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Abstract11

We present first-order (FO) and monadic second-order (MSO) logics with predicates ‘between’ and12

‘neighbour’ that characterise the class of regular languages that are closed under the reverse operation13

and its subclasses. The ternary between predicate bet(x, y, z) is true if the position y is strictly14

between the positions x and z. The binary neighbour predicate N(x, y) is true when the the positions15

x and y are adjacent. It is shown that the class of reversible regular languages is precisely the class16

definable in the logics MSO(bet) and MSO(N). Moreover the class is definable by their existential17

fragments EMSO(bet) and EMSO(N), yielding a normal form for MSO formulas. In the first-order18

case, the logic FO(bet) corresponds precisely to the class of reversible languages definable in FO(<).19

Every formula in FO(bet) is equivalent to one that uses at most 3 variables. However the logic20

FO(N) defines only a strict subset of reversible languages definable in FO(+1). A language-theoretic21

characterisation of the class of languages definable in FO(N), called locally-reversible threshold-22

testable (LRTT), is given. In the second part of the paper we show that the standard connections23

that exist between MSO and FO logics with order and successor predicates and varieties of finite24

semigroups extend to the new setting with the semigroups extended with an involution operation25

on its elements. The case is different for FO(N) where we show that one needs an additional26

equation that uses the involution operator to characterise the class. While the general problem of27

characterising FO(N) is open, an equational characterisation is shown for the case of neutral letter28

languages.29

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory;30

Theory of computation → Logic31

Keywords and phrases Regular languages, reversible languages, first-order logic, automata, semig-32

roups33

1 Introduction34

In this work we look closely at the class of regular languages that are closed under the35

reverse operation. We fix a finite alphabet A for the rest of our discussion. The set A∗36

(respectively A+) denotes the set of all (resp. non-empty) finite words over the alphabet A.37

If w = a1 · · · ak with ai ∈ A is a word then wr = ak · · · a1 denotes the reverse of w. This38

notion is extended to sets of words pointwise, i.e., Lr = {wr | w ∈ L} and we can talk about39

reverse of languages. A regular language L ⊆ A∗ is closed under reverse or simply reversible40

if Lr = L. We let Rev denote the class of all reversible regular languages. Clearly Rev is a41

strict subset of the class of all regular languages.42

One way to look at a reversible language is as a collection of undirected words. When43

seen as first-order structures, words are directed graphs with directed edges that constitute a44

linear ordering on positions. If we forgo the direction then the resulting undirected graph45
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2 Reversible Regular Languages: Logical and Algebraic Characterisations

can be read either way and hence will correspond to both the word and its reverse. Hence a46

set of undirected words can be equated with a reversible language and by extension the class47

of undirected languages can be equated with Rev.48

The class Rev is easily verified to be closed under union, intersection and complementa-49

tion. It is also closed under homomorphic images, and inverse homomorphic images under50

alphabetic (i.e., length preserving) morphisms. However it is not closed under quotients51

of the form a−1L := {v | av ∈ L}, where a is a letter and L is a reversible language over52

A. For instance, the language L = (abc)∗ + (cba)∗ is closed under reverse but the quotient53

a−1L = bc(abc)∗ is not closed under reverse. Thus the class Rev fails to be a variety of54

languages — i.e., a class closed under Boolean operations, inverse homomorphic images55

and quotients. However reversible languages are closed under bidirectional quotients, i.e.,56

quotients of the form u−1Lv−1 ∪ (vr)−1
L (ur)−1, given words u, v. Thus, to a good extent,57

Rev shares properties similar to that of regular languages. Hence it makes sense to ask the58

question59

“are there good logical characterisations for the class Rev and its well behaved sub-60

classes?”.61

Our results. We suggest a positive answer to the above question. We introduce two62

predicates between (bet(x, y, z) is true if the position y is strictly between the positions x63

and z) and neighbour (N(x, y) is true if the positions x and y are adjacent). The predicates64

between and neighbour are the natural analogues of the order relation < and successor relation65

+1 in the undirected case. In fact this analogy extends to the case of logical definability. We66

show that Rev is the class of monadic second order (MSO) definable languages using either67

of the predicates, i.e., MSO(bet) or MSO(N). This is analogous to the classical Büchi-Elgot-68

Trakhtenbrot theorem relating regular languages and the MSO logic. Moreover, as in the69

Büchi-Elgot-Trakhtenbrot theorem Rev is definable in the existential MSO logics EMSO(bet)70

and EMSO(N).71

The above analogy extends to the case of first order logic as well. We show that FO(bet)72

definable languages are precisely the reversible languages definable in FO(<). Also, every73

formula in FO(bet) is equivalent to one that uses at most 3 variables.74

However the case of FO with the neighbour relation is different. It turns out that the75

class of FO(N) definable languages is a strict subset of those reversible languages definable76

in FO(+1). The precise characterisation of this class is one of our main contributions. A77

classical result on FO(+1)-definable languages [1] states that a language is FO(+1) definable78

if and only if it is a union of classes of an equivalence relation ≈t
k for some k, t ∈ N, whereby79

two words are ≈t
k-equivalent if they have identical prefixes and suffixes of length k − 1 and80

have the same subwords of length k upto threshold t (see Definition 7). For characterising81

