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ABSTRACT
While 360° videos watched in a VR headset are gaining in popularity,
it is necessary to lower the required bandwidth to stream these im-
mersive videos and obtain a satisfying quality of experience. Doing
so requires predicting the user’s head motion in advance, which has
been tackled by a number of recent prediction methods considering
the video content and the user’s past motion. However, human mo-
tion is a complex process that can depend on many more parameters,
including the type of attentional phase the user is currently in, and
their emotions, which can be difficult to capture. This is the first
article to investigate the effects of user emotions on the predictability
of head motion, in connection with video-centric parameters. We
formulate and verify hypotheses, and construct a structural equa-
tion model of emotion, motion and predictability. We show that the
prediction error is higher for higher valence ratings, and that this
relationship is mediated by head speed. We also show that the pre-
diction error is lower for higher arousal, but that spatial information
moderates the effect of arousal on predictability. This work opens
the path to better capture important factors in human motion, to help
improve the training process of head motion predictors.

CCS CONCEPTS
• Human-centered computing → Virtual reality; User models; •
Mathematics of computing → Equational models.

KEYWORDS
360° videos, emotions, head motion, predictability

ACM Reference Format:
Quentin Guimard and Lucile Sassatelli. 2022. Effects of Emotions on Head
Motion Predictability in 360° Videos. In International Workshop on Immer-
sive Mixed and Virtual Environment Systems (MMVE ’22), June 14, 2022,
Athlone, Ireland. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3534086.3534335

1 INTRODUCTION
Virtual Reality (VR) headsets allow users to experience 360° videos
while being entirely immersed in a virtual environment, be it shot
from the real-world or computer-generated. With the increasing
affordability of VR headsets and popularity of 360° videos, the
demand for streaming 360° videos is also growing. However, the
necessary bandwidth to stream these videos with a quality high
enough to provide real world-like experience can be up to two orders
of magnitude that of a regular video [17]. To decrease the required
bandwidth, a well-investigated approach is to send every 360° video
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segment with spatially heterogeneous quality, so as to focus the
bandwidth budget to maximize the visual quality in the field of view
(FoV), while decreasing it outside (e.g., with tile-based approaches).
Doing so in a networking scenario requires predicting in advance
what the user motion is going to be, so that the server can decide
which sectors to send in higher or lower quality.

That is why a number of works have developed head motion
prediction methods in the last few years, often based on deep neural
networks [5, 6, 19]. For stored video content, major methods [5,
19, 24] consider predicting the user’s head motion for any new user
and any new video, therefore relying only on the knowledge of
the past user head position and the past and future video content.
However, human motion is a complex process which can depend on
many more parameters, including the type of attentional phase the
user is currently in [1, 21] and their emotions [14, 22, 26]. These
parameters may be difficult or impossible to fully infer from the sole
video content and past motion, therefore introducing uncertainty in
the prediction task impacting the prediction error.

To the best of our knowledge, this is the first article to inves-
tigate the following research question: What are user-centric pa-
rameters (emotion and motion) and video-centric parameters im-
pacting the head motion predictability in immersive 360° videos,
and what are the relationships? This is an important question to
understand how well can the human motion be captured, and how
to improve prediction approaches, by augmenting the videos to be
labelled/experienced wisely, or by changing the architectures or
training losses of the deep models.

We make the following contributions:
• We propose a subset of user-centric and video-centric measures
to investigate the connection between these and head motion pre-
dictability. We consider two datasets where the user movements
and subjective emotions are made available, one of which we have
collected. The considered measures are valence and arousal graded
by every user on every video, head motion speed, spatial informa-
tion (SI) and temporal information (TI), shown to provide important
insights into this type of emotion-video feature-predictability rela-
tionships.
• We formulate three hypotheses that we verify, and model the data
with a directed graph of causal relationships formalized in a struc-
tural equation model (SEM). We show that the prediction error is
generally lower (higher predictability) for users having provided
higher arousal ratings. We also show that the prediction error is
higher for higher valence ratings, and that this relationship is medi-
ated by head speed. Finally, we exhibit an interaction effect between
SI and arousal, SI moderating the effect of arousal on the prediction
error.

https://doi.org/10.1145/3534086.3534335
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Section 2 positions our approach with respect to existing works.
Sec. 3 defines the head motion prediction problem and presents
the prediction method we consider. Sec. 4 describes both datasets
considered, made of 360° videos with user emotions and motion
traces. Sec. 5 states the hypotheses based on previous works, the
validity of which we analyze from the data, and Sec. 6 expresses how
the effects of user emotions and motion on predictability are modeled
in a SEM, allowing us to quantify the effect sizes of mediation and
interactions. Sec. 8 discusses limitations and perspectives.

