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This study extends the input-output framework for the receptivity analysis of an incom-

pressible boundary layer introduced by Ran et al. (Stochastic receptivity analysis of boundary

layer flow Phys. Rev. Fluids. 4, 093901, 2019) to the laminar adiabatic supersonic case.

Spatially distributed in the wall-normal direction, a delta-correlated Gaussian noise is con-

sidered as input, both including the velocity and temperature fields. Similarly, components

of the resulting velocity and/or temperature fields are chosen as outputs. To study effects on

the boundary layer the measurements of the output are restricted within the δ99 boundary

layer thickness implying, however, that effects like acoustic radiation to the freestream are

outside the scope of the present analysis. The main goal of the study is twofold: First, to

demonstrate the potential of the chosen approach by comparison with familiar results; sec-

ond, to extend the current state of knowledge in the compressible regime in selected points

by exploiting the extended capabilities of the chosen framework. To this end, the impor-

tance of the different inputs – especially the temperature effects – for the amplification of

two-dimensional, oblique flow structures and streaks are discussed. Furthermore, the influ-

ence of first and second Mach modes (not present in the incompressible regime) is identified

within the stochastic framework for the first time and results are discussed in the light of

previous receptivity analyses where the output is restricted to a single mode. By varying

the spatial distribution of the forcing, the dependence of the receptivity on the wall-normal

position, where the forcing is introduced, is illustrated and discussed.

Finally, dominant coherent structures are identified by evaluating the first singular vector

of the correlation matrix (POD modes). By analyzing the dependence of both forcing and

response POD modes on the choice of the measured component, further insight is provided

about the contribution of temperature fluctuation to the stochastically maintained variance

of the system.
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1. INTRODUCTION

The prediction of the laminar-turbulent transition of compressible boundary layers is of great

interest for improving the performance of supersonic aircraft. Indeed, the laminar-turbulent tran-

sition of the boundary layer has a strong impact on drag, aerodynamic heating and mechanical

fatigue of the body. Successful prediction of the transition point, however, requires an accurate

understanding of the complex mechanisms that drive the flow to turbulence, and thus represents

a key element in the design of control strategies to delay transition1.

In principal, the laminar-turbulent transition path divides into three stages: the receptivity,

the linear growth of instability modes and secondary mechanisms. The receptivity step consists in

converting various environmental disturbances into boundary layer instability modes2. The linear

growth is amplified either through an exponential mode3 or due to non-modal effects4. During the

last stage, the growth of perturbations is very fast and the breakdown to turbulence occurs.

Assuming a weak ambient turbulence intensity and/or a controlled transition, the linear growth

is associated with the most unstable wave, whereas the latter can be obtained by solving the

eigenvalue problem derived from the linear stability theory. For the low Mach number case, the

unstable boundary layer eigenmode is the so-called two-dimensional Tollmien-Schlichting (TS)

wave, for supersonic boundary layers, Mack5 found evidence for the existence of multiple inviscid

acoustic modes when the relative Mach number (i.e. the local Mach number of the base flow in

a frame parallel to the wave vector) is greater than 1. Among them, Mack5 have shown that the

least stable of these additional modes, also called the second mode, becomes unstable at Mach

numbers larger than 4 for an adiabatic wall. In particular, that for two-dimensional disturbances,

the second mode is the most amplified mode for M∞ > 4 and that the most amplified Tollmien-

Schlichting wave (referenced as the first mode) is oblique rather than two-dimensional. Arnal6

and Özgen & Kirkali7 extended Mack’s results to a wide range of Mach numbers and various fluid

properties (such as the reference temperature for instance). The authors showed that the oblique

wave direction of the most unstable mode is almost unaffected for freestream Mach number greater

than 4 (typically around 60o). More recently, the effect of wall cooling onto linear stability of a

supersonic boundary layer has been investigated by Bitter & Shepherd8 .

As the external disturbance amplitude increases, the second step of transition is mainly driven

by non-modal mechanisms. An appropriate superposition of eigenmodes may experience a transient

energy growth due to the non-orthogonality of the eigenvectors. Laminar-turbulent transition in

the boundary layer flows is then dominated by streamwise elongated streaks and the breakdown
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is caused by their sinuous/varicose secondary instabilities. The physical mechanism behind the

emergence of streaks is the so-called lift-up effect9. The growth results from the tilting of streamwise

vorticity onto wall-normal vorticity under the action of the basic shear. This mechanism occurs

in both subsonic and supersonic regimes even if characteristic temporal and spatial scales depend

on the Mach number (see Hanifi et al.10, Zuccher et al.11, Tumin & Reshotko12 and Tempelmann

et al.13 for theoretical analyses within either a temporal or a spatial framework, respectively).

As mentioned above, the receptivity analysis aims to assess the effectiveness with which external

sources excite flow structures. In this vein, Hill14 introduced a linear theoretical framework for

an incompressible boundary layer flow using the solution of the adjoint Orr-Sommerfeld operator,

aiming to indicate the forcing (components and wall-normal positions) which would induce the

largest response of the TS mode. It comes out that the receptivity crucially depends on the non-

normality of the underlying dynamical operator and that several damped modes may contribute

to the asymptotic response of the TS wave.

By using direct numerical simulations (DNS), the receptivity of the adiabatic supersonic bound-

ary layer to various forcing disturbances has been addressed by Malik et al.15 and Ma & Zhong16.

Especially, Ma & Zhong16 have found that – in addition to the first and second modes – also a

family of stable distinct modes (named modes I, II, and so on by the authors) exists besides the

already known which play a significant role in the excitation of the unstable Mack modes; these

modes do not have any counterpart in the incompressible regime. Following the same methodology

as in the prior investigation of Ma & Zhong16, Wang & Zhong17 studied the receptivity of a flat

plate boundary layer at M∞ = 5.92 to periodic two-dimensional wall excitations. It was shown that

instability waves generated by wall-normal blowing and suction at the wall reach higher amplitudes

than those excited by either streamwise velocity or temperature disturbances. These observations

are consistent with the analytical results given by Fedorov & Khokhlov18.

More recently, Tumin et al.19 extended the linear incompressible receptivity theory of Hill14 to

the compressible problem. The receptivity of the first and second modes is then analyzed in detail

either with the help of the linear receptivity model or by exploiting DNS data using a multimode

decomposition technique for a biorthogonal system20. A good comparison is observed between

the theoretical receptivity coefficient distribution and the amplitude filtered output from the DNS

computation through a projection onto the different modes. It clearly confirms the necessity of

using a multimode framework to evaluate the receptivity mechanisms of the first and second modes

and further supports the statement established by Ma & Zhong16 (see also Fedorov21 for a review).

Although the aforementioned studies have greatly improved the understanding of compressible
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receptivity, two main gaps can be identified. Firstly, some essential questions like the receptivity

of streaks, for instance, have not yet been sufficiently discussed; the emergence of these elongated

structures may compete with the excitation of the first and second modes in certain situations.

Secondly, all of the studies listed are merely restricted to a forcing that only includes a single

frequency which does not properly reflect broadband external excitation (free-stream turbulence

and surface roughness for instance). For incompressible flows, it has been shown by e.g. Farrell

& Ioannou22 and Bamieh & Dahleh23 that the level of the variance of the linear response can be

slightly enhanced due to the non-normality of the governing operator for various linearly stable

canonical shear flows. The amplification of stochastic excitation is then a consequence of an optimal

superposition of eigenmodes and has close mathematical connections with non-normal growth24.

Besides, Hwang & Cossu25 have shown that the characteristic spanwise scale of streaks is different

whether the harmonic or the white noise forcing is considered for the incompressible turbulent

Couette flow. It indicates that the two approaches are complementary to understand which most

representative scale may emerge due a stochastic forcing and what is its spectral content. Solely

restricted to the incompressible case, these questions inspired a stochastic receptivity theory based

on an input/output framework by Ran et al.26, which has been used to study the influence of

the forcing (both wall-normal positions and spatial correlations properties) onto the excitation of

streaks and TS waves. For that purpose, the authors have introduced a receptivity coefficient as

the ratio of the measurement of the variance of the response (i.e. the output) to the variance

associated with the forcing (i.e. the input). Furthermore, the estimation of the power cross-

spectral density tensor using the resolvent operator is explicitly given by the authors, extending

the standard resolvent analysis27 to stochastically forced flows (see also Morra et al.28 for further

details).

