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HAL is

Introduction

In this work we look closely at the class of regular languages that are closed under the reverse operation. We fix a finite alphabet A for the rest of our discussion. The set A * (respectively A + ) denotes the set of all (resp. non-empty) finite words over the alphabet A.

If w = a 1 • • • a k with a i ∈ A is a word then w r = a k • • • a 1 denotes the reverse of w. This notion is extended to sets of words pointwise, i.e., L r = {w r | w ∈ L} and we can talk about reverse of languages. A regular language L ⊆ A * is closed under reverse or simply reversible if L r = L. We let Rev denote the class of all reversible regular languages. Clearly Rev is a strict subset of the class of all regular languages. One way to look at a reversible language is as a collection of undirected words. When seen as first-order structures, words are directed graphs with directed edges that constitute a linear ordering on positions. If we forgo the direction then the resulting undirected graph can be read either way and hence will correspond to both the word and its reverse. Hence a set of undirected words can be equated with a reversible language and by extension the class of undirected languages can be equated with Rev.

The class Rev is easily verified to be closed under union, intersection and complementation. It is also closed under homomorphic images, and inverse homomorphic images under alphabetic (i.e., length preserving) morphisms. However it is not closed under quotients of the form a -1 L := {v | av ∈ L}, where a is a letter and L is a reversible language over A. For instance, the language L = (abc) * + (cba) * is closed under reverse but the quotient a -1 L = bc(abc) * is not closed under reverse. Thus the class Rev fails to be a variety of languages -i.e., a class closed under Boolean operations, inverse homomorphic images and quotients. However reversible languages are closed under bidirectional quotients, i.e., quotients of the form u -1 Lv -1 ∪ (v r )

-1 L (u r ) -1 , given words u, v. Thus, to a good extent,

Rev shares properties similar to that of regular languages. Hence it makes sense to ask the question "are there good logical characterisations for the class Rev and its well behaved subclasses?".

Our results. We suggest a positive answer to the above question. We introduce two predicates between (bet(x, y, z) is true if the position y is strictly between the positions x and z) and neighbour (N(x, y) is true if the positions x and y are adjacent). The predicates between and neighbour are the natural analogues of the order relation < and successor relation +1 in the undirected case. In fact this analogy extends to the case of logical definability. We show that Rev is the class of monadic second order (MSO) definable languages using either of the predicates, i.e., MSO(bet) or MSO(N). This is analogous to the classical Büchi-Elgot-Trakhtenbrot theorem relating regular languages and the MSO logic. Moreover, as in the Büchi-Elgot-Trakhtenbrot theorem Rev is definable in the existential MSO logics EMSO(bet)

and EMSO(N).

The above analogy extends to the case of first order logic as well. We show that FO(bet)

definable languages are precisely the reversible languages definable in FO(<). Also, every formula in FO(bet) is equivalent to one that uses at most 3 variables. The immediate question that arises from the above characterisations is one of definability in a logic: Given a reversible language is it definable in the logic?". The case of FO(bet) is decidable due to Schützenberger-McNaughton-Papert theorem that states that syntactic monoids of FO(<) definable languages are aperiodic (equivalent to the condition that the monoid contains no groups as subsemigroups) [START_REF] Schützenberger | On Finite Monoids Having Only Trivial Subgroups[END_REF][START_REF] Mcnaughton | Counter-Free Automata[END_REF]. However in the case of FO(N) one needs to consider additional restrictions on the syntactic semigroups apart from those needed to characterise FO(+1). This is done by means of an additional involution operation (an involution is a unary operation satisfying the laws a = a and (ab) = b a ). It is shown that syntactic semigroups of languages definable in FO(N) satisfies the equation exe = ex e where x, e are elements the semigroup and e is furthermore an idempotent. The converse direction is open in the general case. But we prove it in the restricted case of neutral letter languages. It is to be noted that the characterisation of FO(+1) is a tedious one that goes via categories [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF].

Related work.

A different but related between predicate (namely a(x, y), for a ∈ A, is true if there is an a-labelled position between positions x and y) was introduced and studied in [START_REF] Krebs | Two-variable Logic with a Between Relation[END_REF][START_REF] Krebs | An Algebraic Decision Procedure for Two-Variable Logic with a Between Relation[END_REF][START_REF] Krebs | Two-variable logics with some betweenness relations: Expressiveness, satisfiability and membership[END_REF]. Such a predicate is not definable in FO 2 (<), the two variable fragment of first-order logic (which corresponds to the well known semigroup variety DA [START_REF] Tesson | Diamonds Are Forever: The Variety DA[END_REF]). The authors of [START_REF] Krebs | Two-variable Logic with a Between Relation[END_REF][START_REF] Krebs | An Algebraic Decision Procedure for Two-Variable Logic with a Between Relation[END_REF][START_REF] Krebs | Two-variable logics with some betweenness relations: Expressiveness, satisfiability and membership[END_REF] study the expressive power of FO 2 (<) enriched with the between predicates a(x, y) for a ∈ A, and show an algebraic characterisation of the resulting family of languages. The between predicate (predicates rather) in [START_REF] Krebs | Two-variable Logic with a Between Relation[END_REF] is strictly less expressive than the between predicate introduced in this paper. However the logics considered in [START_REF] Krebs | Two-variable Logic with a Between Relation[END_REF] have the between predicates in conjunction with order predicates < and +1. Hence their results are orthogonal to ours.

