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Functions of the Laplacian matrix with
application to distributed formation control

Fabio Morbidi, Senior Member, IEEE

Abstract—In this paper, we study a class of matrix
functions of the combinatorial Laplacian that preserve its
structure, i.e. that define matrices which are positive se-
midefinite, and which have zero row-sum and non-positive
off-diagonal entries. This formulation has the merit of
presenting different incarnations of the Laplacian matrix
appeared in the recent literature, in a unified framework.
For the first time, we apply this family of Laplacian func-
tions to consensus theory, and we show that they leave
the agreement value unchanged and offer distinctive ad-
vantages in terms of performance and design flexibility.
The theory is illustrated via worked examples and numer-
ical experiments featuring four representative Laplacian
functions in a shape-based distributed formation control
strategy for single-integrator robots.

Index Terms— Combinatorial Laplacian, Network sys-
tems, Consensus protocol, Matrix functions.

I. INTRODUCTION
A. Related work

THE combinatorial Laplacian is ubiquitous in network sci-
ence [1], and over the last decade we have witnessed the

emergence of several variants to describe distributed dynamic
processes. In particular, the recent advent of graph signal
processing [2], [3], graph neural networks [4], [5], and the
growing popularity of network systems [6], [7], has had a
catalytic effect on the research in this field.

An interesting variant of combinatorial Laplacian is the
deformed Laplacian, which has found applications in multi-
agent systems theory [8], semi-supervised learning [9], and
in the design of new centrality measures for undirected
and directed networks [10]–[13]. Along the same lines
as [8], the parametric Laplacian has been introduced in [14].
The Bethe-Hessian matrix, the reversal of the deformed Lapla-
cian in the case of undirected graphs [11], has been used for
spectral clustering [15] and community detection in sparse
heterogeneous networks [16] (see also [17]). A different
definition of deformed Laplacian, which encompasses several
Laplacian-like matrices available in the literature (connection,
magnetic [18], signed and dilation), was proposed in [19].
Notably, the dilation Laplacian has been shown to be useful
for spectral ranking in directed graphs.

The p-Laplacian, a nonlinear generalization of the combi-
natorial Laplacian, has recently attracted the attention of the
machine learning community. The p-Laplacian reduces to the
standard Laplacian for p = 2, and it has been successfully
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applied to solve two-class [20] and multi-class [21] cluster-
ing problems.

The exponential of the negated Laplacian is common in the
study of classical transport on lattices and networks, and it is
often referred to as the “heat kernel” because of its interpre-
tation as a diffusion process related to the heat equation [22].
It also appears in discrete-time agreement protocols [6].

Laplacian powers have been widely explored in the liter-
ature as well. In particular, the bi-Laplacian (or Laplacian
squared) has been considered in [23] for image colorization.
The bi-Laplacian corresponds to the discretization of the bi-
harmonic PDE equation with Neumann boundary condition,
which together with its numerical schemes is widely studied
and applied in problems of linear elasticity [24, Ch. 11],
data interpolation, and computer vision (image inpainting).
For non-integer powers in the (0, 1] interval, we obtain the so-
called fractional Laplacian, which has been used to study ran-
dom walks on networks, among other applications [22], [25].
In [26], the authors have proposed a generalization of the
PageRank algorithm for semi-supervised learning based on
a (non-necessary integer) power of the Laplacian matrix.
Finally, it has been recently shown that graph filters can
be represented by matrix polynomials of the combinatorial
Laplacian [27], [28].

B. Original contributions, organization and notation
The original contribution of this paper is twofold. First

of all, following [22], we study matrix functions of the Lapla-
cian of an undirected graph, that preserve its main algebraic
properties, i.e. that give rise to matrices which are positive
semidefinite and which have zero row-sum and non-positive
off-diagonal entries. These Laplacian functions promote the
emergence of non-local network correlations: in fact, thanks to
their ability to reorganize the information exchanges between
the nodes of a graph, long-range interactions are enabled.
This general formulation allows us to bring together a number
of results scattered across different areas and shed new light
on them. Second, we revisit the classical continuous-time
consensus protocol by replacing the combinatorial Laplacian
with our family of Laplacian functions. These functions leave
the agreement value unchanged and offer some practical
advantages. In fact, in many situations, by simply tuning a
scalar parameter, the user can seamlessly modify the dynamic
behavior of the multi-agent system, for example, to guarantee
faster convergence towards consensus or to adapt to variable
external conditions. This generalizes existing work in the
literature, where integer powers of the Laplacian have been
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considered for fast consensus seeking (by introducing a “multi-
hop relay” interpretation [29]), and for dynamic consensus
over wireless sensor networks [30]. The price to pay for the
increased design flexibility, is that the interaction graph asso-
ciated with our Laplacian functions is generally more dense
than that of the original Laplacian. A simple yet effective
approximation of the Laplacian functions is thus proposed to
ensure a distributed implementation of the new coordination
protocols. The theoretical findings are illustrated via worked
examples and validated via numerical simulations in which
single-integrator robots run a consensus-based formation con-
trol algorithm.

