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Abstract

The real-time Railway Traffic Management Problem (rtRTMP) is the problem of detecting

and solving time-overlapping conflicting requests made by multiple trains on the same track

resources. This problem consists in retiming, reordering and rerouting trains in such a way

that the propagation of disturbances in the railway network is minimized. The rtRTMP is an

NP-complete problem and finding good strategies to simplify its solution process is paramount

to obtain good quality results in a short computation time. Solving the Train Routing Selec-

tion Problem (TRSP) aims to reduce the size of rtRTMP instances by limiting the number of

routing variables: during the pre-processing, the most promising routing alternatives among

the available ones are selected for each train. Then, the selected alternatives are the only ones

used for the rtRTMP. A first version of the TRSP has been recently proposed in the litera-

ture. This paper presents an improved TRSP model, where rolling stock re-utilization timing

constraints and estimation of train delay propagation are taken into account. Additionally, a

parallel Ant Colony Optimization (ACO) algorithm is proposed. We analyze the impact of

the TRSP model and algorithm on the rtRTMP through a thorough computational campaign

performed on a French case study with timetable disturbances and infrastructure disruptions.

The presented model leads to a better correlation between TRSP and rtRTMP solutions, and

the proposed ACO algorithm outperforms the state-of-the-art algorithm.

Keywords: Rail Transportation, Train Scheduling and Routing, Ant Colony Optimization,

Parallel Computing, Disturbance Management.
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1 Introduction

To ensure safe and regular train services, rail infrastructure managers design timetables periodically

and in advance of their practical implementation (Tang et al., 2021). However, train operations

are subordinated to a large number of parameters, making them vulnerable to disturbances. These

may cause train conflicts, i.e., the simultaneous request to utilize the same infrastructure section by

more than one train. Dispatchers are thus required to quickly detect new conflicts arising during

operations and take actions to recover feasibility (Corman et al., 2014), typically by retiming, re-

ordering and rerouting trains in such a way that the propagation of disturbances is minimized. This

problem is known in literature as the real-time Railway Traffic Management Problem (rtRTMP).

Several models and algorithms have been developed to solve this problem and provide decision

support systems to help dispatchers take more informed decisions (Törnquist, 2006). Still, the

rtRTMP is NP-complete and good quality solutions must be found in the short computation times

imposed by the nature of the problem. In fact, the instance size highly increases in larger stations

and complex junctions, e.g., congested bottleneck areas. Large infrastructures, high numbers of

trains and available routes result in a huge number of constraints and variables, thus it becomes

challenging to find a good quality solution. To increase the tractability of rtRTMP instances,

some approaches limit the size of the problem by intervening on the granularity used to model

infrastructures and traffic flows (Pellegrini et al., 2019; Cavone et al., 2019) or focus on the solution

process to properly drive the search (Pellegrini et al., 2015; Samà et al., 2016). Other approaches

limit the number of variables by considering only what they perceive to be the most significant

ones (Van Thielen et al., 2018). This paper focuses on the improvement of the rtRTMP solutions

where optimized pre-processing is used to limit the number of routing variables.

In large stations, routing variables are among the factors that mostly affect the size of the

rtRTMP search space (Boccia et al., 2013). Some approaches disregard them and use the timetable

routes, limiting the rtRTMP to a pure scheduling problem. However, it is well established that

rerouting is a strong action for improving rtRTMP solutions (D’Ariano et al., 2008; Corman et

al., 2010; Pellegrini et al., 2016). Moreover, in case of infrastructure disruptions (Dollevoet et

al., 2017) or maintenance (D’Ariano et al., 2019; Zhang et al., 2019), routing decisions might be

indispensable. Some approaches tackle this issue by using effective algorithms that concurrently

optimize train rerouting and rescheduling to solve the rtRTMP. Besides these solution methods,

recent approaches show that limiting in a smart way the number of routing variables available for

each train further improves the rtRTMP solutions. This pre-process requires solving the Train

Routing Selection Problem (TRSP), and consists in selecting a feasible and optimized subset of

alternative routes for each train. In the TRSP, the benefit of using specific subsets of routes in the

rtRTMP is assessed by considering estimations of costs. Costs are often measured as a function of

delays, but could in general account for very different indicators (Samà et al., 2015) such as train
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travel times.

The need to consider routing subsets when deciding whether a certain assignment of routes

to trains is feasible dates back to Kroon et al. (1997). They proved that train routing is an

NP-complete problem as soon as each train has three routing possibilities. Over time, significant

research efforts have been devoted in developing methods that solve train routing concurrently

with rescheduling, while the TRSP has been a rather neglected topic. Some recent approaches

use subsets of all possible alternative routes available, which are either based on guidelines set

by infrastructure managers (Caimi et al., 2011), or chosen because considered the ones that will

probably lead to the best quality solutions. Samà et al. (2016) extensively study this latter option:

they propose the formalization of the TRSP by a construction graph, together with an integer linear

program and a model to estimate the costs due to route choices in the rtRTMP, in terms of conflict

occurrence and scheduling decision impacts. Moreover, they develop an Ant Colony Optimization

(ACO) algorithm to solve the problem. Pascariu et al. (2021) show that the ACO-TRSP algorithm

of Samà et al. (2016) is able to converge to globally optimal solutions. A solution is globally optimal

when no other solutions with better objective value exist in the entire solution space. However, as

the size of the instances increases, this algorithm starts struggling: it progressively improves the

incumbent solution, but it does not converge to optimum in the limited computation time set.

In this paper, as a first contribution, we improve the TRSP model. Specifically, we aim to

increase the correlation between TRSP and rtRTMP. By boosting the TRSP route choice through

better conflict and scheduling cost estimations; we want to identify the best routes to be used

by the rtRTMP solver, in order to find the highest quality solutions, i.e, those that minimize the

total propagation of train delay. Two incremental upgrades are proposed for cost estimations: we

strengthen the link between train movements performed by the same rolling stock, which we refer to

as rolling stock re-utilization, such as turnarounds; we then assess the impact of delay propagation

due to train conflicts. As a second contribution, we improve the TRSP solution process. On the one

hand, we develop a parallel ACO-TRSP algorithm to speed-up the search space exploration in the

available computation time. On the other hand, we propose and test two local search algorithms,

based on parallel computing, to enlarge the solution search. The purpose is to escape from local

minima, find better quality solutions, and possibly reach global optima.

To assess the benefits brought by these contributions, we carry out a thorough campaign of

experiments on large-size instances, referring to the French station area of Lille Flandres, with

timetable disturbances and infrastructure disruptions. A disturbance is a small perturbation of

the timetable, while a disruption is a large disturbance (e.g., a track blockage) that requires major

adjustments of planned traffic flow. Different variants of ACO-TRSP, incrementally including each

of our algorithmic and modeling contributions, are applied to supply routing alternatives to the

RECIFE-MILP solver for the rtRTMP (Pellegrini et al., 2015). We compare the performance of
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these variants with the state-of-the-art algorithm introduced by Samà et al. (2016) and we analyze

the statistical significance of the improvement achieved by each contribution.

The rest of this paper is structured as follows: Section 2 reviews the relevant literature on

TRSP; Sections 3 and 4 provide a description of the rtRTMP and TRSP models used; Section 5

illustrates the novel TRSP cost estimation model, where rolling stock re-utilization and train delay

propagation are considered; Section 6 describes the parallel ACO algorithm and the two local

search algorithms; Section 7 shows the computational results and their discussion, and Section 8

summarizes the conclusions and suggests where to focus future research.

2 Literature review

The rtRTMP is the problem of detecting and solving time-overlapping conflicting requests done by

multiple trains on the same track resources. It typically consists in taking train retiming, reordering

and rerouting decisions in such a way that the propagation of disturbances in the railway network

is minimized. The rtRTMP is an NP-complete problem (Kroon et al., 1997; Mascis & Pacciarelli,

2002), reason that has motivated over time a great research effort to find good strategies to simplify

its modeling and solving process, to achieve high quality solutions in a short computation time.

Zhu & Goverde (2019) and Zhang et al. (2021) formulate the problem as a Mixed Integer Linear

Program (MILP) at macroscopic level, i.e., aggregating the network mainly into nodes and edges,

corresponding to stations and track segments. Šemrov et al. (2016) propose a reinforcement Q-

learning algorithm for a simulation based model, that minimizes the total train delay induced by

an initial disturbance. The problem is tackled at a microscopic level, i.e., addressing a detailed

representation of the infrastructure, where each resource corresponds to a single block-section or

even to a single track-circuit. However, the authors consider simplified modeling assumptions on

train length, signalling and interlocking systems, that may not be compatible with the rail practice.

Cavone et al. (2019) use a bi-level train rescheduling algorithm based on a mesoscopic MILP model,

which minimizes train delays, cancellations, and shunting in stations. Mesoscopic approaches are

a mix of macroscopic and microscopic ones, e.g., multiple block-sections are grouped into one. In

all of these three types of works, the rtRTMP is studied as a pure train rescheduling problem, with

no train rerouting decisions.

