N

N

PRISMA: A Packet Routing Simulator for Multi-Agent
Reinforcement Learning
Redha A. Alliche, Tiago da Silva Barros, Ramon Aparicio-Pardo, Lucile

Sassatelli

» To cite this version:

Redha A. Alliche, Tiago da Silva Barros, Ramon Aparicio-Pardo, Lucile Sassatelli. PRISMA: A
Packet Routing Simulator for Multi-Agent Reinforcement Learning. 4th Intl Workshop on Network
Intelligence collocated with IFIP Networking 2022, Jun 2022, Catania, Italy. 10.23919/IFTPNetwork-
ingh5013.2022.9829797 . hal-03709948

HAL Id: hal-03709948
https://hal.science/hal-03709948

Submitted on 12 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03709948
https://hal.archives-ouvertes.fr

PRISMA: A Packet Routing Simulator for
Multi-Agent Reinforcement Learning

Redha A. Alliche*, Tiago Da Silva Barros*, Ramon Aparicio-Pardo*, Lucile Sassatellif
* Université Cote d’Azur, Inria, CNRS, I3S, France
T Université Cote d’ Azur, CNRS, I3S, Institut Universitaire de France, France
Contact: alliche@i3s.unice.fr

Abstract—In this paper, we present PRISMA: Packet Routing
Simulator for Multi-Agent Reinforcement Learning. To the best
of our knowledge, this is the first tool specifically conceived to
develop and test Reinforcement Learning (RL) algorithms for
the Distributed Packet Routing (DPR) problem. In this problem,
where a communication node selects the outgoing port to forward
a packet using local information, distance-vector routing protocol
(e.g., RIP) are traditionally applied. However, when network
status changes very dynamically, is uncertain, or is partially
hidden (e.g., wireless ad hoc networks or wired multi-domain
networks), RL is an alternate solution to discover routing policies
better fitted to these cases. Unfortunately, no RL tools have been
developed to tackle the DPR problem, forcing the researchers
to implement their own simplified RL simulation environments,
complicating reproducibility and reducing realism. To overcome
these issues, we present PRISMA, which offers to the community
a standardized framework where: (i) communication process is
realistically modelled (thanks to ns3); (ii) distributed nature
is explicitly considered (nodes are implemented as separated
threads); (iii) and, RL proposals can be easily developed (thanks
to a modular code design and real-time training visualization
interfaces) and fairly compared them.

Index Terms—ns-3; Multi-Agent; Packet Routing; Reinforce-
ment Learning; Network Simulation; ML tool.

I. INTRODUCTION

In the last years, Reinforcement Learning (RL) [1] using
Deep Neural Networks (DNNs) [2], also called Deep Re-
inforcement Learning (DRL), has obtained ground-breaking
results in solving highly complex tasks, such as human-
like performance results at Atari video games [3] or beating
AlphaGo [4] world champion. In communication networks,
DRL has also been widely used in many networking tech-
nologies and problems. One of them is the Distributed Packet
Routing [5]-[8]. In this problem, no complete and centralized
view of network topology and traffic demands is available,
which poses a challenge. This is the case in multi-hop wireless
networks [9] or in multi-domain optical networks [10]. More
precisely, in the DPR problem, each packet can be potentially
routed differently regardless of the flow they belong to. Be-
sides, the per-packet decisions are made locally by distributed
agents placed at the routing nodes. These agents exploit local

The author acknowledges the support of the French Agence Nationale de
la Recherche (ANR), under grant ANR-19-CE-25-0001-01 (ARTIC project).
This work was performed using HPC resources from GENCI-IDRIS (Grant
2021-AD011012577).

ISBN 978-3-903176-48-5© 2022 IFIP

information, such as packet headers and neighboring nodes
and link states.