The rest of this paper is organized as follows. In Sect. II,
we briefly recall the definition of two matrix functions, and
some basic notions of algebraic graph theory. In Sect. III, we
study a family of functions of the combinatorial Laplacian
that retain its special structure, and in Sect. IV we use them
in a novel shape-based distributed formation control proto-
col, which is validated via extensive numerical experiments.
Finally, in Sect. V, the main contributions of the paper are
summarized and some possible avenues for future research
are outlined.

Notation: Throughout this paper, Z>0 and Z≥0 denote the
sets of positive and non-negative integers, respectively, In the
n×n identity matrix, 0n the n×n matrix of zeros, 1 a column
vector of n ones, and ⊗ the Kronecker product. For a complex
number z ∈ C, we use Im(z) to denote its imaginary part, and
arg(z) its argument.

II. BACKGROUND MATERIAL

In this section, we briefly recall the definitions of matrix
logarithm and matrix pth root, and review some elementary
notions of graph theory, which serve as the foundation of the
next sections.

A. Matrix logarithm
A logarithm of A ∈ Cn×n is any matrix X such that

eX = A. Any nonsingular matrix A has infinitely many
logarithms [31, Th. 1.27]. In this paper, we assume that
A ∈ Cn×n has no eigenvalues on the closed negative real
axis, and log(·) always denotes the principal logarithm, which
is the unique logarithm all of whose eigenvalues lie in the strip
{z ∈ C : −π < Im(z) < π} [31, Th. 1.31]. If A is real, then
its principal logarithm is real.

B. Matrix pth root
Let p ≥ 2 be an integer. Matrix X is a pth root of A ∈ Cn×n

if Xp = A. We recall the following result on existence of pth
roots [31, Th. 7.2].

Theorem 1 (Principal pth root) Let A ∈ Cn×n have no
eigenvalues on the closed negative real axis. There is a unique
pth root X of A all of whose eigenvalues lie in the sector
{z ∈ C : −π/p < arg(z) < π/p}, and it is a primary matrix
function1 of A. We refer to X as the principal pth root of A
and write X = A1/p. If A is real, then A1/p is real. �

1For more details on primary and nonprimary matrix functions, the reader
is referred to [31, Sect. 1.4].

For p = 2, we have the following extension of Theorem 1
which allows A to be singular (see Problem 1.27 in [31]).

Proposition 1 (Square root of a singular matrix) Let A ∈
Cn×n have no eigenvalues on the closed negative real axis,
except possibly for a semisimple2 zero eigenvalue. There is a
unique square root X of A that is a primary matrix function
of A and whose nonzero eigenvalues lie in the open right
half-plane. If A is real, then X is real. �

There exist four main numerical algorithms for the computa-
tion of the matrix pth root: Schur, Newton, and Schur-Newton
algorithms, and matrix sign method [31, Sect. 7]. The Schur
algorithm assumes that A ∈ Rn×n is nonsingular, whereas
the other methods assume that A has no eigenvalues on the
closed negative real axis.

C. Graph theory

Let G = (V, E) be a connected graph, where V =
{1, . . . , n} is the set of nodes and E is the set of edges. In this
paper, all G’s are simple, i.e. they are unweighted, undirected
graphs containing no self-loops or multiple edges [32].

Definition 1 (Adjacency and Laplacian matrix)
• The adjacency matrix A of graph G is an n× n matrix

defined as [A]ij = 1 if {i, j} ∈ E and [A]ij = 0
otherwise.

• The Laplacian matrix of graph G is an n× n symmetric
positive semidefinite matrix defined as L(G) = D − A
where D = diag(d1, d2, . . . , dn) = diag(A1) is the
degree matrix. �

It is easy to verify that L1 = 0, i.e. the row-sums of L are
equal to zero, and that the off-diagonal entries of L are non-
positive. Since L is a symmetric matrix, we have Lvi = λivi,
i ∈ {1, 2, . . . , n}, where the eigenvalues {λ1, λ2, . . . , λn}
of L are arranged in increasing order, i.e. 0 = λ1 < λ2 ≤
. . . ≤ λn, and {v1,v2, . . . ,vn} are the associated orthonormal
eigenvectors, with v1 = 1/

√
n.