2 RELATED WORK
Several approaches have recently investigated head motion predic-
tion, most being based on deep recurrent neural networks fed with
both the series of past coordinates and the video content [5, 19, 23,
24]. In this article, we consider the prediction methods presented
by Romero et al. [19] to benchmark our approach. Considering the
analysis of how the video content or user emotions impact the head
motion predictability, to the best of our knowledge only Romero
et al. [19] analyzed the prediction performance disaggregated over
video categories. However, none of the above works has looked at
motion predictability based on felt emotions, nor did they formalize
the relationship between predictability and video features.

The spectrum of human emotions is generally described with
two main components of the circumplex model of emotions [20]:
valence, denoting the pleasantness or unpleasantness of emotions
(from positive or happiness to negative or sadness/fear), and arousal,
representing the intensity of the felt emotion. In the two-dimensional
space where valence can be represented on the x-axis and arousal
on the y-axis, any point symbolizes an emotion that is a combina-
tion of a certain amount of valence and arousal. Circumplex models
have been used most commonly to test stimuli of emotion words,
emotional facial expressions, and affective states. Immersive envi-
ronments experienced in a VR headset have been shown to provide
more intense emotions than planar presentations of omnidirectional
content [2, 8, 16]. Understanding the relationships between the com-
ponents of emotion and the components of the immersive experience
(such as presence and immersion), has attracted interest [3, 13]. For
example, Jicol et al. [13] have recently investigated how emotions
and afforded agency combine and interact to create the feeling of
presence. In particular, they resort to a SEM approach to quantify
the size of direct and indirect effects. To investigate the emotional
process elicited by 360° videos, a first database [14] made of 73
omnidirectional videos with collected valence and arousal was made
publicly available, but without head motion. A more recent dataset
was presented by Xue et al. [27], making both subjective ratings
(both after-viewing and continuous inside the video) and head and
gaze movements available. The connections between user motion
and emotion in virtual environments have been investigated by many
[14, 22, 26]. For example, Xue et al. [26] show that the yaw stan-
dard deviation (connected to mean speed) negatively correlates with
arousal, while Li et al. [14] show that it positively correlates with
valence.

No work has so far investigated and formalized the effect of
emotions and video features on head motion predictability, that is
on the performance of prediction methods. To do so, we consider
the most recent predictors introduced by Romero et al. [19], as

motivated below, and formulate working hypotheses from initial
results obtained in the works mentioned above [14, 26].

3 HEAD MOTION PREDICTION
We first define the problem of head motion prediction in Sec. 3.1,
then describe the chosen method and the motivation behind this
choice in Sec. 3.2.

3.1 Problem definition
The problem we consider is formally described as follows. We con-
sider that a given 360° video v of duration T seconds is being
watched by a user u. The head trajectory of the user is denoted
Pu ,v0:T , with P storing the head coordinates on the unit sphere (as, e.g.,
Euler angles, Cartesian coordinates or quaternions).

At any time t in [0,T ], we want to predict the future trajectory
Pu ,vt :t+H over a prediction horizon H , assuming only Pu ,v0:t and the
video content of v are known. That is, we do not assume any knowl-
edge of traces other than u on this video v.

3.2 Prediction method
Amongst the existing methods tackling the above prediction problem
[5, 19, 23, 24], we choose two main methods presented by Romero
et al. [19], named Deep-position-only and TRACK. We make this
choice because (i) these approaches are representative of other prior
approaches relying on sequence-to-sequence architectures, (ii) they
are recent, and (iii) the models and entire framework are made
publicly available [18].

To conduct our study, we consider both models trained on two
different head motion datasets from David et al. [7] and Xu et al. [25],
and selected the trained models that obtained the best results when
testing (without re-training or fine-tuning) on our data described in
Sec. 4. All the trained models were similar in performance on our
data, but the models trained on the dataset by Xu et al. [25], the
largest dataset, performed slightly better. Then, we inspected the
mutual effects, such as those shown in Fig. 4, when the prediction
error is obtained with Deep-position-only and TRACK. As results
were qualitatively similar, for the rest of the paper, we have chosen
to only present results obtained with TRACK.

