standard de-
viation are concatenated together and forwarded to addi-
tional hidden layers and finally to softmax output layer.

The detailed topology of the used ResNet is shown in Ta-
ble 1. Batch-norm and ReLU layers are not shown. The di-
mensions are (Frequency X Channels x Time). The input is com-
prised of 60 Mel scale filter banks from speech segments. Dur-
ing training we use a fixed segment length of 400 frames equals
4 seconds. The speaker ResNet system is trained with Arc Mar-
gin SoftMax loss function.

3.2. Barlow Twins system

In the Barlow Twins system, the baseline ResNet network ac-
cepts the clean version and its augmented version of the clean
signal at each mini-batch. Therefore, in the embedding layer,
we have pairs of clean and noisy embeddings that fed into the
speaker classifier and the Barlow Twins objective function. The
architecture of the proposed system is depicted in Fig. 1. The
generator accepting noisy and clean signals are identical.

The Barlow Twins objective functions accepts two sets of
inputs: 2% and 2z are the mean centered normalized versions
of clean and noisy x-vectors obtained from the embedding layer
of ResNet system at each mini-batch.

The Barlow Twins function is defined as Eq.1:

Lpr = Z(l — Cii)2 + A Z(Cij)2 (D

i il=j

where C' is the correlation matrix between the output of
noisy and clean x-vectors at each mini-batch and, i and j are
x-vector dimensions. The C' matrix is a square matrix; its di-
mension is equal to the size of the speaker embedding. The
first term is called invariant term which tries to increase the cor-
relation between two versions of noisy and clean x-vectors, in
order to give an invariant x-vector for noisy and clean versions,
the second term is called redundancy reduction which reduce
the redundancy within the dimensions of the embedding, the A
coefficient indicates the importance of each term, and Cj; is
defined as Eq.2:
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the sum is performed over all the embeddings in given mini-
batch, and b is the index of an embedding in the mini-batch.

In the proposed system, the Barlow Twins objective func-
tion is optimized jointly with the Arc Margin SoftMax loss
function that is used in the speaker classifier. The final objec-
tive function is the summation of Arc Margin SoftMax loss and
Barlows Twins objective function. Both functions are optimized
with the same weight. In the end, the Barlow Twins objective
function imposes on the correlation matrix to be an identity ma-
trix (it maps the C' matrix to I identity matrix shown in Fig. 1).
The optimization of Barlow Twins brings the diagonal elements
closer to 1 to have the invariant representations and imposes on
off-diagonal elements of the correlation matrix to be close to 0.

Considering that a mini-bach is a matrix of D rows and B
columns; where B is the size of the mini-batch and D is the
size of an embedding, we can see that C}; is the cosine between
the vector lines of indices 7 (z,fi) and j (zgf ;) of the mini-batch.
In this case, the Barlow Twins objective function consists of
minimizing the distances between row vectors with the same
indices and maximizing the distances between row vectors hav-
ing different indices. In this sense, it is similar to the contrastive
learning objective function. Indeed, it is the same formulation
applied to the lines of the mini-batch in the case of the Bar-
low Twins and applied to the columns of the mini-batch in the
case of contrastive learning. In the calculation of invariant term
in Barlow Twins, each element comes from different speakers
with different noises. It means that both noise and speaker vari-
abilities are present. While in calculating the distance between
the positive pairs in contrastive loss only the noise variability
is taken into account because two samples come from the same
speaker that are augmented with different noises.

(@)

4. Experiments setup

In this section the experiments setup including the used datasets,
x-vector extractors and evaluation protocols are described.

4.1. Datasets
The datasets used in our paper are as follows:

¢ Voxceleb2. The Voxceleb2 [3] is used to train the x-
vector extractors. There are 1.2m samples from 5,994
speakers. The clean version is augmented with Musan
corpus and RIR files. The final version of training data
included 5.9m samples.

e Musan. Musan is a music, speech, and noise corpus
comprising 109 hours of speech data. All branches of
Musan corpus are used for data augmentation to train x-
vector extractors [22].

* BBC Noise. BBC Noise includes 16000 noise files, pro-
vided by BBC. These noises are used as artificial noise
for evaluation protocols'.

* Fabiolel. Fabiolel. is a French corpus that contains
7,000 files from 130 speakers [23]. We created an evalu-
ation protocol from this dataset.

* Robovox. It is a French corpus collected from Robovox
project (A mobile robot). Each recording in this corpus

Uhttp://bbesfx.acropolis.org.uk

has 5 channels. The fifth channel is close microphone in
which we considered it as clean and other channels are
considered as noisy and reverberated’. The utterances
are recorded in both open and closed spaces. The dis-
tance between speaker and microphones in far channels
is between 1 and 3 meters.