However, in all the above-mentioned works, the proposed
DRL approaches were evaluated on ad hoc discrete-time
packet-level simulation environments (typically implemented
in python) tailored to the assumptions and simplifications
made by each study. Namely, these works do not generally
implement the RL agents as separated threads or processes
(although they claim to be multi-agent studies); and, they
usually assume that at most one packet per router can be
transmitted at each time step, which introduces an artificial
synchronization into the routers’ dynamics. This has two main
consequences: (i) a reduced realism of the simulated commu-
nication process; and, (ii) an obstacle to fairly comparing these
DRL proposals to state-of-the-art approaches or even against
each other. This lack of standardized Machine Learning (ML)
tools in the networking community [11], [12] represents a
major issue to guarantee reproducibility. We point out that ML
reproducibility issues are becoming a serious concern [13].

As a consequence, in the last years, some tools [12], [14]
devoted to the application of RL to networks have been devel-
oped. These tools allow python RL agents to interact with
the popular ns—3 network simulator [15]. Nevertheless, these
proposals are not natively compatible with the collaborative
and distributed multi-agent setting of the DPR problem, where
agents collaborate to take decisions in a distributed manner.

In this paper, we propose an open-source RL simulation
environment designed to overcome the aforementioned draw-
backs in the application of DRL to the DPR problem. We bring
the following main contributions:

1) a RL framework designed specifically for considering
the distinctive characteristics of the DPR problem, serv-
ing as a playground where the community can easily
validate their RL approaches and compare them.

2) more realistic modelling of the communication process
based on: (i) the ns—3 [15] network simulator; and, (ii)
a multi-threaded implementation for each agent.

3) a modular code design, which allows researchers to test
their own RL algorithm, without needing to work on the
implementation of the environment.

4) visual tools based on tensorboard [16] allowing to
track training and test phases.

The rest of this paper is organized as follows. Section II

discusses the related works. In Section III, we present the pa-

per’s background. Section IV presents PRI SMA. The simulator
usage is detailed in Section V and illustrated in Section VI
Finally, we conclude the paper in Section VIIL

II. RELATED WORKS

Related works can be grouped into the next two categories.

DRL for packet routing. In recent years, the first works
applying DRL to the DPR problem have been published. DPR
has been studied in [5]-[8], [17]. The seminal paper [17] was
the first to apply a RL method, the Q-learning [18], to DPR,
giving rise to the Q-routing paradigm. More details about
this paradigm will be given in the next section. The study
in [5] applies the Deep Q-Network (DQN) framework (i.e.,
a neural network fits the Q-value function) to the Q-routing
algorithm, yielding to the DON routing. In all these works, the
node state only codes the destination of the packet to forward.
More recently, works [6]-[8] extended the DON routing by
adding to the destination additional inputs, particularly node
buffer occupancy. DORC (DQR with Communication) [6] also
considers action history and future destinations. Authors in [8]
focus on the relational features (independent of the network
graph), such as the distance to the destination. Finally, in [7],
the meta-learning framework is applied to the DON routing
to learn different tasks, where a task corresponds to a given
traffic matrix.
RL environments for networking. Only two tools have
been developed to allow a Python agent to interact with
a network simulation: first, ns3—-gym [12]; and, more re-
cently, ns3—ai [14]. Both of them are based on the well-
known ns-3 network simulator, but they follow different
approaches to implement a RL environment. Fist, ns3-ai
is not only restricted to Gym as Python environment (as
ns3-gym does). Second, it makes use of a shared memory
pool as mechanism to connect the ns—3 simulator with the
Python framework (agent and environment), differently from
the ns3—gym sockets-based approach. The ns—3, Gym and
ns3-gym tools are detailed in the next section.

III. BACKGROUND

In this section, we present the elements which PRISMA is
built over: the RL framework used to solve the packet routing
problem, the RL toolkits, and, the ns-3 network simulator.

