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A B S T R A C T

Brain tumor is one of the most high-risk cancers which causes the 5-year survival rate of only
about 36%. Accurate diagnosis of brain tumor is critical for the treatment planning. However, it’s
common to missing one modality in clinical scenarios. In this paper, we propose a novel brain tumor
segmentation network to impute the missing data. The proposed network consists of a conditional
generator, a multi-source correlation network and a segmentation network. To impute the missing
data, we propose to use a conditional generator to generate the missing modality under the condition
of the available modalities. As the multi MR modalities have a strong relationship in tumor regions,
we design a multi-source correlation network to learn the multi-source correlation. On the one hand,
the multi-source correlation network can help the conditional generator to generate the missing
modality which should keep the consistent correlation with the available modalities. On the other
hand, it can guide the segmentation network to learn the correlated feature representations to improve
the segmentation performance. The experiments evaluated on BraTS 2018 dataset demonstrate the
superior performance of the proposed method when compared with the state-of-the-art methods.

1. Introduction
Brain tumor are the abnormal growth of cells inside

the brain. Gliomas are one of the most common types
of brain tumors, which can primarily or secondarily grow
in the Central Nervous System (CNS) and lead to death
[1, 2]. Manually segmenting brain tumors requires clinical
expertise, it is time-consuming and challenging. Therefore,
developing an automatic brain tumor segmentation network
is of critical importance to improve diagnosis to perform
surgery and to make treatment planning. Nowadays, Mag-
netic Resonance Imaging (MRI) is an effective technique
for radiologist to diagnose the brain tumor and make the
treatment planning, which uses a magnetic field and radio
frequency waves to give a detailed view of the soft tissues of
the brain. In addition, different MR sequences can provide
complementary information to improve the diagnosis results
[3]. The widely used MR sequences are Fluid Attenuation
Inversion Recovery (FLAIR), T1-weighted (T1), contrast-
enhanced T1-weighted (T1c) and T2-weighted (T2) images,
which are presented in Fig. 1. In this work, we consider
these MR sequences as different modalities. However, due to
the acquisition protocol, image corruption or scanning cost,
it usually happens that one modality is missing in clinical
practice. This situation makes segmentation more difficult
due to incomplete datasets and there is no prior information
to indicate which modality will be missing.

In this paper, we propose to combine conditional gen-
erator and multi-source correlation to help the brain tumor
segmentation in the case of missing data. The preliminary
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Figure 1: The commonly used four MR modalities: T1, FLAIR,
T1c and T2. GT is the corresponding ground truth. Enhancing
tumor and necrotic tumor are shown in blue, edema in yellow
and enhancing tumor in red

conference version [4] and the journal version [5] simply
replaced a missing modalities by an available modality. This
was a weak point of the method. This paper extended the
previous works by designing an additional conditional gen-
erator to generate a representation of the missing modality,
which highlights the tumor regions because of the sharing
encoders with the segmentation network. Specifically, we
use the missing modality index as the condition. The condi-
tion imposed on the generator makes it possible to generate
the missing modality in a more relevant and supervised way.
The whole network architecture is totally different, and more
comparison experiments and discussions are addressed. This
new work has improved the results of the previous works.
The main contributions of our method are:

1) To impute the missing modality, a conditional genera-
tor is designed to generate the missing modality with multi-
source correlation constraint among the modalities.

2) A multi-source correlation network is introduced to
learn the latent multi-source correlation among modalities.
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On the one hand, it can help the conditional generator to em-
phasize correlated tumor features of the missing modality.
On the other hand, it can guide the segmentation network
to learn the correlated features to achieve the better perfor-
mance.

3) The multi-modal MR brain tumor segmentation net-
work utilizing the multi-source correlation to conditionally
generate the missing modality is first proposed.

4) The extensive experimental results and discussions
demonstrate the effectiveness of our proposed method and
the superior performance compared with the state-of-the-art
approaches.

