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Abstract. The design of decentralized learning algorithms is important
in the fast-growing world in which data are distributed over partici-
pants with limited local computation resources and communication. In
this direction, we propose an online algorithm minimizing non-convex
loss functions aggregated from individual data/models distributed over
a network. We provide the theoretical performance guarantee of our al-
gorithm and demonstrate its utility on a real life smart building.

1 Introduction

The popularity of sensors and IoT devices has the potential of generating and
equivalently accumulating data in order of Zeta bytes [15] annually. High through-
put, low latency, data consumption, networking dependencies are often the key
metrics in designing high-performance learning algorithms under the constraint
of low powered computing. In recent times, there has been an alternate trend to
process data on cloud or dump into a centralized database. Commonly known
as edge computing, the new paradigm embraces the idea of using interconnected
computing nodes to reduce high bandwidth consuming data uploads, privacy
preservation of data and knowledge on the fly.

Smart building applications typically have a profound implication on envi-
ronment in terms of energy savings, reduction of green house emission, etc. Pre-
dicting the future often forms the basis of corrective actions taken by such apps
and can be regarded as a predominant use-case of machine learning. Usually the
data is generated across multiple zones from heterogeneous sensors and forms a
setting of decentralized learning. In recent times, the hardware-software inter-
face has benefited from advances in network communication coupled with edge
computing. Thus deploying a machine learning model in site and processing data
on the fly has become a realistic alternative of sending data to a centralised data
base. Optimizing problems to maintain robust solutions under the uncertainty
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of future is a nice to have feature for such cyber physical systems. Contrary to
the classical train-test-deploy framework, online learning offers continual learn-
ing where during run time, a batch of sensor data has the potential to update
an AI model on site.

This work aligns with the edge computing paradigm by proposing an online
and decentralized learning algorithm. Online learning helps better adapt to the
uncertainty of the future where the data pattern continually changes over time.
The designed algorithm repeatedly chooses a high-performance strategy given a
set of actions compared to the best-fixed action in hindsight. Instead of having
a centralized mediator, the decentralized setting promotes peer-to-peer knowl-
edge exchanges while prohibiting data sharing between learners. Many proposed
online decentralized algorithms use gradient descent-based methods to solve con-
straint problems. Such an approach requires projection into the constraint set
that usually involves intensive computation, which is not best suited in the con-
text of sensors and IoT. We aim to design a competitive, robust algorithm in the
decentralized and online setting that has the flexibility of being projection-free.

Problem setting Formally, we are given a convex set K ⊆ Rd and a set of
agents connected over a network represented by a graph G = (V,E) where
n = |V | is the number of agents. At every time 1 ≤ t ≤ T , each agent i ∈ V
can communicate with (and only with) its immediate neighbors, i.e., adjacent
agents in G and takes a decision xt

i ∈ K. Subsequently, a batch of new data is
revealed exclusively to agent i and from its own batch, a non-convex cost function
f t
i : K → R is induced locally. Although each agent i observes only function f t

i ,
agent i is interested in the cumulating cost F t(·) where F t(·) := 1

n

∑n
j=1 f

t
j (·).

In particular, at time t, the cost of agent i with the its chosen xt
i is F t(xt

i). The
objective of each agent i is to minimize the total cumulating cost

∑T
t=1 F

t(xt
i)

via local communication with its immediate neighbors.
When the cost functions f t

i are convex, a standard measure is the regret
notion. An online algorithm is R(T )-regret if for every agent 1 ≤ i ≤ n,

1

T

( T∑
t=1

F t(xt
i)−min

o∈K

T∑
t=1

F t(o)

)
≤ R(T )

As the cost functions in the paper are not necessarily convex, we consider
a stationary measure on the quality of solution based on the Frank-Wolfe gap
[11], and that can be considered the counter-part of the regret in the non-convex
setting. Specifically, we aim to bound the convergence gap, for every agent 1 ≤
i ≤ n:

max
o∈K

1

T

T∑
t=1

⟨∇F t(xt
i),x

t
i − o⟩ (1)

In the same spirit as the regret, the measure of convergence gap compares the
total cost of every agent to that of the best stationary point in hindsight. Note
that when the functions F t are convex, the convergence gap is always upper
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bounded by the regret. Moreover, when the problem becomes offline, i.e., all
F t are the same, the convergence gap measures the speed of convergence to a
stationary solution.