Recent works include train rerouting options to allow for improvement of a rtRTMP solution

by redistributing traffic in the rail network. Binder et al. (2017) formulate the rtRTMP as a multi-

objective Integer Linear Program (ILP), based on a space-time graph, considering the minimization

of passenger dissatisfaction, operational costs and deviations from the timetable. Veelenturf et al.

(2016) propose an ILP formulation, based on an event-activity network, to solve the rtRTMP while

minimizing the number of cancelled and delayed trains. Both works (Binder et al., 2017; Veelen-
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turf et al., 2016) use a macroscopic infrastructure representation to simplify the train scheduling

problem, taking into account the possibility of rerouting trains, but disregarding routes inside

stations or junctions to reduce the size of the instances. To allow rerouting in all possible areas,

some approaches in the literature tackle the solution process to properly drive the search for good

solutions. For example, Pellegrini et al. (2014) formulate the problem as a MILP model and solve

it by computing an initial solution for the train scheduling problem (where, for each train, the

timetable route is used) and then improve this solution by enlarging the search space while adding

all available rerouting variables. D’Ariano et al. (2007), Corman et al. (2010) and Samà et al.

(2017a), instead, model the problem by using alternative graphs (Mascis & Pacciarelli, 2002) and

iteratively solve the train scheduling and routing problems separately. Furthermore, Gholami &

Törnquist (2018) use a heuristic algorithm to solve the rtRTMP, based on a hybridization of the

disjunctive and alternative graphs, modeling the rail infrastructure at a mesoscopic level.

Another approach to increase the computational efficiency when solving the rtRTMP is to re-

duce the number of variables. Looking at train retiming and reordering variables, Van Thielen et

al. (2018) only include those variables involving the trains engaged in initial timetable disturbances,

i.e., those not caused by delay propagation. Pellegrini et al. (2019) reformulate the microscopic

RECIFE-MILP model presented in Pellegrini et al. (2014) by modifying the constraints and re-

ducing the number of train scheduling variables, by means of valid inequalities that link routing

and scheduling variables. Toletti et al. (2020) solve the rtRTMP for railway systems by using

a decomposition and coordination framework, modelled according to the resource conflict graph

of Caimi et al. (2011). They use a MILP commercial solver, which includes train routing variables

as well, and an ad-hoc developed column generation approach to solve the local train rescheduling

problems at a microscopic level. Fischetti & Monaci (2017) limit, in a pre-processing of a MILP

solver, the binary variables associated with alternative routes for each train. The pre-processing

proposed is not optimized as they consider (for each train) the timetable route and a randomly cho-

sen alternative route. Samà et al. (2016) formalize the Train Routing Selection Problem (TRSP)

as a pre-processing step of the rtRTMP, in which a feasible and optimized subset of alternative

routes is selected for each train.

Both Samà et al. (2016) and Fischetti & Monaci (2017) show that a partial routing flexibility is

to be preferred to a complete routing flexibility in the rtRTMP: the alternative routings available for

each train strongly affect the problem size and the required computation time. Traditional TRSP

approaches use subsets of alternative routes predefined by infrastructure managers (Caimi et al.,

2011; Bettinelli et al., 2017), while others use optimization algorithms to select the best routes.

Samà et al. (2016) develop an Ant Colony Optimization (ACO) algorithm (Dorigo & Stützle, 2004)

with the objective function that approximates the one of the rtRTMP. Pascariu et al. (2021) use

a mixed-integer linear programming model to prove that this ACO algorithm (Samà et al., 2016)
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converges to the optimum for small instances, while large instances are more challenging to be

solved to optimum. Moreover, Samà et al. (2017b) analyze the impact of solving the TRSP at

tactical and operational levels. For the former, the routing selection is based on records of past

perturbed traffic. While for second one, the selection is based on the real-time traffic perturbation.

The study shows that the operational level allows to better consider the effect of the routing

selection, rather than the tactical one.

It is evident how a wide trend exists toward developing models that simplify the rtRTMP

solution process. Along with this trend, the TRSP represents a useful option, but more effective

and reliable algorithms could be used for large networks. The high number of alternative train

routes available in these instances, which can reach hundreds of routings per train, leads to a huge

solution space. The ACO-TRSP of Samà et al. (2016) finds difficult the effective exploration of

such a large solution space in real-time. A possible research opportunity is offered by parallel

computing. Although parallel programming is well established in operations research, rather few

and very recent implementations exist for railway traffic management algorithms. Bettinelli et

al. (2017) use parallel computing to perform independent executions of a greedy algorithm, which

schedules trains on a time-space network by different criteria, and select the best option. Josyula

et al. (2018) propose a parallel computing algorithm to simultaneously explore different parts of a

train-conflict binary tree.

In this paper, we contribute to fill the research gap represented by the lack of an advanced

approach that can optimally solve large instances by considering the infrastructure at a microscopic

level. We integrate the research trend on the TRSP by improving its current state-of-the-art

algorithm, namely ACO-TRSP by Samà et al. (2016). We exploit modeling enhancements by

including rolling stock re-utilization constraints and by improving the estimation of train delay

propagation, to identify the best routes to be used by the rtRTMP solver. Furthermore, we propose

a parallel Ant Colony Optimization algorithm to speed up the TRSP search space exploration, and

two local search algorithms to diversify the solution search.

3 Real-time Railway Traffic Management Problem

Rail traffic management typically relies on operational and technical constraints. The operational

constraints regard requirements imposed by the infrastructure manager and involve train arrival,

departure and dwell times at stations, i.e., the time allocated for passengers boarding/alighting, as

specified in the timetable. In case of rolling stock re-utilization, additional time is allocated between

the arrival and the departure of a train to allow turnaround, joint or split operations. The technical

constraints regard the train running times, which are the times required by each train to traverse

infrastructure sections, as well as the minimum headway times imposed by the signaling system in
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each infrastructure section. The minimum headway time is the minimum time that must separate a

pair of trains to avoid any overlap on the infrastructure section and any deadlocks, according to the

blocking time theory (Hansen & Pachl, 2014). A deadlock occurs when a train cannot continue on

its route, under any circumstances, because it is blocked by another (Pachl, 2007). Under the fixed

block signaling system, electrical track-circuits represent the minimum section of infrastructure

able to detect the presence of a train. A sequence of track-circuits between two consecutive signals

is called block-section. In rail operations, each track-circuit is allocated exclusively to a specific

train, and blocked for the other ones, for a given duration of time called infrastructure utilization,

which is usually longer than the physical train occupation. The times at which a train begins

and ends utilizing a track-circuit, called respectively reservation and release times, depend on

the interlocking and signaling systems. In this paper, the route lock-sectional release system is

considered as interlocking system, in which all the track-circuits of a block-section are reserved

at the same time, while they are released one-by-one after track-free detection, according to the

transit of each train. As signaling system, we consider the three-aspect system, whereby a green

aspect signal indicates free way for the next block-section, a yellow aspect warns the train to start

braking, because the next signal may be red, and a red aspect indicates the train must stop, since

the next block-section is still to be released by the preceding train. According to this system, the

two block-sections following a green aspect signal are reserved at the same time to ensure that

trains can travel without unexpected brakings, since each train needs a full block-section to stop.

The operational constraints ensure that trains can comply with technical constraints in practice,

at least in absence of traffic perturbations (Goverde et al., 2016). However, during operations,

unexpected events may cause train delays (primary delays), which can lead to an infrastructure

utilization overlap by two trains, if they both travel at their planned speed. The simultaneous

utilization of the same infrastructure section(s) is prevented by the signaling system, which will

stop one of the two concurrent trains. The second train will inevitably suffer a delay, called

secondary delay. Solving the rtRTMP translates into providing an optimized plan of operations,

that minimizes the propagation of train secondary delays. This classical problem in the field of

railway operations research consists in defining the passing orders, the arrival and departure times

of trains in stations and in selecting their route across the network, given a perturbed timetable.

A train route is an ordered list of infrastructure sections that a train might traverse to reach the

locations of its scheduled stops, i.e., its stopping points. We remark that a stopping point may

include several alternative tracks, where the stop itself takes place. A set of alternative routes can

be assigned to each train and be selected among the available ones in the rail network such that

all routes share the same stopping points, while traversing different infrastructure sections.

Several models exist in literature for the rtRTMP. In this paper, we use the MILP formulation

of Pellegrini et al. (2014) and the RECIFE-MILP solver of Pellegrini et al. (2015). While a
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brief overview of this model is given in the reminder of this section, for the more comprehensive

formulation we refer to the original paper (Pellegrini et al., 2014). RECIFE-MILP (microscopically)

models the rail infrastructure on a track-circuit level. Given a timetable perturbed by train delays

or infrastructure disruptions, the solver reschedules the trains in the timetable, while minimizing

the sum of secondary delays for all trains at their exit from the considered infrastructure. This

mathematical formulation uses non-negative continuous variables for modeling the start and end

times of each track-circuit utilization and other timing events, e.g., the entrance times in the

network and the arrival and departure times at stations or at other relevant points. For train

ordering and routing decisions, the formulation employs binary variables. The train ordering

(binary) variables establish the precedence relationship between trains on each shared track-circuit.