A. Q-routing: Reinforcement Learning for Packet Routing

The DPR problem can be formalized as Multi-Agent Par-
tially Observable Markov Decision Process (POMDP) [19]: a
Markov Decision Process where each agent can only locally
observe its environment. The first RL method proposed to
tackle the DPR was the Q-routing [17], based on the classical
Q-learning [18], which we will use to describe the POMDP
and the RL approach used to solve it. Note that other RL
methods could be also adapted to the DPR problem.

Let NV be the set of routing nodes (agents), where each
agent n has its own local observation space O,, and its own
action space A,,. When a new packet arrives at time ¢ at the
node n, the node n selects as action a,, the next hop node

n' to forward the packet. This decision is taken depending
on the local observation of the router o, (e.g., the current
packet destination, the node buffers’ occupancy, ...). As a
consequence, the agent n receives a reward r,: the next-hop
packet delay (i.e. the packet delay to travel from n to n’), and
the whole network makes a transition to a new state. When
this packet (or another one) arrives to a node, this procedure is
repeated. The action a,, is selected to minimize an estimate of
the expected end-to-end packet delay from node n to its final
destination. Under the DRL scheme, this estimate, denoted as
Qn(0n,an;0,) (the Q-value), is the output of a DNN with 6,
weights. This DNN is trained to fit the target value Y,@ below:

YO =r,4~-7-(1—f) (1)

where f indicates if the next hop is the packet destination,
v € [0,1] is a discount factor, r is the next-hop packet delay
and T is the remaining end-to-end delay from the next hop n’
to the destination computed as follows:

anlngﬂn, Qn’ (On’ y An/y Hn’) (2)

T =

where Q/(+;0,/) is the output of next hop agent. The 6,
weights are updated by stochastic gradient descent when
minimizing the so-called Temporal Difference (TD) error:

(Q(s,a;0,) — YnQ)2.
B. The ns—3 Network Simulator

The ns—3 simulator [15] is a stable discrete-event network
simulator, largely adopted by the research and educational
community and accepted as a standard. It is free and open-
source under GPLv2 and developed in C++ using object-
oriented programming. The success of this tool is based on two
main features: (i) a realistic modelling of the network systems:
the protocol stack is properly abstracted by the simulator
classes; (ii)) a wide range of networking protocols (e.g., IP,
TCP, UDP), communication technologies (e.g., Ethernet, Wi-
Fi, LTE) and statistical models for channels, mobility, and
traffic generation are supported by built-in classes. As a
consequence, ns—3 becomes a natural choice to use as a
network simulator for PRISMA.

C. Reinforcement Learning Tools

RL agents are usually implemented using Python pack-
ages (e.g., TensorFlow [20]) and interfaced with an envi-
ronment where agents take decisions. The OpenAI™Gym [21]
is one of the most popular toolkits to define RL environments
in Python. Gym is used to test and compare different RL
algorithms for a variety of problems, like Atari games or
robotics [22]. Gym also provides a simple interface to pass the
interactions between the agent and the environment, without
making assumptions about the agent structure. Moreover, the
Gym toolkit allows the creation of customized environments,
which is very convenient since no network environment is
natively available in Gym.

The first solution to this lack of networking RL environ-
ments was ns3-gym [12], which interfaces OpenAl ™Gym

with the ns—3 network simulator. In other words, ns3-gym
“transforms” a ns-3 network simulation into an RL envi-
ronment by serving as gateway connecting ns—3 with Gym.
Then, it provides an easy-to-use platform for developing and
testing RL algorithms for networking problems. The Python
process (the agent and the Gym environment) communicates
with the C++ process (the ns—3 network simulation) via ZMQ
sockets [23]. ns3-gym is also open source under a GPL
licence and can be easily extended. In PRI SMA, we opt for this
tool (instead ns3—-ai) since ns3—-gym is better documented.

IV. PRISMA DESCRIPTION

In this section, we present the technical details of PRI SMA.
First, a description of the design of the framework is given.
Then, each feature is explained, ranging from the network def-
inition to simulation visualization using tensorboard [16].
The PRISMA source code is publicly available at [24].