III. FUNCTIONS OF THE LAPLACIAN MATRIX

In this section, we study matrix functions f(L) of the com-
binatorial Laplacian L. These functions define matrices which
incorporate the network topology information and which pro-
mote non-local interactions between the nodes of graph G.
We will exploit them in Sect. IV, to design a new distributed
formation control strategy for single-integrator robots. Our
exposition here follows the outline of [22, Ch. 1]: however,
several new examples and results are provided in Sect. III-A
and Sect. III-B, and the notation has been modified to conform
to that conventionally used in systems theory. For the sake of
simplicity, we henceforth use fij(L) to denote the (i, j) entry
of matrix f(L).

Given a well-defined function f(x) : R → R, the
matrix f(L) can be obtained using the series expan-
sion f(x) =

∑∞
�=0 c� x

� where c� is the real coefficient of

2An eigenvalue is called semisimple if its algebraic multiplicity equals its
geometric multiplicity.
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the �th term, or using the spectral decomposition of L.
The latter option gives

f(L) =

n∑
i=1

f(λi)viv
T
i . (1)

Equation (1) shows that to find f(L), one should calcu-
late the spectrum {λ1, λ2, . . . , λn} of L and then compute
{f(λ1), f(λ2), . . . , f(λn)}: the eigenvectors f(L) remain the
same as those of L. From (1), we also notice that matrix f(L)
is symmetric by construction. For further details on the theory
of functions of matrices, see [31] and [33, Ch. 9].

Note that while equation (1) allows to calculate general
functions of L, we are interested here in functions which pre-
serve the special structure of the Laplacian matrix (as reported
in Sect. II-C). In order to retain these desirable properties, the
matrix f(L) should satisfy the following three conditions:

• Condition I: f(L) is positive semidefinite, i.e. the eigen-
values of f(L) are restricted to be positive or zero.

• Condition II: the entries fij(L) satisfy
∑n

j=1 fij(L) = 0
for i ∈ {1, 2, . . . , n}, or equivalently f(L)1 = 0, i.e.
each row-sum is equal to zero.

• Condition III: the off-diagonal entries of f(L) are non-
positive and they are not allowed to be all simultaneously
zero. Hence, owing to Condition II, the diagonal elements
of f(L) are all strictly positive.

Condition I is guaranteed if f(x) ≥ 0 for x ≥ 0. Then
f(λi) ≥ 0 for all i, and the eigenvalues of f(L) can be
arranged in increasing order as those of L. On the other hand,
by using equation (1), it is easy to verify that Condition II
is fulfilled if f(0) = 0. However, these two conditions
on the function f do not guarantee that the off-diagonal
entries of f(L) are non-positive, as required by Condition III.
For example, if we take G = Sn (the star graph with n nodes),
we have that

L(G) =

⎡
⎢⎢⎢⎢⎢⎣

n− 1 −1 −1 · · · −1
−1 1 0 · · · 0
−1 0 1 · · · 0

...
...

...
. . .

...
−1 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦ .

The function f(x) = x2 is non-negative for x ≥ 0 and
f(0) = 0. Thereby, f(L) = L2, a.k.a. bi-Laplacian [23],
satisfies Conditions I and II, but the structure imposed by
Condition III is not preserved: in fact, L2 has strictly positive
(unitary) off-diagonal entries. On the contrary, the function
f(x) = log(x + 1) is non-negative for x ≥ 0, f(0) = 0, and
f(L) = log(L+ In) has negative off-diagonal entries. Hence,
log(L+ In) is an admissible Laplacian function.

The following notion of completely monotonic function [34]
plays an important role in the characterization of the admissi-
ble functions f(L).

Definition 2 (Completely monotonic function) A function
g(x) defined on 0 < x < ∞ is said to be completely
monotonic, if it possesses derivatives g(m)(x) = dm

dxm g(x)
for all m ∈ Z≥0 and if (−1)m g(m)(x) ≥ 0 for all x > 0. �

In [22, Sect. 1.4.2], the authors have proved that the
functions f(L) that satisfy the necessary Condition III, can be
constructed via the scalar functions

f(x) = H(0) − H(−x), 0 ≤ x < ∞, (2)

where H(x) denotes a primitive of the auxiliary scalar function
h(x), i.e. h(x) = d

dxH(x). The function f(x) can be expressed
in terms of a function g(x) = h(−x) defined on 0 ≤ x < ∞,
which satisfies the following conditions:

d

dx
f(x) = g(x) > 0, 0 ≤ x < ∞, (3)

and

(−1)m g(m)(x) ≥ 0, 0 ≤ x < ∞, m ∈ Z>0. (4)