FO(N)-definable languages one needs an equivalence coarser than ≈t
k. We say two words are82

r
≈t

k-equivalent if they have the same prefixes and suffixes upto reverse and have the same83

subwords of length k upto reverse and upto threshold t (see Definition 13). It is shown that84

a language is definable in FO(N) if and only if it is a union of equivalence classes of r
≈t

k for85

some k, t ∈ N.86

The immediate question that arises from the above characterisations is one of definability87

in a logic: Given a reversible language is it definable in the logic?". The case of FO(bet) is88

decidable due to Schützenberger-McNaughton-Papert theorem that states that syntactic89

monoids of FO(<) definable languages are aperiodic (equivalent to the condition that the90

monoid contains no groups as subsemigroups) [2, 3]. However in the case of FO(N) one91

needs to consider additional restrictions on the syntactic semigroups apart from those needed92
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to characterise FO(+1). This is done by means of an additional involution operation (an93

involution ? is a unary operation satisfying the laws a?? = a and (ab)? = b?a?). It is shown94

that syntactic semigroups of languages definable in FO(N) satisfies the equation exe? = ex?e?
95

where x, e are elements the semigroup and e is furthermore an idempotent. The converse96

direction is open in the general case. But we prove it in the restricted case of neutral letter97

languages. It is to be noted that the characterisation of FO(+1) is a tedious one that goes98

via categories [4].99

Related work. A different but related between predicate (namely a(x, y), for a ∈ A, is true100

if there is an a-labelled position between positions x and y) was introduced and studied in101

[5, 6, 7]. Such a predicate is not definable in FO2(<), the two variable fragment of first-order102

logic (which corresponds to the well known semigroup variety DA [8]). The authors of [5, 6, 7]103

study the expressive power of FO2(<) enriched with the between predicates a(x, y) for a ∈ A,104

and show an algebraic characterisation of the resulting family of languages. The between105

predicate (predicates rather) in [5] is strictly less expressive than the between predicate106

introduced in this paper. However the logics considered in [5] have the between predicates in107

conjunction with order predicates < and +1. Hence their results are orthogonal to ours.108

Another line of work that has close parallels with the one in this paper is the variety109

theory of involution semigroups (also called ?-semigroups) (see [9] for a survey). Most110

investigations along these lines have been on subvarieties of regular ?-semigroups (i.e., ?-111

semigroups satisfying the equation xx?x = x). As far as we are aware the equation introduced112

in this paper has not been studied before.113

Structure of the paper. In Section 2 we introduce the predicates and present our logical114

characterisations. This is followed by a characterisation of FO(N). In Section 3 we discuss115

semigroups with involution, a natural notion of syntactic semigroups for reversible languages.116

In Section 4 we conclude.117

An extended abstract of this work appeared in [10].118

2 Logics with Between and Neighbour119

As usual we represent a word w = a1 · · · an as a structure containing positions {1, . . . , n},120

and unary predicates Pa for each letter a in the alphabet. The predicate Pa is precisely true121

at those positions labelled by letter a. The atomic predicate x < y (resp. x+ 1 = y) is true if122

position y is after (resp. immediately after) position x. The logic FO is the logic containing123

atomic predicates, boolean combinations (φ∨ψ, φ∧ψ, ¬ψ whenever φ, ψ are formulas of the124

logic), and first order quantifications (∃xψ, ∀xψ if ψ is a formula of the logic). The logic125

MSO in addition contains second order quantification as well (∃X ψ, ∀X ψ if ψ is a formula126

of the logic) — i.e., quantification over sets of positions. By FO(τ) or MSO(τ) we mean the127

corresponding logic with atomic predicates τ in addition to the unary predicates Pa. The128

classical result relating MSO and regular languages states that MSO(<) = MSO(+1) (in129

terms of expressiveness) defines all regular languages. We introduce two analogous predicates130

for the class Rev of reversible regular languages.131
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2.1 MSO(bet), MSO(N) and FO(bet)132

The ternary between predicate bet(x, y, z) is true for positions x, y, z when y is strictly in
between x and z, i.e.,

bet(x, y, z) := x < y < z or z < y < x.

I Example 1. The set of all words containing a1a2 · · · ak or akak−1 · · · a1 as subword is
defined by the formula

∃x1∃x2 · · · ∃xk

k∧
i=1

Pai
(xi) ∧

k−1∧
i=2

bet(xi−1, xi, xi+1).

The ‘successor’ relation of bet is the binary predicate neighbour N(x, y) that holds true
when x and y are neighbours, i.e.

N(x, y) := x+ 1 = y or y + 1 = x.

I Example 2. A position in a word is an endpoint if it has exactly one neighbour. The133

following formula defines endpoints.134

ϕ(x) := ∀y∀z (N(x, y) ∧ N(x, z)→ y = z)135

The set of words of even length is defined by the formula

∃e1e2 ∃X(ϕ(e1) ∧ ϕ(e2) ∧X(e1) ∧ ¬X(e2) ∧ ∀x∀y(N(x, y)→ (X(x)↔ ¬X(y)))) .

The relation N(x, y) can be defined in terms of bet using first-order quantifiers as x 6=136

y ∧ ∀z ¬bet(x, z, y). One can also define bet(x, y, z) in terms of N, but using second-order set137

quantification. To do this we assert that x, y, z are distinct positions and any subset X of138

positions139

that contains x, z and at least some other position140

and such that any position in X, except for x and z, has exactly two neighbours in X,141

contains the position y.142

I Proposition 3. For definable languages, MSO(bet) = MSO(N) = Rev.143

Proof. Clearly from the discussion above, MSO(bet) = MSO(N) ⊆ Rev. To show the other
inclusion, let L be a reversible regular language and let ϕ be a formula in MSO(<) defining it.
Pick an endpoint e of the given word; an endpoint is a position with exactly one neighbour,
a property expressible in FO(N) ⊆ FO(bet). We relativize the formula ϕ with respect to e
by replacing all occurrences of x < y in the formula by (e = x 6= y) ∨ bet(e, x, y). Let ϕ′(e)
be the formula obtained in this way and let ψ(e) = ¬∃x, y (x 6= y ∧ N(e, x) ∧ N(e, y)) be the
FO(N) formula asserting that e is an endpoint, then we claim that