A. Framework design principles
We consider the following principles:

1) Training-Forwarding separation: the agent training does
not disturb the packet forwarding.

2) Modularity: code easy to reuse and modify.

3) Realistic simulation: implement the agent as close as
possible to the real world.

4) Fast prototyping: easy and rapid modifications of the
decision model.

5) Online simulation tracking: visualize in real-time the
simulation evolution.

For point 1), we choose a multi-threading approach: each
node will be run on two separate threads. One is dedicated to
the training process, and; the other one to the decision process.
Hence, the node agents can be trained at a timestamp without
disturbing the action computation at each packet arrival.

For point 2), we built node agents in an object-oriented
manner, with separated functions for each task, so that a user
can easily modify the behaviour of the agent without affecting
the rest of the code. We document each part of the code and
provide scripts for running the simulation.

Point 3) is a very important aspect of the PRISMA design,
since we need reliable results as close as possible to the
deployment of the agents in the real world. For that, we
keep the link propagation delay and use ns-3 to simulate
the network. We have also integrated the action handling to
the environment and added a Poisson random traffic generator.

For point 4), PRISMA is separated into independent mod-
ules, so that a user may easily modify the code. For example,
changing the neural network or the inputs of the model will
not affect the other parts of the framework.

Finally, for point 5), we give to the user the ability to
monitor the simulation progress in real-time. For example, the
user can track some network or ML metric (e.g., average delay,
buffers occupancy, error progression) to identify training issues
in real-time. To do so, tensorboard has been integrated
into the framework offering network monitoring. In addition,
it adds the possibility to customize plots.

B. Feature description

Figure 1 depicts the PRISMA code structure, showing in
green our contribution over the existing ns—-3 and ns3-gym
modules. We describe next these green modules.

Main code. The core of the tool enables to:

o Gather the user arguments from the Arguments
parser and manage the simulation parameters.

« Instantiate the agents from the Agent class and create
the threads for each node.

¢ Run ns-3 simulator and tensorboard server in sep-
arated processes.

o Log the simulation statistics using the Stats writer.

Agent class. This class represents a node agent,
containing two main methods: run_forwarder and
run_trainer. The first one interacts with the ns3—-gym
environment as follows: (i) retrieve the observations, (ii)
take action, (iii) compute the reward, (iv) store the states’
transitions in the experience replay buffers, and, (v) update
the information about the environment. The second method
trains the model performing a gradient descent step. The
run_forwarder also tracks the packets using their IDs to
build the target value YnQ at the node n, since the reward r,
the next hop agent observation o), and the next hop agent
Q-value @, (+;0,/) are associated to the packet ID.
Multi-threaded agent instances. These are
Agent class instances. Each one corresponds to a
network node. They share different information among
them and with the Main code using static variables. As
aforementioned, we decide to allocate two threads for each
instance: one calling run_forwarder method and the
other one calling run_trainer method to guarantee that
training and forwarding can take place separately.

Stats writer. This module is called by the Main code
and Agent class instances to log information about the
environment or the training progress. The following variables
are tracked to be visualized using tensorboard: average
packet delay, loss ratio, Temporal Difference error at each
agent, replay buffers’ occupancy at each node, exploration
ratio for each node, the number of new arriving packets, the
number of delivered packets, and, the number of buffered
packets. We also add the ability to define custom plots and to
compare between execution’s hyperparameters.

Argument parser. This module is used to retrieve and
parse the arguments given by the user in the script call.
Poisson traffic generator. This is a ns-3
application class that generates random packets following a
Poisson process at each node. The average rate is retrieved
from a given traffic matrix and the packet length is fixed to
a given value. The application is not installed in the node
itself, but in a virtual one directly connected to the real node.
Action and observation handler. As indicated
in Section III-A, the action a,, and the observation o,, are
defined as the output network interface index and the packet
destination, respectively. For the local observation o,,, other
data such as the buffer occupancy of the outgoing interfaces