According to Definition 2, a function g(x) that fulfills condi-
tions (3) and (4) is a completely monotonic function. By (3),
g(x) is strictly positive for x ≥ 0, including, in particular, the
entire spectral interval 0 ≤ x ≤ λn of the Laplacian L, and
the function f(x) monotonically increases on its interval of
definition 0 ≤ x < ∞. This monotonicity property implies that
the algebraic multiplicity of the eigenvalues of L is maintained
in f(L) (in fact, f(λi) > f(λj) for λi > λj ). The function
f(x) is also given by the following integral

f(x) =

∫ x

0

g(y) dy, 0 ≤ x < ∞, (5)

i.e. it is the primitive of g(x) with f(0) = 0 and with f(x) > 0
for x > 0. In [22, Sect. 1.4.3], the authors have shown that
relations (2)-(5) are indeed sufficient to generate scalar C∞

functions f(x) which define admissible Laplacian functions
f(L) satisfying Conditions I-III. Note that f(x) in (5) has the
general structure given in equation (2): hence, the admissible
Laplacian functions can be represented as

f(L) = H(0)In −H(−L) =

n∑
i=2

(H(0)−H(−λi))viv
T
i .

There is no term v1v
T
1 since f(λ1) = 0 (recall equation (1)).

The eigenvector of f(L) associated with the zero eigenvalue
is 1/

√
n, since L and f(L) have the same set of eigenvectors.

A. Examples of f(L)

There exist several classes of completely monotonic func-
tions which in conjunction with equation (5) allow to construct
admissible Laplacian functions satisfying Conditions I-III.
We focus here on six examples (half of which are not reported
in [22]), that are of special interest.

1) The function g(x) = (λ − x)m for 0 ≤ x < λ with
m ∈ Z≥0 and 0 < λn < λ, satisfies conditions (3)
and (4). From equation (5), we obtain

f(x) =

∫ x

0

(λ − y)m dy

=
1

m+ 1

(
λm+1 − (λ − x)m+1

)
.
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This yields the matrix function:

f(L) =
1

m+ 1

(
λm+1 In − (λIn − L)m+1

)
=

n∑
i=1

1

m+ 1

(
λm+1 − (λ− λi)

m+1
)
viv

T
i .

Note that in the trivial case of m = 0, the function
g(x) = 1, and f(x) is the identity function, which
yields f(L) = L.

2) Consider the function

g(x) =
a

(ax+ b)m
, a > 0, b ≥ 0, m ∈ Z>0.

Let us start with the case of m = 1. From equation (5),
we obtain f(x) = log(ax+ b) for x ≥ 0. However, the
constraint f(0) = 0, requires f(x) = log(ax+b)−log b.
Hence, we have

f(L) = log(aL+ bIn)− log(bIn).

Let us now consider the general case of m ∈ {2, 3, . . .}.
Following the same procedure as above, we obtain:

f(x) = − 1

(m− 1)(ax+ b)m−1
,

which we modify into

f(x) =
1

m− 1

[
− 1

(ax+ b)m−1
+

1

bm−1

]
,

to guarantee that f(0) = 0. Hence, we end up with

f(L) =
1

m− 1

[−(aL+ bIn)
1−m + b1−m In

]
.

3) The exponential g(x) = ae−ax with a > 0, is a com-
pletely monotonic function. The corresponding function
that retains the Laplacian structure is f(x) = 1 − e−ax

and thus f(L) = In − e−aL. Matrix e−aL is doubly
stochastic and it has appeared under different forms
in consensus theory [6]. Functions like e−aL and the
regularized Laplacian (In+aL)−1, have been also used
as kernels to compute similarities between the nodes of
an undirected graph [35].

4) The function

g(x) =
1

b − ce−ax
, a > 0, b > c > 0,

defined on 0 < x < ∞, is completely monotonic [34].
From (5), we obtain

f(x) =
1

ab

[
log(b − ce−ax) + ax

]
.

To guarantee f(0) = 0, we set

f(x) =
1

ab

[
log(b − ce−ax) + ax− log(b− c)

]
,

yielding

f(L) =
1

ab

[
log(bIn − ce−aL) + aL− log(b − c)In

]
.

5) The function g(x) = (β + 1)xβ with β ≤ 0 is
a completely monotonic function. From equation (5),

we obtain f(x) = xβ+1. The condition f(0) = 0,
requires that −1 < β ≤ 0. Therefore, the function
f(x) = xγ with γ ∈ R such that 0 < γ ≤ 1, preserves
the Laplacian structure imposed by Conditions I-III.
We thus obtain the so-called fractional Laplacian,
f(L) = Lγ , which has been studied in the theory of
random walks, and in diffusive and quantum transport
on networks [22, Ch. 2]. Note that integer powers γ ∈
{2, 3, . . .}, fail to satisfy Condition III.

