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Watershed transformation on grey-scale images has been one of the most reliable methods for image segmentation for years. To address the challenges of over-segmentation lies in watershed transformation, strategies like waterfall and P-algorithm came in the scene. Another new study involving watershed arcs, that divides an image into non-connected segments by generating a maximal vertex-cut in-between them, also was successful to overcome this challenge, where at each level some of the existing arcs are removed to merge the corresponding neighbor basins. Selecting the set of arcs to be removed in a level being determined from a arc-graph using only the existing arcs makes the run-time extremely low. In this study, we incorporate the concept of region merging using watershed arcs for multi-band images. We used a stricter criterion to determine which arcs to be removed in a level by imposing weight on an arc's dissimilarity from its neighboring arcs, a factor that was not there in the initial concept. The performance of the proposed method is evaluated on the Wiezmann dataset of color images in comparison to some of the existing methods in the literature.

INTRODUCTION

I MAGE segmentation is the process of dividing a digital image into separate partitions that are alike in intensity, color, or texture, to achieve a simpler representation of the image for easier analysis. Image segmentation is the fundamental step of various applications such as object detection, medical imagery, pattern recognition and target-tracking [START_REF] Morel | Variational methods in image segmentation: with seven image processing experiments[END_REF]. One of the earliest methods for image segmentation for many years has been region growing/merging, where from some seed pixels in the image homogeneous tiny regions, that are disjoint sets of connected pixels, are formed which are iteratively combined to generate bigger regions based on some specified criteria [START_REF] Ning | Interactive image segmentation by maximal similarity based region merging[END_REF], [START_REF] Peng | Automatic image segmentation by dynamic region merging[END_REF], [START_REF] Nock | Statistical region merging[END_REF]. A powerful and effective method for image segmentation in the field of mathematical morphology, watershed transformation, was first developed in the 1980s with the objective to produce continuous contours from digital elevation models [START_REF] Beucher | Use of watersheds in contour detection. int[END_REF]. An algorithmic definition of the watershed transform as region-growing approach following simulated immersion was given by Vincent and Soille [START_REF] Vincent | Watersheds in digital spaces: an efficient algorithm based on immersion simulations[END_REF].

A general problem occurs in the classical watershed transformation that yields over-segmentation. A new method presented in [START_REF] Soor | Watershed arcs in hierarchical image segmentation[END_REF] involving watershed arcs, that constitutes of the watershed points between distinct pairs of neighbor regions termed as basins, uses a modified definition of watershed transformation to construct connected watershed lines [START_REF] Meyer | Topographic distance and watershed lines[END_REF], [START_REF] Najman | Watershed of a continuous function[END_REF] in the discrete image domain. The neighbor basins are thematically merged in a hierarchical process by removing some of the arcs in each level by implementing the same watershed transformation on a spatial line-graph [START_REF] Trémeau | Regions adjacency graph applied to color image segmentation[END_REF], termed as arc-graph, created from the existing arcs. As only the constructed arc-graphs are processed in each level and their cardinality gets significantly smaller, in comparison to algorithms like waterfall [START_REF] Beucher | Watershed, hierarchical segmentation and waterfall algorithm[END_REF], which were introduced with a similar objective, the resulting segmentation can be acquired in much less time.

The Image Foresting Transform (IFT), presented in [START_REF] Falcao | The image foresting transform: theory, algorithms, and applications[END_REF], follows the region growing process considering the image as an edge-weighted graph, and assigns labels to each pixel of an image with the same label as one of the predefined seed pixels, based on the minimum-cost paths. In [START_REF] Lotufo | IFT-watershed from gray-scale marker[END_REF] IFT was applied to produce the watershed of an image via reconstruction from a marker image. In this study, we extend the idea of hierarchical partitioning based on watershed arcs removal, which up until now has been applied to singleband images considering the image as a node-weighted graph, to edge-weighted graphs in order to perform similar segmentation in multi-band images. The initial watershed arcs are obtained following the region growing process alike IFT. Each node in the arc-graph at a subsequent level is assigned by a real value derived from the features of its neighboring basins. When applying the watershed transformation to the arc-graph, a node, not originally detected as watershed point, is forcibly labelled as a watershed if its value is similar to a nearby watershed points by a factor. This eliminates the shortsightness problem described in [START_REF] Beucher | P algorithm, a dramatic enhancement of the waterfall transformation[END_REF], that was lacking from the initial idea of watershed arcs removal.