'
Python Code 1 C++code
1
1
Tensorflow . [] Existing code
summary ' ot
writer ! Our contribution
x '
Use '
' 1
* 1
1
Tensorboard| - Stats writer !
server '
A Arguments '
- 1
Ulse ”Use_7 parser : e
' 1 ' data generator
Agent class <Use-1 Main code E A
1 '
I \ 1 ,
1 .
R, . Use
Multi-threaded agent instances a ' :
1
1
\
' ns-3 q
MARLlib <Use N‘fde Node OpenAl ' network Action and
trainer forwarder Gym ms3-gym’| lat Use> observation
thread thread ZMQ spekets 1 Interface simufator handler
'
1
1

Fig. 1: PRISMA code structure, separated in two parts : Python code and C++ code, highlighting our contribution in green. The figure shows the multi-threaded
approach, where each node agent is composed of two threads: one forwarding the packets and another training the model.

could be considered. This module, implemented as a ns—3
handler, retrieves o,, from the network simulation when a
new packet arrives at the node n, and forwards the packet to
the output interface a,. If the buffer interface is full, then
the packet is discarded. We also provide the packet ID in the
info field, so we can track each packet.

MARL 1lib. With this module, we extend the OpenAI™
Baselines library [25] to the Multi-Agent Deep
Reinforcement Learning (MA-DRL) approach. The MARL
1ib provides the tools for defining, training, and testing an
agent. It contains the following modules:

models: a module containing the DNN models.
Replay buffer: a class handling the experience re-
play buffer. It contains methods like: add, sample or
save.

agent: a class defining an DQN agent in the context of
DPR. It contains methods like step, train and sync
neighbor target neural network

utils: a set of utility functions like save_model and
load_model.

V. USAGE

In this section, we describe the parameters of PRI SMA, and
we present the guidelines about how to use the framework.

A. Framework parameters

PRISMA parameters are separated into the following:

o Global simulation arguments: it contains the simulation
time, the base port, the seed, and whether to run training
or not.

o Network parameters: it contains network attributes like
the path to the adjacency matrix, the maximum output
buffer size, or the load factor.

e DRL agent argument: it concerns the training of the agent
and contains parameters like the batch size, the learning
rate, or the training time step.

Session logging arguments: it contains parameters about
the session, like the name of the session and the path to
store the result of the simulation.

Other parameters: some misc arguments like whether to
run a tensorboard server and its port number.

B. Usage guide

First, a user must install the ns3-gym, operational system
and Python dependencies. To do that, we provide installation
files.

The main prisma folder is composed of four folders:
source, ns—3, examples, and scripts. The source
folder contains the MARL 1lib, the agent class and
utils modules. The ns3 folder contains the ns-3 files:
(i) the Poisson data generator, and; (ii) the ns-3
simulation itself (sim.cc). The latter file creates and runs
the simulation scenario defined by the examples folder files,
that define the network topologies and traffic matrices. Scripts
for launching the simulations of Section VI are provided in
the scripts folder.

The DNN model can be changed in models.py. The
reward, observation, and action definitions can be modi-
fied in the methods _get_reward (in agent_class),
Get_Observation (in packet-routing—gym.cc)and
Get_action (in packet-routing-gym.cc), respec-
tively. Finally, a user may test the framework by calling
main.py with the corresponding arguments. Calling the
latter file with “—help” argument will show all the possible
parameters.

VI. ILLUSTRATIVE EXAMPLE

This section aims to show how PRISMA can be used to
assist the training and testing of a DRL algorithm to solve
the Distributed Packet Routing problem. Namely, we make a
Deep Q-Network routing model [5] learn the Shortest Path
(SP) routing in backbone network scenarios. The tool can
be applied to more challenging ad-hoc wireless networks by
simply modifying the sim. cc file and properly adapting the
DQN routing model. Here, we use a more simple case for
illustrative purposes.