Another line of work that has close parallels with the one in this paper is the variety theory of involution semigroups (also called -semigroups) (see [START_REF] Crvenković | Varieties of involution semigroups and involution semirings: a survey[END_REF] for a survey). Most investigations along these lines have been on subvarieties of regular -semigroups (i.e.,semigroups satisfying the equation xx x = x). As far as we are aware the equation introduced in this paper has not been studied before.

Structure of the paper. In Section 2 we introduce the predicates and present our logical characterisations. This is followed by a characterisation of FO(N). In Section 3 we discuss semigroups with involution, a natural notion of syntactic semigroups for reversible languages.

In Section 4 we conclude.

An extended abstract of this work appeared in [START_REF] Gastin | Logics for Reversible Regular Languages and Semigroups with Involution[END_REF].

Logics with Between and Neighbour

As usual we represent a word w = a 1 

MSO(bet), MSO(N) and FO(bet)

The ternary between predicate bet(x, y, z) is true for positions x, y, z when y is strictly in between x and z, i.e., bet(x, y, z) := x < y < z or z < y < x.

Example 1. The set of all words containing

a 1 a 2 • • • a k or a k a k-1 • • • a 1 as subword is defined by the formula ∃x 1 ∃x 2 • • • ∃x k k i=1 P ai (x i ) ∧ k-1 i=2 bet(x i-1 , x i , x i+1 ).
The 'successor' relation of bet is the binary predicate neighbour N(x, y) that holds true when x and y are neighbours, i.e.

N(x, y)

:= x + 1 = y or y + 1 = x.
Example 2. A position in a word is an endpoint if it has exactly one neighbour. The following formula defines endpoints.

ϕ(x) := ∀y∀z (N(x, y) ∧ N(x, z) → y = z)
The set of words of even length is defined by the formula ∃e 1 e 2 ∃X(ϕ(e 1 ) ∧ ϕ(e 2 ) ∧ X(e 1 ) ∧ ¬X(e 2 ) ∧ ∀x∀y(N(x, y) → (X(x) ↔ ¬X(y)))) .

The relation N(x, y) can be defined in terms of bet using first-order quantifiers as x = y ∧ ∀z ¬bet(x, z, y). One can also define bet(x, y, z) in terms of N, but using second-order set quantification. To do this we assert that x, y, z are distinct positions and any subset X of positions that contains x, z and at least some other position and such that any position in X, except for x and z, has exactly two neighbours in X, contains the position y. Proposition 3. For definable languages, MSO(bet) = MSO(N) = Rev.

Proof. Clearly from the discussion above, MSO(bet) = MSO(N) ⊆ Rev. To show the other inclusion, let L be a reversible regular language and let ϕ be a formula in MSO(<) defining it. Pick an endpoint e of the given word; an endpoint is a position with exactly one neighbour, a property expressible in FO(N) ⊆ FO(bet). We relativize the formula ϕ with respect to e by replacing all occurrences of x < y in the formula by (e = x = y) ∨ bet(e, x, y). Let ϕ (e) be the formula obtained in this way and let ψ(e) = ¬∃x, y (x = y ∧ N(e, x) ∧ N(e, y)) be the FO(N) formula asserting that e is an endpoint, then we claim that

χ = ∃e (ψ (e) ∧ ϕ (e))
defines the language L. Let w be a word of length k ≥ 1 then,

w |= χ ⇔ w, 1 |= ϕ (e) or w, k |= ϕ (e) ⇔ w |= ϕ or w r |= ϕ ⇔ w |= ϕ (since L is reversible). Hence L(χ) = L(ϕ) = L. An MSO(τ ) formula is in the existential MSO fragment, denoted as EMSO(τ ), if it is of the form ∃X 1 • • • ∃X n ϕ
where ϕ is a first-order formula over τ . In the case of words every MSO(<) as well as MSO(+1) formula is equivalent to a formula in EMSO. This extends to the case of EMSO(bet) and EMSO(N) as well. We modify the proof of Proposition 3. We observe that in the proof the formula ϕ can be assumed to be in EMSO(<). Therefore the formula ϕ (e) is in EMSO(bet). Let us assume

ϕ (e) = ∃X 1 • • • ∃X n ϕ (e) then χ = ∃e (ψ(e) ∧ ∃X 1 • • • ∃X n ϕ (e)) ≡ ∃X 1 • • • ∃X n ∃e (ψ(e) ∧ ϕ (e)) .
Hence χ ∈ EMSO(bet) is a formula accepting the language L.