In section 2 a brief overview of Watershed Arcs Removal and Image Foresting Transform is provided as the foundation for the proposed extension. Section 3 contains the detailed methodology and essential algorithmic outlines. The correctness and the analysis of the computational complexity of the proposed method is discussed in Section 4. The experimental results by applying watershed arcs removal to the Wiezmann dataset of color images are presented in Section 5, along with a comparison of its performance to few existing methods in literature, followed by the concluding remarks and the scope of extension in section 6.

RELATED LITERATURES

In this section the theoritical basis of the proposed segmentation method is described briefly along with the necessary notations and terminologies.

For various aspects of image processing studies an image is generally defined on a digital grid with 4 or 8-connectivity [START_REF] Borgefors | Distance transformations in digital images[END_REF]. For an image-grid G = (V , N , I ), V is the set of pixels, N is the set of neighborhoods such that N v = {u : u is neighbor to v}, u, v ∈ V , and I : V → R + (for singleband images) or I : V → (R + ) d (for d-dimensional multiband images) are the pixel values. An image is often defined as G = (V , N , E ), where E : N → R + are the edgeweights. A path π ⟨u⇝v⟩ between two vertices/nodes u and v in G is a sequence of vertices ⟨p 0 , p 1 , ..., p n ⟩ where p 0 = u, p n = v and p i+1 ∈ N pi , for i = 0, 1, ..., n-

1. A connected component in G is a sub-graph G ′ ⊆ G such that ∀u, v ∈ G ′ , ∃π ⟨u⇝v⟩ within G ′ .

Hierarchical Partitioning using Watershed Arcs in Single-band Images [7]

In a single-band image a non-decreasing-non-increasing path (nDnI-path in short) between U, V ⊂ G , U ∩ V = ϕ, is a sequence of vertices ⟨u 0 , u 1 , ...u p , m, v 0 , v 1 , ..., v q ⟩ such that, u 0 ∈ vertex-set of U, v q ∈ vertex-set of V , and I up , I v0 < I m , and ∀i = 0, 1, ..., p -1, I ui ≤ I ui+1 , ∀i = 0, 1, ..., q -1,

I vi ≥ I vi+1 . A regional minima is a connected component U ⊂ G such that, ∀u ∈ vertex-set of U , ∀v ∈ vertex-set of G \ U , if v ∈ N u then I v > I u .
Let, M IN is the set of all regional minima and nDnI Π = {π U ⇝V } where U, V ∈ M IN and π U ⇝V is a nDnI-path. Let M = {p : p ∈ π U ⇝V such that ∀π U ⇝V ∈ nDnI Π, ∄q ∈ vertex-set of π U ⇝V such that I q > I p }, i.e, M is the set of pixels having maximum values on the distinct nDnI-paths between any two regional minima. The smallest subset W ⊆ M are the watershed points if ∀w 1 ∈ W, ∀w 2 ∈ M \ W, I w1 ≤ I w2 and ∀π ∈ nDnI Π, ∃w ∈ V π such that w ∈ W . This definition of watershed transformation ensures the set of watershed points to be a maximal vertex-cut. The algorithmic approach to determine such watershed points uses a priority queue where each local minima is extended towards higher altitude neighbor vertices labelling such vertices same as the minima; if a vertex found from a minima, that already is labelled by another minima, that vertex is marked as watershed point. Each point associated with a regional minima is marked with same label and is called the basin extension of the minima. The set of watershed points and the set of basin-extensions is denoted by W and B ext respectively. The set of watershed arcs, A , contains the set of watershed points having same pair of neighbor basins.