The paper is organized as follows: Section 2 introduced
the related works. Section 3 details our proposed method.
Section 4 presents the experimental settings. Section 5
presents the experimental results. Section 6 concludes this
work.

2. Related works
Over the past few years, many conventional [6, 7, 8, 9]

and deep learning [10, 11, 12, 13, 14, 15] based approaches
have been proposed to automatically segment brain tumors
in MRI. These methods apply the full modalities to do the
segmentation. However, it is not always possible to have
the complete modalities, and it is common to missing one
modality in clinical scenarios. Therefore, it is necessary to
develop an automatic brain tumor segmentation method to
overcome this problem.

Currently, a large amount of researches are conducted to
segment the brain tumor with missing data [16, 17, 18, 19,
20, 21, 22, 23]. For example, Havaei et al. [16] proposed
to first project each available image into a single latent rep-
resentation space. Then, these single latent representations
are merged via computing the mean and variance to achieve
the segmentation. Lau et al. [17] proposed to map a variable
number of input modalities into a unified representation by
calculating the mean for the final segmentation. Chartsias
et al. [18] proposed to minimize the L1 or L2 distance
of features from different modalities. Recently, Chen et al.
[19] employed the feature disentanglement theory to do
the brain tumor segmentation with missing data. Shen et
al. [20] proposed a domain adaptation method on feature
maps to recover the information from the missing modality.
Dorent et al. [21] introduced the variational auto-encoders
to cope with the missing modalities issue in brain tumor
segmentation, which becomes the state-of-the-art method.
Grøvik et al. [22] designed a network to handle the missing
modalities based on DeepLab V3 architecture with dilated
convolution. Conte et al. [23] proposed to synthesize the
missing modalities via Generative Adversarial Network, and
then use them for brain tumor segmentation.

Recently, conditional Generative Adversarial Network
(cGAN) [24, 25] has demonstrated to be a promising ap-
proach for image synthesis. However, the training of GAN is
highly unstable and difficult to converge. On the contrary, U-
Net [26] is easier to implement and has also been widely used
in the synthesis task due to its contracting and expanding

Figure 2: The overview of our proposed network, consisting
of a conditional generator, a multi-source correlation network
and a segmentation network, here 𝑋4 represents the missing
modality.

paths in the encoder and decoder. Some related works have
been proposed to adopt U-Net as image generator [27, 28].
For example, Emami et al. [27] proposed a frequency-aware
attention U-net to generate PET (Positron Emission Tomog-
raphy) images from MRI for Alzheimer’s disease. Han et
al. [28] introduced a U-Net based deep neural network to
achieve CT generation from MR images for brain tumor
segmentation.

3. Method
The proposed network consists of three sub-networks,

a conditional generator, a multi-source correlation network
and a segmentation network. The generator network and
segmentation network share the same encoders to emphasize
the tumor features in the missing modality. Fig. 2 presents
the overview of the network. First, the conditional genera-
tor takes the available modalities as inputs to generate the
missing modality. Then, an additional encoder is used to
extract the individual feature representation from the gener-
ated modality. Following that, the multi-source correlation
network takes the individual feature representations of the
new full modalities to discover the multi-source correlation
among modalities and learn the correlated feature represen-
tations. Finally, a decoder is introduced to do the brain tumor
segmentation.

3.1. Conditionally generating the missing modality
The proposed conditional generator is a multi-encoder

based U-Net. The architecture is depicted in Fig. 3. Each
single encoder consists of a CBR (Convolution, Batch nor-
malization, ReLU) layer and a res_dil block in each layer.
Except the first layer, strided-convolution (𝑠𝑡𝑟𝑖𝑑𝑒 = 2) is
used to replace the max-pooling to avoid the loss of spatial
information. Here, the res_dil block is to applied to increase
the receptive field to learn more semantic features. In the last
second layer of the encoder, the condition (missing modality
index) is added as an additional input layer. Here, we propose
to encode the missing modality as an index (0, 1, 2, 3 corre-
sponding to T2, T1c, FLAIR and T1 respectively.) using an
embedding layer. Then, we flatten and reshape it to the same
size of the feature maps in the encoder. Finally, it is concate-
nated with the feature maps. The condition can constrain the
generator to generate the corresponding missing modality in
a more targeted way. In the decoder, a up-sampling layer and
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Figure 3: The architecture of the proposed conditional gener-
ator. We take one encoder and the decoder as an example.