TRACK is a sequence-to-sequence deep model using separate
long short-term memory (LSTM) units to encode both the past
positions and the visual saliency. The same kind of LSTM units,
combined with fully connected layers are then used to decode the
future positions based on the embeddings given by the encoder. The
visual saliency is made up of 384x216 saliency maps extracted from
the video frames by PanoSalNet. TRACK was fully re-implemented
using PyTorch and trained on multiple head motion datasets as
provided in the repository [18].

4 DATASETS AND MEASURES
In this section, we present the datasets considered for our data analy-
sis, and our choice of user-centric and video-centric measures. The
effect of these measures on motion predictability in investigated next
in Sec. 5 and 6.
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4.1 Datasets
We consider the only two datasets available where both user move-
ments and emotions have been collected from immersive viewing of
360° videos.

The first dataset we consider is CEAP360-VR [27]. This dataset
is made from user experiments with 32 participants each watching
8 videos in a VR headset equipped with an eye-tracker, recording
head and eye movements. After each video, the users grade their
emotions valence and arousal. Additionally, emotional ratings are
continuously annotated by the users thanks to a controller in their
hand, along with physiological measurements with a wristband. We
do not use this latter data in this article.

Our second source of data comes from PEM360 [9], our own
dataset collected from user experiments. In conditions similar as
above, 7 videos were experienced in an eye-tracker equipped VR
headset by 31 participants, who rated their valence and arousal
perceptions after every video clip. Physiological measurements were
also collected but not used in this article. This dataset is now publicly
available on public GitLab repository1.

In both datasets, users were asked to rate each video using the
self-assessment manikin (SAM) [4], giving individual ratings of
valence and arousal.

Figure 1: Self-Assessment Manikin (SAM) scale for rating of
valence (top row) and arousal (bottom row). Taken from [4].

The videos shown to users in both datasets come from the same
360° video database [14], with average ratings of valence and arousal
from 95 participants. We report in Table 1 the details of every video
from both datasets. The left-most column "ID" refers to the video ID
the author used in their dataset. The right-most column "Database
ID" indicates the original ID in the 360° video database [14]. Ratings
of valence and arousal given in this table are the original average
ratings of the database. In each of the datasets, the videos were
trimmed, so the videos are not exactly the same as in the database.
The start offset of each video as well as the duration of the trimmed
clip are specified in the table.

We should note that videos 32 and V6 are different versions of the
same video, which makes a total of 14 distinct videos experienced
in VR by 63 different users.

1https://gitlab.com/PEM360/PEM360

ID Valence Arousal Start (s) Duration (s) Database ID

12 7.00 4.60 5 98 12
13 4.92 4.08 4 127 13
17 5.22 5.00 5 64 17
23 7.20 3.20 8 135 23
27 6.00 1.60 60 120 27
32 6.57 1.57 40 90 32
73 6.27 6.18 9 61 73
V1 7.47 5.35 0 60 50
V2 6.13 1.80 10 60 38
V3 3.20 5.60 65 59 21
V4 2.53 3.82 3 60 14
V5 6.75 7.42 0 60 52
V6 6.57 1.57 0 60 32
V7 4.40 6.70 127 60 68
V8 2.73 3.80 41 60 19

Table 1: Details of selected videos. The ID refers to the original
database [14].

4.2 Measures
4.2.1 Outcome measure. The objective of this analysis is to
evaluate the influence of various factors on the prediction error
of head movements. We define the prediction error as the average
displacement error (ADE) between the predicted head positions
and the actual future head positions over a prediction horizon H .
We set H = 5 seconds, the standard prediction horizon in recent
deep prediction methods [5, 19], which covers both user inertia and
content saliency [19].

We define the displacement error between two head positions
(x1,y1, z1) and (x2,y2, z2) as the great circle distance between these
two points. Since (x,y, z) are the Cartesian coordinates of a point
on the unit sphere, we can easily compute the great circle distance
∆σ from the Euclidean distance d between these two positions as
∆σ = 2 · arcsin d

2 .

4.2.2 User-centric measures. We consider two types of user-
centric measures: those related to emotions, and those related to
motion. The measures of emotions are considered as the subjective
ratings of valence and arousal made by each user after experiencing
each 360° video, as detailed above.