6) Node-invariant graph filters are linear graph-signal op-
erators of the form [27], [36]:

f(L) =
m−1∑
j =0

bjL
j , (6)

where b0, b1, . . . , bm−1 are real coefficients, i.e. graph
filters are polynomials of the Laplacian L (or of any
other n × n matrix, such as the adjacency matrix A,
whose sparsity pattern captures the local structure of
graph G). A graph filter can be equivalently defined as

f(L) = a0

m−1∏
j =1

(L− ajIn),

where a0, a1, . . . , am−1 are real coefficients, which also
gives rise to a polynomial on L of degree m − 1.
From (6), we can see that Conditions I and II are fulfilled
if b0 = 0 and bj ≥ 0 for j ∈ {1, 2, . . . ,m− 1}, but
Condition III is not satisfied, in general. Graph filters
based on Chebyshev and Cayley polynomials have also
been recently introduced to process graph-structured
data [5], [28].

B. General properties of f(L)

In the previous section, we have identified the family of
functions that preserve the structure of the combinatorial
Laplacian. We now briefly discuss some general properties
of the matrix f(L), which will be used in Sect. IV.

1) Generalized degree: By construction, the diagonal en-
tries of f(L) are positive, and analogously to the Laplacian L,
we can refer to di = fii(L), i ∈ {1, 2, . . . , n}, as the gener-
alized degree associated with the function f [22, Sect. 1.5.1].
The average of the generalized degree is defined as

1

n

n∑
i=1

di =
1

n
trace(f(L)) =

1

n

n∑
i=1

f(λi).

In the case of the fractional Laplacian, it is called the average
fractional degree. Note that di does not only capture the local
information (on its nearest neighbors) of node i, but also
incorporates knowledge at the level of the whole network.
This “non-locality” property is further explored below.

2) Laplacian functions for regular graphs: To gain some
insight into the structure of the Laplacian functions f(L),
it is worth focusing on the special case of regular graphs.
In a regular graph, each node has the same degree k, and the
Laplacian takes the simple form L = kIn −A. By using the
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Fig. 1. Graphs Br
5 for r ∈ {1, 2, 3}. Note that B4

5 (light gray) is the
complete graph with 5 nodes.

series expansion presented at the beginning of Sect. III, we can
express f(L) as follows [22, Sect. 1.5.2]:

f(L) =
∞∑

�=1

c�(kIn −A)� =
∞∑

�=1

�∑
h=0

c�

(
�
h

)
k�−h(−1)hAh.

(7)
Equation (7) unveils a connection between f(L) and the
integer powers of the adjacency matrix A. Recall that the (i, j)
entry of Ah for h ∈ Z>0, is the number of all the possible
paths connecting node i to node j with h edges, whereas the
diagonal entry (i, i) of Ah is the number of closed paths
with h edges which start and end at the same node i [32].
Therefore, equation (7) shows how the function f changes the
local character of the Laplacian L and makes it a long-range
operator: matrix f(L) is thus well suited to define dynamical
processes with non-local interactions on networks.

3) Exponential decay of functions of banded matrices:
A band matrix is a sparse matrix whose nonzero entries
are limited to a diagonal band, including the main diagonal
and (zero or) more diagonals on either side. Given a matrix
B ∈ Cn×n, if all entries of B are zero outside a diagonally
bordered band whose range is determined by r1, r2 ∈ Z≥0

(i.e. [B]ij = 0 if j < i − r1 or i + r2 < j), then r1 and r2
are called the lower bandwidth and upper bandwidth of B,
respectively. The bandwidth of B is the maximum of r1 and
r2, i.e. it is the integer r such that [B]ij = 0 if |i − j| > r.
For example, a band matrix with r1 = r2 = 0 (r1 = r2 = 1)
is a diagonal (tridiagonal) matrix.

For the entries of functions of Hermitian band matrices, we
have the following exponentially decaying bound (further de-
cay results applying to general matrices, are available in [37]):

Theorem 2 (Benzi & Golub [38]) Let B ∈ Cn×n be
Hermitian and of bandwidth r, and let the function f be
analytic in an ellipse containing the spectrum of B. Then,
f(B) satisfies |fij(B)| ≤ M�|i−j|, where M is a constant
and � = μ1/r, where μ ∈ (0, 1) depends only on f . �

Theorem 2 shows that the entries of f(B) are bounded in an
exponential decay manner away from the diagonal (the rate of

decay depending on f ), with the bound decreasing as the band-
width r decreases. Note that this does not necessarily mean
that “decay to zero” is observed in practice [31, Sect. 14.2].