χ = ∃e (ψ (e) ∧ ϕ′ (e))

defines the language L. Let w be a word of length k ≥ 1 then,144

w |= χ ⇔ w, 1 |= ϕ′(e) or w, k |= ϕ′(e)145

⇔ w |= ϕ or wr |= ϕ146

⇔ w |= ϕ (since L is reversible).147
148

Hence L(χ) = L(ϕ) = L. J149
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An MSO(τ) formula is in the existential MSO fragment, denoted as EMSO(τ), if it is of150

the form ∃X1 · · · ∃Xn ϕ where ϕ is a first-order formula over τ . In the case of words every151

MSO(<) as well as MSO(+1) formula is equivalent to a formula in EMSO. This extends to152

the case of EMSO(bet) and EMSO(N) as well.153

I Proposition 4. Rev = EMSO(bet) = EMSO(N).154

Proof. Because of Proposition 3 it suffices to show that Rev ⊆ EMSO(bet) and Rev ⊆155

EMSO(N) in terms of languages accepted.156

(Rev ⊆ EMSO(bet))157

We modify the proof of Proposition 3. We observe that in the proof the formula ϕ can
be assumed to be in EMSO(<). Therefore the formula ϕ′(e) is in EMSO(bet). Let us assume
ϕ′(e) = ∃X1 · · · ∃Xn ϕ

′′(e) then

χ = ∃e (ψ(e) ∧ ∃X1 · · · ∃Xn ϕ
′′ (e)) ≡ ∃X1 · · · ∃Xn∃e (ψ(e) ∧ ϕ′′ (e)) .

Hence χ ∈ EMSO(bet) is a formula accepting the language L.158

(Rev ⊆ EMSO(N))159

Let L be a language in Rev and let χ = ∃X1 · · · ∃Xn ϕ be a formula in EMSO(+1)160

defining L such that ϕ ∈ FO(+1). Let ψ(e) be a formula in FO(N) that expresses the161

following properties:162

Every position in the word is labelled with exactly one element from the set {0, 1, 2}163

indicated by the monadic predicates Y0, Y1, Y2.164

Position e is an endpoint that is labelled by 0 and its neighbour is labelled by 1.165

Let x, y, z be any three consecutive positions in the word such that x and z are the166

neighbours of y. Then x, y, z are labelled by i, (i+1) mod 3, (i+2) mod 3 or (i+2) mod 3, (i+167

1) mod 3, i in the respective order, for some i ∈ {0, 1, 2}.168

Let χ′ be the formula169

χ′ = ∃Y0∃Y1∃Y2∃X1 · · · ∃Xn (ϕ′ ∧ ∃eψ(e))170

where ϕ′ is obtained by replacing each occurrence of x+ 1 = y by the formula171

σ(x, y) = N(x, y) ∧
∨

i∈{0,1,2}

Yi(x) ∧ Y(i+1) mod 3(y).172

We claim that L is recognised by χ′. Clearly if w |= χ then

w, Y0 = {1, 4, · · · }, Y1 = {2, 5, · · · }, Y2 = {3, 6, · · · }, e = 1 |= ψ(e) ∧ ∃X1 · · · ∃Xn ϕ
′ .

Hence w |= χ′.173

Next we claim that if w |= χ′ then w |= χ. Assume w |= χ′ and it has length n. The only174

interpretations for the predicates Y0, Y1, Y2 that satisfy ψ(e) are either {1, 4, · · · }, {2, 5, · · · },175

{3, 6, · · · } (when e = 1) or {n, n− 3, · · · }, {n− 1, n− 4, · · · }, {n− 2, n− 5, · · · } (when e = n).176

We have two cases. When e is taken to be 1 then x + 1 = y if and only if σ(x, y) is true,177

and hence w |= χ. When e is taken to be n, then σ(x, y) is true if and only if y + 1 = x is178

true. This implies that w |= χ′′ where χ′′ is the formula obtained from χ by replacing all179

atomic formulas of the form x+ 1 = y by y + 1 = x. It is easy to show by induction on the180

structure of the formula that w |= χ′′ if and only if wr |= χ. Since L is closed under reverse,181

we deduce that w |= χ. Hence the claim is proved. J182
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Proposition 3 says that MSO(bet) = MSO(<) ∩ Rev. This carries down to the first-order183

case using the same relativization idea. In fact the result holds for the prefix class Σi184

(first-order formulas in prenex normal form with i blocks of alternating quantifiers starting185

with a ∃-block).186

I Proposition 5. The following is true for definable languages.187

1. FO(bet) = FO(<) ∩ Rev.188

2. Σi(bet) = Σi(<) ∩ Rev.189

Proof. Given an FO(<) formula in prenex form defining a language in Rev, we replace every190

occurrence of x < y by (e = x 6= y) ∨ bet(e, x, y) as before, where e is asserted to be an191

endpoint with ψ(e) = ∀x, y ¬bet(x, e, y). For every formula in Σi(<), i ≥ 2 this results in an192

equivalent formula in Σi(bet). For the case of Σ1, let us note that every formula in Σ1(<)193

defines a union of languages of the form A∗a1A
∗a2A

∗ · · ·A∗akA
∗. Such a language can be194

written as a disjunction of formulas like the one in Example 1. J195

We noted that FO(bet) = FO(<) ∩ Rev. Kamp [11] established that linear time temporal196

logic LTL(X,U) has the same expressive power as FO(<). This is used below to establish that197

FO(bet) has the three variable property. Formulas in LTL are built from atomic propositions198

using boolean connectives and the two modalities next (X) and until (U). Each formula199