The user motion can be characterized by various metrics, such
as mean values of the head or gaze yaw and pitch angles, or the
standard deviations of these positional components [14, 27]. Here,
we choose to combine these elements and consider the angular speed
of the head movements. Specifically, to compute head speed, we
first convert the head coordinates collected from the VR headset into
Cartesian coordinates, where each recorded head position at time t
is a point on the unit sphere of coordinates (xt ,yt , zt ).

The head motion data in CEAP360-VR is originally in the format
(ψt , θt ,ϕt ), whereψ is the yaw, θ is the pitch, and ϕ is the roll. These
coordinates were first transformed to have ψ ∈ [0, 2π [ where 0 is
the left edge of the equirectangular frame, and θ ∈ [0, π [ where 0
is the top edge of the equirectangular frame. Cartesian (xt ,yt , zt )
coordinates are then obtained as projections of these angles using

https://gitlab.com/PEM360/PEM360
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this set of equations: 
xt = cosψt · sinθt
yt = sinψt · sinθt
zt = cosθt

We define the instantaneous head speed at time t as the total an-
gular speed, noted ωt , computed from the great-circle distance be-
tween two consecutive positions divided by the sampling rate of the
recordings. The average head speed is then taken as the mean of all
instantaneous head speeds for a given user on a given video.

4.2.3 Video-centric measures. As for user motion, several char-
acterizations of 360° video content is possible. For example, Almquist
et al. [1] propose a taxonomy in four categories depending on the
location of the regions of interest. Romero et al. [19] inspire on this
taxonomy and categorize videos based on the entropy of the head
location heat maps. David et al. [7] and Xue et al. [27] consider spa-
tial information and temporal information to characterize the 360°
videos. In the preliminary study presented in this article, we consider
legacy spatial and temporal information, and show their relevance
characterizing the effects of emotions on motion predictability.

Spatial information and temporal information are scene-specific
metrics defined in ITU-T Recommendation P.910 [12]. According to
the ITU-T recommendation, SI and TI are “critical parameters” play-
ing “a crucial role in determining the amount of video compression
that is possible”.

Spatial information (SI) or spatial perceptual information is “a
measure that generally indicates the amount of spatial detail in a
picture. (...) It is usually higher for more spatially complex scenes.”
“The SI is based on the Sobel filter. Each video frame (luminance
plane) is first filtered with the Sobel filter. The standard deviation
over the pixels in each Sobel-filtered frame is then computed”, re-
sulting in the SI for a single frame. We consider SIv , the average SI
for all the frames of video v.

Temporal information (TI) or temporal perceptual information is
“a measure that generally indicates the amount of temporal changes
of a video sequence. (...) It is usually higher for high motion se-
quences.” “TI is based upon the motion difference feature, that is
the difference between the pixel values (of the luminance plane) at
the same location in space but at successive frames.” The standard
deviation over the pixels of all the differences between successive
frames is then computed to give the TI for two consecutive frames.
We consider TIv , the average TI for all the frames of video v. “More
motion in adjacent frames will result in higher values of TI.”

5 HYPOTHESIS TESTING
Based on previous works [14, 26], we make the following a priori
hypotheses:

H1 Prediction error is lower for higher user arousal.
H2 Prediction error is higher for higher user valence.
H3 Head speed mediates the effect of valence on error.
To analyze the validity of the above hypotheses, we first binarize

some variables and perform analysis of variance (ANOVA) testing,
shown in Table 2. The analysis of linear correlations on continuous
data is incorporated into the structural equation modeling in Sec. 6.

The binarization is performed on SI, TI, Arousal and Valence
(denoting continuous variables) to obtain SIbin , TIbin , Arousalbin

SIbin TIbin Arousalbin Valencebin

Prediction error 70.89** 79.09** 15.15** 7.67*

Head speed 17.77** 19.94** 2.76 15.78**

Arousal 51.90** 55.50** (1253**) 0.37

Valence 30.60** 2.69 0.42 (1266**)

Table 2: F-scores of one-way ANOVA. The significance of group
difference is denoted with * for p < 10−2 and ** for p < 10−3.

and Valencebin . For SI and TI of every video v, binarization thresh-
olds are chosen so that approximately half of the videos are in each
partition: SIbin = -1 (resp. 1) for SIv ≤ 45 (resp. > 45), and TIbin
= 0 (resp. 1) for TIv ≤ 3 (resp. > 3). In Fig. 4, SIbin is denoted
"Low SI" or "High SI" with the same threshold. For Arousal and
Valence of every user-video pair (u,v), Arousalbin = 0 (resp. = 1)
for Arousalu ,v ≤ 5 (resp. > 5), and the same to obtain Valencebin .
In Fig. 2, Arousalbin (resp. Valencebin) is also referred to as "LA"
for low Arousal (resp. "LV" for low Valence) and "HA" for high
Arousal (resp. "HV" for high Valence), with the same thresholds as
defined above.

