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Abstract

Functional MSO transductions, deterministic two-way transducers, as well as
streaming string transducers are all equivalent models for regular functions. In
this paper, we show that every regular function, either on finite words or on
infinite words, captured by a deterministic two-way transducer, can be described
with a regular transducer expression (RTE). For infinite words, the two-way
transducer uses Muller acceptance and ω-regular look-ahead. RTEs are con-
structed from constant functions using the combinators if-then-else (deterministic
choice), Hadamard product, and unambiguous versions of the Cauchy product,
the 2-chained Kleene-iteration and the 2-chained omega-iteration. Our proof
works for transformations of both finite and infinite words, extending the result
on finite words of Alur et al. in LICS’14.

The construction of an RTE associated with a deterministic two-way trans-
ducer is guided by a regular expression which is “good” wrt. its transition monoid.
“Good” expressions are unambiguous, ensuring the functionality of the output
computed. Moreover, in “good” expressions, iterations (Kleene-plus or omega)
are restricted to subexpressions corresponding to idempotent elements of the
transition monoid. “Good” expressions can be obtained with an unambiguous
version of Imre Simon’s famous forest factorization theorem.

To handle infinite words, we introduce the notion of transition monoids for
deterministic two-way Muller transducers with look-ahead, where the look-ahead
is captured by some backward deterministic Büchi automaton.

This paper is an extended version of [15] presented at LICS’18.

1. Introduction1

One of the most fundamental results in theoretical computer science is that2

the class of regular languages corresponds to the class of languages recognised3

by finite state automata, to the class of languages definable in MSO, and to the4

class of languages whose syntactic monoid is finite. Regular languages are also5

those that can be expressed using regular expressions; this equivalence is given by6

Kleene’s theorem. This beautiful correspondence between machines, logics and7

algebra in the case of regular languages paved the way to generalizations of this8

1This work has been partially supported by IRL RELAX
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fundamental theory to regular transformations [19], where, it was shown that9

regular transformations are those which are captured by two-way transducers and10

by MSO transductions a la Courcelle. Much later, streaming string transducers11

(SSTs) were introduced [1] as a model which makes a single pass through the12

input string and uses a finite set of variables that range over strings from the13

output alphabet. In [1], the equivalence between SSTs and MSO transductions14

was established, thereby showing that regular transformations are those which15

are captured by either SSTs, two-way transducers or MSO transductions. This16

theory was further extended to work for infinite string transformations [4]; the17

restriction from MSO transductions to first-order definable transductions, and18

their equivalence with aperiodic SSTs and aperiodic two-way transducers has also19

been established over finite and infinite strings [20], [17]. Other generalizations20

such as [2], extend this theory to trees. More recently, this equivalence between21

SSTs and logical transductions is also shown to hold good even when one works22

with the origin semantics [8].23

Moving on, a natural problem pertains to the characterization of the output24

computed by two-way transducers or SSTs (over finite and infinite words) using25

regular-like expressions. For the strictly lesser expressive case of sequential26

one-way transducers, this regex characterization of the output is obtained as27

a special case of Schützenberger’s famous equivalence [18] between weighted28

automata and regular weighted expressions. The question is much harder when29

one looks at two-way transducers, due to the fact that the output is generated30

in a one-way fashion, while the input is read in a two-way manner. Recently,31

[5] proposed a set of combinators, analogous to the operators used in forming32

regular expressions, to form combinator expressions and proved their equivalence33

with SSTs.34

Our Contributions. We generalize the result of [5] from finite to infinite35

words, and we propose a completely different proof technique based on transition36