Concluding from the studies introduced, it is evident that a lot of work dealing with the recep-

tivity of shear flows in the context of an input/output strategy has been done so far, but mainly

with a strict focus on incompressible flows. The few recent analyses that deal with compress-

ible flows are concerned with computing the linear response to harmonic forcing. For instance,

Dwidedi et al.29 quantified the amplification of streaks due to external harmonic excitation in

supersonic laminar boundary layer and hypersonic compression ramp flows. Using the same frame-

work, Dwidedi et al.30 investigated oblique transition in a Mach 5 hypersonic flow over an adiabatic

slender double-wedge. For the turbulent regime, Bae et al.31 and Dawson & McKeon32 employed

a resolvent analysis to identify the amplification of coherent structures in supersonic turbulent

boundary layers and extend the prior study focusing on linear transient growth carried out by
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Alizard et al.33. Very recently, Madhusudanan & McKeon34 investigated the stochastic response

of the laminar supersonic boundary layer. They mainly focused on the amplification of streaks for

several Mach numbers and wall temperatures. In particular, they have shown that streaks are not

amplified by an input restricted to either the temperature or density disturbances.

Although the above findings provide a good understanding of the amplification of first and

second modes and streaks in supersonic boundary layers, it should be pointed out that the above

mentioned models have some limitations. Firstly, in contrast to the incompressible case, the

previous receptivity analyses are mainly restricted to external harmonic excitations. While it

provides strong informations about the sensitivity to forcing frequencies, they may not fully capture

natural sources of excitation and thus miss the cumulative effect of the different frequencies onto

characteristic spatial scales. Secondly, the specific role of the temperature disturbance for the

receptivity process of the first and second modes (active or passive effects) has not yet been fully

addressed which is known, however, to be of great relevance in certain scenarios (see Fedorov &

Tumin35 for instance). Thirdly, the crucial influence of the wall-normal position where the forcing

is imposed on the amplification of the various flow structures26 has not been systematically studied

for a wide range of streamwise and spanwise scales in the compressible case. This specific point is

of major interest in laminar-turbulent transition controlled by localized disturbances. For instance,

plasma actuators are widely used in supersonic boundary layers to prevent flow separation. In that

case, the effectiveness of such actuators could be further improved in optimizing the orientation,

wall-normal position and spanwise distribution of the induced jets within the boundary layer.

1.1. Objectives of this study

Motivated by these questions, it is the objective of the present work to revisit the linear re-

ceptivity of supersonic boundary layers with a hope to address the inherent limitations mentioned

above. Motivated by the success in incompressible investigations, the ideal tool to achieve this goal

appears to be the stochastic input/output receptivity framework introduced by Ran et al.26. On

the one hand, this will allow to both study the effects of the various inputs (including components

and/or spatial localizations) into the excitation of characteristic scales that coincide with streaks,

first and second modes. On the other hand, it allows to overcome the inherent difficulties associated

with a modal framework as none specific mode is promoted for the output due to the stochastic

approach. Thus, the present framework provides a more general tool to investigate the receptivity

process associated with the amplification of different spatial scales.
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The paper is organized as follows. We first introduce the receptivity model in section 2. Section

3 is devoted to characterize the evolution of the receptivity coefficient with the Mach number and

various inputs. Results will be examined through the spectral content associated with the measure-

ment. Using response and forcing proper orthogonal decompositions (POD), the dominant flow

structures associated with the different peaks in the receptivity coefficient will then be investigated

to draw a complete picture between inputs and outputs. Finally, the conclusions are summarized

in section 4 and prospects are given.

2. INPUT/OUTPUT FRAMEWORK FOR THE RECEPTIVITY ANALYSIS

In this section, the theoretical tool used to investigate the receptivity process associated with

a supersonic boundary layer subjected to an external stochastic forcing is introduced, which thus

extends the input/output framework introduced by Ran et al.26 to the compressible case. Within

this general framework, the output is characterized using the second-order statistics of the linear

boundary layer response and the base flow is assumed to be wall-parallel, see Ran et al.26 for a

justification/consequences of this choice.

Formulated for a cartesian coordinate system with (x, y, z) = (x1, x2, x3) the streamwise, wall-

normal and spanwise directions, respectively, the Navier-Stokes equations for a compressible perfect

gas read:

∂ρ

∂t
+
∂ρuj
∂xj

= 0,

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂σij
∂xj

,

∂ρCvT

∂t
+
∂ρCvTuj
∂xj

= − ∂

∂xj
Ψj + σij

∂ui
∂xj
− p∂ui

∂xi

(1)

where ρ, p, ui and T are density, pressure, the ith velocity component and temperature, respectively,

and Cv the specific heat at constant volume. The viscous stress tensor σij and the heat flux vector

Ψj components are defined as

σij = µ (T )

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ (T ) δij

∂uk
∂xk

,

Ψij = −Cpµ (T )

Pr

∂T

∂xj
,
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where δij , Pr, Cp and µ (T ) are Kronecker’s delta, the Prandtl number, the specific heat at constant

pressure and the molecular viscosity assuming Sutherland’s law. Nondimensionalized by using their

values at the freestream (referenced by the subscript ∞ hereafter), the flow is characterized by the

Mach, Reynolds and Prandtl numbers:

M∞ =
U∞√
γRT∞

, Re =
ρ∞U∞l
µ∞

, P r =
µ∞Cp
λ∞

.

Here, R is the specific gas constant, γ the specific heat ratio, λ the thermal conductivity, and l the

length scale of the boundary-layer thickness l =
√
µ∞x/(ρ∞U∞) with x the dimensional coordinate

measured from the leading edge, often used in studies of compressible boundary layer stability7,10.

We restrict our analysis to the linearized dynamics around the base flow solution noted Q = (U, T )

where U represents the mean flow velocity along x and T the temperature component of the base

flow. Using the boundary layer approximation, the mean pressure is constant along the wall-normal

direction and the mean density is obtained by using the perfect gas law.

2.1. Evolution model

Within the parallel flow assumption, we apply the Fourier transform in both the stream-

wise and spanwise direction onto the perturbation. We note the state vector φ (y,k, t) =

[u, v, w, θ,Π]T (y,k, t) where u, v, w is the vector of the velocity fluctuations, Π, θ denote the

pressure and temperature components of the perturbation and k = (α, β) is the wave vector with

α and β the streamwise and spanwise wavenumbers, respectively. Using the ideal gas law, the

fluctuation of the density reads: ρ′ = Π/T − θ/T 2. Analogously to the incompressible regime

(see Dwivedi et al.36 for a recent review), an input/output framework is used for modeling the

evolution model. Linearized around the basic state Q in the spectral space, the linear system of

(1) forced by a stochastic excitation noted as d can thus be rewritten as:

φt (k, t) = A (k,Q)φ (k, t) + Bd (k, t) ,

q = Cφ.
(2)

Here, the operator A describes the linearized equations, see appendix 1, and the operator B

determines how and in which components the stochastic excitation d is introduced to the linearized

system. The measurement of the flow quantities is then extracted with the operator C, generating

the output q.

Hereafter, the subscript u, v, w, θ, Π denote the component of the input or the output vector,

e.g., du is associated with the streamwise velocity component of the forcing.
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2.2. Numerical formulation

To numerically solve the theoretical model introduced in (2), a spectral collocation method is

used for discretization. For simplicity, all of the following considerations are to be interpreted in the

context of the discretized counterpart of system (2). Hence, e.g. φ also denotes the vector of the ex-

pansion coefficients that corresponds to values of φ at the collocation points: φ = (φ0, ..,φi, ..,φN )

with N the number of collocation points and φi = (ui,vi,wi,θi,Πi). Similarly, the values of the

density fluctuation at the collocation points are noted ρ′i.

To measure the receptivity to a given stochastic forcing, the variance of the norm of the random

variable φ has to be computed. For a physically meaningful measurement of the norm of φ (i.e.

the total energy for instance), we introduce a discrete inner product 〈·, ·〉W such as

〈f1, f2〉W = f1Wf2
H ,

where f1, f2 are two arbitrary vectors, the superscript H denotes the Hermitian transpose, and the

weight matrix W is positive definite. The corresponding energy norm is noted ‖f1‖W =
√
〈f1, f1〉W .

Following the line of thought of Ran26 to compute E‖φ‖2W , where E stands for the expectation

of a random variable, a coordinate transformation is employed to obtain ‖φ‖2W via the standard

Euclidean norm (noted hereafter ‖·‖). We then introduce ψ = Fφ where F is determined through

the Cholesky decomposition W = FFH , leading to ψψH = ‖φ‖2W . Similarly, a change of variables

is used for the output such as g = Kq, where the weight matrix for the measured quantity is noted

D = KKH . Hence, expressed as a function of ψ and g in the new coordinate space, system (2)

reads:

ψt = FAF−1ψ + FBd

g = KCF−1ψ,
(3)

where the energy norm for the output is easily obtained by ggH .