a convolution layer are first used. Then the concatenation is
used to combine the features from the corresponding level of
the encoders. Following that, a CBR layer and a res_dil block
are used to adjust the number of features and enlarge the
receptive field, respectively. Finally, the segmentation result
is obtained after a sigmoid activation function.

In this work, we focus on learning the effective features
for segmentation. Therefore, we design the encoders shared
by the conditional generator and the segmentation network
for the available modalities. On the one hand, the shared en-
coders can reduce the complexity the network. On the other
hand, the segmentation network can guide the conditional
generator to generate an effective missing modality where
the tumor regions are highlighted. Besides, the generated
modality can benefit the following segmentation.

3.2. Learning the multi-source correlation
Since the same tumor regions are observed by different

MR modalities for each patient. Therefore, there is a strong
correlation in intensity distribution in tumor regions in each
pair of MR modalities [4]. In this paper, we introduce
a Multi-source Correlation (MC) network to discover the
multi-source correlation among modalities based on our pre-
vious work [5]. The detailed network architecture is depicted
in Fig. 4.

The proposed MC network includes three modules: Pa-
rameter Estimation Module, Correlation Expression Mod-
ule and Correlation Loss. First, each input modality {𝑀𝑖},
where 𝑖 = {0, 1, 2, 3}, is fed to the individual encoder to
extract the individual feature representation 𝑓𝑖(𝑀𝑖|𝜃𝑖). Here,
the generated missing modality obtained by conditional gen-
erator is denoted as 𝑋4. It is noted that only the generated
modality needs to train an additional encoder to get the
individual feature representation, the available modalities
can reuse the encoders from the conditional generator. Then,
the parameter estimation module is used to produce the
correlation parameters, Γ𝑖 = {𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝛿𝑖}, according to the
individual feature representation 𝑓𝑖(𝑀𝑖|𝜃𝑖). The parameter
estimation module consists of two fully connected networks.
Finally, the correlated feature representation 𝑔𝑖(𝑀𝑖|𝜃𝑖) is
obtained via the correlation expression module. Based on
the observation, we utilize the linear correlation expression
(Equation 1) to describe the multi-source correlation. To
constrain the estimated correlated feature representation and
the original feature representation distributions to be as
close as possible, we propose to use a simple and widely

Figure 4: The architecture of the proposed multi-source
correlation network.

used divergence, Kullback–Leibler divergence, to form the
correlation loss function (Equation 2). More comparison
results on different divergence functions are presented in
Section 5.6.

𝑔𝑖(𝑀𝑖|𝜃𝑖) = 𝛼𝑖 ⊙ 𝑓𝑗(𝑀𝑗|𝜃𝑗) + 𝛽𝑖 ⊙ 𝑓𝑘(𝑀𝑘|𝜃𝑘)+
𝛾𝑖 ⊙ 𝑓𝑙(𝑀𝑙|𝜃𝑙) + 𝛿𝑖, (𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙)

(1)

where 𝑀 is the input modality, 𝑖, 𝑗, 𝑘 and 𝑙 are the indexes
of the modality, 𝜃 is the network parameters, 𝑓 is the
individual feature representation, 𝑔 is the correlated feature
representation, 𝛼, 𝛽, 𝛾 and 𝛿 are the correlation parameters.