ϕ ∈ LTL(X,U) has an implicit free variable and is evaluated with respect to a word w ∈ A+
200

and a position i in w, we write w, i |= ϕ when w at position i satisfies ϕ. Xϕ means that ϕ201

holds at the next position, and ϕ1 U ϕ2 means that ϕ2 holds at some future position and ϕ1202

holds between the current position and this future position.203

I Proposition 6. FO(bet) = FO3(bet), i.e., for each sentence in FO(bet), there is an204

equivalent sentence in FO3(bet) using at most three variable names.205

Proof. It suffices to show that for every reversible language L ⊆ A+ definable in LTL(X,U)206

there is a corresponding FO3(bet) formula defining L.207

In the proof below, we use the following macros, definable in FO3(bet):208

E(z) = ¬∃x, y bet(x, z, y)209

N(x, y) = ¬(x = y) ∧ ¬∃z bet(x, z, y)210
211

For each formula ϕ ∈ LTL(X,U), we construct inductively an FO3(bet) formula ϕ(x, y)212

with (at most) two free variables x and y such that for all words w ∈ A+ and position213

1 ≤ i ≤ |w| we have214

w, i |= ϕ iff w, x 7→ 1, y 7→ i |= ϕ(x, y) (1)215

The base case is when ϕ = a ∈ A and we let a = Pa(y). For boolean connective, we define216

¬ϕ(x, y) = ¬ϕ(x, y) ϕ1 ∨ ϕ2(x, y) = ϕ1(x, y) ∨ ϕ2(x, y) .217
218

The interesting cases are when the top connective of the formula is a modality X or U. We219

give the translation for the strict version of until, defined as ϕ1 SU ϕ2 = X(ϕ1 U ϕ2). This is220

sufficient since we have Xϕ = ⊥ SU ϕ and ϕ1 U ϕ2 = ϕ2 ∨ (ϕ1 ∧ (ϕ1 SU ϕ2)). We set221

ϕ1 SU ϕ2(x, y) = ∃z
((

bet(x, y, z) ∨ x = y
)
∧ ϕ2(x, z) ∧ ∀x222

bet(y, x, z) =⇒ ∃y
(
bet(y, x, z) ∧ E(y) ∧ ϕ1(y, x)

))
223
224
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We should prove that (1) holds. We apply induction on the structure of the formula ϕ. The225

base case is when ϕ is a ∈ A. Then w, i |= a iff w, x 7→ 1, y 7→ i |= Pa(y). When ϕ is of the226

form ¬ϕ′ or ϕ1 ∨ ϕ2 the claim (1) follows from induction hypothesis.227

For the final case, let ϕ be ϕ1 SU ϕ2. Then, w, i |= ϕ1 SU ϕ2 iff there exists k > i such228

that w, k |= ϕ2 and w, j |= ϕ1 for all i < j < k. By induction hypothesis, the latter is true229

if and only if w, x 7→ 1, z 7→ k |= ϕ2(x, z) and w, y 7→ 1, x 7→ j |= ϕ1(y, x) for all i < j < k.230

This is precisely true when w, x 7→ 1, y 7→ i |= ϕ1 SU ϕ2(x, y). This finishes the proof of (1).231

Let L be a reversible language defined by the formula ϕ ∈ LTL(X,U). This means that L
is reversible and L = {w ∈ A+ | w, 1 |= ϕ}. Define the FO3(bet) sentence

Φ = ∃x(E(x) ∧ ϕ(x, x)) .

We claim that Φ defines the language L, which concludes the proof. Since L is the set of all232

words w such that w, 1 |= ϕ. By (1), this is precisely when w, x 7→ 1, y 7→ 1 |= ϕ(x, y) and by233

renaming when w, x 7→ 1 |= ϕ(x, x). Since L is closed under reverse w, x 7→ 1 |= ϕ(x, x) iff234

wr, x 7→ 1 |= ϕ(x, x) iff w, x 7→ n |= ϕ(x, x) where n is the last position of w. Therefore L is235

precisely the set of all words satisfying the formula Φ. J236

2.2 FO(N)237

Next we address the expressive power of FO with the neighbour predicate.238

We start by detailing the class of locally threshold testable languages. Recall that word y239

is a factor of word u if u = xyz for some x, z in A∗. We use ](u, y) to denote the number of240

times the factor y appears in u. For t > 0, we define the equality with threshold t on the set241

N of natural numbers by i =t j if i = j or i, j ≥ t.242

I Definition 7. Let ≈t
k, for k, t > 0, be the equivalence on A∗, whereby two words u and v243

are equivalent if either they both have length at most k− 1 and u = v, or otherwise they have244

1. the same prefix of length k − 1,245

2. the same suffix of length k − 1,246

3. and the same number of occurrences, up to threshold t, for all factors of length ≤ k, i.e.,247

for each word y ∈ A∗ of length at most k, ](u, y) =t ](v, y).248

I Example 8. We have ababab ≈1
2 abab 6≈1

2 abbab. Indeed, all the words start and end with249

the same letter. In the first two words the factors ab as well as ba appear at least once.250

While in the last word the factor bb appears once while it is not present in the word abab.251

Notice also that ababab 6≈2
2 abab due to the factor ba.252

A language is locally threshold testable (or LTT for short) if it is a union of ≈t
k classes,253

for some k, t > 0.254

I Example 9. The language (ab)∗ is LTT. In fact it is locally testable (the special case of255

locally threshold testable with t = 1). Indeed, (ab)∗ is the union of three classes: {ε}, {ab}256

and abab(ab)∗ which is precisely the set of words that begin with a, end with b, and whose257

only factors of length 2 are ab and ba.258

A language that is definable in FO(<) and not LTT is c∗ac∗bc∗. In this language if259

a and b are sufficiently separated by c-blocks then the order between a and b cannot be260

differentiated. It can be proved that for any t, k there is a sufficiently large n such that261

cnacnbcn ≈t
k c

nbcnacn.262



8 Reversible Regular Languages: Logical and Algebraic Characterisations

Locally threshold testable languages are precisely the class of languages definable in263