Owing to the fact that variables associated with the input vector d can be different from those

of the state vector φ, we further introduce a coordinate transformation for the forcing:

d = Gd,

where a physically meaningful norm for d is based on the weight matrix Q = GGH . Finally,

system (3) is rewritten as

ψt = Aψ + B d

g = Cψ

with A = FAF−1, B = FBG−1 and C = KCF−1.

(4)
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In its reformulated form, system (4) easily allows us to assume a forcing that is δ correlated

according to the standard Euclidean norm. As a consequence, the same mathematical tools that

have been developed for linear stochastic systems under the assumption of a standard Euclidean

norm can be utilized to solve system (4); these are briefly introduced in the next two subsections.

2.3. Receptivity coefficient

In the next, we assume that the stochastic forcing d is zero mean and white-in-time. We also

admit that the forcing is δ correlated in the wall-normal direction with decorrelated components.

Then, noting y and y′ two wall-normal positions, we have:

Ed(t, α, β, y′)⊗ d(t′, α, β, y) = Iδ
(
t− t′

)
(5)

with δ the Dirac function and I the identity matrix; the specification of α, β and y is omitted for

the sake of simplicity. We note X (t) the covariance matrix of the output:

X (t) = Eψ(t)⊗ψ(t′). (6)

The variance of the output ψ at time t is then equal to traceX (t) . When the linearized dynamics

associated with the system (4) is asymptotically stable (i.e. at a streamwise position where Re is

lower than the critical Reynolds number) the infinite horizon state covariance X∞ = limt→∞X (t)

is given by the Lyapunov equation

AX∞ + X∞A
H

= −B B
H
. (7)

Note that the use of the infinite horizon state covariance and consequently equation (7) limits the

framework as used in this study to the analysis of subcritical flows. The energy spectrum is noted

E (k) = trace
(
CX∞C

H
)
.

The receptivity coefficient associated with B and C is then

CR (k) = E (k) (8)

which determines the ratio of the variance of the measured output to the variance of the external

noise.
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2.4. Power spectral density

To characterize the spectral content of the response, we introduce the power spectral density

R (k, ω). By using Parseval’s theorem, the energy spectrum can be expressed as

E (k) =
1

2π

∫ ∞
−∞

R (k, ω) dω. (9)

Here, R (k, ω) is the so-called resolvent operator defined as

R (k, ω) = trace
(
R (k, ω)R (k, ω)H

)
,

or written in terms of the new coordinates:

R (k, ω) = C
(
Iiω −A

)−1
B,

with i =
√
−1.

2.5. Weight matrices

To allow for a meaningful evaluation of the physical relevance of the disturbance growth mea-

surement, the associated norm needs to be based on a given energy. For the compressible frame-

work, we adopt the energy norm suggested by Chu37 and Hanifi et al.10 that characterizes the total

energy of the disturbance. The measurement of the total energy for the perturbation is then given

by

E =
1

2

(
1

T
uWuH +

1

T
vWvH +

1

T
wWwH +

1

γ (γ − 1) T2M2∞
θWθH +

1

T2M2∞
ρ′Wρ′

H
)
,

(10)

where W denotes the integration weights vector for the Chebyshev collocation points (see Hanifi

et al.10). Note that E can be rewritten as

E = φWφH ,

where the weight matrix W is derived from (10). We recall that E can also be expressed using a

coordinate transformation such as E = ψψH . The weight matrices G and D are then built using

submatrices of W depending on the specific choice of the input and output variables.

3. RESULTS

In this section, the input/output framework introduced is utilized to investigate the receptivity

of the self-similar laminar adiabatic supersonic boundary layer. Hereby, the focus is placed on both
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the role of the different inputs onto the amplification of various streamwise and spanwise scales as

well as the role of its wall-normal position. All base flows were obtained by solving the self-similar

compressible boundary-layer equations using a fourth-order Runge-Kutta algorithm combined with

a Newton method in order to satisfy the boundary conditions. The base flows are represented on

a Gauss-Lobatto grid and are obtained by interpolation with a cubic spline. The Prandtl number

Pr = 0.72, stagnation temperature T0 = 333 K, and specific heat ratio γ = 1.4 are equal for all

cases.

With an (pseudo) adiabatic no-slip condition for the fluctuations at the wall (u, v, w, θ = 0) and

vanishing fluctuations at the free-stream boundary (u,w, θ,Π = 0), v and Π are discretized using

polynomials of degree N − 1 (same boundary conditions are used in11,20, see Vermeersch38 for its

numerical implementation). The upper boundary conditions are set to a wall-normal distance of

ym = 600, corresponding to between 40 and 120 boundary-layer thicknesses in the range of Mach

numbers considered. The grid stretching is used as a buffer zone, so the large grid stretching rate

was chosen intentionally to avoid unwanted acoustic wave reflections at artificial boundaries. For

present purposes, our boundary treatment appears a robust and easy-to-use way in comparison

to the effective implementation of non-reflective boundary conditions (see39 and40). Hereafter,

η denotes the vector that contains the Chebyshev collocation points cos (πN/(N − 1)) where N

includes the set of natural numbers (0, 1, 2, ..., N − 1). The transformation y = e(1 − η)/(h + η)

is employed to map the domain [−1, 1] to the physical domain [0, ym] with e = ybym/(ym − 2yb),

h = 1 + 2e/ym and for which yb is the wall-normal location containing (N − 1)/2 grid points (see

Hanifi et al.10). For all cases, N is fixed to 401 and yb = 10. Numerical codes are written in

Python3 and algorithms from Scipy library are used. For the largest Mach number M∞ = 4.5, the

stochastic response has also been computed with N = 601, yb = 20 and ym = 800 (not shown in

this manuscript for the sake of conciseness) and no significant difference has been observed.

3.1. Spectra and neutral curves

To enable an easy-to-follow discussion in the following, we shortly consider the asymptotic

response of a supersonic boundary layer to forcing waves in this subsection first. For this purpose,

two cases at M∞ = 2 and 4.5 are considered, for which the calculated eigenmodes are characterized

by a quite distinct behaviour. The M∞ = 2 case is expected to show a subsonic-like behaviour, the

M∞ = 4.5 case is expected to be strongly influenced by e.g. the onset of the second Mack mode.
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Second mode
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ω
i

FIG. 1: M∞ = 4.5 and Re = 180. Spectrum for (α, β) = (0.047, 0.071), compare the cross in

figure 2. Slow and fast acoustic waves positions are depicted by dashed lines.

Applying a normal mode decomposition to the state vector such as:

φ (y, t) = φ̂ (y) exp [i (αx+ βz − ωt)] ,

with ω = ωr+iωi the complex circular frequency, a typical spectrum for the M∞ = 4.5 case is shown

in figure 1 for a near-critical Reynolds number of Re = 180 (i.e. the lowest Reynolds number at

which the unstable mode exists) at the close-critical wave-numbers (α, β) = (0.047, 0.071), compare

the cross in figure 2. The neutral curves (i.e. curves where ωi = 0) for both the M∞ = 2 and

4.5 cases are shown in figure 2. In figure 1, the spectrum exhibits two distinct modes, the first

and second mode. The first mode is an extension of the incompressible TS wave, the second mode

belongs to a family of trapped acoustic waves for which the boundary layer behaves as an acoustic

waveguide5,41. Apart of these modes, two types of branch can be distinguished. The first category,

the so-called continuous spectrum, is due to the freestream contribution and spans the imaginary

axis where ωr = α (see Schmid & Henningson24). The second category is composed of slow and

fast acoustic waves that propagate in the freestream. These waves are delimited by frequencies

ω± = α± 1
M∞

√
α2 + β2 that are visualised by dashed lines in figure 1. The frequency of the first

mode approaches that of a slow acoustic mode as α is decreasing; the frequency of the second mode

approaches that of a fast acoustic mode. The first and second modes are also referenced as slow

and fast modes by Fedorov & Tumin41.

As shown in figure 2(a) for M∞ = 2, only the first mode is unstable. For β = 0, the critical

Reynolds number is close to Rec ≈ 300 which is nearly equal to the one found in the incompressible

flow regime (≈ 302), although the most unstable disturbance corresponds to an oblique wave. For

the M∞ = 4.5 case depicted in figure 2(b), the critical Reynolds number for the first mode is
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(a) M∞ = 2. First mode.
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(b) M∞ = 4.5. First and second modes.