The routing variables indicate whether a train uses a specific route among its alternative ones. Train

scheduling variables are managed by means of disjunctive constraints (or capacity constraints),

including a big-M coefficient. The constraints ensure that the infrastructure utilization times (for

which two or more trains require the same track-circuit) do not overlap, unless these trains are

subject to rolling stock re-utilization constraints. The latter constraints model turn-around, join,

or split operations, which we refer to as rolling stock re-utilization operations. These constraints

impose that a train service ending at one platform shall be followed by another train service

that starts in the same location. Between the two linked arrival and departure times, the track-

circuits (relevant to the platform track) are kept utilized, to perform the rolling-stock re-utilization

operation. RECIFE-MILP solves the rtRTMP in two optimization steps. In (at most) the first

30 seconds of computation, the solver tackles the train scheduling problem, assuming that each

train is using its timetable route. The best train scheduling solution is used to reduce the value of

the big-M coefficient, and as starting solution in the second step, which jointly addresses the train

scheduling and routing problems.

4 Train Routing Selection Problem

The TRSP is a combinatorial optimization problem in which, given the set of alternative routes

available for each train travelling in the rail network, a subset of train routes is selected to improve

the computation efficiency of the rtRTMP solving process.

Let us consider a set T of n trains requiring to traverse a railway infrastructure within a

given time window. For each train t ∈ T , the set of all possible alternative route assignments is

given. For each pair of trains, we define their routes coherent when no rolling stock re-utilization

constraint exists between them; otherwise, if such constraint exists, they are coherent when the

last infrastructure section of the first train route corresponds to the first infrastructure section

of the second train route, i.e., the two routes satisfy the given rolling stock constraint from an
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infrastructure point of view. A combination of train routes is feasible if one route has been

selected for each train and each pair of train routes is coherent. The objective function of the

TRSP formulation uses the concept of potential delay (Samà et al., 2016), which estimates the cost

associated to the secondary delay caused by the train route choices. Given an infrastructure and

a perturbed timetable, the TRSP question is which p ≥ 1 feasible combinations of train routes

better minimize the total potential train delay.

We model the TRSP according to the construction graph G = (C,L) proposed by Samà et al.

(2016).

Vertex ci ∈ C represents an alternative route belonging to train t ∈ T . We use the index i to

refer to a specific vertex among all possible vertices in the graph G. Given n trains, the vertices are

grouped into n partitions such that, for each train t ∈ T , we have an independent set Ct ⊂ C of (all)

alternative train routes. G is thus an n-partite graph such that ∪n
t=1Ct = C and ∩n

t=1Ct = ∅. Two

vertices ci, cj ∈ C are connected by edge lij ∈ L if they represent coherent train routes and belong

to different trains. The n-vertex cliques in this graph identify the set Γ of feasible combinations

of train routes. Subset Sp ⊂ Γ is a set of p feasible combinations of train routes and thus a TRSP

solution. The quality of each single clique is evaluated by the sum of all its vertices and edges

costs. Vertex ci ∈ C and edge lij ∈ L in the graph G have a non-negative cost: a potential delay

ui is associated to each ci, expressing the longer running time of the corresponding train on that

route compared to the timetable one; the potential delay wij encountered when two routes ci, cj

are jointly considered is associated to edge lij . Solving the TRSP translates into selecting the set

Sp of minimum cost cliques. From this set, a non-empty subset of at most p routes is obtained

for each train, which is then used in the rtRTMP as the set of the only possible alternative train

routes.

In Figure 1, the construction graph G for a 4-train example is presented. The graph is 4-

partite: each train t ∈ T , with t = 1, 2, 3, 4, has a specific set of alternative routes, respectively

C1, C2, C3, C4. Each vertex ci in a partition, indicated by a black dot, represents an alternative

train route. The index i indicates a specific vertex among all possible vertices in the partition. A

4-vertex clique is highlighted in bold. By definition, the clique is a complete (induced) subgraph of

G, i.e., each pair of vertices ci, cj in the clique are connected by edge lij . This ensures all selected

routes are coherent, and can be jointly selected. Each clique vertex belongs to a different partition,

providing for each train a specific route assignment.

5 TRSP cost estimation model

As stated in Section 4, the quality of each clique in the construction graph G can be expressed

in terms of the costs associated to each vertex ci ∈ C and to each edge lij ∈ L. In this section,
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Figure 1: Example of construction graph G = (C,L)

we address the research question on how these costs can be calculated to enforce that the routes

selected in each TRSP solution allow the minimization of the rtRTMP objective function. We

introduce a TRSP cost estimation model, which proposes a good approximation of train delays by

using a given set of routes in the rtRTMP solution, to build a strong correlation between TRSP

and rtRTMP solutions.

Let us consider train t ∈ T and the set Ct ⊂ C of vertices associated to the alternative routes

available for t. Let cd be the default route used by the corresponding train in the timetable.

For each ci ∈ Ct, the positive cost ui represents the potential delay due to the longer running

time required to travel on that route compared to the timetable one. This cost is computed as

ui = max(0, runci − runcd), where runci indicates the minimum running time of ci and runcd

that of cd. We remark that this equation assumes no buffer, i.e., allowance to exceed the default

running time: as soon as route ci has its running time longer than the default one, the use of the

former generates a train delay. If a buffer exists, this equation can be trivially modified to take it

into account.

The cost assigned to each edge lij is the potential train delay arising when two coherent route

assignments ci and cj are jointly used. The seminal paper on the TRSP (Samà et al., 2016) for-

mulates this cost by assessing the minimum infrastructure utilization overlap of the two trains

according to their routes, and based on the train ordering decisions. This cost computation con-

siders the train starting time and the undisturbed running time until the potential train conflict

(to be solved). We next refer to this cost as Base cost.

In this paper, we propose the integration of the Base cost with two new building blocks:

• Re-utilization considers the rolling stock re-utilization constraints, not just for defining edges

between coherent pairs of vertices, but also to compute potential delays;
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• Propagation introduces the accurate estimation of the potential delays propagation among

all trains in a clique.

The calculation of both costs is carried out by two steps. First, we propose a new method to

assign a fixed cost wij to each edge of the construction graph G, by considering the interaction

of a single pair of route assignments at a time. Depending on which additional building block

is used (whether none, Re-utilization or Propagation), the computation of fixed costs changes.

Appendix A shows a formal description of this method. Second, a clique-dependent cost ws
ij is

proposed by using Propagation building block. This cost is computed after clique s ∈ Γ has been

generated, as detailed in Procedure 1. This procedure assigns an additional cost to each edge of

clique s, to better estimate the delay propagation caused by all routes in this clique.

Let us first focus on the fixed cost computation by Base cost. Here, if two route assignments

concern trains that use the same rolling stock, no conflict arises between the concerned trains and

this fixed cost is set to zero. Otherwise, we examine the set of common resources (res) between the

considered route assignments. A common resource is the set of consecutive track-circuits shared

by a pair of route assignments. If the set of common resources is not empty, the fixed cost is

equal to the minimum utilization overlap (O) of the two trains computed by using the considered

routes, according to the train ordering decisions. The utilization overlap is the maximum, among

all common resources, of the time difference between the utilization end (eU ) by the first passing

train and utilization start (sU ) by the second passing train. This represents the time that the

second train waits before entering the considered common resource. By taking the maximum value

of utilization overlap, we make a conservative choice, supposing that the trains will face the worst

case situation. Then, we consider the best scheduling option, i.e., the train ordering for which the

waiting time is minimum. In the Base cost, the start and end times of common resource utilization

are computed by considering running and blocking times according to the undisturbed timetable.

When the new Re-utilization building block is considered, the fixed costs account for the tem-

poral coherence of the trains that are using the same rolling stock. Let us consider the pair of trains

t, t′ ∈ T with t′ following t. The temporal coherence consists of two conditions: (i) respecting the

minimum time, called processTime, between the arrival of t and the departure of t′, necessary to

perform the rolling stock re-utilization operations; (ii) ensuring that the common resource, where

the re-utilization takes place, cannot be occupied by any other train between the arrival of t and

the departure of t′.

In condition (i), the fixed cost is equal to the potential train delay that will be suffered by

the second train, due to the late arrival time of the first train. Let res be the involved common

resource, where the re-utilization operations occur. The potential train delay is equal to the (not

negative) difference between the processTime and the time elapsing between the utilization start

(sU ) of res by the second train and the utilization end (eU ) of the first train.

12



Condition (ii) is addressed for each pair of trains t and v that are not using the same rolling

stock. For each common resource res, we check if either t or v is subject to a rolling stock re-

utilization constraint with another train t′ on a common resource res, which overlaps res. If t [v]

precedes t′ in the rolling stock re-utilization constraint, the utilization end of res by t [v] is set

equal to the utilization end of res by t′: the common infrastructure resource will be usable by v

[t] only after the departure of t′, when t [v] passes first. We remark that when the re-utilization

constraint involves more than two trains, we consider the utilization end of res by the last train

involved in this constraint. On the contrary, if t [v] follows t′ in the re-utilization process, the

utilization start of res by t [v] is set equal to the utilization start of res by t′. In the latter case,

when more than two trains are linked by re-utilization, the first utilization start is considered for

res.