𝐿𝑐 =
𝑆
∑

𝑖=1
𝑃 (𝑓𝑖)𝑙𝑜𝑔

𝑃 (𝑓𝑖)
𝑄(𝑔𝑖)

(2)

where 𝑆 is the number of modality, 𝑃 (𝑓𝑖) and 𝑄(𝑔𝑖) are the
original feature representation distributions and correlated
feature representation distributions of modality 𝑖, respec-
tively.

3.3. Multi-encoder based segmentation network
To take advantage of the different feature information

from the multi-modalities, we applied our previous network
architecture [29], a multi-encoder based U-Net, to do the
brain tumor segmentation.

4. Experimental settings
4.1. Dataset and implementation details

The public multi-modal brain tumor segmentation datasets
BraTS 2018 [30] is used to evaluate our method. It contains
285 cases, each case has four MR modalities including T1,
T1c, T2 and FLAIR. There are three segmentation classes:
whole tumor (WT), tumor core (TC) and enhancing tumor
(ET). We cropped and resized the images to 128×128×128
voxels. The N4ITK method and intensity normalization are
used. We implement our proposed network in Keras, a single
Nvidia Tesla V100 (32G) is used. We used Nadam optimizer
to train the model, the initial learning rate is set as 0.0005,
it will reduce by half with patience of 10 epochs. Early
stopping is used if the validation loss is not improved over
20 epochs. We randomly split the dataset into 80% training
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and 20% testing. The experiment results are uploaded to
the public online evaluation platform1 to obtain the final
evaluations.

4.2. Loss function
In our work, Dice loss (Equation 3) is used as the

segmentation loss, L1-Norm (Equation 4) is applied as the
generation loss. In addition, Kullback–Leibler divergence is
used as the correlation loss (Equation 2). The overall loss
function used in our network is defined in Equation 5. To
make the loss function of Equation 5 be convex, Nadam
(Nesterov-accelerated Adaptive Moment Estimation) opti-
mizer is used to prevent from getting trapped in a local
minimum.

𝐿𝑑 = 1 − 2

∑𝐶
𝑖=1

∑𝑁
𝑗=1 𝑝𝑖𝑗𝑔𝑖𝑗 + 𝜖

∑𝐶
𝑖=1

∑𝑁
𝑗=1(𝑝𝑖𝑗 + 𝑔𝑖𝑗) + 𝜖

(3)

where 𝑁 is the number of the examples, 𝑁 = 228, 𝐶 is the
number of the classes, 𝐶 = 3, 𝑝𝑖𝑗 is the probability that pixel
𝑖 belongs to the tumor class 𝑗, the same is true for 𝑔𝑖𝑗 , and 𝜖
is a small constant to avoid dividing by 0.

𝐿𝑔 = ‖𝑦𝑖 − 𝑦′𝑖‖1 (4)

where 𝑦 is the real modality, 𝑦′ is the generated modality.

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜓 × 𝐿𝑑 + 𝜉 × 𝐿𝑔 + 𝜂 × 𝐿𝑐 (5)

where 𝜓 = 1, 𝜉 = 0.1 and 𝜂 = 0.1.

4.3. Performance evaluation
We applied two commonly used evaluation metrics to

evaluate our the segmentation performance: Dice Similarity
Coefficient (DSC) and Hausdorff Distance (HD).

DSC is a spatial overlap index between the prediction
and ground-truth. A larger DSC value denotes a better pre-
diction result.

𝐷𝑆𝐶 = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(6)

where 𝑇𝑃 , 𝐹𝑃 and 𝐹𝑁 denote the number of true positive,
false positive and false negative voxels, respectively.

HD is computed between boundaries of the prediction
and ground-truth. A smaller HD value indicates a better
prediction result.

𝐻𝐷 = max{max
𝑠∈𝑆

min
𝑟∈𝑅

𝑑(𝑠, 𝑟),max
𝑟∈𝑅

min
𝑠∈𝑆

𝑑(𝑟, 𝑠)} (7)

where 𝑆 and 𝑅 are the two sets of the surface points of the
prediction and the real annotation, and 𝑑 is the Euclidean
distance.