To obtain the hierarchical region merging process an arc-graph is created that constitutes of representatives of the arcs as the nodes and the neighborhood is created between the arcs having common basin neighbors. The value associated with the arc representatives are in R + thus the same watershed transformation could be applied on the arc-graph. Owing to extract hierarchical river basins from a digital elevation model, the value assigned to an arc was the minimum altitude of the pixels constituted that arc. This pixel is termed as the saddle point of that arc. The arcs corresponding to its representatives, that are not detected as the watershed points by the watershed transformation on the arc-graph are removed by a arc-removal operation, that preserves the maximal vertex-cut constraint.

The notations are added with level number as suffix to indicate that at a particular level. This process goes on until in some level no watershed points are detected in the arcgraph. The disjoint basin points along with the watershed points present at final level being merged with one of their neighbor basins, forms the resulting segmentation. This segmentation method takes linear computational time. In the proposed method in this study uses a similar arc removal strategy where difference lies in imposing a stricter criteria to select the arcs to be removed in a level.

Image Forest Transformation [12]

In an edge-weighted graph G = (V , N , E ) a path costfunction f is said to be monotonically increasing if, (i)

f (π. ⟨p, q⟩) ≥ f (π) and (ii) f (π 1 ) ≥ f (π 2 ) iff f (π 1 . ⟨p, q⟩) ≥ f (π 2 , ⟨p, q⟩) where p is considered as one end-point of π, π 1 , pi 2 and q ∈ N p . Example of such monotonically increasing cost-functions are additive cost f sum (π. ⟨p, q⟩) = f sum (π) + E ⟨p,q⟩ pass-value cost f max (π. ⟨p, q⟩) = max(f max (π), E ⟨p,q⟩ )
In the proposed method the cost-map of a pixel p, C p , i.e., the path-cost till p from a seed pixel is calculated by passvalue path cost.

In IFT, from a set of distinctly labelled seed-pixels S, all the non-seed pixels are traversed and a non-seed pixel v ∈ V \ S is labelled same as a seed-pixel s i ∈ S if ∄s j ∈ S such that f (π ⟨sj ⇝v⟩ ) > f (π ⟨si⇝v⟩ ), f being a monotonically increasing path cost function. IFT labelling takes linear computational time if implemented using a priority queue datastructure.

HIERARCHICAL PARTITIONING USING WATER-SHED ARCS IN MULTI-BAND IMAGES

This section includes the outline of the algorithms for various required steps of the proposed method.

The initial watershed arcs are determined in the edgeweighted image-grid following a region growing like IFT. The process of obtaining the set of seed points M uses F ⊖ operation on the grid graph, where the pixels most similar to its neighbor pixels are determined. From these spatially distributed seed points having local similarity, regions are expanded to detect the watershed points W (0) , in turn forming the watershed arcs of the initial level A (0) . Intuitively, the points on the watershed arcs have lesser local similarity than the seeds. For each arc in A (0) an arc value is calculated that captures the dissimilarity in neighboring basins to form I A (0) : A (0) → R + . Hence for the subsequent levels the process is similar to that described in 2.1. The local minima formed in the arc-graphs corresponds to the arcs having lesser dissimilarity hence rightly determined to be removed, where as, the arcs still existing must have higher dissimilarity than the removed ones. While removing an arc, as two neighbor basins are merged, all arc-values of the neighbor arcs of the merged basin needs to be updated. The stronger criteria to select the set of arcs to be removed is described in detail in 3.3.

Following is the overall layout of the proposed method that includes the different steps being processed. Require: V , I , E , N Ensure: Set of partitions P P.append(∪A (l-1) )

1: Determine seed-set S from F ⊖ (V , E , N ) 2: Determine W (0) , basinlabel (0) from V , E , N , S 3: Determine A (0) , I A (0) from W (0) , basinlabel ( 

7:

Create N A (l) from A (l-1) , basinlabel (l-1)

8:

Determine A from A (l-1) , I A (l-1) , N (l)

9:

if A == A (l-1) then A (l) , I A (l) , basinlabel (l) ← Remove Arcs(A)

13:
end if 14: end while

Extracting Seed Points

On a edge weighted graph [START_REF] Cousty | Watershed cuts: Minimum spanning forests and the drop of water principle[END_REF]. From this graph local minima can be detected in linear time by the method present in [START_REF] Moga | Implementation of a distributed watershed algorithm[END_REF]. A single pixel from each of the local minima constitutes the set of seed pixels S.