4.2. x-vector extractors

Both baseline and Barlow Twins x-vector extractors are trained
with Voxcleeb in 10,000 iterations. In another experiment, the
Barlow Twins were used with a pretrained baseline system. In
the last case, the Barlow Twins and Arc Margin SoftMax loss
function are optimized together for 1,000 more iterations of the
baseline system. The learning rate at the beginning of the train-
ing is set to 0.2 with weight decay equals 2.10~*. The momen-
tum is set to 0.9. The gradient descent optimizer is used. The
size of the feature maps is 32, 64, 128, and 256 for the 4 ResNet
blocks.

¢ Baseline. In the baseline system, the training samples
are chosen randomly. The training data includes all clean
files of Voxceleb and their augmented version with Mu-
san Corpus, and reverberated with a pool of RIR files.
3. Kaldi toolkit is used for data augmentation [24]. The
SNR was chosen between 0 and 20. The batch size is
set to 128. In this system only Arc Margin SoftMax loss
function is optimized.

e Barlow Twins. In this system, a clean file from Vox-
celeb was chosen randomly. After that, its augmented
version was chosen. Because we have two versions of
each file at each mini-batch, we reduced the size of each
mini-batch to 64. At the embedding layer, the Barlow
Twins objective function is calculated and the proposed
system was updated to minimize the summation of Bar-
low Twins and Arc Margin SoftMax functions. The A
varibale is set to 0.005 in Eq. 1. The X is chosen experi-
mentally.

4.3. Evaluation protocols

¢ Fabiole. In the first protocol, the Fabiole corpus is used.
In this protocol 130 files (one file per speaker) are used
as enrollment and 6,870 randomly chosen files are used
for the test. In this protocol the BBC noise files are added
to the clean signal with different SNRs from 0 to 15. In
all cases the clean signal is used for enrollment. In this
protocol the Kaldi toolkit is used to add noises to clean
files.

* Robovox. In this protocol 26 files, one file per speaker,
are used as the enrollment and 677 files are used as the
test. The enrollment files are chosen from a close mi-
crophone with high quality but the test files are chosen
from far microphones. The average length of speech ut-
terances in this protocol is 22 seconds.

The details of both protocols are summarized in Table 2.

5. Results and discussions

In this section the obtained results are discussed. The results
obtained from Fabiole protocol are depicted in Table 3. The BT
column shows the results for a system in which Barlow Twins is

Zhttps://robovox.univ-avignon.fr/
3http://www.openslr.org/resources/28/rirs_noises.zip



Table 2: Experimental Protocols

Protocol Trials Test Enrolment

Fabiole 893k 6870 130
Robovox 17k 677 26

Table 3: Fabiole Protocol (EER)

SNR Baseline BT Pre+BT
Clean 6.27 4.87 546
[0-5] 8.31 681 7.37
[5-10] 7.43 5.86 6.66
[10-15] 6.87 548 6.17

optimized from scratch with the speaker classifier. For example
in a clean environment EER reduce from 6.27 to 4.87 which
means 22% relative gain. In the case of low SNR between 0
and 5, we achieved an 18% relative gain of EER. The results for
a case that Barlow Twins were used with a pretrained baseline
system are presented in the last column. In this experiment, in
all cases, we observed significant improvement of EER but the
results for the training of Barlow Twins from scratch are better.

The results with the Robovox protocol are presented in
Table 4. In the BT column, the results are shown for the case of
joint optimization of both loss functions from scratch. In this
experiment, we observed significant improvement for some
channels but the behavior is not the same in all channels. The
obtained results show that in the clean situation (i.e. channel 5)
the Barlow Twins improves the performance. In other channels
that are far and noisy, the results are paradoxical. Finally
the results for an experiment that Barlow Twins adapts the
pretrained baseline system are presented in the last column. In
this case we observed improvement in all channels for example
in clean environment there is 33% relative gain.

6. Conclusion

In this paper, the Barlow Twins objective function was in-
troduced in the area of robust speaker recognition systems.
The Barlow Twins objective function integrated with ResNet
speaker embedding in order to achieve two goals: give an invari-
ant representation for both clean and noisy versions of a speech
signal, and reduce redundancy between different dimensions of
the speaker embedding. We showed that the Barlows Twins
objective function improves the performance of the speaker em-
bedding system in both noisy and clean environments. The joint
optimization of contrastive loss and Barlow Twins loss function
in robust speaker recognition is a potential future work. In fu-
ture work, the behavior of the Barlow Twins objective function
in the presence of specific noises and with more data augmen-
tation techniques will be studied.
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