A. Simulation settings

We ran PRISMA in two different machines: (i) a Dell
Precision 7920 workstation equipped with an Intel Xeon Gold
6230R Dual CPU (26 Cores, 2.1-4.0GHz Turbo, 128 GB
RAM) with 2 NVIDIA RTX A5000 GPUs; and, (ii) an Intel
Inspiron 14 laptop equipped with an Intel Core 17-8565U CPU
(Quad Core, 1.80 GHz, 8 GB RAM) with a 1 GPU NVIDIA
GeForce MX130 GPU.

The DRL agent is implemented in TensorFlow [20] as a
three-layer neural network in models.py with a first dense
layer of 32 nodes, then two layers of 128 nodes each having a
Leaky ReLU activation function. This model considers only
the packet destination as input and outputs the estimated end-
to-end packet delay based on the selected network interface.
The action is retrieved by applying an argmin function to
the output layer. In the examples folder, we define the two
topologies considered in this experiment: Abilene (11 nodes)
and Geant (23 nodes), as well as the traffic matrices (randomly
generated using a uniform distribution). We fix the packet size
to 512 K B, the link propagation delay to 2 ms, and the
maximum output buffer length to 30 packets. We chose the
reward r,, (the next hop packet delay) to be 1, which means
that the agent policy will aim to minimize the total number of
hops from source to destination These parameters along with
the model hyperparameters are set as arguments when calling
main.py. We expect that DON-routing will have a similar
performance to Shortest Path routing, since both algorithms
minimize the number of hops taken by a packet to reach its
destination.

B. Model training

In this section, we show how the training process is per-
formed successfully. The model is trained during 1 minute at
each 7 ms (network simulation time) with a learning rate of
0.001, batch size of 512, load factor of 50% and ~ of 1. The
duration of the simulation time for training was 30 seconds.
Moreover, we use an e-greedy approach (e decays from 1 to
0.01) to move from exploration to exploitation.

Thanks to tensorboard visualization tools (see Fig-
ure 2), we can watch the training progress. Figures 3 show
in detail the most relevant metrics to watch the learning
progress for Abilene and Geant. Figure 3a and 3b show the
average cost over the simulation time. The cost is computed
by dividing the sum of the rewards over time by the total
number of packets. Since the reward is 1 at each hop, the

Main evaluation metrics

Avg Delay per arrived pkis Avg Cost per pkis Loss Ratio

015 45 o
SM 1M 1M 200

[]Ed

30m

25M 30M

cvusoN [= CSV JSON

v Matches (1) v Matches (1) v Matches (1)

Training metrics

replay buffers length
i F!,rrfr

7043
3e43 f.._.,.a-"’./
SMT0M TSM 20M 25 30

0

v Matches (23)

]

v Json

v Matches (23)

v Matches (23)

Fig. 2: Screenshot of tensorboard interface. The = axis represents the time
in ns, and the y axis represents the variables tracked during the simulation.
For the training metrics (bottom subfigures), each curve corresponds to an
agent.

cost represents the average hop count per packet. We can
observe an early cost increase due to the initial exploration:
the network is flooded with packets needing many hops to
arrive at their destinations, since the forwarding decisions
are mainly random. Afterward, we move progressively to the
exploitation phase, where the decision comes from the Deep
Neural Network (DNN) model. As we see, the packets reduce
the hop count to reach their destination, since model decisions
improve. Figs 3c and 3dshow the Temporal Difference (TD)
error for each node over the simulation time. We can observe
that this error is decreasing, which means that all the agents
are converging (learning) to a feasible routing policy (packets
are not forwarded indefinitely).