(Rev ⊆ EMSO(N))
Let L be a language in Rev and let

χ = ∃X 1 • • • ∃X n ϕ be a formula in EMSO(+1)
defining L such that ϕ ∈ FO(+1). Let ψ(e) be a formula in FO(N) that expresses the following properties:

Every position in the word is labelled with exactly one element from the set {0, 1, 2}

indicated by the monadic predicates Y 0 , Y 1 , Y 2 .
Position e is an endpoint that is labelled by 0 and its neighbour is labelled by 1.

Let x, y, z be any three consecutive positions in the word such that x and z are the neighbours of y. Then x, y, z are labelled by i, (i+1) mod 3, (i+2) mod 3 or (i+2) mod 3, (i+ 1) mod 3, i in the respective order, for some i ∈ {0, 1, 2}.

Let χ be the formula

χ = ∃Y 0 ∃Y 1 ∃Y 2 ∃X 1 • • • ∃X n (ϕ ∧ ∃e ψ(e))
where ϕ is obtained by replacing each occurrence of x + 1 = y by the formula

σ(x, y) = N(x, y) ∧ i∈{0,1,2} Y i (x) ∧ Y (i+1) mod 3 (y). We claim that L is recognised by χ . Clearly if w |= χ then w, Y 0 = {1, 4, • • • }, Y 1 = {2, 5, • • • }, Y 2 = {3, 6, • • • }, e = 1 |= ψ(e) ∧ ∃X 1 • • • ∃X n ϕ . Hence w |= χ . Next we claim that if w |= χ then w |= χ. Assume w |= χ and it has length n. The only interpretations for the predicates Y 0 , Y 1 , Y 2 that satisfy ψ(e) are either {1, 4, • • • }, {2, 5, • • • }, {3, 6, • • • } (when e = 1) or {n, n -3, • • • }, {n -1, n -4, • • • }, {n -2, n -5, • • • } (when e = n).
We have two cases. When e is taken to be 1 then x + 1 = y if and only if σ(x, y) is true, and hence w |= χ. When e is taken to be n, then σ(x, y) is true if and only if y + 1 = x is true. This implies that w |= χ where χ is the formula obtained from χ by replacing all atomic formulas of the form x + 1 = y by y + 1 = x. It is easy to show by induction on the structure of the formula that w |= χ if and only if w r |= χ. Since L is closed under reverse, we deduce that w |= χ. Hence the claim is proved. Proposition 3 says that MSO(bet) = MSO(<) ∩ Rev. This carries down to the first-order case using the same relativization idea. In fact the result holds for the prefix class Σ i (first-order formulas in prenex normal form with i blocks of alternating quantifiers starting with a ∃-block). Proposition 5. The following is true for definable languages.

1. FO(bet) = FO(<) ∩ Rev. 2. Σ i (bet) = Σ i (<) ∩ Rev.
Proof. Given an FO(<) formula in prenex form defining a language in Rev, we replace every occurrence of x < y by (e = x = y) ∨ bet(e, x, y) as before, where e is asserted to be an endpoint with ψ(e) = ∀x, y ¬bet(x, e, y). For every formula in Σ i (<), i ≥ 2 this results in an equivalent formula in Σ i (bet). For the case of Σ 1 , let us note that every formula in Σ 1 (<) defines a union of languages of the form

A * a 1 A * a 2 A * • • • A * a k A * .
Such a language can be written as a disjunction of formulas like the one in Example 1.

We noted that FO(bet) = FO(<) ∩ Rev. Kamp [START_REF] Kamp | Tense Logic and the Theory of Linear Order[END_REF] established that linear time temporal logic LTL(X, U) has the same expressive power as FO(<). This is used below to establish that FO(bet) has the three variable property. Formulas in LTL are built from atomic propositions using boolean connectives and the two modalities next (X) and until (U). Each formula ϕ ∈ LTL(X, U) has an implicit free variable and is evaluated with respect to a word w ∈ A + and a position i in w, we write w, i |= ϕ when w at position i satisfies ϕ. X ϕ means that ϕ holds at the next position, and ϕ 1 U ϕ 2 means that ϕ 2 holds at some future position and ϕ 1 holds between the current position and this future position. Proposition 6. FO(bet) = FO 3 (bet), i.e., for each sentence in FO(bet), there is an equivalent sentence in FO 3 (bet) using at most three variable names.