If we turn our attention again to the Laplacian func-
tions f(L), it is easy to verify that the following family
of undirected graphs with n nodes, admits a Laplacian L
of bandwidth r ∈ {1, 2, . . . , n − 2}: Br

n = (V, E) where
{i, j} ∈ E if and only if j = i+ s with i ∈ {1, 2, . . . , n− s}
and s ∈ {1, 2, . . . , r}. Graph B1

n coincides with Pn (the path
graph with n nodes), whose Laplacian is a tridiagonal matrix.
We excluded the case of r = n − 1, since it corresponds to
the complete graph with n nodes, whose Laplacian has zero
bandwidth (see the example in Fig. 1). Note that this family
of graphs is not unique. In fact, the entries on the diagonal
band of L(Br

n) are all different from zero, but the definition
of band matrix does not preclude null values.

IV. APPLICATION OF LAPLACIAN FUNCTIONS TO
CONSENSUS-BASED FORMATION CONTROL

In this section, we leverage the Laplacian functions f(L)
studied in Sect. III, to design a new class of continuous-
time consensus protocols. In particular, we will focus on the
following generalization of the shape-based formation control
strategy presented in [6, Ch. 6.3]:

ẋ(t) = (−f(L) ⊗ I2)(x(t) − ξ), x(0) = x0, (8)

where the state vector x(t) = [x1(t), y1(t), . . . , xn(t), yn(t)]
T

∈ R2n contains the x-and y-coordinates of the positions of
n single-integrator robots at time t ≥ 0. This strategy allows to
drive the n robots to a rotationally-invariant formation encoded
through the formation graph GF = (V, EF) and the associated
constant vector of target locations ξ ∈ R2n. For the sake of
simplicity, in the following, we will assume that GF coincides
with the interaction (or communication) graph G = (V, E) of
the robots (thus, the inclusion EF ⊆ E is trivially satisfied,
cf. [6, Th. 6.12]).

Remark 1 (Invariance of the agreement value) By virtue of
the spectral properties of the admissible Laplacian functions
discussed in Sect. III, it is easy to prove that the state vector
x(t) of system (8) asymptotically converges, for any initial
condition x0 ∈ R2n, to a constant vector whose value does
not depend on the f(L) chosen (in other words, the agreement
value is f -invariant).

Remark 2 (Distributed implementation of (8)) While some
admissible functions f conserve, at least in part, the sparsity
pattern of the Laplacian L, the emergence of long-range
interactions between the nodes of the graph typically translates
into dense matrix functions of the Laplacian (i.e. the weighted
interaction graph associated with f(L) tends to be fully con-
nected). This means that to implement (8), the robots should
adopt an all-to-all communication pattern, which is undesir-
able, in practice. However, in many instances (cf. Theorem 2),
a large percentage of the off-diagonal entries of f(L) is very
close to zero, which correspond to network connections which
bring negligible information to the nodes. This calls for an
operator which most nearly transforms f(L) into a new matrix
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f q(L) which is sparser than f(L). A simple solution is to
define f q(L) as follows:

f q
ij(L) =

{
0 if |fij(L)| < q, i �= j,

fij(L) otherwise,

where q is a small positive constant (a threshold). This trans-
formation does not break the symmetry of f(L) and the off-
diagonal entries f q(L) remain non-positive as required by
Condition III. Moreover, the Gershgorin circle theorem en-
sures that f q(L), as f(L), is positive semidefinite. In conclu-
sion, while f q(L) still remains less sparse than L in general,
it makes protocol (8) amenable to a distributed implementation
(see Sect. IV-B for more details).

A. Case studies
For later use in Sect. IV-B, we recall here some elemen-

tary properties of four of the Laplacian functions examined
in Sect. III-A.

1) Logarithmic function: Let f(x) = log(ax + 1) with
a > 0. Note that

lim
a→ 0+

f(L) = log(aL+ In) = 0n.

Moreover, f(L) grows unbounded, as a → ∞.
2) Exponential function: Let f(x) = 1 − e−ax with

a > 0. Matrix f(L) = In − e−aL ranges between 0n

(as a → 0+) and In − 1
n11

T (as a → ∞). In fact

lim
a→∞ e−aL = In − LL# =

1

n
11T ,

where L# denotes the group generalized inverse
of L [39, Prop. 11.8.2]. Finally, if we consider the
Loewner ordering (i.e. the partial ordering “�” defined
by the convex cone of positive semidefinite matrices),
the following property holds true for f(L) = In−e−aL:

0n � f(L) � In − 1

n
11T .
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Fig. 2. Mapping of the spectrum of L(P10) via four admissible
functions f(x). The 10 eigenvalues of L(P10) are represented as black
dots on the horizontal axis and those of f(L(P10)) as colored dots on
the vertical axis.