10 10——
/N
\
\
P PN
Z gl N Z g \
g |/ AN] ‘
2 \ 2 N
% AN % .
&6 &6 -
P Bt
: - g :
< <
4 4
10 20 0 10 20
Simulation time (s) Simulation time (s)
(a) Abilene’s cost (b) Geant’s cost
10 10
| —— Node 0 Node 6 Node 0 Node 12
Node 1 Node 7 | Node 1 Node 13
8 ‘ —— Node2 Node 8 8 —— Node2 —— Node 14
—— Node 3 ~—— Node 9 —— Node 3 —— Node 15
ic- —— Node 4 Node 10 ‘c- Node 4 Node 16
: 6 —— Node 5 : 6 Node 5 Node 17
a3 = Node 6 Node 18
Q 4 Q 4 —— Node 7 —— Node 19
= = Node 8 Node 20
Node 9 Node 21
2 2 —— Nodel0 —— Node2
I Node 11
0 10 20 %

10
Simulation time (s)

Simulation time (s)

(¢) Abilene’s TD error (d) Geant’s TD error

Fig. 3: The average cost per packet and TD errors at each node during training
for Abilene (rightmost subfigures) and Geant (leftmost subfigures) topology.

C. Model testing

In this part, we evaluate the performances of the trained
DQON-routing agents at different traffic intensities (low,
medium, high, and very high traffic, in which the load
factor was 50%, 100%, 150% and 200%, respectively). In
Figure 4, we compare the results with SP routing in terms
of the average end-to-end delay and the packet loss ratio.
For low and medium traffic rates, DQN-routing presents the
same performance as SP since both methods are using the
shortest path decision policy, which is sufficient to handle all
the packets at this rate. For high traffic rate, DON-routing
outperforms SP routing in terms of the end-to-end delay for
both topologies; and, in terms of loss ratio, for Abilene. On
the contrary, SP routing is slightly better in loss ratio in Geant.
Anyway, these differences are not significant since we intend
to learn a routing close to the SP, which is the case.

o
)
=3

o
o
S

HEE DON Routing
I SP Routing

HEE DOQN Routing
I SP Routing

o
[y
e
vy

o
f=1
S
o
f=}
S

Average End to End Delay (s)
o o
=3 —
(=) (=)
Average End to End Delay (s)
j=1
=

e
=3
S

Low Medium High Very High
Traffic Rate Intensity

Low Medium High Very High
Traffic Rate Intensity
(a) Abilene’s end-to-end delay
10 10
HEE DON Routing
8) MM SP Routing

(b) Geant’s end-to-end delay

HEE DOQN Routing
8| MM SP Routing

Packet Loss Ratio (%)
Packet Loss Ratio (%)

Low Medium High Very High
Traffic Rate Intensity

Low Medium High Very High
Traffic Rate Intensity

(¢c) Abilene’s packet loss ratio (d) Geant’s packet loss ratio

Fig. 4: The average end-to-end delay per arrived packet and packet loss ratio
for different traffic rate intensities for Abilene (right row) and Geant (left row)
topology

VII. CONCLUSION

In this paper, we have presented the PRISMA tool, which
is, to the best of our knowledge, the first Deep Reinforce-
ment Learning (DRL) framework specifically devoted to the
Distributed Packet Routing (DPR) problem. In this problem,
routing agents take packet forwarding decisions based only
on local information. When the network state is uncertain or
partially hidden (e.g., a global view is not available) or changes
very dynamically, DRL appears as a solution to discover an
efficient routing policy. In this vein, PRISMA aims to provide
a playground for researchers interested in the application of
this machine learning paradigm to this challenging problem,
allowing fast prototyping and bench-marking. We illustrated
its main functionalities by applying the tool to learn in a

distributed manner a Shortest Path routing policy in two
backbone networks.

REFERENCES

[1]1 R.S. Sutton et al., Reinforcement learning: An introduction. MIT press,
2018.

[2] Y. Bengio, Learning deep architectures for AIl. Now Publishers, 2009.

[3] V. Mnih et al., “Human-level control through deep reinforcement learn-

ing,” Nature, vol. 518, no. 7540, pp. 529-533, Feb. 2015.

D. Silver et al., “Mastering the game of Go without human knowledge,”

Nature, vol. 550, no. 7676, pp. 354-359, Oct. 2017.