We first observe from Table 2 that SIbin significantly impacts
all variables (Prediction error, Head speed, Valence and Arousal),
while TIbin does not significantly impact Valence.

The relations mentioned in H1 and H2 are significant. Fig. 2-
left and 2-center show the direction of the association with 95%
confidence intervals. We can therefore accept H1 and H2.
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Figure 2: Prediction error against binarized Arousalbin (left)
and Valencebin (center). Right: Difference in variation of Pre-
diction error against Arousalbin depending on Valencebin .

To investigate the sizes of the significant effects, Fig. 3 shows
scatter plots of error as a function of Arousal and Head speed, as
well as how Head speed varies with graded Arousal and Valence.
We first observe that there is a strong correlation between Prediction
error and Head speed. We also observe that, as hinted in preliminary
results from Li et al. [14] and Xue et al. [26], Prediction error
tends to decrease with Arousal. While Head speed does not seem
to significantly vary with Arousal, as confirmed by the ANOVA
result in Table 2, the scatter plot of Head Speed versus Valence
shows that the significant association between both, shown by the
corresponding ANOVA result in Table 2, is an increasing function.
This is in line with H3, which will be validated in the next section.

As Fig. 3-top-right shows the strong association of Prediction
error with Head speed and Table 2 shows significant associations of
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Figure 3: Scatter plots of Prediction error against Arousal and
Head speed (top row), and Head speed against Arousal and Va-
lence (bottom row). Straight lines are linear regression models
fitted on the data. Shaded areas represent 95% confidence inter-
vals.

Prediction error, Head speed, Arousal and Valence with SIbin , we
analyze whether some variables interact with Arousal and Valence
in their effect on Head speed and Prediction error. Fig. 4 shows that
there is a possible interaction between the video feature SIbin and
Arousal, and SIbin and Valence, in their effect on Prediction error
and Head speed. This can be seen in the different slopes of linear
model fitting the cloud of points, for each set of (u,v) points, for all
users u ∈ U and videos v such that SIbin (v) = -1, or 1.

Also, it is interesting to observe in Fig. 2-right that Prediction
error does not decrease in the same way with increased Arousal, de-
pending on whether Valence is graded high or low. Indeed, Prediction
error decreases more when Arousal increases when Valence is high.
We may assume that the user tends to move more when they enjoy
the video, and higher Arousal means more involvement/attentional
capture, and hence synchronization between motion and the con-
tent’s salient regions, facilitating the prediction. This corresponds
partly to H3 and is investigated in the next section.
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Figure 4: Scatter plots of Prediction error and Head speed
against Arousal and Valence, disaggregated over SIbin . Straight
lines are linear regression models fitted on the data. Shaded ar-
eas represent 95% confidence intervals.

6 MODELLING THE EFFECT OF EMOTIONS
AND VIDEO CHARACTERISTICS ON
MOTION PREDICTABILITY

We now construct a structural equation model of the data. SEM is
established as a methodological approach to represent how different
variables affect each other [10]. It allows to build a network of
causal relations, and to investigate direct and indirect effects with
mediating variables and external moderators interacting on the effect.
A SEM therefore gathers significant linear relations, enabling to both
incorporate the correlation coefficient and measure the size of the
effect. We construct a SEM based on accepted H1 and H2, and
incorporating the possible interaction of SIbin with Arousal and
Valence. An interaction effect is modeled as the product of two
variables, one of which is binary. Owing to the above analysis of Fig.
4, we define interaction variables Arousal × SIbin and Valence ×

SIbin . We then consider possible causal relationships from Arousal,
Valence, Arousal × SIbin and Valence × SIbin to both Head speed
and Prediction error, as well as relationship from Head speed to
Prediction error.