G = (V , N , E ) the F ⊖ oper- ation produces a node-weighted graph G = (V , N , I ′ ) such that ∀v ∈ V , I ′ v = min({E ⟨v,u⟩ , ∀u ∈ N v })

Generating Initial Watershed Arcs

From the set of seed pixels S using a priority queue Q all the non-seed points are traversed. A pixel reached from a seed s ∈ S if not reached from any other pixel already, is labelled same as s and if already was reached from some other seed, marked as watershed point. At the end of the following process the non-watershed points form initial basins. This process ensures each basin is disconnected from other basins and the set of watershed points W forms a maximal vertexcut, which is a prerequisite of the subsequent steps as described in 2.1.

Require: V , E , N , S Ensure: W ⊂ V : wshed v = T RU E, label v (∀v ∈ V \ W ) 1: C v ← ∞(∀v ∈ V \ S), C v ← 0(∀v ∈ S), label v ← v(∀v ∈ V ), f ixed v ← F ALSE(∀v ∈ V ), wshed v ← F ALSE(∀v ∈ V ) 2: Q.push(v, C v ) 3: while Q is not empty do 4: p, C p ← Q.pop() 5:
if not f ixed p then 6:

for n ∈ N p : notf ixed n do 7: if C n == ∞ then 8: C n ← C p .E ⟨p,n⟩ , label n ← label p 9: Q.push(n, C n ) 10:
else if label n ̸ = label p then 11:

wshed n ← T RU E, f ixed n ← T RU E 12: end if 13:
end for 14:

f ixed p ← T RU E 15:
end if 16: end while Note that, unlike IFT cost map of a pixel once set less than ∞ is not updated anymore, as by using the monotonically increasing path-cost only the boundary pixels in a segment could be re-labelled, where as those are the points detected as watershed points in the proposed algorithm. This ensures the computational linearity of this step.

Determininig Arcs to Remove

The method presented in [START_REF] Soor | Watershed arcs in hierarchical image segmentation[END_REF] after applying watershed transformation on the arc-graph selects corresponding arcs of all the points not marked as watershed point to remove. A vulnerability of this approach lies in the fact that, there may exist higher valued arc representatives marked as basin points than the arc-value of the watershed marked representatives neighbor to that basin. A similar issue is discussed in details in [START_REF] Beucher | P algorithm, a dramatic enhancement of the waterfall transformation[END_REF]. The presence of such higher valued arcs goes in contrast to the assumption that each arc being chosen to delete in a level should have less dissimilarity than its nearby arcs. Also for some complex image scenes, such as the image having invariant intensity or the objects in image having area leakage, eliminating every such non-watershed arcs is not a dependable approach.

In the proposed method, to deal with this vulnerability, a factor β is introduced. Each non-watershed point is assessed with respect to the saddle point of lowest relative altitude neighbor to its basin. The non-watershed point is remarked as a watershed point if its relative height is greater than the lowest neighbor saddle point by the factor β. If β is set to a very large value, this modified method behaves similar to the original, where as, a very low value set to β slows down the region merging process by creating higher number of levels. wshed a = T RU E 27: end if 28: end for With β lesser than 1 if any arc representative is remarked as watershed having lower relative altitude than its neighboring lowest saddle point, the arc value of the representative is upgraded to that of the saddle point. Otherwise, these arcs can serve as local minima in the subsequent iteration and be eliminated, rendering the modification useless.