monoids and on Simon’s forest factorization theorem.37

Over finite words, we work with two-way deterministic transducers (denoted38

2DFT) while over infinite words, the model considered is deterministic two-39

way transducers with regular look-ahead, equipped with the Muller acceptance40

condition. Figure 1 gives an ω-2DMTla (la stands for look-ahead and M in the41

2DMT for Muller acceptance).42

In both cases of finite words and infinite words, we come up with a set43

of combinators which we use to form regular transducer expressions (RTE)44

characterizing two-way transducer (2DFT/ω-2DMTla).45

The Combinators. We describe our basic combinators that form the building46

blocks of RTEs. The semantics of an RTE is a partial function f : Σ∞ → Γ∞47

whose domain is denoted dom(f).48

The constant function d ∈ Γ∗ maps all strings in Σ∞ to some fixed finite49

output word d.50

Given a string w ∈ Σ∞, the if-then-else combinator K ? f : g checks if w is in51

the regular language K or not, and produces f(w) if w ∈ K and g(w) otherwise.52

The Hadamard product f � g when applied to w produces f(w) · g(w),53

provided f(w) is finite, otherwise it is undefined.54

The unambiguous Cauchy product f � g when applied on w ∈ Σ∞ produces55

f(u)·g(v) if w = u·v is an unambiguous decomposition of w with u ∈ dom(f)∩Σ∗56

and v ∈ dom(g).57
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q1 q2 q3

q4q5

⊢, Σ∗#Σω/ε, +1

⊢, (Σ \ {#})ω/ε, +1

a/ε, +1

b/ε, +1

#/ε, −1

a/a, −1

b/b, −1

#/ε, +1

⊢/ε, +1

a/a, +1

b/b, +1

#, Σ∗#Σω/#, +1

#, (Σ \ {#})ω/#, +1

a/a, +1

b/b, +1

Figure 1: An ω-2DMTla A′ with [[A′]](u1#u2# . . .#un#v) = uR
1 u1#uR

2 u2# . . .#uR
nun#v

where u1, . . . , un ∈ (a + b)∗, v ∈ (a + b)ω and uR denotes the reverse of u. The Muller
acceptance set is {{q5}}. The look-ahead expressions Σ∗#Σω and (Σ\{#})ω are used to check
if there is a # in the remaining suffix of the input word.

The unambiguous Kleene-plus f� applied to w ∈ Σ∗ produces f(u1) · · · f(un)58

if w = u1 · · ·un is an unambiguous factorization of w, with each ui ∈ dom(f).59

The unambiguous 2-chained Kleene-plus [K, f ]2� when applied to a string w ∈60

Σ∗ produces as output f(u1u2)·f(u2u3) · · · f(un−1un) if w can be unambiguously61

written as u1u2 · · ·un, with each ui ∈ K, for the regular language K.62

We also have the reverses f
←−� g, f

←−
� and [K, f ]

←−
2�, which parse the input from63

left to right as before, but produce the output from right to left. For instance,64

with the notation above, f
←−
� (w) produces f(un) · · · f(u1).65

The unambiguous ω-iteration produces fω(w) = f(u1)f(u2) · · · if w ∈ Σω
66

can be unambiguously decomposed as w = u1u2 · · · with each ui ∈ dom(f)∩Σ∗.67

Finally, the unambiguous two-chained ω-iteration produces [K, f ]2ω(w) =68

f(u1u2)f(u2u3) · · · if w ∈ Σω can be unambiguously decomposed as w = u1u2 · · ·69

with ui ∈ K for all i ≥ 1, where K ⊆ Σ∗ is regular.70

Example 1. Consider the RTE C = C4
� � Cω2 with

C1 = a ? a : (b ? b : (# ? # : ⊥))

C2 = a ? a : (b ? b : ⊥)

C3 = a ? a : (b ? b : (# ? ε : ⊥))

C4 = ((a+ b)∗#) ? (C3

←−
� � C1

�) : ⊥

Then dom(C1) = dom(C3) = (a + b + #) and dom(C2) = (a + b). Next, we71

see that dom(C4) = (a+ b)∗# and, for u ∈ (a+ b)∗, [[C4]](u#) = uRu# where72

uR denotes the reverse of u. This gives dom(C) = ((a + b)∗#)+(a + b)ω with73

[[C]](u1#u2# · · ·un#v) = uR1 u1#uR2 u2# · · ·#uRnun#v when ui ∈ (a + b)∗ and74

v ∈ (a+ b)ω. The RTE C ′ = (a+ b)ω ?Cω2 : C corresponds to the ω-2DMTla A′75

in Figure 1; that is, [[C ′]] = [[A′]].76

Our main result is that two-way deterministic transducers and regular trans-77

ducer expressions are effectively equivalent, both for finite and infinite words.78

Theorem 2.79

(1) Given an RTE (resp. ω-RTE) we can effectively construct an equivalent80

2DFT (resp. an ω-2DMTla).81
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(2) Given a 2DFT (resp. an ω-2DMTla) we can effectively construct an equiv-82

alent RTE (resp. ω-RTE).83

The construction of an RTE starting from a two-way deterministic transducer84

A is quite involved. It is based on the transition monoid TrM(A) of the transducer.85

This is a classical notion for two-way transducers over finite words, but not86

for two-way transducers with look-ahead on infinite words (to the best of our87

knowledge). So we introduce the notion of transition monoid for ω-2DMTla. We88

handle the look-ahead with a backward deterministic Büchi automaton (BDBA),89

also called complete unambiguous or strongly unambiguous Büchi automata90

[10, 24]. The translation of A to an RTE is crucially guided by a “good” (ω-91

)regular expression induced by the transition monoid of A. The good (ω-)regular92

expression facilitates a uniform treatment of finite and infinite words. As a93

remark, it is not a priori clear how the result of [5] extends to infinite words94

using the techniques therein.95

A regular expression F over alphabet Σ is good wrt. a morphism ϕ from Σ∗96

to a monoid (S, ., 1S) if (i) it is unambiguous and (ii) for each subexpression97