FO(+1) [12, 1]. Since we can define the neighbour predicate N using +1, clearly FO(N) ⊆264

FO(+1) ∩ Rev = LTT ∩ Rev. But this inclusion is strict as shown in Example 11.265

I Example 10. Consider the language L = ua∗ + a∗ur of words that have either u as prefix266

and followed by an arbitrary number of a’s, or ur as suffix and preceded by an arbitrary267

number of a’s. The language L is in FO(N). When u = a1 · · · an, it can be defined by a268

formula of the form ∃x1, . . . , xn ψ where ψ states that x1 is an endpoint,
∧

1≤i<n N(xi, xi+1),269 ∧
1<i<n xi−1 6= xi+1,

∧
1≤i≤n Pai

(xi), and all other positions are labeled a.270

I Example 11. Consider the language L over the alphabet {a, b, c},

L = {w | ](w, ab) = 2, ](w, ba) = 1 or ](w, ab) = 1, ](w, ba) = 2}.

Since L is locally threshold testable and reverse closed, L ∈ FO(+1) ∩ Rev.271

We can show that L 6∈ FO(N) by showing that the words,272

ck ab ck ba ckab ck ∈ L ck ab ck ab ck ab ck 6∈ L273

for k > 0 are indistinguishable by an FO(N) formula of quantifier depth k. For showing the274

latter claim, one uses Ehrenfeucht-Fraissé games and argues that in the k-round EF-game275

the duplicator has a winning strategy. The strategy is roughly described below:276

ckabckb ackabck ckabcka bckabck
277

Any move of the spoiler is mimicked by the duplicator in the corresponding underlined or278

non-underlined part of the other word, while maintaining the neighbourhood relation between279

positions. For instance, if the spoiler plays the first b on the underlined part of the first word,280

then the duplicator chooses the last b on the underlined portion of the word on the right.281

Similarly, if the spoiler plays the first a on the non-underlined part of the first word, the282

duplicator chooses the last a on the non-underlined portion of the word on the right. Note283

that, since no order on positions in the words can be checked with the neighbour predicate,284

there is no way to distinguish between these words, if the duplicator plays in the above way285

ensuring that the position played has the same neighbourhood relation as the position played286

by the spoiler. Therefore, the Neighbour predicate will not be able to distinguish between ab287

and ba when they are sufficiently separated by c’s.288

From the above example, we get,289

I Proposition 12. For definable languages, FO(N) ( FO(+1) ∩ Rev = LTT ∩ Rev.290

Next we will characterise the class of languages accepted by FO(N). Recall that ](w, v)291

denotes the number of occurrences of v in w, i.e., the number of pairs (x, y) such that292

w = xvy. We extend this to ]r(w, v) that counts the number of occurrences of v or293

vr in w, i.e., the number of pairs (x, y) such that w = xvy or w = xvry. Notice that294

]r(w, v) = ]r(w, vr) = ]r(wr, v) = ]r(wr, vr).295

I Definition 13. We define now the locally-reversible threshold testable (LRTT) equivalence296

relation. Let k, t > 0. Two words w,w′ ∈ A∗ are (k, t)-LRTT equivalent, denoted w r
≈t

k w
′ if297

|w| < k and w′ ∈ {w,wr}, or298

w,w′ are both of length at least k, and299

]r(w, v) =t ]r(w′, v) for all v ∈ A≤k, and300

if x, x′ are the prefixes of w,w′ of length k− 1 and y, y′ are the suffixes of w,w′ of length301

k − 1 then {x, yr} = {x′, y′r}.302
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Notice that w r
≈t

k w
r for all w ∈ A∗ and w ≈t

k w
′ implies w r

≈t
k w
′ for all w,w′ ∈ A∗.303

Notice also that r
≈t

k is not a congruence. Indeed, we have ab r
≈t

k ba but aba 6 r≈t
k baa. On the304

other hand, if v r
≈t

k w then for all u ∈ A∗ we have uv r
≈t

k uw or uv r
≈t

k uw
r, and similarly305

vu
r
≈t

k wu or vu r
≈t

k w
ru.306

I Definition 14 (Locally-Reversible Threshold Testable Languages). A language L is locally-307

reversible threshold testable, LRTT for short, if it is a union of equivalence classes of r
≈t

k for308

some k, t > 0.309

I Theorem 15. Languages defined by FO(N) are precisely the class of locally-reversible310

threshold testable languages.311

Proof. (⇐) Assume we are given an LRTT language, i.e., a union of r
≈t

k-classes for some312

k, t > 0. We explain how to write an FO(N) formula for each r
≈t

k-class. Consider a word313

v = a1a2 · · · an ∈ A+. For m ∈ N, we can say that v or its reverse occurs at least m times in314

a word w ∈ A∗, i.e., ]r(w, v) ≥ m, by the formula315

ϕ≥m
v = ∃x1,1 · · · ∃x1,n · · · ∃xm,1 · · · ∃xm,n

m∧
i=1

( n−1∧
j=1

N(xi,j , xi,j+1) ∧
n−1∧
j=2

(xi,j−1 6= xi,j+1) ∧
n∧

j=1
Paj (xi,j)

)
∧

∧
1≤i<j≤m

¬((xi,1 = xj,1 ∧ xi,n = xj,n) ∨ (xi,1 = xj,n ∧ xi,n = xj,1)) .316

Similarly, we can write a formula ψv ∈ FO(N) that says that a word belongs to {v, vr}.317