Let us consider Figure 2 to give an illustrative example of the proposed Re-utilization building

block. Here, we have four trains t1, t2, t3, t4, which enter the network according to their index

Figure 2: Example of four route assignments c1, c2, c3, c4.

order. For each train, we have a possible route assignment, respectively c1 (red solid line), c2

(blue line), c3 (red dashed line) and c4 (green line). The common resources between each pair

of route assignments are highlighted in grey. In Figure 2, the start and end utilization times are

shown for each train. For t1 and t3, we have a rolling stock re-utilization constraint, i.e., a turn-

around operation; t1 precedes t3 and the re-utilization operation takes place on res1 . Due to this

constraint, t3 will start its utilization of res1 after that t1 ends its own utilization. Therefore,

in the Base cost, w1,3 = 0, as no conflict occurs. By applying the Re-utilization building block,

w1,3 = max(0, processT ime − (sUc3,res1 − eUc1,res1 )): supposing t1 ends its utilization of res1 at

12, t3 starts at 17, and processTime is 5, w1,3 = 0 as for the Base cost. However, if t1 is late

and ends its utilization at 15, w1,3 = 3. This potential delay of t3 is the effect of condition (i),

to satisfy the required time for the rolling stock re-utilization operation. As for condition (ii), the

impact is visible when calculating the costs of pairs (c1, c2) and (c2, c3), as they share res1 , i.e., the

resource where the rolling stock re-utilization between t1 and t3 takes place. Trains (t1, t2) travel

along (c1, c2) in the same direction. When t1 precedes t2 on res1 , Eq. (1) is used to calculate the
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utilization overlap, according to the Base cost.

Ores1
c1c2 = eUc1,res1 − sUc2,res1 = 15− 19 = −4 (1)

When applying Re-utilization building block, Eq. (2) replaces Eq. (1): if t1 utilize res1 before t2,

then t2 must wait for t3 to release res1 .

Ores1
c1c2 = eUc3,res − sUc2,res1 = 23− 19 = 4 (2)

The same procedure is used when considering the opposite train order, i.e., (t2, t1) on res1 . In this

case, the Re-utilization building block has no impact on the utilization overlap Ores1
c2c1 = 14. The

fixed cost w1,2 is equal to 4, i.e., the minimum value obtained by evaluating the two train ordering

possibilities.

After computing wij , we distinguish three cases:

1. ci, cj do not have common resources, thus wij = 0;

2. ci, cj have common resources and a positive potential delay, i.e., wij > 0;

3. ci, cj have common resources but no potential delay. Despite the absence of a potential delay,

they may suffer a delay propagation, due to traffic perturbations. In this case, the fixed cost

wij is set to 1, to disadvantage this choice over the absence of common resources (case 1),

unless the Propagation building block is considered.

In case 3, no potential delay occurs when the trains related to ci, cj utilize a common resource

without overlapping in time. In this case, a null or negative value of wi,j indicates that the

related trains have no potential delays and the minimum distance separating their utilization

of the common resources is equal to the absolute value of wi,j (buffer time). By applying the

Propagation building block, wij keeps a negative or null value, to be used in the clique-dependent

cost computation.

The Propagation building block aims to improve the ability of capturing the impact of knock-on

delays in the cost computation. Besides the above difference in the fixed cost computation method,

we propose a clique-dependent cost, as shown in Procedure 1, which estimates the extent to which

train route assignments are vulnerable to delay propagation, for a given clique.

Procedure 1 takes as input: clique s, the list of common resources res between each pair of route

assignments ci, cj ∈ s, plus the fixed cost wij for each edge lij ∈ s. Given the clique s, the clique-

dependent cost ws
ij of each edge lij ∈ s is initialized with the corresponding fixed cost wij . If ws

ij

is greater than zero, we first identify the train that suffers the potential delay between i and j:

this is the train that is chosen (in the fixed cost estimation method) as the one passing second on

the corresponding common resource. Let us consider i[j] as the delayed train, we propagate its

potential delay ws
ij to the edges connecting its route ci[j] with any other route ch ∈ s such that ch

14



Procedure 1: Clique-dependent cost computation

Data: Clique s; every common resource res for each pair ci, cj ∈ s; wij for each lij ∈ s

Result: Clique-dependent cost ws
ij for each lij in clique s

1 forall lij ∈ s do

2 ws
ij = wij

3 end

4 forall lij ∈ s in increasing order of train entrance time do

5 if ws
ij > 0 and the delay is assigned to the train running on ci[cj ] then

6 forall li[j]h: ∃res between ci[j], ch do

7 if ws
i[j]h < 0 then

8 ws
i[j]h = ws

ij + ws
i[j]h

9 else

10 ws
i[j]h = ws

i[j]h +max(0, ws
ij − ws

i[j]h)

11 end

12 end

13 end

14 end

15 forall lij ∈ s: ws
ij ≤ 0 and ∃res between ci, cj do

16 ws
ij = 1

17 end

is different from ci and cj and has common resources with ci[j]. This is done by Procedure 1 at

lines 6-13. When ws
i[j]h is negative (at line 8 in Procedure 1), the propagated delay ws

ij reduces

the buffer time between the two involved trains on the common resource, (eventually) causing a

positive potential train delay. Otherwise, when ws
i[j]h is not negative (at line 10 in Procedure 1),

the propagated delay ws
ij increases ws

ih by the difference ws
ij − ws

ih, if positive.

In Procedure 1, edges are considered by following the order in which trains enter the infras-

tructure. We propagate the clique-dependent cost, instead of the fixed one, to allow knock-forward

propagation: a clique-dependent cost ws
ij , which is positive due the delay propagation (at lines 6-12

in Procedure 1), is further propagated to the other edges. Once the delay propagation is completed,

as in the above case 3, we still set to one the cost ws
ij of those edges linking two route assignments

with common resources but no potential delay.

Re-utilization and Propagation building blocks are incrementally applied to Base cost. In the

reminder of the paper, Re-utilization cost is the extension of Base cost, and Propagation cost is

the extension of Re-utilization cost.

Now let us show how Propagation building block is applied to the trains in the example of
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Figure 2. We assume that the route assignments c1, c2, c3, c4 form a clique s. For each edge

lij ∈ s, the clique-dependent cost ws
ij is initialized with the corresponding fixed cost wij : w

s
1,2 = 4,

ws
1,3 = 3, ws

1,4 = ws
3,4 = 0, ws

2,3 = 12, and ws
2,4 = −1. When considering the train entrance order

in the network, the first potential train delay (which is propagated) is ws
1,2 = 4, that is suffered by

train t2. Eqs. (3)-(4) propagate this potential delay to the edges connecting c2 with c3 and c4, as

they have common resources.

ws
2,3 = ws

2,3 +max(0, ws
1,2 − ws

2,3) = 12 +max(0, 4− 12) = 12 (3)

ws
2,4 = ws

2,4 + ws
1,2 = 4− 1 = 3 (4)

Following, the potential delay ws
1,3 (suffered by t3) is propagated to l2,3, without modifying its

clique-dependent cost, since the delay ws
2,3 is larger than the one propagated. ws

2,3 = 12 (suffered

by t2) is propagated via Eqs. (5)-(6) to the edges connecting c2 to c1 and c4. A knock-forward

delay propagation occurs in Eq. (6): the positive potential delay ws
2,4, caused by the previous

propagation due to ws
1,2, further increases by the propagation of ws

2,3. Since c4 has no common

resource with c1 and c3, the potential delay ws
2,4 is not propagated.

ws
1,2 = ws

1,2 +max(0, ws
2,3 − ws

1,2) = 4 +max(0, 12− 4) = 12 (5)

ws
2,4 = ws

2,4 +max(0, ws
2,3 − ws

2,4) = 3 +max(0, 12− 3) = 12 (6)

6 Parallel Ant Colony Optimization for TRSP

Ant colony optimization (ACO) is an algorithm inspired by nature, which exploits ant foraging

behavior to solve hard combinatorial optimization problems (Dorigo et al., 1996). Indirect com-

munication between the ants enables them to find the shortest paths between their nest and food

sources, without having to try every possible path. The algorithm adopts the concept of pheromone

trails to keep track of the cumulative knowledge on the solution quality. Together with the heuris-

tic information, a greedy measure of the quality of problem components, the pheromone iteratively

guides the solution space exploration to progressively improve the incumbent solution.

Samà et al. (2016) applies (for the first time) ACO to the TRSP, inspired by the ACO algo-

rithm developed for the maximum clique problem by Solnon & Bridge (2006). Their ACO-TRSP

metaheuristic implements a sequential execution of three main procedures, which we refer to as

ant walk, daemon actions, and pheromone update. They respectively correspond to: ant generation

and initial solution construction; local search to favor the ant search process; modification of the

pheromone trail deposited by ants (from the beginning of the search process) on each edge of the

construction graph G, and its evaporation throughout the algorithm execution. Pascariu et al.

(2021) show that the ACO algorithm in Samà et al. (2016) is able to find the global optimum.
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However, for the largest instances, their algorithm does not converge to the global optimum within

the short computation time availability, due to the real-time nature of the TRSP (i.e., typically

around 30 seconds). To improve the algorithm performance on the largest instances, we propose a

parallel version of ACO-TRSP. Parallel computing uses various processing units to execute multi-

ple tasks at the same time. In the following, we will refer to the algorithm introduced by Samà et

al. (2016) as the sequential ACO (sACO) and to the parallel version of the algorithm proposed in

this paper as the parallel ACO (pACO).