Require: A

, I A , N A , β(> 0) Ensure: A ⊂ A : wshed a = T RU E(∀a ∈ A) 1: ∀a ∈ A do label a ← a,

Removing a Set of Arcs

Arc removal from a digital image preserving maximal vertex cut is thoroughly defined in [START_REF] Soor | Watershed arcs in hierarchical image segmentation[END_REF]. With the original approach of selecting the arcs to be removed, for an arc A to be removed if B 1 , B 2 are the two neighbor basins get merged and there exists arc A 1 between B, B 1 and arc A 2 between B, B 2 then by the construction of the arc-graph either both A 1 , A 2 are selected to be deleted or both are not. But with the modified approach presented in this study, either of A 1 , A 2 can be selected to be eliminated. In this modified approach, any of A 1 , A 2 is removed only if both are selected to be removed.

ANALYSIS OF THE PROPOSED ALGORITHM

In this section we examine of the correctness and the computational complexity of the proposed watershed arcs removal method.

Proof of Correctness

In the process of generating the initial watershed arcs given in 3.2 each non-seed pixels are reached from the seed pixels using a priority queue so that the pixel with least cost-map is fixed first and its neighboring pixels not already fixed are pushed in the queue and labelled . If a pixel that is already in the queue being reached form some seed is reached again by another seed, then only that pixel is marked as watershed. The watershed point from which it was initially visited and put into the priority queue was fixed already; and the point from which the watershed marked point is visited again before being marked, and the watershed point both are marked as fixed point and hence do not take further part in the traversing process, as a result the point from which the watershed point was visited remains as basin point. Hence each watershed has at least two neighbor points which are part of basin extensions. Between two different seeds in all the paths connecting them must have one watershed point. This structure ensures the set of watershed points being a maximal vertex-cut.

As β is set to be always > 0 in the arc-graph at least the corresponding arcs of different local minima are set to be removed in one level. If at some level no watershed points are found in the arc-graph of that level, which occurs if the arc-graph contains a single local minima, the hierarchical partitioning is terminated. The number of local minima decreases as more of the lesser valued arcs are removed from each level, until at some level there is only one local minima left. This ensures the convergence of the proposed method.

Time Complexity

In [START_REF] Soor | Watershed arcs in hierarchical image segmentation[END_REF] it was shown that the hierarchical partitioning on a node-weighted graph has a linear computational complexity. The process of generating the initial arcs, which is different than the original method, is of linear time complexity, as each node is processed only once. In the subsequent levels number of arcs remaining are decreased exponentially, and the number of level being logarithmic to the input size, the total procedure has a linear run-time. The plot given in Figure 1 validates the linear run-time of the proposed algorithm. 

EXPERIMENTAL RESULTS

The effectiveness of the proposed method, watershed arcs removal, is assessed in this section using the Wiezmann segmentation evaluation database, which contains 100 each of 1-and 2-object color images that depict objects that differ from their surroundings in terms of intensity, texture, and other attributes, as well as the ground-truth segmentation. The code and results are available at [START_REF] Soor | Watershed arcs[END_REF].

The performence of the proposed method is compared with some of the procedurally related approaches such as Normalized-cuts [START_REF] Shi | Normalized cuts and image segmentation[END_REF], Region Adjacency Graph (RAG) merging [START_REF] Haris | Hybrid image segmentation using watersheds and fast region merging[END_REF] and Iterated Watershed [START_REF] Soor | Iterated watersheds, a connected variation of k-means for clustering gis data[END_REF] for better understanding. The normalized-cuts approach attempts to impose a global look during merging from an initial fine-segmented image by setting the cut criterion to assess both intersegment dissimilarity and intra-segment similarity. Region adjacency graph merging is conceptually very similar to the proposed method, where neighbor regions are merged based on some similarity criteria, rather watershed arc removal emphasizes on regions not to merge based on dissimilarity criteria. For normalized-cuts and RAG merging, the initial segments are determined by SLIC [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF], which with fine-tuning could have produced better results. Iterated Watershed (IW) which is essentially the connected variation of k-means clustering method [START_REF] Soor | Extending k-means to preserve spatial connectivity[END_REF] where from a set of randomly selected seed pixels initial regions are grown with a underlying connectivity constraint, and alike k-means in The evaluation metrics considered here are (i) Adjusted Mutual Information (AMI), that calculates the mutual information adjusted to account for the chance, (ii) Adjusted Rand Index (ARI) that computes rand index adjusted to chance, and (iii) Clustering Accuracy (CA), where accuracy is obtained from the segments having highest intersection with ground truth labels [START_REF] Fahad | A survey of clustering algorithms for big data: Taxonomy and empirical analysis[END_REF]. The comparison presented in Table-1, where for each method the median values for each evaluation metric is given, shows the potential of the proposed method for image segmentation. In Figure 2 endresults of segmentation for some images from the Wiezmann dataset are shown, and in figure 3 segmentation results obtained from two hyper-spectral images are shown.