1.1 Our contribution

The challenge in designing robust and efficient algorithms for the problem is
to resolve the following issues together: the uncertainty (online setting, agents
observe their own loss functions only after choosing their decisions), the par-
tial information (decentralized setting, agents know only its own loss functions
while aiming to minimize the cumulating cost), and the non-convexity of the
loss functions. As a starting point, we consider the Meta Frank-Wolfe (MFW)
algorithm [3] in the (centralized, convex) online setting and the Decentralized
Frank-Wolfe (DFW) algorithm [22] in the decentralized (offline) setting. How-
ever, these algorithms work either in the online setting or in the decentralized
one but not both together. The difficulty in our problem, as mentioned earlier,
is to resolve all issues together.

In the paper, we present algorithms, subtly built on MFW and DFW algo-
rithms, that achieves the convergence gap of O(T−1/2) and O(T−1/4) in cases
where the exact gradients or only stochastic gradients of loss functions are avail-
able, respectively. Note that in the former, the convergence gap of O(T−1/2)
asymptotically matches the best regret guarantee even in the centralized offline
settings with convex functions. Besides, one can convert the algorithms to be
projection-free by choosing appropriate oracles used in the algorithm. This prop-
erty provides a flexibility to apply the algorithms to different settings depending
on the computing capacity of local devices. Our work applies to online neural
network optimization amongst a group of autonomous learners. We demonstrate
the practical utility of our algorithm in a smart building application where zones
mimic learners optimizing a temperature forecasting problem. We provide a thor-
ough analysis of our algorithms in different angles of the performance guarantee
(quality of solutions), the effects of network topology and decentralization, which
are predictably explained by our theoretical results.

1.2 Related Work

Decentralized Online Optimization. Authors [24] introduced decentralized on-
line projected subgradient descent and showed vanishing regret for convex and
strongly convex functions. In contrast, Hosseini et al. [10] extended distributed
dual averaging technique to the online setting using a general regularized projec-
tion for both unconstrained and constrained optimization. A distributed variant
of online conditional gradient [8] was designed and analyzed in [26] that requires
linear minimizers and uses exact gradients. However, computing exact gradients
may be prohibitively expensive for moderately sized data and intractable when
a closed-form does not exist. In this work, we go a step ahead in designing a dis-
tributed algorithm that uses stochastic gradient estimates and provides a better
regret bound than in [26].
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Learning on the edge. Over the year, edge computing has become an exciting
alternative for cloud-based learning by processing the data closer to end devices
while ensuring data confidentiality and reducing transmission. [23] proposes a
distributed framework for non-i.i.d data using multiple gradient descent-based
algorithms to update local models and a dedicated edge unit for global aggrega-
tion. Another popular approach is to reduce the memory size of classical machine
learning models to meet edge resource constraints. [20] and [18] similarly takes
this idea by building a tree-based learning framework with a considerable reduc-
tion in memory using compression and pruning. At the same time, [6] introduce
an edge-friendly version of k-nearest neighbor [5] by projecting the data into a
lower-dimensional space. Besides traditional machine learning algorithms, adapt-
ing deep learning models to work on edge devices is an emerging research domain.
In [4, 14], the authors propose a pruning technique on convolutional network for
faster computation while preserving the model ability. Another approach using
weight quantization is proposed in [21]. The current dominant paradigm is fed-
erated learning [16, 12], where offline centralized training is performed through
a star network with multiple devices connected to a central server. However,
decentralized training is more efficient than centralized one when operating on
networks with low bandwidth or high latency [13, 9]. In this paper, we go one
step further by studying arbitrary communication networks without a central
coordinator and the local data (so local cost functions) evolve.