The parallelization technique relies on the multi-threading OpenMP fork-join model (Chapman

et al., 2008), according to which the investigated program starts as a single thread, called master

thread, while at a designated point of its execution this branches into a number of threads, creating

a parallel region, and joins later to resume the sequential execution on the master thread. Within

the parallel region, each thread has both its private memory and a shared memory, whose access

is available to all threads. During the sequential execution, the master thread uses the shared

memory, while in the parallel region the master gets (as the other threads) its own (private)

memory.

Figure 3 illustrates the flowchart with detailed operations of pACO. The algorithm takes as

input: (i) the construction graph G = (C,L); (ii) the maximum computation time timeLimit;

(iii) the number (p) of cliques that compose the solution; (iv) the number nThreads to be used;

(v) additional user-defined ACO-specific parameters, such as pheromone exponential weight α,

heuristic exponential weight β, pheromone evaporation rate ρ, number nAnts of ants in the colony,

maximum and minimum pheromone bounds τmax and τmin. Based on these input data, pACO

operates iterativelly and returns the best solution found Sp after the time limit elapse or when a

clique with null cost is identified. Each iteration involves the consecutive execution of the above

procedures, highlighted in Figure 3 by different colours: ant walk in yellow, daemon actions in

green, and pheromone update in peach. The reminder of this section provides a detailed explanation

of each procedure.

In ant walk, the nbAnts ants of the colony operate on multiple threads in parallel. Each ant a is

assigned to a specific thread and builds clique sa ∈ Γ in the construction graph G, by means of its

private memory. For each ant, the first vertex ci ∈ C is randomly selected and inserted in sa. The

rest of its clique is built incrementally by adding one vertex at a time among the available candidates

ch ∈ Candidates, according to the so-called random proportional rule τ(ci,sa)
αη(ci,sa)

β∑
ch∈Candidates τ(ch,sa)

αη(ch,sa)β
.

In this formula, τ(ci, sa) indicates the sum of the pheromone trails associated to each lij such that

cj ∈ sa, with α measuring the influence of pheromone trails in the random proportional rule.

Furthermore, η(ci, sa) indicates the sum of the heuristic information associated with each lij such

that cj ∈ sa, where the heuristic information is computed as η(lij) = 1/(1 + wij + ui), while β

measures the heuristic information influence in the random proportional rule. The set Candidates
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Figure 3: pACO flowchart.
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contains the not-yet-chosen vertices, that are connected to the vertices already included in the

partial clique sa, i.e., the ones that can lead to a clique of the required cardinality. Once a clique

sa has been built, its cost f(sa) is computed as the sum of ui and wij of each ci, lij ∈ sa. The

clique sa is then stored in the set SnAnts, along with the cliques found by the other ants.

The introduced multi-thread processing system has the advantage of being very fast, but it

brings some issues: the concurrency of various parallel processes leads to a race condition, i.e., an

unintentional data sharing which causes a wrong algorithmic behaviour. In our algorithm, since

the solution set SnAnts is placed in the shared memory, each thread can access it and save (in

write mode) its solution (for later use by the master thread). By default, two or more threads can

access and save their solution in the same memory area, eventually causing an overwriting. We

manage the risk of overwriting the results returned by parallel threads by allocating (to each of

them) a specific area of the memory dedicated to SnAnts. Additional information shared by the

ants (regarding, e.g., the construction graph and the pheromone matrix) is placed in the shared

memory. Threads read-only this global information without modifying it, hence no race condition

might occur.

The SnAnts cliques found by the ant colony are processed in the daemon actions, where a local

search method is applied on the best clique(s) to search for better neighbouring clique(s). Two

alternative local search, which employ parallel computing, are proposed: pV stands for parallel

vertices, while pS for parallel cliques. These local search methods rely on two approaches that we

call Sort and Replace. Given the construction graph G and a clique s, Sort builds the following

ordered list worstV of vertices ci ∈ s: the worst vertex cw, i.e., the one with the highest cost f(cw),

is the first in the list.

The cost computation of each vertex ci ∈ s depends on the adopted cost estimation model.

When Propagation cost applies, ci impacts on the cost of the clique s, thus its cost f(ci) is computed

as the difference between the cost of cliques s and s\{ci}. Otherwise, f(ci) is computed as in Samà

et al. (2016), i.e., as the sum of ui and the cost of all edges incident to ci. Regarding Replace,

given a vertex cw ∈ worstV together with graph G and clique s, this method replaces vertex cw

with a better one cb, belonging to the same partition of G, i.e., cb, cw ∈ Ct with Ct the partition

related to train t, such that a lower cost clique is obtained.

When the pV local search is considered, the best clique sbest ∈ SnAnts (found during the current

iteration) is selected. Sort is then applied to sbest and its m (min(nThreads, nTrains)) neighbors

are explored (Replace) by replacing a vertex in worstV, one for each thread. To avoid any race

condition, Sm is a collection of m copies of sbest , such that when each vertex is replaced with a

better one, the clique stored in Sm is changed accordingly, while sbest remains unchanged.

When the pS local search is considered, the m (nThreads) best cliques (found in the current

iteration) are selected to form set Sm. Then, each clique in Sm is assigned to a different thread
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and the replacement of its worst vertex is performed by Replace.

If none of these local search methods is used, the local search introduced by Samà et al. (2016)

is applied. Here, the best clique sbest ∈ SnAnts and its worst vertex are only considered in the

master thread.

At the end of the local search, the best clique sbest ∈ Sm is chosen and stored in the ordered

list PoolBestS. Its position in this list is based on the corresponding clique cost.

The best clique sbest ∈ Sm is used in the pheromone update to modify the pheromone trails,

together with the current best clique sgbest . This procedure consists of an evaporation and a

reinforcement action. In the former, a portion (1 − ρ) of pheromones evaporates from each edge

lij ∈ G, with 0 < ρ < 1 measuring the pheromone evaporation rate. Then in the reinforcement,

an additional pheromone q = 1/(1 + f(sgbest) − f(sbest)) is deposited on the edges belonging to

sbest . Upper (τmax) and lower (τmin) bounds are imposed on the pheromone trail, to avoid the

search stagnation on a few areas of the search space (Stützle & Hoos, 2000). Both evaporation and

reinforcement actions are performed in parallel: a specific memory area of the pheromone matrix,

which is placed in the shared memory, is allocated to each thread.

7 Computational experiments

This section presents our computational analysis of the proposed TRSP methodology, which is

carried out on the case study of Lille Flandres station area, France. The infrastructure layout,

shown in Figure 4, is 12-km long and composed of 299 track-circuits, 734 block sections, and

2409 train routes. Lille Flandres station is a complex terminal station, linked to national and

international lines, with 17 platforms shared by local, intercity, and high speed trains.

Haubourdin*

Douai*

Tournai*

Valenciennes*

Tourcoing*

Comines*

Armentières*

LGV* LGV*

Lille Délivrance*

Figure 4: Lille Flandres station area

Starting from the one-day timetable, which has an average of 39 trains per hour, the test

instances are obtained as follows. We perturb this initial timetable by applying a train delay

between 5 and 15 minutes to the entrance time of 20% of trains. The trains to be delayed and

the corresponding delays are randomly selected. We generate 16 perturbed timetables. For each
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of them, we propose 10 instances corresponding to a 60-minute time window of train traffic flow.

We select this instances by starting the time windows from ten different time instants, randomly

drawn during the peak-hour time periods 7:30-9:00 and 18:30-20:00. We thus consider a total of

160 instances. To avoid overfitting, we use 100 of these instances to test the model and algorithm

performance, 30 to assess the speed-up technique based on parallel computing, and 30 for the

algorithm tuning.

The computational analysis is conducted in four phases. Section 7.1 evaluates the impact of

the proposed cost estimation models on the correlation between the TRSP and the rtRTMP. The

latter problem is modelled as in Pellegrini et al. (2014). Section 7.2 studies the performance of

the parallel ACO-TRSP algorithm when using a different numbers of threads. In Section 7.3, the

parallel ACO-TRSP algorithm is tuned to find the best local search methods and ACO-specific

parameters. In Section 7.4, the proposed model improvements are compared with the state-of-

the-art algorithm, while the TRSP solutions are given as input to the rtRTMP solver. Here, we

use the ACO-TRSP approach as a pre-processing phase to the rtRTMP, that is then solved via

the RECIFE-MILP of Pellegrini et al. (2015). For the rtRTMP, we consider the minimization of

the total secondary delay as the objective function, and we take into account disturbances and

disruptions. For the disturbances, we consider the train delays introduced during the generation of

instances. The disruptions are obtained by considering the same instances (subject to disturbances)

plus the failure of a track-circuit, which causes the infeasibility of around 60% of the available train

routes. In our study, since the TRSP is designed to be solved right before the train rescheduling

problem, the computation time need to be compatible with real-time train operations. We thus

set (a priori) a computation time limit of 30 seconds, as in Samà et al. (2016).