FIG. 2: Neutral stability curves in the plane (α,Re) for β = 0, 0.02, 0.04, 0.06 and 0.08 (in

black, red, green, blue and gray, respectively). (a) M∞ = 2 and (b) M∞ = 4.5.

associated with an oblique wave with a wave-angle: ξ = arctan (β/α) ≈ 60o (α ≈ 0.047 and

β ≈ 0.071). For the 2D perturbation case, the unstable region associated with the first mode

moves to higher Reynolds numbers (Rec ≈ 570); besides the emergence of the first mode, the 2nd

mode is the most amplified wave. The critical Reynolds number for the second mode is Rec ≈ 250

and the neutral curves for first- and second-modes are well separated for this Mach number. In

summary, all results are consistent with Mack’s conclusions5 and with results given by Hanifi

et al.10 for the same flow case, confirming both the numerical and theoretical framework chosen.

Further validation of the numerical method is given in appendix 1 including validation of the grid

resolution as well as comparison with literature.

3.2. Receptivity analysis: Influence of the Mach number

3.2.1. Receptivity coefficients

Having introductively recalled the essential aspects of the various individual modes involved in

the long-time dynamics in the previous section, the main goal of this section is to elaborate the

influence of the Mach number on the receptivity coefficient CR (α, β) in the multimodal framework.

Due to the appearance of additional modes, all inherently included in the chosen modal spectrum,

strong differences in CR should be observed in comparison to the incompressible flow case26 when

increasing the Mach number up to 4.5. In this respect, new insights into the amplification of

specific characteristic spatial scales are expected.
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Both to validate the numerical method and to provide a reliable reference case for further

discussion, the receptivity factor CR is first calculated for nearly incompressible low Mach number

case at M∞ = 0.3 allowing a comparison with the incompressible results by Ran26. To allow for

a meaningful comparison, the wall-normal distribution at which the forcing is applied has been

defined accordingly to Ran26 with a blending vector f defined as

f =
1

π
[arctan (a (y − y1))− arctan (a (y − y2))] . (11)

Consistently with Ran26, a = 1, y1 = 0 and y2 = 5 (i.e. y2 ≈ δ99), implying that the forc-

ing is mainly localized within δ99 boundary layer thickness. For comparison purposes with the

incompressible case, the input fields d components only include the velocity field

d =



du

dv

dw

dθ

dΠ


and B =



I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 0 0 0 0

0 0 0 0 0


f .

Similarly, the output q is extracted within the δ99 boundary layer thickness with a top-hat filter

function h according to q = [qu,qv,qw,qθ,qΠ]T and C = Ih. The reasons of this choice for

C are based on two considerations: first it allows an objective comparison with results provided

by Ran et al.26 for the incompressible regime, secondly, it removes the acoustic signature in the

freestream of the vortical structures and is then suited to understand their amplification within

the boundary layer. The numerical validation of the input/output method for the compressible

case is given in appendix 1, where the same Reynolds number Re = 232 as the one studied by Ran

et al.26 is investigated for a low Mach number M∞ = 0.3. The Reynolds number is now set to

Re = 180 to always be below the critical Reynolds numbers for both the first and second modes

for all cases, in agreement with equation (7).

The distribution of the receptivity coefficient for M∞ = 0.3 is shown in figure 3(a). As depicted,

the receptivity coefficient CR shows two peaks, the first one associated with the emergence of

streaks located at k = (0, 0.25) and the second one associated with the excitation of the TS waves

located at k = (0.19, 0). These results are in good agreement with those provided by Ran26 for

the incompressible case. In particular, the contours of log10 (CR) are well recovered using the low

Mach number approximation (see also appendix 1).

Having approved the numerical approach chosen for a near incompressible Mach number, the

receptivity coefficient CR is re-computed for M∞ = 2, 3 and 4.5 and depicted in figure 3(b)–(d). For
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FIG. 3: Plots of log10 (CR (α, β)) for (a) M∞ = 0.3, (b) M∞ = 2, (c) M∞ = 3 and (d) M∞ = 4.5.

The Reynolds number is fixed to Re = 180. The peaks are indicated by arrows and a dot.

clear identification, the different peaks appearing in the receptivity plots are referred to as follows:

P2D is associated with the peak for β approaching zero (i.e. for 2D perturbation); PO marks the

wavenumber pair for the peak that corresponds to a purely oblique pattern (α 6= 0 and β 6= 0);

PS is obtained at α ≈ 0 (i.e. the excitation of streaks). Note that this terminology is employed to

avoid any confusion with a modal approach. Indeed, the nonmodal response corresponding to PO,

for instance, could be attributed to the contribution of several modes.

Depicted in figure 3(b), the M∞ = 2 case exhibits a double peak structure similar to that

observed for the nearly incompressible case at M∞ = 0.3 in panel (a). However, the maximum

of the receptivity coefficient is higher than its low-Mach number counterpart and is obtained for
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FIG. 4: Distribution of CR(0, β) for the different Mach numbers and Re = 180. Full line: the

reference length l =
√
µ∞x/(ρ∞U∞) is used, in dashed lines data are rescaled with the δ99

boundary layer thickness.

wider spanwise scales. Especially, as the Mach number is increasing, the spanwise wavenumber

corresponding to PS is decreasing; the same observation was made by Hanifi et al.10 for the optimal

transient energy growth. In figure 4, we plot the distribution of the receptivity coefficient as a

function of β for α = 0 for the different Mach numbers. The peak corresponds to PS . We also

show CR (α = 0, βδ99). We may observe an almost universal scaling, independently of the Mach

number, when data are rescaled with the δ99 boundary layer thickness. It seems quite intuitive

that the size of streaks is correlated with the spatial extent of the boundary layer (and thus δ99).

In comparison with the subsonic case, the P2D peak for M∞ = 2 is obtained at a smaller

streamwise wave number (see figures 3(a,b)). Note that for M∞ = 2 the maximum value obtained

for CR appears at α = 0 (i.e. 2D wave) while the critical Reynolds number is found for an

oblique wave, see figure 2. Besides, the receptivity coefficient P2D reaches larger values than those

reported for M∞ = 0.3. A comparison of the nearly two-dimensional disturbances shows a similar

distance between a real frequency forcing (i.e. axis ωi = 0) and the TS mode (or first mode for

the supersonic flow) (not shown here). Hence, the increase of CR in the neighborhood of the first

mode can be attributed to non-normal effects where the forcing frequency is ‘off-resonance’, but

the system can still exhibit a large response24. For the M∞ = 3.0 and M∞ = 4.5 cases in panels

(c) and (d) of figure 3, respectively, the receptivity coefficient exhibits a third peak for oblique flow

patterns (PO). In particular, PO is obtained for the couple (α, β) = (0.047, 0.071) for M∞ = 4.5

corresponding to an angle of ξ ≈ 60o. This value is in fair agreement with the value reported
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FIG. 5: M∞ = 2 and Re = 180. Power spectral density plots for (a) ‘oblique pattern’

(α, β) = (0.090, 0.010) and (b) ‘streaks’ (α, β) = (0.0001, 0.190). Frequencies of the first mode and

second mode are depicted as green and blue vertical dashed lines, respectively. The frequency

corresponding to the continuous branch is depicted as a red vertical dashed line. The total energy

and kinetic energy contributions are shown in blue and red, respectively; the black colored

M∞ = 0.3 case is shown for comparison. The subsonic frequency range is shaded in grey.

in section 3.1 for the modal analysis. Interestingly, for M∞ = 3, 2D perturbations (i.e. β = 0)

exhibit larger values of CR compared to the lower Mach number flow cases. Considering that the

critical Reynolds number associated with the first mode for perturbations restricted to the (x, y)

plane is increased from 300 to 570 when the Mach number varies from 2 to 4.5 (see figure 2), the

increase in the receptivity coefficient can mainly be ascribed to non-normal effects (i.e. which are

not proportional to the distance between the mode and real axis ωi = 0). Besides PO, figure 3

shows the emergence of a distinct 2D peak for M∞ = 4.5; the contribution of the second mode

onto P2D will be discussed below. Finally, the magnitude of CR inside the region dominated by

streaks contribution is almost independent of the Mach number.

3.2.2. Power spectral densities

In the above discussion, we consider the forcing (input) as a stochastic process. As a conse-

quence, the response (output) is also driven through a stochastic organization. While this frame-

work more clearly fits with the case of a boundary layer exposed to free-stream turbulence for

instance – in comparison with previous studies limited to a single mode for the output or focusing
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on response to harmonic forcing – it does not bring any information onto the spectral content of

the response. In an effort to identify temporal frequencies which emerge from a broadband source

of excitation, the power spectral densities (PSDs) for the different peaks observed in the receptiv-

ity coefficient maps are investigated in the following. To do so, we closely follow the theoretical

framework described in section 2.3, in particular, we will consider two different operators C. For

the first choice, the output is based on velocities, temperature and pressure components, whereas

the second choice includes only the velocity fields and the inner product is restricted to the kinetic

energy. In this way, a clear characterization of the contributions of temperature and velocity fields

to the response is enabled.