3) Quadratic function: Let g(x) = λ − x for 0 ≤ x < λ,
which is positive over the spectrum of L, if λ > λn with
2−2 cos((n−1)π/n) ≤ λn ≤ n. By choosing such a λ,
from (5), we have that f(x) = 1

2 [λ
2 − (λ − x)2] =

1
2x(2λ− x), which yields the quadratic matrix function
f(L) = − 1

2L
2 + λL.

4) Fractional power: Let f(x) = xγ with 0 < γ ≤ 1.
Matrix f(L) = Lγ ranges between In (as γ → 0+) and
L (for γ = 1).

For the sake of illustration, Fig. 2 shows how the functions
f(x) = x (red), f(x) = log(3x+1) (green), f(x) = 1−e−3x

(blue), and f(x) = x1/3 (magenta), map the 10 eigenvalues
2−2 cos(kπ/10), k ∈ {0, 1, . . . , 9}, of the Laplacian L of the
path graph P10. Note that the exponential function maps the
spectrum of L(P10) into the [0, 1) interval: in fact 1−e−3λn =
1− 8× 10−6.

B. Numerical results

In our numerical experiments, we simulated system (8)
for 10 robots, using different Laplacian functions, interaction
graphs and vectors of target locations. We ran 20-second
simulations using Matlab ode45 solver with a variable step
(max step size: 0.01 s).

We used Matlab built-in commands logm and expm for
calculating the matrix logarithm and matrix exponential, re-
spectively. The computation of the fractional Laplacian being
more delicate, we opted for the rootpm real routine of
The Matrix Function Toolbox [40] (see also [31, Appendix D]).
This routine computes the pth root of a real matrix via the real
Schur form: similar results were obtained with rootpm sign
which computes the pth root via the matrix sign function.
Both routines handle singular matrices (L has a zero eigen-
value), and return non-principal pth roots.

In our first example, the target formation is a regular
decagon of unit radius centered at the origin, i.e. ξ =
[cos(0), sin(0), cos(2π/10), sin(2π/10), . . . , cos(9π/10),
sin(9π/10)]T ∈ R20. The interaction graph is G = P10,
and the Laplacian functions considered are f(L) = L,
f(L) = log(3L + I10) and f(L) = I10 − e−3L. The initial
positions x0 of the 10 robots have been randomly generated
by drawing the x- and y-coordinates from the standard
uniform distribution on the open interval (0, 1). The first
row of Fig. 3 reports the trajectory of the robots for each
of the three functions (the edges of the formation graph
are solid black, and the initial positions of the robots
are marked with stars). The second row of Fig. 3 shows
the corresponding time-evolution of the formation error
eee(t) = x(t) − ξ (x-coordinates, top; y-coordinates, bottom).
In the three cases, eee(t) → [τx, τy, . . . , τx, τy]

T as t → ∞,
where τx  0.3451 and τy  0.5841 are constant offsets. The
average of the generalized degree associated with the three
Laplacian functions is 1.8, 1.54 and 0.7833, respectively
(recall Sect. III-B.1), and their second smallest eigenvalues are
λ2 = 2 − 2 cos(π/10)  0.0979, log(3λ2 + 1)  0.2575 and
1 − e−3λ2  0.2545, respectively. Therefore, the logarithmic
and exponential functions accelerate convergence towards the
desired formation, and the convergence speed can be adjusted
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(f) f(L) = I10 − e−3L

Fig. 3. First example, ξ is the regular decagon and G = P10: (1st row) Trajectory of the 10 robots. The initial and final positions are marked
with a star “∗” and a hollow circle “◦”, respectively, and the edges of the formation graph are solid black; (2nd row) Time evolution of the formation
error eee(t) = x(t) − ξ of the 10 robots (for color coding, see the legends in the 1st row). (a),(d) f(L) = L, (b),(e) f(L) = log(3L + I10), and
(c),(f) f(L) = I10 − e−3L.
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Fig. 4. First example, ξ is the regular decagon and G = P10: (a) Trajectory of the 10 robots obtained by considering the approximation fq(L) of
f(L) = log(3L + I10) with q = 0.01; (b) Time evolution of the formation error eee(t) = x(t) − ξ of the 10 robots; (c) Sparsity pattern (white
squares, zero entries; black squares, nonzero entries) of the adjacency matrices associated with f(L) (left) and fq(L) (right).

by tuning a single real parameter (the positive scalar a).
However, both functions keep the agreement value unchanged.