Proof. It suffices to show that for every reversible language L ⊆ A + definable in LTL(X, U) there is a corresponding FO 3 (bet) formula defining L.

In the proof below, we use the following macros, definable in FO 3 (bet):

E(z) = ¬∃x, y bet(x, z, y) N(x, y) = ¬(x = y) ∧ ¬∃z bet(x, z, y)
For each formula ϕ ∈ LTL(X, U), we construct inductively an FO 3 (bet) formula ϕ(x, y) with (at most) two free variables x and y such that for all words w ∈ A + and position

1 ≤ i ≤ |w| we have w, i |= ϕ iff w, x → 1, y → i |= ϕ(x, y) (1)
The base case is when ϕ = a ∈ A and we let a = P a (y). For boolean connective, we define

¬ϕ(x, y) = ¬ϕ(x, y) ϕ 1 ∨ ϕ 2 (x, y) = ϕ 1 (x, y) ∨ ϕ 2 (x, y) .
The interesting cases are when the top connective of the formula is a modality X or U. We give the translation for the strict version of until, defined as

ϕ 1 SU ϕ 2 = X(ϕ 1 U ϕ 2 ). This is sufficient since we have X ϕ = ⊥ SU ϕ and ϕ 1 U ϕ 2 = ϕ 2 ∨ (ϕ 1 ∧ (ϕ 1 SU ϕ 2 )
). We set

ϕ 1 SU ϕ 2 (x, y) = ∃z bet(x, y, z) ∨ x = y ∧ ϕ 2 (x, z) ∧ ∀x bet(y, x, z) =⇒ ∃y bet(y, x, z) ∧ E(y) ∧ ϕ 1 (y, x)
We should prove that (1) holds. We apply induction on the structure of the formula ϕ. The base case is when ϕ is a ∈ A. Then w, i |= a iff w, x → 1, y → i |= P a (y). When ϕ is of the form ¬ϕ or ϕ 1 ∨ ϕ 2 the claim (1) follows from induction hypothesis.

For the final case, let ϕ be ϕ 1 SU ϕ 2 . Then, w, i |= ϕ 1 SU ϕ 2 iff there exists k > i such that w, k |= ϕ 2 and w, j |= ϕ 1 for all i < j < k. By induction hypothesis, the latter is true

if and only if w, x → 1, z → k |= ϕ 2 (x, z) and w, y → 1, x → j |= ϕ 1 (y, x) for all i < j < k.
This is precisely true when w, x → 1, y → i |= ϕ 1 SU ϕ 2 (x, y). This finishes the proof of (1).

Let L be a reversible language defined by the formula ϕ ∈ LTL(X, U). This means that L is reversible and

L = {w ∈ A + | w, 1 |= ϕ}. Define the FO 3 (bet) sentence Φ = ∃x(E(x) ∧ ϕ(x, x)) .
We claim that Φ defines the language L, which concludes the proof. Since L is the set of all words w such that w, 1 |= ϕ. By (1), this is precisely when w, x → 1, y → 1 |= ϕ(x, y) and by

renaming when w, x → 1 |= ϕ(x, x). Since L is closed under reverse w, x → 1 |= ϕ(x, x) iff w r , x → 1 |= ϕ(x, x) iff w, x → n |= ϕ(x, x)
where n is the last position of w. Therefore L is precisely the set of all words satisfying the formula Φ.

FO(N)

Next we address the expressive power of FO with the neighbour predicate.

We start by detailing the class of locally threshold testable languages. Recall that word y is a factor of word u if u = xyz for some x, z in A * . We use (u, y) to denote the number of times the factor y appears in u. For t > 0, we define the equality with threshold t on the set N of natural numbers by i = t j if i = j or i, j ≥ t. Example 8. We have ababab ≈ 1 2 abab ≈ 1 2 abbab. Indeed, all the words start and end with the same letter. In the first two words the factors ab as well as ba appear at least once.

While in the last word the factor bb appears once while it is not present in the word abab.

Notice also that ababab ≈ 2 2 abab due to the factor ba.

A language is locally threshold testable (or LTT for short) if it is a union of ≈ t k classes, for some k, t > 0.

Example 9. The language (ab) * is LTT. In fact it is locally testable (the special case of locally threshold testable with t = 1). Indeed, (ab) * is the union of three classes: {ε}, {ab} and abab(ab) * which is precisely the set of words that begin with a, end with b, and whose only factors of length 2 are ab and ba.

A language that is definable in FO(<) and not LTT is c * ac * bc * . In this language if a and b are sufficiently separated by c-blocks then the order between a and b cannot be differentiated. It can be proved that for any t, k there is a sufficiently large n such that

c n ac n bc n ≈ t k c n bc n ac n .