[5] D. Mukhutdinov et al., “Multi-agent deep learning for simultaneous

optimization for time and energy in distributed routing system,” Future

Generation Computer Systems, vol. 94, pp. 587-600, 2019.

X. You et al., “Toward packet routing with fully distributed multiagent

deep reinforcement learning,” /IEEE Transactions on Systems, Man, and

Cybernetics: Systems, pp. 1-14, 2020.

[71 L. Chen et al., “Multiagent meta-reinforcement learning for adaptive

multipath routing optimization,” IEEE Transactions on Neural Networks

and Learning Systems, pp. 1-13, 2021.

V. Manfredi et al., “Relational deep reinforcement learning for routing

in wireless networks,” in 2021 IEEE 22nd International Symposium on a

World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2021-

06, pp. 159-168.

L. Tassiulas et al., “Stability properties of constrained queueing systems

and scheduling policies for maximum throughput in multihop radio

networks,” IEEE transactions on automatic control, vol. 37, no. 12, pp.

1936-1948, 1992.

X. Chen et al., “Demonstration of distributed collaborative learning with

end-to-end qot estimation in multi-domain elastic optical networks,”

Optics express, vol. 27, no. 24, pp. 35700-35709, 2019.

A. Mestres et al., “Knowledge-defined networking,” SIGCOMM Com-

put. Commun. Rev., vol. 47, no. 3, p. 2-10, sep 2017.

P. Gawtowicz et al., “ns-3 meets OpenAl Gym: The Playground for

Machine Learning in Networking Research,” in Proc. ACM International

Conference on Modeling, Analysis and Simulation of Wireless and

Mobile Systems (MSWiM), November 2019.

[13] J. Pineau et al., “Improving reproducibility in machine learning re-

search(a report from the NeurIPS 2019 reproducibility program),” Jour-

nal of Machine Learning Research, vol. 22, no. 164, pp. 1-20, 2021.

H. Yin et al, “Ns3-ai: Fostering artificial intelligence algorithms for

networking research,” in Proc. ACM 2020 Workshop on Ns-3 (WNS3),

New York, NY, USA, 2020, p. 57-64.

nsnam, “Ns-3 documentation website,” 11/05/22. [Online]. Available:

https://www.nsnam.org/documentation/

“Tensorboard: Tensorflow’s visualization toolkit,” 11/05/22. [Online].

Available: https://www.tensorflow.org/tensorboard

[17] J. A. Boyan et al., “Packet routing in dynamically changing networks:
A reinforcement learning approach,” in Proc. Neural Information Pro-
cessing Systems (NeurIPS), 1993, pp. 671-678.

[4

=

[6

[}

[8

—

[9

—

[10]

(11]

[12]

[14]

[15]

[16]

[18] C.J. C. H. Watkins, “Learning from delayed rewards.” Ph.D. disserta-
tion, University of Cambridge, 1989.

[19] M. L. Littman, “Markov games as a framework for multi-agent rein-
forcement learning,” in Proc. Intl. Conf. on Machine Learning (ICML),
1994, pp. 157-163.

[20] “Tensorflow: An end-to-end open source machine learning platform,”
11/05/22. [Online]. Available: https://www.tensorflow.org/

[21] “Gym: Gym toolkit for creating reinforcement learning environments,”
11/05/22. [Online]. Available: https://gym.openai.com

[22] 1. Zamora et al., “Extending the openai gym for robotics: a toolkit
for reinforcement learning using ros and gazebo,” arXiv preprint
arXiv:1608.05742, 2016.

[23] “Zero mq: An open-source universal messaging library,” 11/05/22.
[Online]. Available: https://zeromq.org/

[24] “Prisma tool: An open marl framework for packet routing.” 11/05/22.
[Online]. Available: https://github.com/rapariciopardo/PRISMA

[25] “Openai baselines: high-quality implementations of reinforce-
ment learning algorithms,” 11/05/22. [Online]. Available:

https://github.com/openai/baselines