Thermal Profiling a Building. Usually, building monitoring sensors are dis-
tributed across a building and thus acts as a scattered data lake with potentially
heterogeneous patterns. Indoor temperature is an important factor in control-
ling Heating Ventilation Air Conditioning systems that maintain ambient com-
fort within a building [7]. Typically such embedded systems run in anticipatory
mode where temperature prediction [2] of controlled building zones helps in
maintaining thermal consistency. A multitude of factors effect the thermal pro-
file like outdoor environment, opening/closing of windows, number of occupants,
etc, which are hard to get and often rely on intrusive mechanisms to gather the
data. Researchers have utilized deep learning models [25] in the context of on-
line learning of temperature, but lack the benefit of interacting with multiple
similar sensors. This study seeks to generate a thermal profile of a building by
only utilizing temperature data from multiple zones of a building in order to
extract patterns about thermal variation. The proposed methodology not only
processes data on the fly [1], but also identifies meaningful topological data ex-
change networks that can best predict multi zonal temperature settings.

2 Conditional Gradient based Algorithm

In this section, after introducing and recalling useful notions, we will first provide
an algorithm for the setting with exact gradients. Subsequently, building on the
salient ideas of that algorithm, we extend to the more realistic setting with
stochastic gradients.
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2.1 Preliminaries and Notations

Given an undirected graph G = (V,E), the set of neighbors of an agent i ∈ V is
N(i) := {j ∈ V : (i, j) ∈ E}. Consider a symmetric matrix W ∈ Rn×n

+ defined
as follows. The entry Wij has a value of

Wij =


1

1 + max{di, dj}
if (i, j) ∈ E

0 if (i, j) ̸∈ E,i ̸= j

1−
∑

j∈N(i) Wij if i = j

where di = |N(i)|, the degree of vertex i. In fact, the matrix W is doubly
stochastic, i.e W1 = WT1 = 1 and so it inherits several useful properties of
doubly stochastic matrices. We use boldface letter e.g x to represent vectors. We
denote xt

i as the decision vector of agent i at time step t. We suppose that the
constraint set K is a bounded convex set with diameters D = supx,y∈K ∥x−y∥.

A function f is β-smooth if for all x,y ∈ K :

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ β

2
∥y − x∥2

or equivalently ∥∇f(x) − ∇f(y)∥ ≤ β∥x − y∥. Also, we say a function f is
G-Lipschitz if for all x,y ∈ K

∥f(x)− f(y)∥ ≤ G∥x− y∥

In our algorithm, we make use of linear optimization oracles where its role
is to resolve an online linear optimization problem given a feedback function
and a constraint set. Specifically, in the online linear optimization problem, at
every time 1 ≤ t ≤ T , one has to select ut ∈ K. Subsequently, the adversary
reveals a vector dt and feedbacks the cost function ⟨·,dt⟩. The objective is to
minimize the regret, i.e., 1

T

(∑T
t=1⟨ut,dt⟩ −minu∗∈K

∑T
t=1⟨u∗,dt⟩

)
. Several al-

gorithms [8] provide an optimal regret bound of RT = O(1/
√
T ) for the online

linear optimization problem. These algorithms include the online gradient de-
scent algorithm or the follow-the-perturbed-leader algorithm (projection-free).
One can pick one of such algorithms to be an oracle resolving the online linear
optimization problem.

2.2 An Algorithm with Exact Gradients

Assume that the exact gradients of the loss functions f t
i are available (or can

be computed). The high-level idea of the algorithm is the following. In the algo-
rithm, at every time t, each agent i executes L steps of the Frank-Wolfe algorithm
where every update vector (for iterations 1 ≤ ℓ ≤ L where the parameter L will
be chosen later) is constructed by combining the outputs of linear optimiza-
tion oracles Oj,ℓ and the current vectors of its neighbors j ∈ N(i). During this
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execution, a set of feasible solutions {xt
i,ℓ : 1 ≤ ℓ ≤ L} is computed. The so-

lution xt
i for each agent 1 ≤ i ≤ n is then chosen uniformly at random among

{xt
i,ℓ : 1 ≤ ℓ ≤ L}. Subsequently, after communicating and aggregating the in-

formation related to functions f t
j for j ∈ N(i), the algorithm computes a vector

dt
i,ℓ and feedbacks ⟨dt

i,ℓ, ·⟩ as the cost function at time t to the oracle Oi,ℓ for
1 ≤ ℓ ≤ L. The vectors dt

i,ℓ’s are subtly built so that it captures step-by-step
more and more information on the cumulating cost functions. The formal de-
scription is given in Algorithm 1 and a detailed proof of Theorem 1 is given in
[17]