Reversible Regular Languages: Logical and Algebraic Characterisations

Locally threshold testable languages are precisely the class of languages definable in FO(+1) [START_REF] Beauquier | Languages and Scanners[END_REF][START_REF] Thomas | Classifying Regular Events in Symbolic Logic[END_REF]. Since we can define the neighbour predicate N using +1, clearly FO(N) ⊆ FO(+1) ∩ Rev = LTT ∩ Rev. But this inclusion is strict as shown in Example 11.

Example 10. Consider the language L = ua * + a * u r of words that have either u as prefix and followed by an arbitrary number of a's, or u r as suffix and preceded by an arbitrary number of a's. The language L is in FO(N). When u = a 1 • • • a n , it can be defined by a formula of the form ∃x 1 , . . . , x n ψ where ψ states that x 1 is an endpoint, 1≤i<n N(x i , x i+1 ), Similarly, if the spoiler plays the first a on the non-underlined part of the first word, the duplicator chooses the last a on the non-underlined portion of the word on the right. Note that, since no order on positions in the words can be checked with the neighbour predicate, there is no way to distinguish between these words, if the duplicator plays in the above way ensuring that the position played has the same neighbourhood relation as the position played by the spoiler. Therefore, the Neighbour predicate will not be able to distinguish between ab and ba when they are sufficiently separated by c's.

1<i<n x i-1 = x i+1 , 1≤i≤n P ai (x i ),
From the above example, we get, Proposition 12. For definable languages, FO(N) FO(+1) ∩ Rev = LTT ∩ Rev.

Next we will characterise the class of languages accepted by FO(N). Recall that (w, v)

denotes the number of occurrences of v in w, i.e., the number of pairs (x, y) such that w = xvy. We extend this to r (w, v) that counts the number of occurrences of v or v r in w, i.e., the number of pairs (x, y) such that w = xvy or w = xv r y. Notice that Proof. (⇐) Assume we are given an LRTT language, i.e., a union of r ≈ t k -classes for some k, t > 0. We explain how to write an FO(N) formula for each

r (w, v) = r (w, v r ) = r (w r , v) = r (w r , v r ). Definition 
r ≈ t k -class. Consider a word v = a 1 a 2 • • • a n ∈ A + .
For m ∈ N, we can say that v or its reverse occurs at least m times in a word w ∈ A * , i.e., r (w, v) ≥ m, by the formula

ϕ ≥m v = ∃x 1,1 • • • ∃x 1,n • • • ∃x m,1 • • • ∃x m,n m i=1 n-1 j=1 N(x i,j , x i,j+1 ) ∧ n-1 j=2 (x i,j-1 = x i,j+1 ) ∧ n j=1 P aj (x i,j ) ∧ 1≤i<j≤m ¬((x i,1 = x j,1 ∧ x i,n = x j,n ) ∨ (x i,1 = x j,n ∧ x i,n = x j,1 )) .
Similarly, we can write a formula ψ v ∈ FO(N) that says that a word belongs to {v, v r }.

Finally, given two words of same length u, v ∈ A n , we can write a formula χ u,v ∈ FO(N) that says that u, v occur at two different end points of a word w, i.e., that {x, y r } = {u, v} where

x, y are the prefix and suffix of w of length n. Hanf's theorem to undirected path graphs, we obtain that given an FO(N) formula Φ, there exist k, t > 0 such that if two words w and w are r ≈ t k -equivalent, then w satisfies Φ if and only if w satisfies Φ. Therefore, the set of all words satisfying Φ is an LRTT language.

The Membership problem for the Logics

In this section we address the question of definability of a language -"is the given reversible regular language definable by a formula in the logic?" -in the previously defined logics. We show that in the case of FO(bet) the existing theorems provide an algorithm for the problem, while for FO(N) the answer is not yet known.

Membership in MSO(bet), MSO(N), FO(bet)

By Proposition 3, to check if a regular language is definable in MSO(bet) or in MSO(N) it suffices to check if it is reversible. Next we look at the membership problem for FO(bet). are monoids the map is a monoid morphism if h maps the identity of S to the identity of T .

The set A + under concatenation forms a free semigroup while A * under concatenation forms a free monoid with the empty word ε as the identity. A language L ⊆ A * is recognised by a monoid (M, •), if there is a morphism h : A * → M and a set P ⊆ M , such that

L = h -1 (P ).
Given a language L, the syntactic congruence of L, denoted as ∼ L is the congruence on

A * , x ∼ L y if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ A * . ( 2 
)
The quotient A * /∼ L , denoted as M (L), is called the syntactic monoid. It recognises L and is the unique minimal object with the following canonicity property: any monoid M recognising L has a surjective morphism from a submonoid of M to M (L) [START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF].