5. Experiment results
5.1. Ablation studies

To demonstrate that the effectiveness of our proposed
method. First, we compare our method with two related
methods. (1) Replace: The idea is from our previous work
[4], which trains the network on full modalities but uses the
most correlated available modality to replace the missing
one during test. (2) Direct: It directly uses the available
modalities to do the segmentation. Then, we gradually add
the proposed components (MC: multi-source correlation, G:
generator without condition constraint and CG: Conditional
Generator) to the ’Direct’ method to prove the effectiveness
of the proposed components.

From Table 1, we can observe that the ’Replace’ method
can’t have a satisfying result, especially when FLAIR or
T1c is missing. The ’Direct’ method can outperform the
’Replace’ method, but the results are still unsatisfying be-
cause one modality is missing and the feature information
is not sufficient to obtain a good result. However, when
the multi-source correlation is taken into account (Direct
+ MC), the segmentation results are much improved, es-
pecially when FLAIR is missing. The reason is that the
multi-source correlation network can guide the network to
learn the correlated feature among modalities. In addition,
when the generator is integrated to compensate the missing
modality, we can observe a significant improvement in terms
of average DSC compared with the baseline (’Direct’), es-
pecially when FLAIR is missing, a 8.8% improvement in
the terms of average DSC is observed. In particular, when
the condition is added to the generator, we can achieve the
best segmentation results. Compared with ’Direct+MC+G’,
a 0.6%, 1.3%, 1.4%, 1.4% improvement in the terms of
average DSC can be observed when FLAIR, T1, T1c and
T2 is missing, respectively. The reason is that the condition
can guide the generator to produce the effective feature
information of the missing modality in a supervised way than
the naive generator. The similar comparison results can be
observed with regard to Hausdorff Distance. The proposed
method can improve the baseline with 42.4%, 38.1%, 4.0%,
39.3% when FLAIR, T1, T1c, T2 is missing, respectively.

5.2. Compared with the state-of-the-art methods
Furthermore, we compare our method with the state-of-

the-art methods, which have been mentioned in the intro-
duction. Our work focuses on the brain tumor segmentation
in the case of missing one modality. Therefore, we compare
with other methods in the case of missing one modality. To
make it fair, we also compare with a method [20], which
addresses only missing one modality issue. The comparison
results are illustrated in Table 2. Since the method HeMIS
[16] didn’t publish the available code, the reported results on
HeMIS and U-HeMIS are cited from [21]. It can be observed
that our method achieves the best results in the most of

1https://ipp.cbica.upenn.edu/
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Table 1
Comparison of segmentation performance in terms of DSC and HD. WT, TC, ET denote whole tumor, tumor core and enhancing
tumor, respectively. AVG denotes the average results on the three regions, bold results denote the best scores.

Missing FLAIR Missing T1 Missing T1c Missing T2Methods WT TC ET AVG WT TC ET AVG WT TC ET AVG WT TC ET AVG
DSC 55.1 53.6 67.5 58.7 84.2 77.6 69.7 77.2 85.7 45.8 2.1 44.5 81.8 69.8 72.6 74.7Replace HD 37.9 52.8 14.4 34.9 7.0 6.9 4.9 6.3 6.4 16.0 24.8 15.7 9.0 11.8 3.7 8.2
DSC 75.5 76.5 71.9 74.6 84.6 83.7 76.4 81.6 84.8 62.1 40.1 62.3 84.9 84.2 76.8 82.0Direct HD 10.4 9.0 6.2 8.5 7.6 6.9 4.4 6.3 6.8 12.4 10.5 9.9 6.4 6.4 4.0 5.6
DSC 79.9 78.8 72.2 77.0 85.1 83.4 77.1 81.9 85.7 62.8 40.1 62.9 85.4 85.1 77.3 82.6Direct+MC HD 7.9 10.3 8.1 8.8 6.5 5.3 3.0 4.9 6.7 11.8 10.9 9.8 6.8 6.0 3.8 5.5
DSC 82.9 84.8 75.9 81.2 86.5 84.8 76.3 82.5 86.6 62.6 37.7 62.3 86.5 85.2 76.8 82.8Direct+MC+G HD 5.9 5.2 3.7 4.9 5.0 4.5 3.4 4.3 4.8 11.6 11.1 9.2 4.8 4.0 2.9 3.9
DSC 83.5 85.0 76.5 81.7 87.0 86.2 77.7 83.6 86.5 64.0 39.2 63.2 87.1 86.8 78.2 84.0Direct+MC+CG (Ours) HD 6.4 4.8 3.5 4.9 4.5 4.2 2.9 3.9 5.3 12.0 11.1 9.5 4.4 3.7 2.7 3.6