Depicted in figure 5, the PSDs are shown for M∞ = 2 and (α, β) pairs corresponding to PO and

PS , see figure 3(b). Frequencies which correspond to the first and second modes in the spectrum

are depicted as green and blue dashed lines, respectively. The position of the continuous branch

in the spectrum where ω/α = 1 is depicted as a red dashed line. The subsonic area extends

from ω− and ω+ and is shaded grey. For comparison purposes, also the subsonic M∞ = 0.3 case

introduced above is added in figure 5 as a black line. As depicted in figure 5(a) for M∞ = 2, the

peak in the total energy is obtained at frequencies that match the first mode and the continuous

branch, compare the green and red dashed vertical lines at ω = 0.056 and 0.090. The peaks in

the total energy and kinetic energy are located at almost identical ω, although the kinetic energy

contribution is largely decreased for the increased Mach number. Besides these modes, the PSD

associated with M∞ = 2 exhibits secondary peaks near the supersonic region borders; one of those

peaks correspond to the frequency of the second mode in the spectrum. At low frequencies, the

PSD for M∞ = 2 and P2D exhibits a moderate contribution. For the subsonic M∞ = 0.3 case,

the two peaks associated with the first mode and the continuous branch are shifted to higher ω

values. The contribution of the total energy at low frequencies is lower compared to the M∞ = 2

case. Depicted in figure 5(b), the same study is repeated for the infinitely elongated structures

in the streamwise direction. While the PSDs for both Mach numbers are almost superimposed

when the output is based on the total energy of the fluctuations, a notable part of the total energy

is transferred from the kinetic energy to the internal energy at M∞ = 2, as also discussed for

the streaks in34. In figures 5 and 6, one may observe that the PSDs exhibit several peaks in the

supersonic range. This oscillatory part is associated with pseudo resonances of the acoustic modes

in the spectrum. Similar behaviour is observed by Dawson & McKeon32 for supersonic turbulent

boundary layers.

Following the same notation as in figure 5, the PSDs for M∞ = 4.5 are shown for (α, β) =
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FIG. 6: M∞ = 4.5 and Re = 180. Power spectral density plots for (a) (α, β) = (0.047, 0.071) and

(b) (α, β) = (0.192, 0.010). The vertical lines correspond to ω = 0.047, 0.060 and 0.035 in (a) and

ω = 0.174, 0.192 in (b). For color legends see figure 5.

(0.047, 0.071) and (α, β) = (0.192, 0.010) in figure 6. The pairs of (α, β) are chosen to match the

PO and P2D peaks in the receptivity coefficients, respectively, compare figure 3(d). The PS peak

associated with streaks will be discussed later on.

We first discuss the PSD associated with PO; see also figure 1 for the corresponding spectrum.

For this case, the least damped mode corresponds to the first mode and its PSD almost follows

the same trend as the one observed for the 2D peak at M∞ = 2. For both cases, the dominant

peak in the power spectrum is associated with the first mode. However, for M∞ = 4.5, the second

mode is shifted towards the subsonic zone, see figure 1, which implies a near resonance in the PSD

as shown in figure 6(a) where a distinct peak is observed near ωr ≈ 0.060 (indicated in blue in the

figure). Hence, it seems to play a role in the stochastic response for the oblique case.

The PSD for the almost two dimensional peak is depicted in figure 6(b). For this flow structure,

the receptivity seems to be a consequence of a near resonance of the second mode with also a

significant contribution of the continuous branch. Besides, the PSD exhibits an additional peak

near the fast acoustic waves (ωr ≈ 0.235). It should be indicated that additional stable Mack

modes contribute into the stochastic response of P2D, which all are inherently included in the

present framework due to its stochastic approach. However, further analyses are needed to make a

definite statement on their effective role. In consequence, this study shows the interest of combining

both the stochastic framework and the resolvent analysis29 to emphasize the most relevant spatial
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FIG. 7: M∞ = 4.5 and Re = 180. (a) and (b) spectra for α = 0.10 and α = 0.23, respectively and

β = 0. Panel (c) dispersion relations for the first and second modes. The discrete additional

mode I (see panel (b)) is also shown. The slow and fast acoustic waves positions are represented

by dashed lines. In (c), the position of the continuous branch is shown in black line.

scale due to white noise forcing and its associated spectral content which overcomes the limitations

of previous theoretical receptivity studies (see Fedorov21) restricted to a single mode for the output.

To further identify the mechanism behind the observed amplification, the circular frequency ωr

as a function of the streamwise wave number α is depicted in figure 7(c) for the first and second

modes; the spectra for α = 0.10 and α = 0.23 are given in panels (a,b). In accordance with figure

1, vertical dashed lines indicate the position of slow and fast acoustic waves for both spectra. As
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FIG. 8: Re = 180. Power spectral density plots for (a) (α, β) = (0.0001, 0.152), M∞ = 3 and (b)

(α, β) = (0.0001, 0.106), M∞ = 4.5. For color legends see figure 5.

shown in figure 7(c), the frequencies and wave numbers of both the first and second mode coalesce

for α ≈ 0.2, implying that modes are synchronized. The corresponding streamwise wavenumber

appears close to the one associated with the peak P2D (α ≈ 0.19). In the neighborhood of this

region, the coupling leads to a strong amplification of the P2D peak. It supports Fedorov’s results21

which established that the receptivity of the 2D mode is due to the synchronization of slow and

fast modes (i.e. first and second modes). Furthermore, we also observe in spectrum 1(b) an

additional mode emerging from the fast acoustic branch of modes. Ma & Zhong16 have referenced

this additional mode as mode I. For the latter, the variation of ωr with α is shown in figure 7(c). For

α ≈ 0.2, mode I becomes synchronized with the fast acoustic wave. It may support the role played

by the additional stable mode I in the amplification of the receptivity coefficient as underlined by

Ma & Zhong16.

Finally, for the sake of completeness, figures 5(b) and 8 show the influence of Mach number on

the receptivity of the streaks. The figures show a nearly equal energy distribution in the frequency

domain for all considered Mach numbers implying that the general behavior of the streaks is

essentially Mach number invariant.

3.2.3. Input/output components of the receptivity for M∞ = 4.5

In the previous section, the disturbances introduced into the boundary layer were restricted to

the velocity field, assuming that all velocity components penetrate the boundary layer simultane-

ously with the same magnitude. In reality, however, perturbations typically exhibit a preferential
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FIG. 9: Plots of the receptivity coefficients for the velocity components and M∞ = 4.5. The

subscripts indicate the input/output couple that is selected. For instance, the subscript wu

indicates that w is the input and u is the output. White regions are associated with levels below

0.

direction, e.g., wall-normal blowing/suction mainly affects the wall-normal velocity component, and

in the compressible regime, also the temperature field serves as a potential input. In this section,

the dependence of the receptivity coefficient CR on the different input/output field components,

also including temperature perturbations, is investigated for the same range of spatial wavenum-

bers for a supersonic Mach number of M∞ = 4.5, where compressibility effects are substantial. To

this end, we will adopt/extend the input-output technique described in Jovanović & Bamieh27 for
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incompressible channel flows to the compressible boundary layer case, which is the first time to

the best of the author’s knowledge. This way, components with the most significant influence on

the selected streamwise and spanwise scales can be easily identified. Hereafter, CRij denotes the

receptivity coefficient associated with the input di and output qj where ij ∈ (u,v,w,θ)2. As in

the previous section, perturbations are introduced through the whole height of the boundary layer,

see section 3.2.1.

Plotted in the same representation as in figure 3, the dependence of the receptivity coefficient

CRiu on the forcing component di is depicted in figure 9(a)–(c). At first the receptivity of the

streaky motion PS with α ≈ 0 (i.e. mainly governs by qu) is discussed. In accordance with

the findings pointed out by Jovanović & Bamieh27 for the incompressible channel flow case, the

wall-normal and spanwise forcing in panels (b) and (c) show a much stronger influence than the

streamwise velocity forcing in panel (a). Additionally, when the input is restricted to dw (panel

(c)) the excitation of streaks is optimal for a spanwise length which is twice as wide as the one

obtained by forcing the wall-normal velocity (panel (b)). Streaks footprint can also be observed to

a lesser extent for the outputs qv and qw for inputs dw and dv, respectively (see panels (f) and

(h)).