A semigroup (or monoid) is aperiodic if there is some n ∈ N such that a n = a n+1 for each element a of the semigroup. Schützenberger-McNaughton-Papert theorem [START_REF] Schützenberger | On Finite Monoids Having Only Trivial Subgroups[END_REF][START_REF] Mcnaughton | Counter-Free Automata[END_REF] states that a language L is definable in FO(<) if and only if the syntactic monoid of L is aperiodic.

This theorem in conjunction with Proposition 5 gives that,

Corollary 16. A reversible language L is definable in FO(bet) if and only if M (L) is aperiodic.
The above result hence yields an algorithm for definability of a language in FO(bet),

i.e., check if the language is reversible, if so compute the syntactic monoid and test for aperiodicity.

Membership in FO(N)

Next we look at the membership problem for the logic FO(N). The corresponding problem for FO(+1) is known only in terms of syntactic semigroups that we recall now. A language L ⊆ A + is recognised by a semigroup (S, •), if there is a morphism h : A + → S and a set

P ⊆ S, such that L = h -1 (P ).
The syntactic congruence of L ⊆ A + , denoted as ∼ L , is the congruence on A + given by Equation (2). The quotient A + /∼ L , denoted as S(L), is called the syntactic semigroup.

It shares the canonicity property of syntactic monoids, namely it recognises L and is the unique minimal object that has a surjective morphism from a subsemigroup of any semigroup recognising L [START_REF] Pin | Mathematical Foundations of Automata Theory[END_REF].

The characterisation theorem for FO(+1) due to Brzozowski and Simon [START_REF] Brzozowski | Characterizations of Locally Testable Events[END_REF], and Beauquier and Pin [START_REF] Beauquier | Languages and Scanners[END_REF], is stated below. Recall that an element of a semigroup e is an idempotent if

e • e = e.
Theorem 17 (Brzozowski-Simon, Beauquier-Pin). The following are equivalent for a language

L ⊆ A + .
1. L is locally threshold testable.

2.

L is definable in FO(+1).

3.

The syntactic semigroup of L is finite, aperiodic and satisfies the identity e x f y e z f = e z f y e x f for all e, f, x, y, z ∈ S(L) with e, f idempotents.

Because of Proposition 12 it is clear that we need to add more identities to characterise the logic FO(N).

In the particular case of reversible languages the syntactic semigroups described above admit further properties. The observation is that the reverse operation extends to congruence classes of the syntactic congruence as shown next. Fix a reversible language L. Let [x] ∈ S(L)

denote the equivalence class of a word x ∈ A + under the syntactic congruence. Then we let

[x] r = [x r ]
. This is well defined since x ∼ L y if and only if x r ∼ L y r . Furthermore this map admits two properties -it is an involution (a map that is its own inverse), since

([x] r ) r = ([x r ]) r = [(x r ) r ] = [x] , (3) 
and it is an anti-automorphism on the semigroup S(L) since

([x] • [y]) r = ([x • y]) r = [(x • y) r ] = [y r • x r ] = [y r ] • [x r ] . (4) 
Thus S(L) is a semigroup with an involution operation, namely the reverse. Formally, a semigroup with involution (also called a -semigroup) (S, •, ) is a semigroup (S, •) extended with an operation : S → S (called the involution) such that 1. the operation is an involution on S, i.e., (a ) = a for all elements a of S, 2. the operation is an anti-automorphism on S (isomorphism between S and opposite of S), i.e., (a

• b) = b • a for any a, b in S.
It is a -monoid if S is a monoid. An element x in a -semigroup is called hermitian if it is its own involution, i.e. x = x. It is easy to see that in the case of -monoids, necessarily 1 = 1, i.e. identity is hermitian. Similarly if the semigroup has a zero it is hermitian as well.

In that both languages are definable in FO(+1). Their syntactic semigroups are shown in Figure 1. These semigroups were computed using the online tool of Charles Paperman [START_REF] Paperman | Semigroup Online[END_REF].

Let x, y, c also denote the images of the corresponding letters in the syntactic semigroups, which are indeed hermitian. Clearly the syntactic semigroups are generated by these elements.

It is easy to deduce that c is an idempotent while x, y are not. Also both semigroups have zeros (for instance any product x k involving more than two occurrences of x is a zero). Next we have a closer look at them.

1.

We claim that S(L 1 ) does not satisfy the identity exe = ex e . Consider the two words cxyc and cyxc. Note that (xy) = y x = yx. It suffices to show that cxyc ∼ L1 cyxc,

that is evident since cxy • cxyc • ε ∈ L 1 while cxy • cyxc • ε ∈ L 1 .

2.

