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Abstract: Geometric series plays a vital role in the areas of combinatorics, science, economics, 

and medicine. This paper presents computing technique for the sum of positive integers and 

geometric series whose terms are powers of two. This computing technique is a methodological 

advance which is useful for researchers who are working in science, economics, engineering, 

computation, and management.  

       

MSC Classification codes: 40A05 (65B10) 

 

Keywords: computation, geometric series, powers of two, summation    

 

1. Introduction 

In the earlier days, geometric series served as a vital role in the development of differential and 

integral calculus and as an introduction to Taylor series and Fourier series. The geometric series 

and its summations and sums [1-9] have significant applications in science, engineering, 

economics, queuing theory, computation, management, and medicine [10]. In this article, an 

innovative idea is introduced for the computation of sum of positive integers and geometric 

series whose terms are powers of two.   

 

2. Computation of Geometric Series 

Theorem: ∑ 𝑖 × 2𝑖−1 = (𝑛 − 1)2𝑛

𝑛

𝑖=1

+ 1. 

Proof. This theorem is proved by mathematical induction. 

Basis. Let 𝑛 = 3. Then ∑ 𝑖 × 2𝑖−1 = 1 + 4 + 12 = 17 = 2 × 23

3

𝑖=1

+ 1.  It is true.  

Inductive hypothesis. Let us assume that it is true for ∑ 𝑖 × 2𝑖−1 = (𝑛 − 2)2𝑛−1

𝑛−1

𝑖=1

+ 1.   

 Inductive Step. We must show that ∑ 𝑖 × 2𝑖−1 = (𝑛 − 1)2𝑛

𝑛

𝑖=1

+ 1 is ture. 

∑ 𝑖 × 2𝑖−1 + 𝑛2𝑛−1 = (𝑛 − 2)2𝑛−1

𝑛−1

𝑖=1

+ 1 +  𝑛2𝑛−1 ⟹ ∑ 𝑖 × 2𝑖−1 = 2𝑛2𝑛−1

𝑛

𝑖=1

− 22𝑛−1 + 1 

                                   ⟹ ∑ 𝑖 × 2𝑖−1 = 𝑛2𝑛

𝑛

𝑖=1

− 2𝑛 + 1 = (𝑛 − 1)2𝑛 + 1. 

Hence, theorem is proved. 
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3. Conclusion  

In this article, an innovative idea is introduced a computational technique for the computation of 

sum of positive integers and geometric series whose terms are powers of two. This computing 

technique is a methodological advance which is useful for researchers who are working in 

science, economics, engineering, computation, and management. 
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