Finally, given two words of same length u, v ∈ An, we can write a formula χu,v ∈ FO(N) that318

says that u, v occur at two different end points of a word w, i.e., that {x, yr} = {u, v} where319

x, y are the prefix and suffix of w of length n.320

(⇒) Hanf’s theorem ([13], Theorem 2.4.1) states that two first-order structures A and B321

are m-equivalent (i.e., indistinguishable by any FO formula of quantifier rank at most m),322

for some m ∈ N if for each 3m ball type S, both A and B have the same number of 3m balls323

of type S up to a threshold m× e, where e ∈ N. Models of FO(N) formulas are first-order324

structures of the form
(
{1, . . . , n}, (Pa)a∈Σ ,N

)
that are labelled undirected path graphs.325

Balls in such a graph are nothing but factors of the corresponding undirected word. Applying326

Hanf’s theorem to undirected path graphs, we obtain that given an FO(N) formula Φ, there327

exist k, t > 0 such that if two words w and w′ are r
≈t

k-equivalent, then w satisfies Φ if and328

only if w′ satisfies Φ. Therefore, the set of all words satisfying Φ is an LRTT language. J329

3 The Membership problem for the Logics330

In this section we address the question of definability of a language — “is the given reversible331

regular language definable by a formula in the logic?" — in the previously defined logics. We332

show that in the case of FO(bet) the existing theorems provide an algorithm for the problem,333

while for FO(N) the answer is not yet known.334

3.1 Membership in MSO(bet), MSO(N), FO(bet)335

By Proposition 3, to check if a regular language is definable in MSO(bet) or in MSO(N) it336

suffices to check if it is reversible. Next we look at the membership problem for FO(bet).337
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First we recall the notion of recognisability by a finite semigroup. A finite semigroup338

(S, ·) is a finite set S with an associative binary operation · : S × S → S. If the semigroup339

operation has an identity, then it is necessarily unique and is denoted by 1. In this case S340

is called a monoid. A semigroup morphism from (S, ·) to (T,+) is a map h : S → T that341

preserves the semigroup operation, i.e., h(a · b) = h(a) +h(b) for a, b in S. Further if S and T342

are monoids the map is a monoid morphism if h maps the identity of S to the identity of T .343

The set A+ under concatenation forms a free semigroup while A∗ under concatenation344

forms a free monoid with the empty word ε as the identity. A language L ⊆ A∗ is recognised345

by a monoid (M, ·), if there is a morphism h : A∗ → M and a set P ⊆ M , such that346

L = h−1(P ).347

Given a language L, the syntactic congruence of L, denoted as ∼L is the congruence on348

A∗,349

x ∼L y if uxv ∈ L⇔ uyv ∈ L for all u, v ∈ A∗. (2)350

The quotient A∗/∼L, denoted as M(L), is called the syntactic monoid. It recognises L and is351

the unique minimal object with the following canonicity property: any monoid M recognising352

L has a surjective morphism from a submonoid of M to M(L) [4].353

A semigroup (or monoid) is aperiodic if there is some n ∈ N such that an = an+1 for354

each element a of the semigroup. Schützenberger-McNaughton-Papert theorem [2, 3] states355

that a language L is definable in FO(<) if and only if the syntactic monoid of L is aperiodic.356

This theorem in conjunction with Proposition 5 gives that,357

I Corollary 16. A reversible language L is definable in FO(bet) if and only if M(L) is358

aperiodic.359

The above result hence yields an algorithm for definability of a language in FO(bet),360

i.e., check if the language is reversible, if so compute the syntactic monoid and test for361

aperiodicity.362

3.2 Membership in FO(N)363

Next we look at the membership problem for the logic FO(N). The corresponding problem364

for FO(+1) is known only in terms of syntactic semigroups that we recall now. A language365

L ⊆ A+ is recognised by a semigroup (S, ·), if there is a morphism h : A+ → S and a set366

P ⊆ S, such that L = h−1(P ).367

The syntactic congruence of L ⊆ A+, denoted as ∼L, is the congruence on A+ given368

by Equation (2). The quotient A+/∼L, denoted as S(L), is called the syntactic semigroup.369

It shares the canonicity property of syntactic monoids, namely it recognises L and is the370

unique minimal object that has a surjective morphism from a subsemigroup of any semigroup371

recognising L [14].372

The characterisation theorem for FO(+1) due to Brzozowski and Simon [15], and Beauquier373

and Pin [12], is stated below. Recall that an element of a semigroup e is an idempotent if374

e · e = e.375

I Theorem 17 (Brzozowski-Simon, Beauquier-Pin). The following are equivalent for a language376

L ⊆ A+.377

1. L is locally threshold testable.378

2. L is definable in FO(+1).379

3. The syntactic semigroup of L is finite, aperiodic and satisfies the identity e x f y e z f =380

e z f y e x f for all e, f, x, y, z ∈ S(L) with e, f idempotents.381
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Because of Proposition 12 it is clear that we need to add more identities to characterise382

the logic FO(N).383

In the particular case of reversible languages the syntactic semigroups described above384

admit further properties. The observation is that the reverse operation extends to congruence385

classes of the syntactic congruence as shown next. Fix a reversible language L. Let [x] ∈ S(L)386

denote the equivalence class of a word x ∈ A+ under the syntactic congruence. Then we let387

[x]r = [xr]. This is well defined since x ∼L y if and only if xr ∼L yr. Furthermore this map388

admits two properties — it is an involution (a map that is its own inverse), since389

([x]r)r = ([xr])r = [(xr)r] = [x] , (3)390

and it is an anti-automorphism on the semigroup S(L) since391

([x] · [y])r = ([x · y])r = [(x · y)r] = [yr · xr] = [yr] · [xr] . (4)392

Thus S(L) is a semigroup with an involution operation, namely the reverse. Formally, a393

semigroup with involution (also called a ?-semigroup) (S, ·, ?) is a semigroup (S, ·) extended394

with an operation ? : S → S (called the involution) such that395

1. the operation ? is an involution on S, i.e., (a?)? = a for all elements a of S,396