Algorithm 1 Online Decentralized algorithm
Input: A convex set K, a time horizon T , a parameter L, online linear optimization
oracles Oi,1, . . . ,Oi,L for each agent 1 ≤ i ≤ n, step sizes ηℓ ∈ (0, 1) for all 1 ≤ ℓ ≤ L

1: for t = 1 to T do
2: for every agent 1 ≤ i ≤ n do
3: Initialize arbitrarily xt

i,1 ∈ K
4: for 1 ≤ ℓ ≤ L do
5: Let vt

i,ℓ be the output of oracle Oi,ℓ at time step t.
6: Send xt

i,ℓ to all neighbours N(i)
7: Once receiving xt

j,ℓ from all neighbours j ∈ N(i), set yt
i,ℓ ←

∑
j Wijx

t
j,ℓ.

8: Compute xt
i,ℓ+1 ← (1− ηℓ)y

t
i,ℓ + ηℓv

t
i,ℓ.

9: end for
10: Choose xt

i ← xt
i,ℓ for 1 ≤ ℓ ≤ L with probability 1

L
and play xt

i

11: Receive function f t
i

12: Set gt
i,1 ← ∇f t

i (x
t
i,1)

13: for 1 ≤ ℓ ≤ L do
14: Send gt

i,ℓ to all neighbours N(i).
15: After receiving gt

j,ℓ from all neighbours j ∈ N(i), compute dt
i,ℓ ←∑

j∈N(i) Wijg
t
j,ℓ and gt

i,ℓ+1 ←
(
∇f t

i (x
t
i,ℓ+1)−∇f t

i (x
t
i,ℓ)

)
+ dt

i,ℓ.
16: Feedback function ⟨dt

i,ℓ, ·⟩ to oracles Oi,ℓ. (The cost of the oracle Oi,ℓ at
time t is ⟨dt

i,ℓ,v
t
i,ℓ⟩.)

17: end for
18: end for
19: end for

Theorem 1. Let K be a convex set with diameter D. Assume that functions
F t (possibly non convex) are β-smooth and G-Lipschitz for every 1 ≤ t ≤ T .
Then, by choosing the step size ηℓ = min

(
1, A

ℓα

)
for some A ≥ 0 and α ∈ (0, 1),

Algorithm 1 guarantees that for all 1 ≤ i ≤ n:

max
o∈K

1

T

T∑
t=1

Ext
i

[
⟨∇F t(xt

i),x
t
i − o⟩

]
≤ O

(
GDA−1

L1−α
+

AD2β/2

Lα(1− α)
+RT

)
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where RT is the regret of online linear minimization oracles. Choosing L = T ,
α = 1/2 and oracles as gradient descent or follow-the-perturbed-leader with regret
RT = O

(
T−1/2

)
, we obtain the gap convergence rate of O

(
T−1/2

)
.

2.3 Algorithm with Stochastic Gradients

We extend the previous algorithm to the setting of stochastic gradients estimates.
As only stochastic gradient estimates are available, we use a variance reduction
technique in order to upgrade Algorithm 1 to its stochastic version (Algorithm
2). The difference between the two algorithms is stochastic gradient estimation
and an additional step for variance reduction. After making the decision, the
agent receives an unbiased gradient to perform updates and communication to
obtain stochastic estimates g̃t

i,ℓ and d̃t
i,ℓ of gt

i,ℓ and dt
i,ℓ, respectively. (Note that

the stochastic variables are denoted by the same letter as its exact counterpart
with an additional tilde symbol.) Then the agent uses Step 17 in Algorithm 2
to get the reduced variance version ãt

i,ℓ of d̃t
i,ℓ. The function ⟨ãt

i,ℓ, ·⟩ is then
feedbacked to the oracle.