We use the Python toolkit Semopy [11, 15], using the Wishart
log-likelihood objective function. The resulting SEM is shown in
Fig. 5, where only edges with regression coefficients significantly
different from 0 have been kept (with p ≤ 0.01). Every edge is tagged
with the unstandardized coefficient of the linear relationship between
both participating variables, and with the corresponding standardized
coefficient in parenthesis. The unstandardized coefficient is impacted
by the difference in the relative scale of the variables, while the
standardized coefficient is independent of the scale and represents
by how many standard deviations the end variable varies when the
regressor variable increases by one standard deviation.
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Figure 5: Structural equation model (SEM) describing the di-
rect and indirect effects of user Valence and Arousal onto Pre-
diction error, mediated by Head speed and moderated by video
measure SIbin .

First, the model shows that the major impact of Valence on Pre-
diction error is mediated by Head speed. Indeed, the standardized
indirect effect of Valence on Prediction error is 0.19 × 0.85 = 0.16,
while the direct effect is only -0.07. H3 is therefore validated. This
suggests that users rating the video with higher Valence tend to move
more. This connects with the results obtained by Li et al. [14]. Sec-
ond, the model confirms that the prediction error varies inversely
with Arousal, with a standardized linear coefficient of -0.11. Third,
the interaction effect is significant. Indeed, for a high SI video with
SIbin = 1, the total effect of Arousal on Prediction error is -0.11
+ 0.17 × 1 = 0.06. In this case, the effect of Arousal on Prediction
error is low and not significantly negative. However, for a low SI
video with SIbin = -1, the total effect of Arousal on Prediction error
is -0.11 + 0.17 × -1 = -0.28. SIbin is therefore a strong moderator
of the effect of Arousal on Prediction error. To interpret this result,
one may investigate how SIbin connects with video categories, such
as those proposed by Almquist et al. [1]. We may think that a high
SIbin describes videos with numerous salient areas in frames, hence
yielding more exploratory head movements difficult to predict, even
though the person rates their arousal/involvement in the video as
high. Verifying such an interpretation is left for future works, as de-
scribed in Sec. 8. Finally, this last result means that the video feature
SI is a strong confounding factor which must be taken into consid-
eration when one chooses 360° videos to investigate the impact of
user emotion on motion prediction.

7 DISCUSSION
The results presented above open the path to promising directions
to understanding the human motion process in immersive environ-
ments, as detailed in Sec. 8. Let us mention here some limits and
perspectives of the presented data analysis.

First, obtaining results on more than 14 videos will be impor-
tant for generalization, and to avoid possible spurious correlation
between arousal and valence ratings that may impact our findings.
Second, the main outcome variable considered here being the predic-
tion error, the results may depend on the type of predictor considered.
While, for the reasons described in Sec. 3.2, we verified that the
results were similar between both methods taken from [19], other

families of approaches might lead to different effects of emotion on
predictability. Third, we have considered head motion in this work,
but it would be important to identify how the effects of emotions
differ when predicting eye motion. More generally, while we have fo-
cused on only three types of user-centric measures (arousal, valence
and head motion speed) and two types of video-centric measures
(SI and TI), it will be most interesting to generalize this approach
to more user-centric measures such as electrodermal activity and
gaze, and video-centric measures such as video categories (focus or
exploration [1], fear or happiness [13], possibly relating SI and TI
to these).

8 CONCLUSION AND FUTURE WORK
In this article, we have presented a first investigation into the ef-
fect of emotion on head motion predictability. We considered two
datasets totalling 14 videos and 63 users, providing head motion
traces and arousal and valence subjective ratings. Through hypothe-
sis testing and structural equation modelling, we have shown that the
predictability of head motion increases with arousal but decreases
with valence, that the effect of valence on predictability is mediated
by head speed, and that video SI interacts in the effect of arousal on
predictability, a high SI moderating the effect.

This work opens the way to better understand factors impacting
the human motion and their effect on the performance of head motion
predictors, and how such knowledge can be leveraged to improve
prediction. This can be done by augmenting the datasets with videos
with specific emotional and visual features where head motion pre-
diction is harder, or by designing ancillary training losses where
a deep neural model would have to learn how to predict the user
emotional state from the video content and the user’s past motion.
An important outcome of this work is also to estimate the motion
predictability from user emotional state. Such an estimation of the
confidence of head motion prediction can readily be leveraged in the
optimization of a 360° streaming system, even more so if the user
emotional state is estimated with lightweight non-invasive device
such as finger straps to measure electrodermal activity. This is the
subject of our very next work.
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