Table 2
Comparison results among different methods in terms of Dice Similarity Coefficient on BraTS 2018 dataset. WT, TC, ET denote
whole tumor, tumor core and enhancing tumor, respectively. AVG denotes the average results on the three regions, bold results
denote the best scores.

Dice Similarity Coefficient (%) (↑)
Methods Missing FLAIR Missing T1 Missing T1c Missing T2

WT TC ET AVG WT TC ET AVG WT TC ET AVG WT TC ET AVG
HeMIS [16] 44.2 46.6 55.1 48.6 75.6 54.9 60.5 63.7 75.2 18.7 1.0 31.6 70.2 48.8 60.9 60.0

U-HeMIS [21] 82.1 70.7 69.7 74.2 87.0 72.2 69.7 76.3 87.0 61.0 33.4 60.5 85.1 70.7 69.9 75.2
URN [17] 81.1 69.5 68.5 73.0 86.5 72.2 69.8 76.2 86.1 52.5 25.8 54.8 85.6 72.0 71.0 76.2
HVED [21] 83.3 75.3 71.1 76.6 88.6 75.6 71.2 78.5 88.0 61.5 34.1 61.2 86.2 74.2 71.1 77.2

[20] 61.6 68.0 55.2 61.6 89.0 77.8 64.2 77.0 87.9 57.0 48.4 64.4 89.3 77.5 64.3 77.0
Ours 83.5 85.0 76.5 81.7 87.0 86.2 77.7 83.6 86.5 64.0 39.2 63.2 87.1 86.6 78.2 84.0

the cases. In addition, compared to the current state-of-the-
art method [21] which is based on the variational encoder-
decode, our method is superior than it with a large margin.
For example, we can improve it with 6.7%, 6.5%, 3.3%, 8.8%
in the terms of average DSC when FLAIR, T1, T1c or T2 is
missing, respectively. Compared with [20], our method has
the clear advantages in the most of the cases.

5.3. Visualization of the segmentation and
generation results

To further demonstrate the performance of our method,
we visualize an example from BraTS 2018 dataset in Fig. 5.
We can observe that the ’Replace’ method produces many
false predictions (highlighted by green arrows), especially
when FLAIR and T1c are missing. ’Direct’ method can
achieve the better results than ’Replace’. Furthermore, the
results can be refined progressively using the proposed com-
ponents. Our proposed method can detect effectively the
tumor regions and its sub-regions. In addition, from the gen-
eration results, we can observe that our proposed method can
generate the tumor-highlighted images, which can benefit
the final segmentation.

5.4. Visualization of the feature maps
In addition, we visualize the feature maps from different

methods in all the cases of missing one modality in Fig. 6.
We can observe that using ’Direct’ method can’t learn a
very effective feature maps because of the incomplete data
input. While when the Correlation Constraint (MC) network
is integrated, the features in tumor regions become clear
and obvious. Moreover, with the help of the conditional

generator, a specific feature information from the missing
modality is obtained. In this way, the network can leverage
the complete and rich feature representations to achieve a
better segmentation result.