Next we verify that S(L 2 ) satisfies the identity exe = ex e . Since the only two idempotents are c and 0, it suffices to show that cuc ∼ L2 cu r c for all nonempty words u. It is easy to verify that pcucq ∈ L if and only if pcu r cq ∈ L for all words p, q and hence cuc ∼ L2 cu r c. Since u was arbitrary it follows that S(L 2 ) satisfies the identity exe = ex e .

Theorem 19. The syntactic -semigroup of an FO(N)-definable language satisfies the identity exe = ex e , where e is an idempotent, and x is any element of the semigroup. 

Using w r ≈ t k w r , we deduce that r (αwβ, v) = t r (αw r β, v). Therefore, αwβ r ≈ t k αw r β.
The converse direction is open. The similar direction in the case of FO(+1) goes via categories [START_REF] Tilson | Categories as algebra: An essential ingredient in the theory of monoids[END_REF] and uses the Delay theorem of Straubing [START_REF] Straubing | Finite semigroup varieties of the form V D[END_REF][START_REF] Straubing | Finite Automata, Formal Logic, and Circuit Complexity[END_REF]. However in the special case when the syntactic -semigroups are monoids (i.e. contains an identity) we can get an easy converse.

Let A be an alphabet and let L ⊆ A + be a language over A. Clearly the syntactic semigroups are generated by these elements. Since letter c is neutral in both L 3 and L 4 , we deduce that c is the identity. Also any product involving at least two occurrences of x (or y, or z) is a (non-accepting) zero element denoted as 0. These are the only idempotents in the syntactic semigroups. Next we have a closer look at them. 

2.

Next consider the language L 4 that is all the permutations of words in L 1 . The semigroup S(L 4 ) is commutative and it has an identity (the element c) and a zero. Since all elements in S(L 4 ) are hermitian, it is clear that S(L 4 ) satisfies the identity exe = ex e in addition to those corresponding to FO(+1).

Lemma 22. If all elements of an involution semigroup S are hermitian, then S is commutative. Conversely if S is commutative and generated by a subset of its hermitian elements, then all elements of S are hermitian.

Proof. If all elements of S are hermitian, then ab = (ab) = b a = ba, for all elements a, b ∈ S, i.e. S is commutative. Conversely assume S is commutative and generated by a subset of hermitian elements. Then every element can be written as a product x 1 • • • x n where each x i is hermitian. Then (

x 1 • • • x n ) = x n • • • x 1 = x n • • • x 1 = x 1 • • • x n .
Hence all elements are hermitian.

Since syntactic semigroups are generated by images of letters (that are clearly hermitian), we obtain the following.

Proposition 23. Let L ⊆ A + be a reversible language with a neutral letter. Then the following are equivalent.

1.

All elements of S(L) are hermitian.

S(L)

satisfies the identity exe = ex e .

S(L)

is locally idempotent i.e., it satisfies the identity exeye = eyexe for all idempotents e and elements x ∈ S(L).

S(L) is commutative.

Proof. Equivalence of ( 1) and ( 4) is from Lemma 22. Now, (1) implies ( 2) is clear and the converse (2) implies ( 1) is because S(L) has an identity. Similarly (4) implies ( 3) is clear and (3) implies ( 4) is due to the presence of an identity.

Corollary 24. Let L be a reversible language with a neutral letter. The following are equivalent.

1. L ∈ LTT, equivalently, L is definable in FO(+1).

2. L ∈ LRTT, equivalently, L is definable in FO(N). 

Conclusion

The 

Proposition 4 .

 4 Rev = EMSO(bet) = EMSO(N). Proof. Because of Proposition 3 it suffices to show that Rev ⊆ EMSO(bet) and Rev ⊆ EMSO(N) in terms of languages accepted. (Rev ⊆ EMSO(bet))

Definition 7 . 1 , 2 . 1 , 3 .

 71213 Let ≈ t k , for k, t > 0, be the equivalence on A * , whereby two words u and v are equivalent if either they both have length at most k -1 and u = v, or otherwise they have 1. the same prefix of length kthe same suffix of length kand the same number of occurrences, up to threshold t, for all factors of length ≤ k, i.e., for each word y ∈ A * of length at most k, (u, y) = t (v, y).

Example 11 .

 11 and all other positions are labeled a. Consider the language L over the alphabet {a, b, c},L = {w | (w, ab) = 2, (w, ba) = 1 or (w, ab) = 1, (w, ba) = 2}.Since L is locally threshold testable and reverse closed, L ∈ FO(+1) ∩ Rev.We can show that L ∈ FO(N) by showing that the words,c k ab c k ba c k ab c k ∈ L c k ab c k ab c k ab c k ∈ Lfor k > 0 are indistinguishable by an FO(N) formula of quantifier depth k. For showing the latter claim, one uses Ehrenfeucht-Fraissé games and argues that in the k-round EF-game the duplicator has a winning strategy. The strategy is roughly described below:c k abc k b ac k abc k c k abc k a bc k abc kAny move of the spoiler is mimicked by the duplicator in the corresponding underlined or non-underlined part of the other word, while maintaining the neighbourhood relation between positions. For instance, if the spoiler plays the first b on the underlined part of the first word, then the duplicator chooses the last b on the underlined portion of the word on the right.