For PO, the measurements which reach the strongest amplitude are mainly associated with

inputs restricted to either the streamwise or spanwise velocity component. Especially, the stochastic

response for PO peaks with values that are at least of the same order of magnitude than for the

streaks, (see panel (c) for instance). This implies that the oblique wave transition scenario may

come to dominate over the one involving rolls and streaks. For the excitation of the 2D flow

structure, the streamwise velocity forcing has the most impact onto the variance associated with

P2D. However, its amplification is significantly weaker than that achieved by either the oblique

pattern or streamwise infinitely elongated streaks. Finally, characteristic length scales for both PO

and P2D are seen to be only marginally dependent of the choice for the input and output velocity

component.

In figure 10, the effect of the temperature field onto CR is illustrated; i.e., panels (a)–(c) give

the influence of the various components of the velocity perturbations on the temperature output,

panels (d)–(f) the influence of the temperature perturbations on the various velocity components

for output. Comparing panel (b)–(c) with (d), it is apparent that the variance of temperature

perturbation plays mainly a passive role for the streaks (i.e. the temperature disturbance acts

as a passive scalar). Indeed, forcing θ has no effect on the streamwise velocity in the range of

spanwise and streamwise wavenumbers corresponding to the amplification of the streaks. This
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FIG. 10: Plots of the receptivity coefficients for the velocity and temperature components and

M∞ = 4.5. For details, see caption in figure 9.

remark is consistent with recent results provided by Madhusudanan & McKeon34. On the other

hand, forcing streamwise vortices (including both spanwise and wall-normal velocity components)

leads to amplify streaks of temperature, see panel (b) and (c). In particular, the range of α and

β where the temperature component achieves its maximum is similar to those obtained for the

streamwise velocity output as shown in figures 9 (b,c). Similar conclusions can be drawn for the

role of the temperature onto the excitation of the 2D peak (P2D). For the latter, figures 10(a,b)

show that the streamwise velocity forcing in panel (a) is the most efficient input to amplify its

temperature component. At the opposite, an active role of the temperature fluctuation is found

for the excitation of the oblique structure, as the peaks in intensity observed in panels (d) and (f)

for PO indicate. It suggests the effectiveness of a laser perturber used experimentally for generating

a temperature spot with the objective to amplify instability waves35.

3.2.4. Influence of input wall-normal positions onto receptivity coefficients

In the previous sections, the random number-based input was introduced over the entire height

of the boundary layer, which thus gives a very complete impression of the boundary layer response
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FIG. 11: Plot of the receptivity coefficients in a logarithmic scale as a function of the wall-normal

position associated with the forcing for M∞ = 4.5. The δ99 boundary layer thickness is located at

y = 13.6.

associated with a given input. In reality, however, external perturbations, such as wall blowing

and suction, free-stream turbulence, roughness elements often penetrate the boundary layer only

in either the near-wall region or the outer region, which is known to cause a significantly different

response of the boundary layer. Allowed by the great flexibility of the framework formulation

chosen, see Ran et al.26 for an incompressible point of view, we will investigate how the forcing

position along the wall-normal direction influences the receptivity mechanisms in the compressible

regime for the first time to the author’s best knowledge.

For that purpose, a series of computations with a localized forcing f (11) is conducted at M∞ =

4.5, for which the maximum value along y is progressively increased. Hereafter, y2−y1 = 2, a = 10

and we note yp = (y2 + y1) /2. The input and output include velocities, pressure and temperature

components. The measurement is restricted within the boundary layer δ99 thickness, for this case,

the wall-normal position where δ99 = 1 is located at y = 13.6. The receptivity coefficient as a

function of yp is plotted in figure 11. It is observed that near wall forcing generates mainly oblique

flow structures, compare panels (a) and (b). When the input is shifted upwards, the boundary
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FIG. 12: Flow structure characteristics as a function of the wall-normal position of the forcing yp

for M∞ = 4.5. (a) Characteristic wavelengths λz = 2π/β, λx = 2π/α for streaks and 2D flow

structures (α = 0 and β = 0, respectively). The position of the δ99 boundary layer thickness is

shown in vertical dashed lines. (b) angle ξ = arctanβ/α for the oblique pattern.

layer streaks get strongly amplified. As the forcing region comes closer to the boundary layer

edge, compare panels (c) and (d), also the excitation of 2D patterns is noted. The location at

which the energy peaks is found close to the boundary layer edge for either 2D and oblique flow

structures or streaks. On the other hand, when the forcing shifts in the freestream, the energy

amplification decreases for all flow structures even if its noticeably less pronounced for streaks and

oblique patterns. Note that the characteristic spanwise length associated with streaks changes with

yp.

The behaviours observed in figure 11 are summarized in figures 12 and 13 in an effort to

synthetize the main conclusions. For that, we consider only streamwise and spanwise wavenumbers

associated with peaks in total energy (i.e. PO, P2D and PS). In figure 12(a), we show that the

spanwise scale λz associated with streaks exhibits two distinct behaviours. For forcing regions

inside the δ99 boundary layer thickness, we observe that streaks become shorter as yp is increasing.

For freestream excitation, the opposite behaviour is found. The upward shift in yp gives rise to

amplify wider streaky patterns with an almost linear dependency between λz and yp. For the

freestream forcing, a similar trend is reported by Ran et al.26 for the incompressible flow case. For

the 2D flow structure (i.e. β = 0), the maximum variance is concentrated in a narrow region along

the wall-normal direction (10 ≤ yp ≤ 15). Outside this area, peaks in total energy are obtained at



27

0 5 10 15 20 25 30
2

3

4

5

yp

lo
g
1
0
(C

R
)

PS

P2D

PO

0 0.5 1 1.5 2

2

3

4

5

yp/δ99

FIG. 13: Distribution of the receptivity coefficient in a logarithmic scale for P2D (red), PO (blue)

and PS (black) as a function of the wall-normal position of the input.

small values of α. It indicates that the 2D flow structure is optimally excited in this flow region.

For the oblique pattern, we show that the orientation angle in the (x, z) is almost independent of

yp, see figure 12(b).

In figure 13, the distributions of the receptivity coefficient maxima along with yp are depicted for

the same flow structures. The figure shows that the range of wall-normal positions that produces

the largest variance is 10 ≤ yp ≤ 15 for both oblique and 2D patterns. Especially, the peaks in the

receptivity coefficient for both cases are located close to yp = 12 near the edge of the boundary layer

(yp ≈ 13.6). On the other hand, the maximum variance associated with streaks occurs for yp = 15,

above the boundary layer edge. Especially, for yp larger than 16, the optimally stochastically

excited flow structure is mainly driven by the streaks. For yp > 16, the level of variance for both

streaky and oblique flow structures decreases almost linearly with yp. It further indicates a strong

competition between the amplification of streaks and oblique flow structures when varying yp which

has not been pronounced in previous receptivity analysis regarding supersonic boundary layers that

clearly1.

Finally, the receptivity of the supersonic boundary layer to stochastic near-wall perturbations

is studied for inputs restricted to either a velocity component or the temperature disturbance. For

that, y1 and y2 are fixed to 0 and 2 in (11) and a is set to 10. In figure 14, the correlation maps

indicate that both dv and du can amplify the P2D peak which is not in complete agreement with

DNS results provided by Wang & Zhong17. Nevertheless, the freestream Mach number investigated
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FIG. 14: Distribution of the receptivity coefficients in a logarithmic scale for various forcing

components at yp = 1 and M∞ = 4.5 .

by Wang & Zhong is fixed to M∞ = 5.92 and we can not make definite statements regarding

the Mach number effect. It is interesting to observe that spanwise near wall fluctuations have a

prominent effect on the amplification of streaks and oblique patterns. In addition, temperature

perturbation near the wall also leads to amplify the PO peak.

3.2.5. POD response and forcing modes

While the previous sections provide insight into the streamwise and spanwise scales that emerge

under a continuous stochastic excitation, it brings no information about the wall-normal distribu-

tion of the forced flow structures. This section is devoted to connect the different peaks found in
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the receptivity coefficient maps to characeristic eddies and their wall-normal structures. For that,

we investigate modes associated with a proper orthogonal decomposition (POD) of the correlation

matrix hereafter.