2. the operation ? is an anti-automorphism on S (isomorphism between S and opposite of397

S), i.e., (a · b)? = b? · a? for any a, b in S.398

It is a ?-monoid if S is a monoid. An element x in a ?-semigroup is called hermitian if it is399

its own involution, i.e. x? = x. It is easy to see that in the case of ?-monoids, necessarily400

1? = 1, i.e. identity is hermitian. Similarly if the semigroup has a zero it is hermitian as well.401

In the light of this definition we call S(L) the syntactic ?-semigroup of a reversible402

language L. Next we show that syntactic ?-semigroups of FO(N)-definable languages obey403

the identity exe? = ex?e?, where x is an element of the semigroup and e is an idempotent of404

the semigroup. Before we prove it, we look at a couple of examples.405

I Example 18. Fix the alphabet {c, x, y} for the example below. Consider the reversible406

languages L1 = c∗xyc∗xyc∗+ c∗yxc∗yxc∗, L2 = c∗(xy+ yx)c∗(xy+ yx)c∗. It is easy to verify407

that both languages are definable in FO(+1). Their syntactic semigroups are shown in Figure408

1. These semigroups were computed using the online tool of Charles Paperman [16].409

Let x, y, c also denote the images of the corresponding letters in the syntactic semigroups,410

which are indeed hermitian. Clearly the syntactic semigroups are generated by these elements.411

It is easy to deduce that c is an idempotent while x, y are not. Also both semigroups have412

zeros (for instance any product xk involving more than two occurrences of x is a zero). Next413

we have a closer look at them.414

1. We claim that S(L1) does not satisfy the identity exe? = ex?e?. Consider the two words415

cxyc and cyxc. Note that (xy)? = y?x? = yx. It suffices to show that cxyc 6∼L1 cyxc,416

that is evident since cxy · cxyc · ε ∈ L1 while cxy · cyxc · ε 6∈ L1.417

2. Next we verify that S(L2) satisfies the identity exe? = ex?e?. Since the only two418

idempotents are c and 0, it suffices to show that cuc ∼L2 cu
rc for all nonempty words419

u. It is easy to verify that pcucq ∈ L if and only if pcurcq ∈ L for all words p, q and420

hence cuc ∼L2 cu
rc. Since u was arbitrary it follows that S(L2) satisfies the identity421

exe? = ex?e?.422

I Theorem 19. The syntactic ?-semigroup of an FO(N)-definable language satisfies the
identity

exe? = ex?e?,

where e is an idempotent, and x is any element of the semigroup.423



12 Reversible Regular Languages: Logical and Algebraic Characterisations

x ∗ c y

xc
�� 

cx xy
�� ��

yx cy
�� 

yc

xcy
�� 

ycx xyx yxy cyx
�� 

xyc

xcyx
�� ��

xycx cyxy
�� ��

yxyc

xyxy

∗ 0

(a) S(L1)

x ∗ c y

xc
�� 

cx xy
�� ��

yx cy
�� 

yc

xx xcy
�� ��

xyc ycx yy

xyx yxx
�� 

xxy xyy
�� 

yyx yxy

xyxy

∗ 0

(b) S(L2)

Figure 1 Syntactic involution semigroups of L1 = c∗xyc∗xyc∗ + c∗yxc∗yxc∗ and L2 = c∗(xy +
yx)c∗(xy+yx)c∗ over the alphabet {c, x, y}. Idempotents are indicated by ∗. Involutions on elements
are indicated by arrows, unless the element is hermitian.

Proof. Assume we are given an FO(N)-language L, with its syntactic ?-semigroup S(L) =424

(A+/∼L, ·, ?), and h : A+ → S(L) the canonical morphism recognising L. Let e be an425

idempotent of S(L), and let x be an element of S(L). Pick nonempty words u and s such426

that h(u) = e and h(s) = x.427

By definition of the involution, h(ur) = e? and h(sr) = x?. We are going to show428

that usur ∼L usrur and hence they will correspond to the same element in the syntactic429

?-semigroup, proving that exe? = ex?e?.430

Since L is FO(N) definable, we know by Theorem 15 that L is a union of r
≈t

k equivalence431

classes for some k, t > 0. Consider the words w = (uk)s(ur)k and wr = (uk)sr(ur)k, obtained432

by pumping the words corresponding to e and e?. Since e, e? are idempotents, it is clear that433

h(w) = h(usur) = exe? and h(wr) = h(usrur) = ex?e?.434

For all contexts α, β ∈ A∗, we show below that αwβ r
≈t

k αw
rβ, which implies αwβ ∈ L435

iff αwrβ ∈ L since L is a union of r
≈t

k classes. It follows that w ∼L wr and therefore436

h(w) = h(wr), that will conclude the proof.437

Fix some contexts α, β ∈ A∗. Since u 6= ε, the words αwβ and αwrβ have the same prefix438

of length k − 1 and the same suffix of length k − 1. Now, consider v ∈ Ak. If an occurrence439

of v (resp. vr) in αwβ overlaps with α or β then we have the very same occurrence in αwrβ.440

Using w r
≈t

k w
r, we deduce that ]r(αwβ, v) =t ]r(αwrβ, v). Therefore, αwβ r

≈t
k αw

rβ. J441

The converse direction is open. The similar direction in the case of FO(+1) goes via categories442

[17] and uses the Delay theorem of Straubing [18, 4]. However in the special case when the443

syntactic ?-semigroups are monoids (i.e. contains an identity) we can get an easy converse.444