The formal description is given in Algorithm 2 in which all previous steps are
the same as Algorithm 1 and the additional variance reduction step is marked
in red. A detailed proof of Theorem 2 can be found in [17].

Algorithm 2 Stochastic online decentralized algorithm
. . .

12: Receive function f t
i and an unbiased gradient estimate ∇̃f t

i

13: Set g̃t
i,1 ← ∇̃f t

i (x
t
i,1)

14: for 1 ≤ ℓ ≤ L do
15: Send g̃t

i,ℓ to all neighbours N(i).
16: After receiving g̃t

j,ℓ from j ∈ N(i), compute d̃t
i,ℓ ←

∑
j∈N(i) Wij g̃

t
j,ℓ and set

g̃t
i,ℓ+1 ←

(
∇̃f t

i (x
t
i,ℓ+1)− ∇̃f t

i (x
t
i,ℓ)

)
+ d̃t

i,ℓ.
17: ãt

i,ℓ ← (1− ρℓ) · ãt
i,ℓ−1 + ρℓ · d̃t

i,ℓ.
18: Feedback function ⟨ãt

i,ℓ, ·⟩ to oracles Oi,ℓ. (The cost of the oracle Oi,ℓ at time t
is ⟨ãt

i,ℓ,v
t
i,ℓ⟩.)

19: end for

Theorem 2. Let K be a convex set with diameter D. Assume that for every
1 ≤ t ≤ T .

1. functions f t
i are β-smooth and G-Lipschitz,

2. the gradient estimates are unbiased with bounded variance σ2,
3. the gradient estimates are Lipschitz.

Then, choosing the step-sizes ηℓ = min{1, A
ℓ3/4

} for some A ≥ 0, we have for all
1 ≤ i ≤ n,

max
o∈K

E
[ 1
T

T∑
t=1

Ext
i

[
⟨∇Ft

(
xt
i

)
,xt

i − o⟩
]]
≤ O

(
DG+ 2ADQ1/2

L1/4
+

2AD2β

L3/4
+RT

)
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Choosing L = T and oracles with regret RT = O
(
T−1/2

)
, we obtain the conver-

gence gap of O
(
T−1/4

)
.

3 Experiments

The data-set used for experimentation comes from a 7 storey building with 24
sensor equipped zones [19].The zone-wise knowledge exchange happens through
the edges of an undirected graph of n nodes participating in the learning process.
For every round t, each node i receives a batch Bt

i of 32 time-series sequences
corresponding to a look-back period 13 timestep to predict the temperature of
the next timestep. We extract the data from March 7th to April 20th for training,
set L equal to 360, α = 0.95 and A = 1. A min-max scaler is used to normalize
the data and we apply a rolling window with stride 1 on the original time series.
Each node is embedded with a model built from a two-layers long-short-time-
memory (LSTM) network followed by a fully connected layer. Denote the output
of the model i for a data sequence b at time t by ŷti,b and its ground truth by
yti,b. Consider the ℓ1 loss as the objective function :

L(ŷti,b, yti,b) =


(ŷti,b − yti,b)

2

2
if |ŷti,b − yti,b| ≤ 1

|ŷti,b − yti,b| − 1
2 otherwise.

Consider the constraint set K = {x ∈ Rd, ∥x∥1 ≤ r}, where x is the model’s
weight, d its dimension and r = 1. The (normalized) loss incurred by the data of
agent i is 1

|Bt
i |
∑

b∈Bt
i
L(ŷti,b, yti,b). The global loss function incurred by the overall

data is

F t(x) =
1

| ∪n
i=1 Bt

i |
∑

b∈∪n
i=1Bt

i

L(ŷti,b, yti,b),

that can be written as F t(x) = 1
n

∑n
i=1 f

t
i (x) where f t

i (x) =
1

|Bt
i |
∑

b∈Bt
i
L(ŷti,b, yti,b).

Note that the non-convexity here is due to the non-convexity of ŷti,b as a function
of xt

i. In the following section, if not specify otherwise, we call loss the temporal
average of the global loss function F t defined as 1

T

∑T
t=1 F

t.