To study the impact of the approximation introduced in
Remark 2, in Fig. 4 we considered the same interaction graph,
target formation, and initial conditions as in Figs. 3(b),(e),
but we replaced f(L) = log(3L + I10) with f q(L), where
the threshold q = 0.01. Note that the exponential decay

property of Theorem 2 holds for f(L) = log(3L + I10)
with r = 1. Figs. 4(a),(b) report the trajectory of the 10
robots and the time-evolution of the formation error eee(t),
respectively, and they qualitatively show that the proposed
approximation has a negligible effect on the dynamic behavior
of system (8). More specifically, at the end-time, t = 20 s, we
have that ‖eee(t)‖  2.1453 for f(L) and ‖eee(t)‖  1.7851
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Fig. 5. Second example, ξ is the pentagram and G = C10: (1st row) Trajectory of the 10 robots. The initial and final positions are marked with
a star “∗” and a hollow circle “◦”, respectively, and the edges of the formation graph are solid black; (2nd row) Time evolution of the formation
error eee(t) = x(t) − ξ of the 10 robots (for color coding, see the legends in the 1st row). (a),(d) f(L) = L, (b),(e) f(L) = −1

2
L2 + 5L, and

(c),(f) f(L) = L1/5.

for f q(L), where ‖ · ‖ denotes the Euclidean norm. How-
ever, the weighted interaction graph associated with f q(L)
is sparser than that associated with f(L). This is evident
in Fig. 4(c), which shows the sparsity pattern of the adja-
cency matrices diag(f1,1(L), . . . , f10,10(L))− f(L) (left) and
diag(f q

1,1(L), . . . , f
q
10,10(L)) − f q(L) (right), where the zero

entries are white and the nonzero entries are black.
In our second example, we chose the interaction graph G =

C10, the cycle graph with 10 nodes, and the desired formation
is the pentagram (or five-pointed star). Let

R =

√
5−√

5

10
, ρ =

√
25− 11

√
5

10
,

be the circumradius of the pentagram and the circumradius of
its inner pentagon, respectively. Then, the target locations of
the 10 robots can be expressed in polar coordinates as[
[ξ]j

[ξ]j+1

]
=

⎧⎨
⎩
ρ
[
cos( jπ10 ), sin( jπ10 )

]T if j ∈ {1, 5, 9, . . .},
R
[
cos( jπ10 ), sin( jπ10 )

]T if j ∈ {3, 7, 11, . . .},
where j ∈ {1, 3, 5, . . . , 19}. The Laplacian functions
considered in this second example, are f(L) = L,
f(L) = − 1

2L
2 + 5L and f(L) = L1/5. In the quadratic

function, we set λ = 5 > λ10 = 4, to satisfy the condition
discussed in Sect. IV-A. The vector of initial positions x0, is
not random this time: the 10 robots are initially placed at the

vertices of the same regular decagon of unit radius considered
as target formation in the first example. As in Fig. 3, the first
row of Fig. 5 reports the trajectory of the 10 robots for the
three Laplacian functions, and the second row, the correspond-
ing time-evolution of the formation error eee(t) = x(t) − ξ.
Since the regular decagon is centered at the origin, we have
that eee(t) → 0 as t → ∞, in all cases. Finally, note that
the average fractional degree of L1/5 is 1.0115, and that
the user can take advantage of the non-integer power γ to
modulate the convergence speed of the 10 robots towards the
desired formation. In fact, the second smallest eigenvalues of
L and L1/5, are λ2 = 2 − 2 cos(π/5)  0.3820 and λ

1/5
2 

0.8249, respectively, which explains the faster convergence
rate observed in Figs. 5(c),(f).

V. CONCLUSION AND FUTURE WORK

In this paper, we have explored a general class of ma-
trix functions of the combinatorial Laplacian, that retain its
structural properties. This allowed us to present under a
common framework, several variants of the Laplacian scattered
across different domains. For the first time, this family of
Laplacian functions has been utilized in a consensus-based
formation control protocol, revealing some attractive features.
In fact, the selected functions do not alter the agreement
value, and offer greater design flexibility. For example, our
numerical experiments show that in many situations, a single
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scalar parameter is sufficient to adjust the convergence speed
towards consensus without drastically increasing the number
of communication exchanges between the agents.

This work provides fertile ground for further research and
experimentation. One line of future research will be to relax
Condition III and consider a broader class of admissible Lapla-
cian functions. As far as the consensus protocol is concerned,
we see potential for extension to weighted directed interaction
graphs, and we plan to perform hardware experiments with
mobile robots. Finally, in [22], the authors have shown a
connection between the fractional Laplacian of a graph and
the operators in fractional calculus. There might then exist a
link between the agreement protocol driven by the fractional
Laplacian, and the coordination algorithms for fractional-order
systems studied in [41].
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Alpes, France.

Since 2014, he has been an Associate Pro-
fessor of robotics with the Université de Picardie
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