For a clear understanding, we recall that the correlation matrix X∞ has a positive definite Her-

mitian form with positive real eigenvalues. In particular, eigenvalues are associated with mutually

orthogonal eigenvectors. Each eigenvector corresponds to a response flow pattern for which its

contribution to the total variance is given by its corresponding eigenvalue. This decomposition is

classically referred to as response (or direct) KL (Karhunen-Loéve) or POD (proper orthogonal

decomposition) modes; hereafter, eigenvalues of X∞ are noted σj . As a consequence, the variance

of X∞ is given by
∑

j σj . Then, the ratio ri = σi/
∑

j σj represents the contribution of the ith

POD mode to the total variance. In the same vein, we consider optimal forcing functions which

are excited with equal probability and independently by a stochastic input. As for the response

modes, the forcing flow structures can be ordered according to their relative contribution to the

maintained total variance by stochastic excitation. These forcing modes constitute also a complete

set of orthogonal functions that can be computed by solving the dual Lyapunov system of (3).

They are referenced as back KL (POD) modes or forcing KL (POD) modes22,25. In figure 15(a),

the distribution of r1 in the (α, β) plane is displayed in which the response POD mode 1 is asso-

ciated with the largest eigenvalue. The figure shows that flow structures associated with streaks,

oblique pattern and the 2D flow structure are mainly driven by the first response POD mode that

contributes to almost 90% of the total variance. A similar observation still holds for the forcing

POD modes, see figure 15(b). One may recall that the total variance obtained by considering either

the correlation matrix X∞ or its dual is identical.

To give insight into the velocity/temperature coupling for the different receptivity coefficient

maxima, we further investigate the dependency of the dominant forcing POD mode onto the

measurement of the output variance. At first we want to investigate the excitation of streaks. As

concluded from figure 9, streaky motions are mainly driven by a forcing restricted to either v or

w. For the sake of brevity, we only consider the wall-normal velocity component as an input in

the following, however, similar conclusions can be drawn for the next discussion when considering

the spanwise velocity component. Based on previous analyses and assuming an input limited to

v, the streaks are mostly amplified for β ≈ 0.15 and α = 0 for a forcing spatially extended within

the δ99 boundary layer thickness, compare figure 9(b). To identify the role of the temperature, the

output is either associated with the temperature field or the streamwise velocity components. The

dominant response POD mode is now computed using the operator CX∞C
H

and the dominant
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FIG. 15: The distribution of r1 = σ1/
∑

j σj for response POD (a) and forcing POD (b) modes

and M∞ = 4.5. The subscript 1 refers to the largest eigenvalue of the correlation matrix (a) or its

dual (b).

−20 −10 0 10 20
0

5

10

15

20

z

y

−0.6

−0.3

0.

0.3

0.6

(a) v

−20 −10 0 10 20
0

5

10

15

20

z

y

−0.6

−0.3

0.

0.3

0.6

(b) v

−20 −10 0 10 20
0

5

10

15

20

z

y

−0.6

−0.3

0.

0.3

0.6

(c) u

−20 −10 0 10 20
0

5

10

15

20

z

y

−1.6

−0.8

0.

0.8

1.6

(d) θ

FIG. 16: Dominant forcing (a,b) and response (c,d) POD modes for (α, β) = (0, 0.15), M∞ = 4.5

and the input limited to v. The wall-normal velocity component is shown in (a,b). The

streamwise velocity and temperature components are shown in (c,d), respectively. Panels (a,c)

correspond to the output measurement restricted to u. Panels (b,d) correspond to the output

measurement restricted to θ. The position of the boundary layer edge is shown in dashed lines

(y ≈ 13.6).
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FIG. 17: Dominant forcing (a,b) and response (c,d) POD modes for (α, β) = (0.19, 0), M∞ = 4.5

and the input limited to u. The streamwise velocity component is shown in (a,b). The

streamwise velocity and temperature components are shown in (c,d), respectively. Panels (a,c)

correspond to the output measurement restricted to u. Panels (b,d) correspond to the output

measurement restricted to θ.

forcing POD mode obtained by solving the dual system of (3).

In figure 16, the eigenfunctions associated with the dominant forcing/response POD mode for

α = 0 and β ≈ 0.15 are shown. The figure shows that the forcing POD modes maximizing the

output variance which is measured either on θ or u are quite the same. It illustrates the strong

correlation between the temperature and velocity components for the streaks.

In figure 17, we show the dominant forcing and response modes for the 2D peak (i.e. P2D) at

(α, β) = (0.19, 0), compare figure 9(b). Two measurements are considered. The first choice is based

on the streamwise velocity component, the second choice includes only the temperature θ. For both

cases, only the streamwise velocity u is forced. The latter component will give rise to the optimal

flow response for P2D, see figures 9 and 10. The figure shows that the forcing distribution that

produces the most variance exhibits a pattern inclined against the shear whatever the measurement

considered. It indicates that amplification of P2D which occurs at the synchronization of the first

and second mode is enhanced by the Orr mechanism since we observe the flipping of the structure

along the basic shear for the response mode.
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FIG. 18: Dominant forcing (a,b) and response (c,d) POD modes for (α, β) = (0.04, 0.07),

M∞ = 4.5 and the measurement based on u. The streamwise velocity component is shown in

(a,c,d). The temperature component is shown in (b). Panels (a,c) correspond to the input

restricted to u. Panels (b,d) correspond to the input restricted to θ. The position in the

wavevector direction is denoted by s.

In addition, the forcing appears to be almost independent of the output (either u or θ), indicating

that the temperature fluctuation seems to play only a passive role for the P2D peak. Finally, while

the direct POD mode for the streamwise velocity component is localized within the δ99 boundary

layer thickness, the direct POD mode associated with the temperature peaks near the edge of the

boundary layer.

The same approach is conducted for the oblique pattern that corresponds to PO; results are

reported in figure 18. For this case, two inputs are investigated. The first one only includes

the streamwise velocity contribution, the second input is based on the temperature disturbance.

The measurement is restricted to the streamwise velocity component. We plot in figure 18 the

forcing and response modes for σ1 in a plane that includes the wavevector. The corresponding

coordinates is noted s in the figure. The figure shows that the temperature can play an active

role in triggering the oblique pattern. Especially, the distribution of the response POD mode

appears to be independent of the input choice. In other words, the forcing restricted to θ leads

to the same streamwise velocity measurement than the input associated with u only. Finally, the
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dominant forcing POD mode is also dominated by tilting in the shear direction according to the

Orr mechanism. On one hand, the forcing for both θ and u are mainly localized within the δ99

boundary layer thickness. On the other hand, the response POD mode is shifted away from the

wall and peaks near the edge of the boundary layer.

4. SUMMARY AND CONCLUSIONS

This paper revisits the linear receptivity of the supersonic adiabatic laminar boundary layer

by using an input/output framework based on the stochastically forced linearized compressible

Navier-Stokes equations. The method thus extends the conceptually equivalent incompressible

analysis of Ran et al.26 to the compressible regime. To provide additional insights to results

provided within a modal framework, a white-in-time stochastic forcing with an identity spatial

covariance operator is considered as an input, which prevents a specific mode to be promoted for

the output. Furthermore, the stochastic input can be selectively attributed to only one or various

combinations of the flow field variables with a user-defined wall-normal distribution. Hence, the

framework allows for a detailed investigation of the amplification of various flow patterns (either

oblique or two-dimensional and streaks) which enables an understanding of the correlation between

forcing and response flow structures.

Following the same approach as in the incompressible analysis, the receptivity coefficients com-

puted from the input/output framework are analyzed for different Mach numbers (0.3 – 4.5) and

different perturbation types. When decomposed into streamwise and spanwise wavenumbers α and

β, respectively, three Mach-number dependent types of distinct peaks are illustrated corresponding

to the enhancement of streaks (PS), oblique flow structures (PO), and 2D patterns (P2D), which

is in agreement with previous findings for the compressible regime.

As observed in the incompressible limit27 and recently for compressible flow34, the amplification

of streaks is only driven by a forcing limited to the wall-normal and spanwise velocity components.

For the amplification of the two-dimensional flow structure (i.e β = 0), the prominent role of forcing

the streamwise velocity component is illustrated. While the role of the temperature fluctuation

can be seen to be rather passive for both the streaks and 2D patterns for the Mach number cases

considered, the excitation of oblique flow structure is significantly influenced by the temperature

disturbances. This behaviour is consistent with the linear receptivity model derived by Fedorov

& Tumin35, even if the latter is restricted to the excitation of only the first mode. This deserves

particular emphasis inasmuch as the power spectral densities show that the amplification for all
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peaks appears to be the result of several frequencies contributions. In particular, the excitation of

the two-dimensional pattern is obtained at streamwise wavenumbers, where both the first and the

second modes synchronize, which confirms the theoretical predictions made by Fedorov21.