3.1 Prediction Performance

Figures 1a and 1b show the loss and gap values for different network sizes. The
implementation justifies our theoretical results about the convergence of the gap.
Besides, we also observe the convergence of loss value, an expected implication
of the gap convergence. We set M the number of prediction points between the
21st and 24th of April and n the number of zones within one configuration. We
use the mean absolute error (MAE = 1

nM

∑n
i=1

∑M
m=1 |ŷi,m − yi,m|) and mean

square error (MSE = 1
nM

∑n
i=1

∑M
m=1 (ŷi,m − yi,m)

2) as a measure between the
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prediction and the ground truth. We observe that increasing nodes in a network
does not always lead to better online performance. In-fact, a 7 node configuration
achieves the lowest MSE (0.65) and MAE (0.78) for floors 6 and 7. We see a 40
% drop in MSE and 20 % reduction in MAE for floor 6 zonal models when 3
extra peers from floor 7 joined the group. We observe 19 % and 25 % increase in
MSE and MAE values by adding zonal nodes from floor 7 to a 10 node group.
This can be best argued by the fact that the top floor of a building has a non
identical thermal variation with the rest of the storeys.

(a) Loss Value (b) Gap Value

Fig. 1: Loss and Gap values of different network size on complete topology (Plot on
log-scale)

3.2 Effect of Network Topology

We study the effect of topology in learning for a 7 node configuration with a
complete, cycle and line graph containing 28, 7 and 6 edges respectively and
with 13 nodes having 78,13 and 12 edges respectively. For both 7 (Table 1a) and
13 (Table 1b) node configurations, we observe that the complete graph yields the
least amount of prediction error, mean absolute error ∈ [0.66, 1.3]°C. However
we note the peculiarity that the line graph can perform better than a cycle graph
and has roughly a 10 % error margin compared to the complete configuration.

3.3 Effect of Decentralization

We are interested in understanding the role of decentralization in terms of ac-
curacy of zonal learners. Let LMFW (t) be the loss from Meta Frank Wolfe
(MFW) at time t. The approximation ratio A(t) = LDMFW (t)

LMFW (t) at time t represents
how worse is our decentralized version compared to a centralized optimization.
A(t) ≤ Bmax will mean our algorithm performs no worse than Bmax times of
the MFW. On figure 2, we plot the ratio A(t) for a 13 node network and show
that A(t) ≤ 1.4. The 7 node network has the closest approximation bounded
by 1.35 which can be explained by earlier insights on performance accuracy. We
notice that the 10 node network performs worse till t = 200 and after t ≥ 250 or
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Topology Metric Mean Var Max Min

cycle MAE 1.09 0.48 1.80 0.56
cycle MSE 0.78 0.21 1.09 0.52
complete MAE 0.77 0.38 1.47 0.27
complete MSE 0.64 0.20 1.04 0.39
line MAE 0.81 0.53 1.95 0.24
line MSE 0.66 0.28 1.26 0.34

(a) Impact of Topology on 7 learners
configuration.

Topology Metric Mean Var Max Min

cycle MAE 1.51 1.46 6.16 0.36
cycle MSE 0.94 0.38 1.90 0.48
complete MAE 1.26 0.82 3.64 0.32
complete MSE 0.85 0.27 1.50 0.42
line MAE 1.38 0.91 3.17 0.50
line MSE 0.90 0.35 1.66 0.49

(b) Impact of Topology on 13 learners
configuration.

Table 1: Temperature forecasting performances on different network topologies

Fig. 2: Loss ratio of decentralized and centralized Meta Frank-Wolfe on different net-
work size.

21 hours, the approximation ratio becomes close to centralised version with less
than 20 % error.

4 Concluding remarks

We proposed an online algorithm minimizing non-convex loss functions aggre-
gated from local data distributed over a network. We showed the bounds of the
convergence gap in both exact and stochastic gradient settings. In complement
to the theoretical analysis, we run experiments on a real-life smart building data-
set. The results make our offerings valuable for learning in distributed settings.
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