All the experiments are performed on an Intel Xeon 24 core 2.2 GHz processor with 1.5 TB

RAM, under Linux Ubuntu distribution. The ACO-TRSP is implemented in C++, while CPLEX

12.6 is used by RECIFE-MILP.

7.1 Comparison among cost estimation models

This section studies the correlation between the TRSP and the rtRTMP when Re-utilization and

Propagation costs are used. We run the experiments on the 100 instances introduced in Sec-

tion 7. After generating a random rtRTMP solution for each instance, we compute the clique cost

corresponding to the route assignments in the solution.

Figure 5 shows the clique costs correlation to the rtRTMP objective function value. Three scatter

plots are presented, each one reporting the data sets obtained with: Base, Re-utilization, or Prop-

agation cost method. The rtRTMP solution values are plotted in blue dots in ascending order,

with the corresponding clique cost in orange dots. We assume that the TRSP is coherent with the

rtRTMP when the two sets of dots overlap or are very close to each other. A gradual improvement
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Figure 5: Correlation between TRSP (orange) and rtRTMP (blue) objective function values, when

using Base, Re-utilization and Propagation costs

in the clique costs correlation with the rtRTMP objective value is noticeable when moving from

the left graph to the right graph, as the two sets of dots are getting closer. Base cost follows the

increasing trend of the rtRTMP solution. However, most rtRTMP solution values are underesti-

mated by this cost, which is only able to precisely assess the cliques for which the corresponding

rtRTMP objective function is close to zero. With the Re-utilization cost, the rtRTMP solution val-

ues continue to be underestimated, but we can observe an upward shift of the TRSP dots, thanks

to the inclusion of the potential train delay due to rolling stock re-utilization. As for the Base cost,

for smaller objective function values, Re-utilization cost is coherent with the rtRTMP. However,

this holds for a larger number of solutions: Base cost more or less correctly assesses around 15

solutions over the 100 tested, while Re-utilization accomplishes this for around 40 solutions. For

the remaining solutions, Re-utilization cost cannot properly capture the rtRTMP objective value.

These are the solutions with the highest rtRTMP objective function value, which are most likely

characterized by train delay propagation. The Propagation cost is targeted for managing these

cases, and it records objective values closer to those of the rtRTMP, though some error persists.

This is mostly due to the calculation method for the train delay propagation, which does not

actually solve the train rescheduling problem, but it can be considered as a good approximation

method.

Table 1 shows the numerical results on the correlation analysis between the clique cost value

and the rtRTMP objective function value. We perform a linear regression and extrapolate the

Pearson’s correlation coefficient R with a Confidence Interval (CI) of 95%. In Table 1, the first

column indicates the method used to compute the clique cost value. The following two columns

specify the correlation coefficient R, and the bounds of the confidence interval. By definition,

the correlation coefficient ranges between -1 and 1. Given the rtRTMP solution value and the

clique cost, a positive coefficient indicates that: when the value of the rtRTMP solution increases,

the value of the clique cost is also increasing. Vice versa, for negative values of R, when the
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rtRTMP solution value increases, the clique cost decreases. The correlation gets stronger when

the coefficient value is close to the extreme range values.

Table 1: Pearson’s correlation coefficient R with 95% CI

TRSP cost R CI

Base 0.75 {0.64; 0.82}

Re-utilization 0.80 {0.72; 0.86}

Propagation 0.84 {0.77; 0.89}

The results in Table 1 show a significant positive linear correlation between the TRSP and the

rtRTMP solutions, since all R values are positive. The lowest correlation level of Base cost is

gradually improved by Re-utilization and Propagation costs, as shown in Table 1 by the increase

of R coefficient and the reduction of confidence interval values. Among the three costs, Propagation

achieves the best R value ( 0.84), which confirms its ability to better model the correlation between

the TRSP and rtRTMP solutions compared to the other methods.

7.2 ACO-TRSP algorithm: serial versus parallel computing

In this subsection, the impact of the ACO-TRSP parallelization is carefully assessed. For this

type of experiments, we consider 30 instances from the set described in the introduction of Section

7. For each instance, we solve the TRSP with pACO by using a growing number of threads,

between 1 and 24. The use of one thread corresponds to the application of sACO. We run the

ACO algorithm for 30 seconds and record the best objective function value at each iteration. As

for the ACO parameters, we use the sequential local search introduced in Section 6, the Base cost

and the following parameters setting for all configurations of threads: nAnts = 200 , α = 2, β = 2,

ρ = 0.05, τmin = 0.01, and τmax = 6. In a preliminary computational analysis, we have assessed

various settings of these parameters. We note that different settings do not notably impact the

conclusions that we can draw on the ACO performance achievable when using a different number

of threads.

Figure 6 shows the evolution of the average pACO objective function values. Here, each line

corresponds to a different thread configuration. In all curves in Figure 6, we can distinguish

two phases of the algorithm behavior. In the first phase, each curve follows a descending trend,

indicating that diversification actions lead to a rapid improvement of the best-known solution. In

the second phase, called convergence phase, each curve settles, while a rather slow improvement is

observed. With a small number of threads, the algorithm stagnates in local minima. As the number

of threads increases, significant improvements in the objective values are obtained. Starting from

16 threads, the curves in Figure 6 maintain their initial descending trend for a longer computation

time, indicating that the algorithm parallelization improves the diversification actions. Using 24
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Figure 6: Evolution of pACO performance when using a different number of threads

threads appears to be the best choice, since this seems gives the best results at the end of the

computation time. However, the difference between the curves is quite limited when using 16 or

24 threads.

7.3 Algorithm parameters tuning

As mentioned in Section 6, ACO algorithms can have several user-defined specific parameters, such

as: pheromone exponential weight α, heuristic exponential weight β, pheromone evaporation rate ρ,

number nAnts of ants in the colony, maximum and minimum pheromone bounds τmax and τmin.

We use IRACE (Iterated Racing for Automatic Algorithm Configuration), proposed by López-

Ibáñez et al. (2016), to fine tune them. IRACE is an open source package, which implements

an iterated racing procedure to select the best parameters configuration from a set of available

value settings. Furthermore, we use IRACE to select which of the proposed local search methods

offers the best performance for the investigated instances. We refer the interested reader to López-

Ibáñez et al. (2016) for a more comprehensive description of the IRACE package, its user guide

and applications.

We use 30 instances from the set described in the introduction of Section 7, different from those

used in the other computational experiments. We consider the pACO algorithm setting that runs

on 24 threads and the use of Propagation cost method. Table 2 shows the considered parameter

configurations. The best configuration resulting from the tuning on the 30 instances is highlighted

in bold in Table 2.
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Table 2: pACO parameters tuning

Parameters Values

nAnts 100, 150, 200, 250, 300, 350,400

α 1, 2, 3, 4

β 3, 4, 5, 6, 7, 8, 9, 10

ρ 0.03, 0.07, 0.09, 0.1, 0.3, 0.5,0.6, 0.7

τmax 3, 4, 6, 7, 8, 9, 10

τmin 0.001, 0.003, 0.005, 0.01, 0.03, 0.05

Local search pV, pS , serial

7.4 Comparison among algorithms for the rtRTMP

In this subsection, we assess the potential of the TRSP improvements (proposed in Sections 5

and 6) on the rtRTMP solutions. This computational analysis is performed on 200 instances,

100 under timetable disturbances and 100 under infrastructure disruptions. The former are the

instances used in Section 7.1. The latter are obtained by considering the former instances plus the

unavailability of a track-circuit.

Considering that RECIFE-MILP (Pellegrini et al., 2015) is used as the rtRTMP solver and our

paper is a follow-up work of Samà et al. (2016), we assume as state-of-the-art:

• RECIFE 180s, the rtRTMP solved by the RECIFE-MILP solver (Pellegrini et al., 2015)

within 180 seconds of computation. For each train, all possible routes are considered, while

the timetable routes are used as the default ones to compute the initial solution (warm-start)

in the RECIFE-MILP solver;

• sACO Base, the TRSP-rtRTMP algorithm proposed in Samà et al. (2016), which uses the

Base cost and the sequential ACO algorithm to solve the TRSP within 30 seconds. The

p best train route assignments (selected from the TRSP solution) are provided as input to

RECIFE-MILP, that needs to solve the rtRTMP within the remaining 150 seconds. The

initial solution in RECIFE-MILP solver is obtained via the timetable (default) routes. When

the routes are unfeasible, due to the disruption, the best found clique is considered as the

initial one.

We solve the rtRTMP by using the p best train route assignments provided by the TRSP cost meth-

ods proposed in Section 5 and solved by using the parallel ACO algorithm. We next refer to each

cost algorithm combination as follows: pACO Base, pACO Re-utilization, and pACO Propagation.

Given the best correlation between the TRSP and rtRTMP solutions obtained with Re-utilization

and Propagation costs, RECIFE-MILP computes its warm-start with the train routes in the best

clique found by the pACO Re-utilization and pACO Propagation. We fix the maximum compu-
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tation time to 30 seconds and 150 seconds to search for the best TRSP and rtRTMP solutions, as

in Samà et al. (2016).