Besides, when only the temperature is considered for the measurement, characteristic scales for

P2D, PO and PS are well recovered. It suggests that probes limited to the temperature component

can be efficient for the velocity fields estimation in the development of control strategies. In

addition, when considering both the total energy and kinetic energy contribution for the PSDs

associated with the different peaks, increasing the Mach number from low subsonic to supersonic

Mach numbers is mainly accompanied with a transfer from kinetic to internal energy with no

significant variation of the total energy. A similar conclusion has been made for streaks by34.

A systematic variation of the wall-normal position, where the forcing is placed, substantially

influences the expected response of the boundary layer. While a forcing localized within the δ99

boundary layer thickness favours the onset of oblique flow structures, streaks dominate the long

time behaviour of stochastically forced supersonic boundary layers as the input is moved away from

the wall. If the stochastic input is restricted to only the near-wall region, the spanwise forcing has

the biggest impact on the receptivity of both streaks and oblique flow structures for a M∞ = 4.5

case, which is redundant with the behaviour in the incompressible limit27. For the amplification

of two-dimensional patterns, in contrast, a similar contribution of the wall-normal and streamwise

velocity components is observed. To the best of the author’s knowledge, the competition between

these two different characteristic flow structures has not been elucidated through previous linear

receptivity models devoted to supersonic boundary layers. The effect of near-wall temperature

excitation is only efficient for the onset of the oblique pattern, which helps to understand the

effectiveness in controlling the oblique mode with an actuator based on the temperature.

Finally, to connect the different peaks found in the receptivity coefficient maps to characteristic

eddies and their wall-normal structures, the correlation between the velocity and temperature

components are emphasized by a comparison between the forcing and response POD modes. On

one hand, this study further confirms the efficiency of forcing temperature in triggering the onset

of the oblique pattern. On the other hand, it also indicates the wall-normal distribution of the

temperature fields for which the stochastic excitation has the strongest impact onto the emergence

of the oblique flow structure. Here, the temperature component of the dominant forcing POD

mode is mainly concentrated within the δ99 boundary layer thickness with a non negligible part

near the wall.

The study presented could be extended in several ways. First, the influence of wall heating on
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the stochastic receptivity of supersonic boundary layers will provide interesting prospects. Espe-

cially, the role of the temperature perturbation onto the different peaks observed in the receptivity

coefficients could be greatly altered in comparison with the adiabatic case. Secondly, the investi-

gation of the receptivity coefficient computed with a colored input (i.e. with specific space-time

correlations aiming to reproduce more realistic external disturbances, see Hœpffner et al.42 for de-

tails), is highly desirable and subject of ongoing work. In the same vein, it could be difficult to

separately identify the impact of the character of background disturbances in the freestream (either

vortical or acoustic). We suggest that the present input/output technique could be extended to

overcome this drawback by considering either vorticity components or pressure fields as inputs.

Thirdly, the same type of study can be performed in a global framework where the flow direction is

taken as an eigendirection to study the receptivity of spatially evolving structures (see Ran et al.26

for the incompressible flow case). This is not straightforward as it requires the computation of a

very large covariance matrix which is even more difficult in the compressible regime due to the

necessity of using large computational boxes to avoid acoustic reflection40. An promising strategy

could be to approximate the covariance matrix into a harmonic forcing/response mode basis43. For

that purpose, a numerical method based on automatic differentiation should be more appropriate

to compute then the singular decomposition of the resolvent operator (see Bugeat et al.44).

5. APPENDIX 1: VALIDATION OF THE LINEAR STABILITY SOLVER

For validation purposes, we report in figure 19(a), neutral curves in (ωr, Re) plane for the two-

dimensional first and second modes (i.e. β = 0), M∞ = 4.5 and T0 = 333 K. Two grids are

considered. The first corresponds to N = 201, ym = 100 and the second one is associated with

N = 401, ym = 600 (i.e., the grid used in the present manuscript). One may observe that there

is no significant changes between results obtained by using the first and second grids. The figure

19(a) also shows that results are consistent with computations carried out by Ma & Zhong16.

Results associated with three-dimensional disturbances are shown in figure 19(b) for the finest

grid mesh N = 401, ym = 600 for Re = 300. Neutral curves for the first and second modes are

compared to those extracted from Hanifi et al.10. One may also observe a good agreement between

our curves and those published by the previous authors.

To validate the input/output technique employed in the present manuscript, the incompress-

ible case investigated by Ran et al.26 is carried out by using the same input/output method that

the one described in the present manuscript. The incompressible solver is detailed in a previous
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FIG. 19: Neutral stability curves at M∞ = 4.5 and T0 = 333 K. (a) Circular frequency, ωr, vs.

Reynolds number Re of two-dimensional first and second modes; In black lines: results extracted

from Ma & Zhong16 are shown. Two grids are considered. Mesh 1: N = 201, ym = 100 and Mesh

2: N = 401, ym = 600. (b) spanwise wavenumber, β, vs. streamwise wavenumber α of

three-dimensional first and second modes at Re = 300. In black lines: results extracted from

Hanifi et al.10 are shown.

article45, especially the numerical method to deal with the pressure. The one-dimensional recep-

tivity coefficient computed by integrating CR (α, β) over streamwise wave numbers is shown in

figure 20. The figure shows a good agreement with results given by Ran et al.26. Then, we validate

the input/output technique for the compressible case by comparisons between incompressible flow

results and low-Mach number flow regime for the same Reynolds number.

Results are displayed in figure 21. The figure shows that receptivity coefficients obtained for

the low-Mach number case and the incompressible flow are almost superimposed.

6. APPENDIX 2: LINEAR STABILITY EQUATIONS.

In this appendix, we detail the dimensionless linear stability equations that are used in that

manuscript. A continuous formulation is here adopted. The conservation of mass reads:

1

T
pt −

1

T 2
θt +

1

T
∇ · u + v

(
1

T

)
y

+ Uiα

(
1

T
Π− 1

T 2
θ

)
= 0.
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FIG. 20: The one-dimensional receptivity coefficient for the incompressible boundary layer case

with Re = 232. In full black, results extracted from Ran et al.26 are shown.
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FIG. 21: Receptivity coefficient (a) CR (α = 0.0001, β) and (b) CR (α, β = 0.01) computed for the

incompressible case and M∞ = 0.3 for Re = 232.

The momentum equation in the x-direction reads:

1

T
(ut + Uuiα+ vUy) = − 1

γM2∞
iαΠ+

1

Re

[
µ∆u+

1

3
µiα∇ · u + µTTy (uy + iαv) + µT (Uyyθ + Uyθy) + µTTTyUyθ

]
.

The momentum equation in the y-direction reads:

1

T
(vt + Uviα) = − 1

γM2∞
Πy+

1

Re

[
µ∆v +

1

3
(∇ · u)y −

2

3
µTTy∇ · u + 2µTTyvy + µTUyiαθ

]
.

The momentum equation in the z-direction reads:

1

T
(wt + Uwiα) = − 1

γM2∞
iβΠ +

1

Re

[
µ∆w +

1

3
iβ∇ · u + µTTy (wy + iβv)

]
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The first law of thermodynamics written for the temperature reads:

1

T
(θt + Uiαθ + vTy) = − (γ − 1)∇ · u +

γ

PrRe

[
µ∆θ + µTTyyθ + 2µTTyθy + µTTT

2
y θ
]

+

γ (γ − 1)M2
∞

1

Re

[
2µUy (uy + iαv) + µT θU

2
y

]
.

We note ∆ the Laplacian operator:

∆ = −α2 − β2 + ∂2/∂y2

and the divergence operator is

∇ · u = iαu+ vy + iβw.

A first order approximation for the fluctuation of µ (T ) is used :

µ (T + θ)− µ (T ) = θµT (T ) .

1 X. Zhong and X. Wang. Direct numerical simulation on the receptivity, instability, and transition of

hypersonic boundary layers. Ann. Rev. Fluid Mech., 44:527–561, 2012.

2 W.S. Saric, H.L. Reed, and E.J. Kerschen. Boundary-layer receptivity to freestream disturbances. Ann.

Rev. Fluid Mech., 34:291–319, 2002.

3 H.L. Reed, W.S. Saric, and D. Arnal. Linear stability theory applied to boundary layers. Ann. Rev.

Fluid Mech., 28:389–428, 1996.

4 P.J. Schmid. Nonmodal Stability Theory. Ann. Rev. Fluid Mech., 39:129–162, 2007.

5 L.M. Mack. Special Course on Stability and Transition of Laminar Flows. AGARD REPORT, 709, 1984.

6 D. Arnal. Boundary-layer transition: predictions based on linear theory. AGARD R, 793, 1994.
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