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Introduction

”The frequency and intensity of heavy precipitation
events have increased since the 1950s over most land
area for which observational data are sufficient [. . . ]”

”Confidence about peak flow trends over past decades
on the global scale is low [. . . ]”

”changes may be more
complex than simple trends”
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Objectives

Better understand the temporal variability of heavy precipitation (P) and
flood (Q) at the global scale by means of an innovative probabilistic model

100-year analysis

Identify common (P+Q) vs. specific (P-only or Q-only) signals
behind global extremes

Look for trends and low-frequency variability in those signals

180-year reconstruction

Using 20CRv3, reconstruct probabilities of extreme P/Q since 1836
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Global datasets

P: a selection from Hadex 2+3
Donat et al. (2013); Dunn et al. (2020)

Q: a selection from GSIM
Do et al. (2018); Gudmundsson et al. (2018)

Extract seasonal maxima at each site (SON, DJF, MAM, JJA)

The rectangle dilemma...

In this work, we’ll use all data available during 1916-2015
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Model

After suitable data transformation...
E[P(s, t)] =

cP(s) + λP(s)τ(t) +

P-specific covariate and its effects︷ ︸︸ ︷
π(s)δ(t) + more components...

E[Q(s, t)] =

cQ(s)︸ ︷︷ ︸
constant (intercept)

+ λQ(s)τ(t)︸ ︷︷ ︸
the SAME covariate τ affects both P and Q

+ θ(s)ω(t)︸ ︷︷ ︸
Q-specific covariate and its effects

+ more components...

one component

Legend: varies in space and time

; varies in space ; varies in time

All covariates are considered unknown and are estimated
→ Hidden Climate Indices (HCI)
τ(t) ∼ AR(1) + trend. Same for δ(t) and ω(t)
λ(s) ∼ Spatial Gaussian Process. Same for others
One component not enough at the global scale → 5 used here
(Bayesian + MCMC) estimation
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Ex.: SON season, 1st common HCI
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Trends and autocorrelations

P−specific HCI. Trend (%) = 2.56 [2.06;3.01], r = 0.02 [0.00;0.26]
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Trends and autocorrelations

P−specific HCI. Trend (%) = 2.56 [2.06;3.01], r = 0.02 [0.00;0.26]
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180-year reconstruction
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→ Using 20CRv3, reconstruction of HCIs from 1836
→ Hydro-extreme probability maps from 1836
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Thank you!

Renard & Thyer (2019). Revealing Hidden Climate Indices from the Occurrence of

Hydrologic Extremes. Water Resources Research.

Renard et al. (2021). A Hidden Climate Indices Modeling Framework for Multi-Variable

Space-Time Data. Water Resources Research.

https://globxblog.inrae.fr/

https://github.com/STooDs-tools
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Analyzed variables

Non-exceedance probability (⇔ return period) of the largest event of the
season

Example: Maximum streamflow in December-January-February for 2
Australian stations
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Model

Beta distribution reparameterized in terms of mean µ and precision γ



P(s, t) ∼ Beta (µP(s, t), γP(s)) ; Q(s, t) ∼ Beta (µQ(s, t), γQ(s))

logit (µP(s, t)) = λP,0(s) +
K∑

k=1

λP,k(s)τk(t) +
K∑

k=1

πk(s)δk(t)

logit (µQ(s, t)) = λQ,0(s) +
K∑

k=1

λQ,k(s)τk(t) +
K∑

k=1

θk(s)ωk(t)
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P-specific HCIs with large trends
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HCIs with notable autocorrelation
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Downscaling approach
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Reconstructions from 20CRv3 (1836-2015)

— estimated from P/Q — reconstructed from 20CR (1 member)
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→ Reliability: good (cross-validation); Sharpness: poor (P) to good (Q)
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