We compare the performance of our cost-algorithm combinations with the state-of-the-art ap-

proaches in Tables 3 and 4. Furthermore, we assess the performance compared to the optimal

solutions in Figure 7. The optimal solutions (and the best-known bounds) for the tested instances

are obtained by solving the rtRTMP via RECIFE-MILP within 24-hour computation time limit

(RECIFE 24h). RECIFE 24h uses the same solving method as RECIFE 180s.

Tables 3 and 4 report the average objective values of the rtRTMP solutions (obtained by the

various methods), respectively, in case of disturbances and disruptions. We test several route

assignment values provided by the TRSP, varying p from 1 to 30, to study the rtRTMP solutions

while increasing the search space. The first column of Tables 3 and 4 indicates the value of

parameter p. The remaining columns specify the employed solution approach. RECIFE 180s takes

as input either all the routes (when p=ALL) or the timetable routes (when p = 1). Columns 3-6

report on the TRSP-rtRTMP solutions. Specifically, RECIFE solves the rtRTMP by using the p

best route assignments selected by the ACO-TRSP solver. In Tables 3 and 4, the best result for

each approach is highlighted in bold.

Table 3: Average rtRTMP objective value (in seconds), in case of disturbances

p RECIFE sACO pACO pACO pACO

180s Base Base Re-utilization Propagation

all 2015 - - - -

1 2169 2169 2169 1112 1033

2 - 1336 1066 933 877

3 - 1253 1054 900 863

5 - 1231 1031 878 836

10 - 1377 988 843 833

20 - 1577 1260 902 897

30 - 1662 1275 939 889

From the results in Table 3, we observe that optimizing train rerouting always improves the

average objective value. The worst performance is achieved when the timetable routes are only

available. Limiting the train routing flexibility, as for sACO Base, gives better results than con-

sidering the full routing flexibility, as for RECIFE 180s ALL. A carefully selected number of train

routes allows for a more fruitful search in the solution space. The parallelization, introduced in

pACO Base, steadily improves the ACO performance. As expected, a wide exploration of the

TRSP solution space corresponds to a remarkably better quality of the rtRTMP solutions. It is

also evident that as the correlation between TRSP and rtRTMP solutions is boosted, the qual-
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ity of the rtRTMP solution increases. For p = 1, pACO Re-utilization and pACO Propagation

provide better train route configurations than the timetable ones. The results obtained by pACO

Re-utilization, for any route assignment and p, outperform the best ones obtained by pACO Base

(with p = 5). We conclude that the consideration of rolling stock re-utilization information (by

pACO Re-utilization) is helpful during the train routes selection to then recommend routes to

the rtRTMP that lead to better results. The highest correlation between the TRSP and rtRTMP

solutions, obtained by pACO Propagation, leads to better routes than pACO Re-utilization. With

pACO Propagation, the solution quality improve for any p-value, with the best overall results

obtained when considering 10 routes per train. When the number of available routes increases

(p = 30), the search space becomes too large for the rtRTMP solver (RECIFE-MILP) to find

solutions as good as those obtained for smaller p.

Table 4: Average rtRTMP objective value (in seconds), in case of disruptions

p RECIFE sACO pACO pACO pACO

180s Base Base Re-utilization Propagation

all 2839 - - - -

1 infeasible 5458 4507 1117 1139

2 - 2809 2437 1035 1009

3 - 2644 2198 1021 973

5 - 2895 2027 1035 960

10 - 3543 1991 970 923

20 - 3641 1617 943 956

30 - 4136 2258 992 991

For the disruption case, Table 4 shows that, when considering the timetable routes only, RE-

CIFE 180s with p = 1 leads to infeasible schedules for all the 100 instances: in each of these

instances, there is at least one infeasible route. Train rerouting is thus necessary, while the ability

to provide good (initial) train route assignments becomes fundamental to avoid large train delays.

In this context, sACO Base finds better quality solutions than RECIFE 180s with all available

routes, as shown in Table 4. This result confirms that the consideration of a limited number of

train route assignments is better than the full train routing flexibility. However, with p > 3, sACO

Base finds worse solutions than those obtained with a smaller p, due to its limited ability to explore

the solution space and find good train route assignments. This trend does not occur for pACO

Base, which explores the solution space extensively, and its solution quality improves up to p = 20.

Besides the parallelization technique, the new Re-utilization and Propagation costs allow to

find significantly better train route assignments compared to pACO Base. pACO Re-utilization

halves the average objective value of pACO Base, while pACO Propagation often brings additional
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improvements over pACO Re-utilization. pACO Propagation returns an average objective value

slightly larger than pACO Re-utilization for p = 1. The clique-dependent cost assessment may

cause a worse correlation of the TRSP solution with the rtRTMP one: when RECIFE-MILP

uses all train route assignments in the best clique, the Propagation cost is less effective. This is

due to the discrepancy between the train ordering decisions in few (4) TRSP solutions and their

corresponding rtRTMP solutions. Train ordering discrepancy occurs when the train sequencing

decisions, taken during the estimation of edge costs in the TRSP, do not correspond to the ones in

the rtRTMP solution. It is possible to encounter this discrepancy in our TRSP method because the

feasibility of all train ordering decisions can only be certified during the rtRTMP solution process.

Tables 3 and 4 show that pACO Propagation identifies the region of the search space with the

best rtRTMP solutions: this approach always leads to a better rtRTMP average solution than

pACO Re-utilization for p < 20. However, as the number of available train routes increases,

part of this advantage is lost, especially when the search space becomes large for RECIFE-MILP

and it is difficult to find the optimal solution within the given time limit. Optimal solutions are

relative to the search space defined by the available train routes. For example, when p = 20

in Table 4, the average objective value obtained by pACO Re-utilization is better than the one

of pACO Propagation. With pACO Re-utilization, RECIFE-MILP proves the optimality for 86

over 100 solutions, but this number is only 51 in case of pACO Propagation. In the case of 26

optimal pACO Re-utilization solutions for which pACO Propagation does not compute the optimal

ones, the latter find a worst-value solution. While, when both pACO Propagation and pACO Re-

utilization compute an optimal solution, the value of the pACO Propagation solution is always

better. The value of the optimal solution can change because the available train routes, which

generate the search space, are different. This is confirmed by the results obtained with p = 30: 37

and 35 optimal solutions are found, respectively, for pACO Re-utilization and pACO Propagation.

The pACO Propagation solutions have better values, but since the difference between the values

with those of pACO Re-utilization are small, the average values are similar.

The bar plots in Figure 7 show the performance of the studied approaches compared to the

global optimal solutions obtained by RECIFE 24h. This analysis is performed in case of (a)

disturbances and (b) disruptions. Each bar represents the average optimality gap: (Best Obj.

Value - Lower Bound)/Best Obj.Value, in which Best Obj. Value indicates the corresponding best

solution (value in bold in Tables 3 and 4), while Lower Bound is the best-known lower bound value

obtained by RECIFE 24h.

From Figure 7, we can observe that RECIFE 180s presents the largest optimality gap, 70.4%

(77.5%) in case of disturbances (disruptions). The larger gap of the disrupted instances indicates

that these are more challenging to be solved by the rtRTMP solver. By limiting the number of

routing variables via sACO Base, the rtRTMP solution values improve, thus reducing the optimality
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Figure 7: Average optimality gap of the rtRTMP objective value for the studied approaches, in

case of (a) disturbances or (b) disruptions in the rail network

gap to 51.5% (76.4%). An improvement of 12.1% (23.5%) compared to the approach of Samà et al.

(2016) is achieved when parallel computing is applied in pACO Base. The computational results

obtained with the ACO speed-up reduce the optimality gap to 39.5% (68.6%). Re-utilization

and Propagation costs effectively boost the rtRTMP solutions, even compared to RECIFE 24h.

Specifically, RECIFE 24h certifies the optimum in 13 (3) out of 100 disturbed (disrupted) instances,

confirming the complexity of solving these instances. When applying pACO Re-utilization, 5 (0)

of the 13 (3) optimal solutions are found. However, the suboptimal solutions of RECIFE 24h are

often worse than those of pACO Re-utilization and Propagation, leading to lower optimality gaps

in these cases. When Propagation cost is applied, the solutions slightly improve: 6 (1) optima are

found, and the optimality gap decreases to 28.3% (32.3%).

We next perform the Wilcoxon signed rank test (Woolson et al., 2007) with a confidence in-

terval (CI) of 95% and 75% to ensure that the improvement to the rtRTMP solution brought by

pACO Propagation is statistically significant. We compute the difference between the rtRTMP

objective value obtained by each solution approach and the one obtained by pACO Propagation.

If the pseudo-median µ resulting from this test is equal to zero (null hypothesis), no significant

improvement is recorded. Positive values of µ and of the lower (LCI) and upper (UCI) bounds

of the CI means that pACO Propagation improves significantly the rtRTMP solutions, vice versa,

it does not with negative values. For the sake of clarity, the detailed computational results of

the Wilcoxon signed rank test are provided in Appendix B. This test shows that pACO Propa-

gation improvement is statistically significant in case of disruptions, with a 75% confidence level,

when compared to pACO Re-utilization solutions. In all the other cases, both for disturbances
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and disruptions, the improvement brought by pACO Propagation is statistically significant with

a 95% confidence level. Therefore, we recommend the use of pACO Propagation when solving the

rtRTMP.