(

  ⇒) Hanf's theorem ([13], Theorem 2.4.1) states that two first-order structures A and B are m-equivalent (i.e., indistinguishable by any FO formula of quantifier rank at most m), for some m ∈ N if for each 3 m ball type S, both A and B have the same number of 3 m balls of type S up to a threshold m × e, where e ∈ N. Models of FO(N) formulas are first-order structures of the form {1, . . . , n}, (P a ) a∈Σ , N that are labelled undirected path graphs. Balls in such a graph are nothing but factors of the corresponding undirected word. Applying

First we recall the

  notion of recognisability by a finite semigroup. A finite semigroup (S, •) is a finite set S with an associative binary operation • : S × S → S. If the semigroup operation has an identity, then it is necessarily unique and is denoted by 1. In this case S is called a monoid. A semigroup morphism from (S, •) to (T, +) is a map h : S → T that preserves the semigroup operation, i.e., h(a • b) = h(a) + h(b) for a, b in S. Further if S and T

Example 18 .

 18 the light of this definition we call S(L) the syntactic -semigroup of a reversible language L. Next we show that syntactic -semigroups of FO(N)-definable languages obey the identity exe = ex e , where x is an element of the semigroup and e is an idempotent of the semigroup. Before we prove it, we look at a couple of examples. Fix the alphabet {c, x, y} for the example below. Consider the reversible languages L 1 = c * xyc * xyc * + c * yxc * yxc * , L 2 = c * (xy + yx)c * (xy + yx)c * . It is easy to verify

Figure 1

 1 Figure 1 Syntactic involution semigroups of L1 = c * xyc * xyc * + c * yxc * yxc * and L2 = c * (xy + yx)c * (xy +yx)c * over the alphabet {c, x, y}. Idempotents are indicated by * . Involutions on elements are indicated by arrows, unless the element is hermitian.

Figure 2

 2 Figure 2 Syntactic involution semigroups of L3 = c * xc * yc * zc * + c * zc * yc * xc * and L4 = Permutations(L3) over the alphabet {c, x, y, z}. Idempotents are indicated by * . Involutions on elements are indicated by arrows, unless the element is hermitian.

1 .

 1 Consider the language L 3 . The semigroup S(L 3 ) is a monoid with identity c. It satisfies the additional rules xz = zx = 0 and xyz = zyx. Since cxcccyc = xy = yx = cycccxc, S(L 3 ) does not satisfy the condition on syntactic semigroups given by Theorem 17 and hence L 3 is not LTT, and by extension not in LRTT either.

3 .

 3 L ∈ ACom (the class of aperiodic and commutative languages), equivalently, L is definable in FO(=) [4]. Proof. (1 ⇒ 3) and (2 ⇒ 3) follows from Proposition 23. The converse inclusions are by definition.

  logics MSO(bet), MSO(N) and FO(bet) behave analogously to their classical counterparts MSO(<), MSO(+1) and FO(<). But the logic FO(N) gives rise to a new class of languages, locally-reversible threshold testable languages. The quest for characterising the new class takes us to the formalism of involution semigroups. The full characterisation of the new class is the main question we leave open. It would also be interesting to know what are the natural analogues of standard fragments of FO and their expressive power, for instance classes defined by bounded number of variables, in the reversible world. Another line of investigation is to study the equationally-defined classes that arise naturally from automata theory.

  • • • a n as a structure containing positions {1, . . . , n}, and unary predicates P a for each letter a in the alphabet. The predicate P a is precisely true

	at those positions labelled by letter a. The atomic predicate x < y (resp. x + 1 = y) is true if
	position y is after (resp. immediately after) position x. The logic FO is the logic containing
	atomic predicates, boolean combinations (φ ∨ ψ, φ ∧ ψ, ¬ψ whenever φ, ψ are formulas of the
	logic), and first order quantifications (∃x ψ, ∀x ψ if ψ is a formula of the logic). The logic
	MSO in addition contains second order quantification as well (∃X ψ, ∀X ψ if ψ is a formula
	of the logic) -i.e., quantification over sets of positions. By FO(τ ) or MSO(τ ) we mean the
	corresponding logic with atomic predicates τ in addition to the unary predicates P a . The
	classical result relating MSO and regular languages states that MSO(<) = MSO(+1) (in
	terms of expressiveness) defines all regular languages. We introduce two analogous predicates
	for the class Rev of reversible regular languages.