Let A be an alphabet and let L ⊆ A+ be a language over A. A letter c ∈ A is neutral in445

the language L if xy ∈ L ⇔ xcy ∈ L for all x, y ∈ A∗ such that |xy| ≥ 1, i.e. membership446

in L is invariant under insertion or deletion of the letter c. By definition, it is easy to see447

that if L has a neutral letter then that maps to an element that is identity in the syntactic448
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∗ c = 1

x y z

yx
�� ��

xy zy
�� ��

yz

xyz

∗ 0

(a) S(L3)

∗ c = 1

x y z

xy xz yz

xyz

∗ 0

(b) S(L4)

Figure 2 Syntactic involution semigroups of L3 = c∗xc∗yc∗zc∗ + c∗zc∗yc∗xc∗ and L4 =
Permutations(L3) over the alphabet {c, x, y, z}. Idempotents are indicated by ∗. Involutions
on elements are indicated by arrows, unless the element is hermitian.

semigroup of L. For aperiodic semigroups the converse is also true.449

I Lemma 20. Let L be an aperiodic language. Then the syntactic semigroup S(L) contains450

an identity if and only if L has a neutral letter.451

Proof. (⇐) By definition.452

(⇒) Assume S(L) has an identity and let cu ∈ A+, where c ∈ A, be a word mapping to it. If453

u is empty then c is a neutral letter and we are done. Otherwise let a = ϕ(c) and b = ϕ(u).454

Then aab = a and by repeated substitution anabn = a and since S(L) is aperiodic there455

is some n such that ana = an and hence a = anabn = anbn = ab. Therefore c is a neutral456

letter.457

J458

I Example 21. Fix the alphabet {c, x, y, z} for the example below. Let L3 = c∗xc∗yc∗zc∗ +459

c∗zc∗yc∗xc∗, and L4 be the set of all permutations of words in L3, ie. the commutative460

closure of L3. Both the languages are closed under reverse. Moreover it is easy to verify that461

both are definable in FO(<) and by extension in FO(bet). Hence their syntactic semigroups462

are aperiodic. They are shown in Figure 2.463

Let x, y, z, c denote the images of the corresponding letters in the syntactic semigroups.464

Clearly the syntactic semigroups are generated by these elements. Since letter c is neutral in465

both L3 and L4, we deduce that c is the identity. Also any product involving at least two466

occurrences of x (or y, or z) is a (non-accepting) zero element denoted as 0. These are the467

only idempotents in the syntactic semigroups. Next we have a closer look at them.468

1. Consider the language L3. The semigroup S(L3) is a monoid with identity c. It satisfies469

the additional rules xz = zx = 0 and xyz = zyx. Since cxcccyc = xy 6= yx = cycccxc,470

S(L3) does not satisfy the condition on syntactic semigroups given by Theorem 17 and471

hence L3 is not LTT, and by extension not in LRTT either.472

2. Next consider the language L4 that is all the permutations of words in L1. The semigroup473

S(L4) is commutative and it has an identity (the element c) and a zero. Since all elements474
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in S(L4) are hermitian, it is clear that S(L4) satisfies the identity exe? = ex?e? in475

addition to those corresponding to FO(+1).476

I Lemma 22. If all elements of an involution semigroup S are hermitian, then S is commut-477

ative. Conversely if S is commutative and generated by a subset of its hermitian elements,478

then all elements of S are hermitian.479

Proof. If all elements of S are hermitian, then ab = (ab)? = b?a? = ba, for all elements480

a, b ∈ S, i.e. S is commutative. Conversely assume S is commutative and generated by481

a subset of hermitian elements. Then every element can be written as a product x1 · · ·xn482

where each xi is hermitian. Then (x1 · · ·xn)? = x?
n · · ·x?

1 = xn · · ·x1 = x1 · · ·xn. Hence all483

elements are hermitian. J484

Since syntactic semigroups are generated by images of letters (that are clearly hermitian),485

we obtain the following.486

I Proposition 23. Let L ⊆ A+ be a reversible language with a neutral letter. Then the487

following are equivalent.488

1. All elements of S(L) are hermitian.489

2. S(L) satisfies the identity exe? = ex?e?.490

3. S(L) is locally idempotent i.e., it satisfies the identity exeye = eyexe for all idempotents491

e and elements x ∈ S(L).492

4. S(L) is commutative.493

Proof. Equivalence of (1) and (4) is from Lemma 22. Now, (1) implies (2) is clear and the494

converse (2) implies (1) is because S(L) has an identity. Similarly (4) implies (3) is clear495

and (3) implies (4) is due to the presence of an identity. J496

I Corollary 24. Let L be a reversible language with a neutral letter. The following are497

equivalent.498

1. L ∈ LTT, equivalently, L is definable in FO(+1).499

2. L ∈ LRTT, equivalently, L is definable in FO(N).500

3. L ∈ ACom (the class of aperiodic and commutative languages), equivalently, L is definable501

in FO(=) [4].502

Proof. (1 ⇒ 3) and (2 ⇒ 3) follows from Proposition 23. The converse inclusions are by503

definition. J504

4 Conclusion505

The logics MSO(bet),MSO(N) and FO(bet) behave analogously to their classical counterparts506

MSO(<),MSO(+1) and FO(<). But the logic FO(N) gives rise to a new class of languages,507

locally-reversible threshold testable languages. The quest for characterising the new class508

takes us to the formalism of involution semigroups. The full characterisation of the new509

class is the main question we leave open. It would also be interesting to know what are510

the natural analogues of standard fragments of FO and their expressive power, for instance511

classes defined by bounded number of variables, in the reversible world. Another line of512

investigation is to study the equationally-defined classes that arise naturally from automata513

theory.514
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