CONCLUSION AND FUTURE WORKS

In this study, we extended the watershed arcs removal based hierarchical partitioning strategy to the edge-weighted graphs and applied in image segmentation that produced satisfactory results. The key emphasis of this extension is the reintroduction of several critical arcs in consideration along with the structural modification required to use the method for edge-weighted graphs. Another benefit of this proposed method is reduction of the run-time considerably.

The inclusion of the β factor to restrict some of the critical arcs from being eliminated was a huge advantage, although picking an adequate value for β is still an existing challenge. The results presented in this study were attained after experimenting with various set of values. An appropriate value if retrieved from the image characteristics could lend to better results. Additionally, a variant β that depending on spatial and local aspects could have been helpful rather than applying a constant β value to the entire image setup.

The node values in the arc-graphs were generated form the difference in mean color features between the corresponding neighboring basins, which can be improved fur-ther by other local and global complex features. Moreover, a directional watershed transformation with constrained growing is worthy for further research.

Fig. 1 .

 1 Fig. 1. Run-time on simulated images of different sizes. Experiments carried on a Intel E5-1650 v3 Processor with 32GB RAM. Python 3.7 is used for coding.

Fig. 2 .Fig. 3 .

 23 Fig. 2. Sample segmentation results on Wiezmann dataset by Watershed arcs removal. (a)(c) Original images, (b)(d) Obtained Segmentation (β = 2)

  -minima labela ) ≥ β(l saddle labelaminima labela ) then

	22:	end if
	23: end while
	24: for a ∈ A : not wshed a do
	25:	if (I A a
	26:	
		3:	p, p prio ← Q.pop()
		4:	if visited p then
		5:	continue
		6:	end if
		7:	if p prio > I A p then
		8:	Q.push(p, I A p ), shif ted p ← T RU E
		9:	minima p = I A p , l saddle p = ∞
		10:	else
		11:	visited p ← T RU E
		12:	for n ∈ N A
		13:	if not shif ted n then
		14:	Q.push(n, I A n ),
		20:	end if
		21:	end for

wshed a ← F ALSE, visited a ← F ALSE, shif ted a ← F ALSE, Q.push(a, I A a + 1) 2: while Q is not empty do p : label n ̸ = label p do 15: label n ← label p , shif ted n ← T RU E 16:

else 17: wshed n ← T RU E, visited n ← T RU E 18: l saddle labelp = min(I A n , l saddle labelp ) 19:

l saddle labeln = min(I A n , l saddle labeln )

TABLE 1

 1 Evaluation on color images in Weizmann Data-set. For each method the median metric-scores are given.

		Method	AMI ARI	CA
		Watershed arcs Removal 0.430 0.445 0.682
	1-Object	RAG Merging Normalized Cuts	0.330 0.265 0.494 0.363 0.344 0.603
		Iterated Watershed	0.247 0.313 0.628
		Watershed arcs Removal 0.559 0.607 0.843
	2-Object	RAG Merging Normalized Cuts	0.420 0.376 0.560 0.516 0.548 0.805
		Iterated Watershed	0.368 0.374 0.595

each of the subsequent iterations new seeds are calculated which are spatially or characteristically most centered to each of the grown regions in previous iteration. The dissimilarity between the mean feature-set between two neighbor regions of an arc is used as the arc values in higher levels, where as β value was set to 2.
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