8 Conclusions and further research

In this paper, we present an improved TRSP model and algorithm. The TRSP solutions can

be used to limit the number of routing variables in the rtRTMP. The latter is an NP-complete

problem, strongly affected by the (often) high number of routing variables and by the short available

computation time. Our contributions address the challenge of improving the rtRTMP solution

quality. We enhance the TRSP model by including rolling stock re-utilization constraints and by

improving the ability to estimate the train delay propagation. Furthermore, we propose a parallel

ACO algorithm to speed up the TRSP solution process. We introduce two local search algorithms

to diversify the solution search. We analyze the impact of each contribution on solving the rtRTMP

through a comprehensive computational campaign performed on the Lille Flandres station area in

France, with the study of timetable disturbances and infrastructure disruptions.

Compared to the state-of-the-art method (Samà et al., 2016), the proposed model improve-

ments lead to a better correlation between TRSP and rtRTMP solutions, which translates into the

ability to recommend higher quality train routing combinations for the rtRTMP. Additionally, the

proposed ACO algorithm performs a better exploration of the TRSP solution space, improving its

convergence toward quality solutions. As a result, our TRSP approach defines a good search space

for the rtRTMP, letting us to obtain significantly better solutions than the state-of-the-art method:

the rtRTMP objective values improve by 32.3% and 65.1% in case of disturbed and disrupted traffic

situations in Lille.

Future work should address how changes in the used rtRTMP model, solution method, rail

infrastructure representation, and objective function may be considered in the TRSP formulation.

Furthermore, other TRSP solution techniques could be designed.
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Appendix A

Procedure A.1 details the fixed cost computation method. This procedure is common to Base

cost, Re-utilization and Propagation building blocks. Indeed, a parameter of the procedure indi-

cates which additional building block is to be used, whether none, Re-utilization or Propagation.

Depending on this input, the computation differs.

Considering as input the construction graph G = (C,L), and every common infrastructure

resource res between each of pair route assignments ci, cj ∈ C linked by edge lij ∈ L, the fixed

cost wij for edge lij is computed as follows. Let us first focus on the Base cost computation.

Here, if two route assignments concern trains that use the same rolling stock (i.e., R(ci, cj) = 1 or

R(cj , ci) = 1, if the train using ci precedes the one using cj , or vice versa), no potential conflict

arises between the concerned trains and the fixed cost wij for edge lij is set to zero. Otherwise,

we analyze the set of common resources (res) between the considered route assignments.

When ci, cj are not mutually involved in a rolling stock re-utilization constraint, the infrastruc-

ture utilization overlap (O), due to the two possible ordering decisions, is computed for each res.

The infrastructure utilization overlap Ores
cicj , occurring when ci [cj ] is traversed before cj [ci] on the

common resource res, is the time difference between eUci,res [eUcj ,res ] and sUcj ,res [sUci,res ], i.e.,

the time at which res ends being utilized by ci [cj ] and starts being utilized by cj [ci]. Among the

utilization overlaps of all the common resources related to pair ci, cj , the maximum value is chosen

for each train ordering decision Ocicj , Ocjci . The final value of wij is then obtained by selecting the

train ordering decision which minimizes the maximum infrastructure utilization overlap. When no

common resource exists between a pair ci, cj , its cost wij = 0.

When using the Re-utilization building block, the temporal coherence of the trains connected

by turnaround, join or split operations is estimated as follows. Let us consider the pair of trains

t, t′ ∈ T with t′ following t. The temporal coherence conditions consist of: (i) respecting the

minimum time, called processTime, between the arrival of t and the departure of t′, necessary to

perform the rolling stock re-utilization operations; (ii) ensuring that the involved common resource

(where the re-utilization takes place) cannot be occupied by any other train between the arrival of

t and the departure of t′.

Procedure A.1 addresses condition (i) at line 5. Here, the fixed cost is equal to the delay that

will be suffered by the following train, due to the late arrival time of the first train. Let res be the

involved common resource, where the re-utilization operations occur. The train delay is equal to

the (non negative) difference between the processTime and the time elapsed between the utilization

start (sU ) of res by the following train and the utilization end (eU ) of res by the first train.

Condition (ii) is addressed in Procedure A.1 at lines 9-16. This is considered for each common

resource between trains t and v that use route assignments ci and cj , respectively. We note that

t and v do not use the same rolling stock. We need to check if either t or v is subject to rolling
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Procedure A.1: Fixed cost computation

Data: Construction graph G = (C,L); common resources res for each pair ci, cj ∈ C

connected by edge lij ∈ L; Re-utilization and Propagation building blocks

Result: Fix cost wij of each edge lij in the graph construction graph G

1 forall lij ∈ G do

2 Ocicj = Ocjci = −bigInt, wij = 0

3 if R(ci, cj) = 1 or R(cj , ci) = 1] then

4 if not Base cost then

5 wij = max(0, processT ime− (sUcj [i],res − eUci[j],res))

6 end

7 else if ∃ res between ci, cj then

8 forall res between ci, cj do

9 if not Base cost then

10 forall R(ci[j], ch) : ci[j] ∈ Ct[v], ch ∈ Ct′ and res ∩ res ̸= ∅ do

11 eUci[j],res = max(eUci[j],res , eUch,res)

12 end

13 forall R(ch, ci[j]) : ci[j] ∈ Ct[v], ch ∈ Ct′ and res ∩ res ̸= ∅ do

14 sUci[j],res = min(sUci[j],res , sUch,res)

15 end

16 end

17 Ores
cicj = eUci,res − sUcj ,res

18 Ores
cjci = eUcj ,res − sUci,res

19 Ocicj = max(Ocicj , O
res
cicj )

20 Ocjci = max(Ocjci , O
res
cjci)

21 end

22 wij = min(Ocicj , Ocjci)

23 if wij ≤ 0 and not Propagation then

24 wij = 1

25 end

26 end

27 end
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stock re-utilization constraints with train t′ on a common resource res, which physically overlaps

res, when t′ uses route assignment ch. If t [v] precedes t′ in the re-utilization constraint, the

utilization end of res by t [v] is set equal to the utilization end of res by t′: the common resource

will only be usable by v [t] after the departure of t′, when t [v] passes first. When the re-utilization

constraint involves more than two trains, the utilization of res ends when the last train involved in

the constraint finishes using it. On the contrary, if t [v] follows t′ in the re-utilization constraint,

the utilization start of res by t [v] is set equal to the utilization start of res by t′. In the latter

case, when more than two trains are involved in the re-utilization constraint, the utilization of res

starts when the first train of the constraint starts using it.

When ci, cj have common resources but no potential delay, Base and Re-utilization building

block set the fixed cost wi,j = 1 at line 24 of Procedure A.1. No potential delay occurs when the

trains related to ci, cj utilize a common resource without overlapping in time. A negative value of

wi,j indicates that the related trains have no potential delays and the minimum distance separating

their utilization of the common resources is equal to the absolute value of wi,j . Propagation building

block keeps the negative value wi,j for computing the clique-dependent cost (see Section 5).

Appendix B

We perform the Wilcoxon signed rank test (Woolson et al., 2007) to analyse if pACO Propagation

solutions are statistically better then those obtained with the other rtRTMP solution methods

investigated in this paper, i.e, RECIFE 180s, sACO Base, pACO BAse, pACO Re-utilization. We

measure the improvement achieved by pACO Propagation as the difference between the objective

value obtained by each solution approach and the one obtained by pACO Propagation. We use

the test to determine whether the pseudo-median of the sample µ is equal to zero (null hypothesis)

with a Confidence Interval (CI) of 95%. When this hypothesis is true, no significant improvement is

recorded. Positive values of µ and of the lower (LCI) and upper (UCI) bounds of the CI means that

the sample objective function improves significantly, vice versa it does not with negative values.

Tables B.1 and B.2 show the results in case of disturbed and disrupted instances. The first

column of these tables indicates the rtTMP solution method used in the comparison. The proba-

bility value (p-value), in the second column, is a statistical measure describing how likely the data

would have occurred by random chance. The remaining columns represent the above mentioned

pseudo-median µ, and the lower (LCI) and upper (UCI) bounds of the CI. In Table B.2, the value

within the brackets shows the result obtained with a confidence interval of 75%.
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Table B.1: Statistical results of pACO Propagation improvement in case of disturbances

Approach p-value µ LCI UCI

RECIFE 180s ALL 5.78E-18 1096.86 940.00 1279.50

sACO Base 1.78E-11 299.50 198.00 421.50

pACO Base 2.72E-02 29.00 3.00 58.50

pACO Re-utilization 3.74E-02 22.00 1.00 43.00

Table B.2: Statistical results of pACO Propagation improvement in case of disruptions

Approach p-value µ LCI UCI

RECIFE 180s ALL 3.96E-18 1760.00 1568.00 1999.00

sACO Base 1.96E-17 1525.00 1067.50 2048.50

pACO Base 1.18E-07 483.50 172.50 773.50

pACO Re-utilization 5.70E-02 27.50 -1.00 (11.50) 57.00

.
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