5.5. Analysis on the generator architecture
We also compare our method with cGAN [24]. Specif-

ically, the generator is based on 3D U-Net, which has the
same architecture with our proposed conditional generator.
The discriminator consists of four down-convolutional lay-
ers, following by a Dense layer and a Sigmoid function.
The condition is embedded in the last second layer for both
generator and discriminator. The loss function of the cGAN
is defined in Equation 8.

𝐿𝑐𝐺𝐴𝑁 = 𝐸𝑥,𝑦[𝑙𝑜𝑔𝐷(𝑥, 𝑦)]
+𝐸𝑥,𝑧[𝑙𝑜𝑔(1 −𝐷(𝑥,𝐺(𝑥, 𝑧)))] + 0.1𝐿𝑔

(8)

where 𝐺 and 𝐷 denote the generator and discriminator,
respectively, 𝑥 denotes the condition, 𝑦 denotes the real
image and 𝑧 denotes the input images, 𝐿𝑔 is defined in
Equation 4.

The comparison results are presented in Table 3. It can
be seen that cU-Net can generally obtain better segmentation
results than cGAN in the terms of DSC and HD. The
significant improvement can be observed: 2.4%, 1.5%, 2.2%
in the terms of average DSC and 14.0%, 17.0%, 21.7% in
the terms of average HD when Flair, T1 or T2 is missing.
The visualization results are presented in Fig. 7 in which
the average DSC is denoted under each segmentation result.
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Figure 5: Visualization of the segmentation results. Each row presents the segmentation results from different methods in the
case of missing one modality. The green arrow points out the segmentation differences among the different methods. The last
column presents the generation results of our method.

Figure 6: Visualization of the feature maps. The first column presents the four modalities and the ground-truth. The last four
columns present the feature maps corresponding to T1, Flair, T1c and T2 from top to bottom obtained by the four methods.
The four missing modality situations are separated in color.
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Table 3
Comparison of segmentation performance in terms of DSC and HD between cU-Net and cGAN. WT, TC, ET denote whole
tumor, tumor core and enhancing tumor, respectively. AVG denotes the average results on the three regions, bold results denote
the best scores.

Missing FLAIR Missing T1 Missing T1c Missing T2Methods WT TC ET AVG WT TC ET AVG WT TC ET AVG WT TC ET AVG
DSC 81.8 83.2 74.5 79.8 86.2 83.5 77.6 82.4 85.6 66.8 44.6 65.6 86.1 83.4 77.2 82.2cGAN HD 7.0 5.8 4.3 5.7 5.7 5.2 3.3 4.7 5.4 10.4 9.2 8.3 5.6 5.0 3.3 4.6
DSC 83.5 85.0 76.5 81.7 87.0 86.2 77.7 83.6 86.5 64.0 39.2 63.2 87.1 86.8 78.2 84.0cU-Net (Ours) HD 6.4 4.8 3.5 4.9 4.5 4.2 2.9 3.9 5.3 12.0 11.1 9.5 4.4 3.7 2.7 3.6

Table 4
Comparison of segmentation in terms of DSC and HD using different divergences. WT, TC, ET denote whole tumor, tumor core
and enhancing tumor, respectively. AVG denotes the average results on the three regions, bold results denote the best scores.

