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Introduction

In the earlier days, geometric series served as a vital role in the development of differential and integral calculus and as an introduction to Taylor series and Fourier series. The geometric series and its summations and sums [START_REF] Annamalai | A novel computational technique for the geometric progression of powers of two[END_REF][START_REF] Annamalai | Extension of ACM for Computing the Geometric Progression[END_REF][START_REF] Annamalai | Computational Modelling for the Formation of Geometric Series using Annamalai Computing Method[END_REF][START_REF] Annamalai | Summations of Single Terms and Successive Terms of Geometric Series[END_REF][START_REF] Annamalai | Sum of Geometric Series with Negative Exponents[END_REF][START_REF] Annamalai | Computation of Series of Series using Annamalai's Computing Model[END_REF][START_REF] Annamalai | Computation of Geometric Series in Different Ways[END_REF][START_REF] Annamalai | My New Idea for Optimized Combinatorial Techniques[END_REF][START_REF] Annamalai | Algorithmic and Numerical Techniques for Computation of Binomial and Geometric Series[END_REF] have significant applications in science, engineering, economics, queuing theory, computation, management, and medicine [START_REF] Annamalai | Application of Exponential Decay and Geometric Series in Effective Medicine[END_REF]. In this article, an innovative idea is introduced for the computation of sum of positive integers and geometric series whose terms are powers of two.

Computation of Geometric Series

Theorem: ∑ 𝑖 × 2 𝑖-1 = (𝑛 -1)2 𝑛 𝑛 𝑖=1 + 1.
Proof. This theorem is proved by mathematical induction.

Basis. Let 𝑛 = 3. Then ∑ 𝑖 × 2 𝑖-1 = 1 + 4 + 12 = 17 = 2 × 2 3 3 𝑖=1 + 1. It is true. Inductive hypothesis. Let us assume that it is true for ∑ 𝑖 × 2 𝑖-1 = (𝑛 -2)2 𝑛-1 𝑛-1 𝑖=1 + 1. Inductive Step. We must show that ∑ 𝑖 × 2 𝑖-1 = (𝑛 -1)2 𝑛 𝑛 𝑖=1 + 1 is ture. ∑ 𝑖 × 2 𝑖-1 + 𝑛2 𝑛-1 = (𝑛 -2)2 𝑛-1 𝑛-1 𝑖=1 + 1 + 𝑛2 𝑛-1 ⟹ ∑ 𝑖 × 2 𝑖-1 = 2𝑛2 𝑛-1 𝑛 𝑖=1 -22 𝑛-1 + 1 ⟹ ∑ 𝑖 × 2 𝑖-1 = 𝑛2 𝑛 𝑛 𝑖=1 -2 𝑛 + 1 = (𝑛 -1)2 𝑛 + 1.
Hence, theorem is proved.

Conclusion

In this article, an innovative idea is introduced a computational technique for the computation of sum of positive integers and geometric series whose terms are powers of two. This computing technique is a methodological advance which is useful for researchers who are working in science, economics, engineering, computation, and management.