Missing FLAIR Missing T1 Missing T1c Missing T2Divergences WT TC ET AVG WT TC ET AVG WT TC ET AVG WT TC ET AVG
DSC 83.5 85.0 76.5 81.7 87.0 86.2 77.7 83.6 86.5 64.0 39.2 63.2 87.1 86.8 78.2 84.0KL HD 6.4 4.8 3.5 4.9 4.5 4.2 2.9 3.9 5.3 12.0 11.1 9.5 4.4 3.7 2.7 3.6
DSC 75.4 62.3 48.8 62.2 83.9 78.4 73.6 78.6 83.6 48.6 30.4 54.2 83.9 77.2 74.8 78.6Jeffreys HD 16.0 10.7 9.1 11.9 7.6 7.4 4.6 6.5 6.9 16.3 15.5 12.9 8.1 7.9 4.7 6.9
DSC 32.3 20.1 4.2 18.9 70.7 23.4 2.8 32.3 69.8 12.1 0.1 27.3 70.4 22.1 4.0 32.2square Hellinger HD 61.2 58.6 49.2 56.3 32.8 33.8 39.1 35.2 33.2 41.3 50.7 41.7 33.0 36.8 44.1 38.0
DSC 56.8 10.2 0.8 22.6 77.3 27.6 17.8 40.9 75.4 13.8 3.1 30.8 76.3 29.7 19.5 41.8Exponential HD 45.4 34.5 40.3 40.1 14.6 22.4 26.4 21.1 13.8 24.1 27.5 21.8 15.1 23.2 24.1 20.8

Figure 7: Visualization of the generation and segmentation
results between cGAN and cU-Net. The average DSC is
denoted under each segmentation result. The segmentation
differences are highlighted by green circles.

We can see that both methods can generate the tumor-
enhanced missing modality well, while cU-Net can further
emphasize tumor features, especially when Flair is missing.
Consequently, it leads to a more precise segmentation of
tumor regions by cU-Net than by cGAN.

5.6. Analysis on the divergence functions
To measure the similarity of the probability distribu-

tions, we analyze four commonly used f-divergences: Kull-
back–Leibler (KL) divergence, Jeffreys divergence (Equa-
tion 9), squared Hellinger divergence (Equation 10), and ex-
ponential divergence (Equation 11). The compared segmen-
tation results are presented in Table 4. It can be observed that
KL divergence achieves the best segmentation performance.

𝐷𝐽 (𝑃‖𝑄) =
𝑀
∑

𝑖=1
(𝑃 (𝑓𝑖)−𝑄(𝑔𝑖))(ln𝑃 (𝑓𝑖)− ln𝑄(𝑔𝑖)) (9)

𝐻2(𝑃 ,𝑄) =
𝑀
∑

𝑖=1
2(
√

𝑃 (𝑓𝑖) −
√

𝑄(𝑔𝑖))2 (10)

𝐷𝑒(𝑃‖𝑄) =
𝑀
∑

𝑖=1
𝑃 (𝑓𝑖)(ln𝑃 (𝑓𝑖) − ln𝑄(𝑔𝑖))2 (11)

where𝑀 is the number of modality, 𝑃 (𝑓𝑖) and𝑄(𝑔𝑖) are the
original feature representation distributions and correlated
feature representation distributions of modality 𝑖, respec-
tively.

6. Conclusion
Accurate brain tumor segmentation plays an critical role

in the medical imaging field. However, it is difficult to have
a complete set of multi-modalities. It usually happens to
missing one modality in the real clinical practice. In this pa-
per, we proposed a novel brain tumor segmentation network
to impute the missing data. Motivated by the multi-source
correlation among MR multi-modalities, we first proposed
a multi-source correlation network to learn the correlation
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among modalities. Then, the learned multi-source correla-
tion is used to guide the conditional generator to generate the
missing modality through the shared encoders with segmen-
tation task, in which the tumor related features are further
enhanced. Following that, a multi-encoder based segmenta-
tion network is applied on the new complete modality set
to do the final brain tumor segmentation. The experimental
results and the analyses demonstrate the effectiveness of our
proposed method and superior performance of our method
compared with the state-of-the-art methods. The proposed
method is capable to impute the missing modality, which
can provide more complementary information about brain
tumor. In addition, the generated modality can assist the
clinical doctors to improve tumor diagnosis accuracy and
also help them to design the following treatment planning.
Although missing one modality is very common in clinical
practice, it will be interesting to ameliorate the architecture
of the conditional generator and extend it to cover missing
any number of modalities. Besides, we will try different
correlation expressions to improve the segmentation perfor-
mance.
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