E of F , the image of all strings in L(E) maps to a single monoid element sE .98

Note that (ii) implies that for each subexpression E+ of F , sE is an idempotent.99

These good expressions are obtained thanks to an unambiguous version [21]100

of the celebrated forest factorization theorem due to Imre Simon [23]. Good101

rational expressions might be useful in settings beyond two-way transducers.102

See [16, Appendix A.2] for a practical example using transducers.103

Related Work. We briefly discuss two recent papers which are closely related104

to this paper. As mentioned above, we generalized the result of [5] from finite to105

infinite words. Actually, [5] works with copyless cost register automata (CCRA)106

over finite words. CCRA are generalizations of SSTs and compute a partial107

function from finite words over a finite alphabet to values from a monoid (D,+, 0).108

SSTs correspond to CCRAs where the output monoid is the free monoid (Γ∗, ·, ε)109

for some finite output alphabet Γ. The combinators introduced in [5] form the110

basis for a declarative language DReX [3] over finite words, which can express111

all regular string-to-string transformations, and can also be efficiently evaluated.112

The proof in [5] is rather simple in the case of commutative output monoids,113

and quite non-trivial in the other case. The output generated in a CCRA is114

stored in registers, and it is important to keep track of the flow of the content115

between registers on each input word. To this end, [5] uses shapes, which are116

bi-partite graphs over the set of registers. An edge from register X to register117

Y in a shape implies that register X flows into register Y after reading the118

input word. The expression representing [[A]] for a CCRA A is obtained by119

“summarizing” sets of paths having some fixed shape S, and then combining120

the summaries appropriately: this includes concatenation of shapes, as well121

as iteration. While concatenation of shapes is easy, the iteration of shapes122

is handled via a “normalization” which ensures that the iterated shapes are123

idempotent.124

Very recently, [6] proposed an alternative proof for the result of [5] over finite125

words. The proof of [6] has some similarities with the one we proposed in our126

extended abstract which appeared in [15]. Instead of using the transition monoid127

of a two-way automaton which fully describes how a word w acts on states128

(starting on the left/right of w in state p, the run exists on the left/right of w in129

state q), they define a flow automaton based on Shepherdson construction [22].130
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q0 q1 q2 q3

q4q5q6

⊢/ε, +1 a/ε, +1 ⊣/ε, +1 a/ε, +1

a/a, −1a/b, −1a/ε, +1

b/ε, +1 b/ε, +1

b/ε, −1 b/ε, −1

b/ε, −1b/ε, +1

b/ε, +1

a/ε, +1

Figure 2: A 2DFT A with [[A]](bam1bam2b . . . amkb) = am2bm1am3bm2 . . . amkbmk−1 .

Then, they use the state elimination technique of Brzozowski and McCluskey to131

obtain flows labelled with function expressions. Their technique for handling132

concatenation is similar to ours. The main difference is in the way loops are133

handled. We use the unambiguous version of Simon’s theorem so that Kleene-134

plus only occurs on idempotents, whereas [6] defines simple loops for which they135

give a direct translation, and then shows how to reduce arbitrary loops to simple136

ones.137

2. Finite Words138

We start with the definition of two-way automata and transducers for the139

case of finite words.140

2.1. Two-way automata and transducers141

Let Σ be a finite input alphabet and let `,a be two special symbols not142

in Σ. We assume that every input string w ∈ Σ∗ is presented as `wa, where143

`,a serve as left and right delimiters that appear nowhere else in w. We write144

Σ`a = Σ ∪ {`,a}. A two-way automaton A = (Q,Σ, δ, I, F ) has a finite set of145

states Q, subsets I, F ⊆ Q of initial and final states and a transition relation146

δ ⊆ Q× Σ`a ×Q× {−1, 1}. The -1 represents the reading head moving to the147

left, while a 1 represents the reading head moving to the right. The reading148

head cannot move left when it is on `. See Figure 2 for an example.149

A configuration of A is represented by w1qw2 where q ∈ Q and w1w2 ∈ `Σ∗a.150

If w2 = ε the computation has come to an end. Otherwise, the reading head151

of A is scanning the first symbol of w2 6= ε in state q. If w2 = aw′2 and if152

(q, a, q′,−1) ∈ δ (hence a 6= `), then there is a transition from the configuration153

w′1bqaw
′
2 to w′1q

′baw′2. Likewise, if (q, a, q′, 1) ∈ δ, we obtain a transition from154

w1qaw
′
2 to w1aq

′w′2. A run of A is a sequence of transitions; it is accepting if155

it starts in a configuration p`wa with p ∈ I and ends in a configuration `waq156

with q ∈ F . The language L(A) or domain dom(A) of A is the set of all words157

w ∈ Σ∗ which have an accepting run in A.158

To extend the definition of a two-way automaton A into a two-way transducer,159

(Q,Σ, δ, I, F ) is extended to (Q,Σ,Γ, δ, I, F ) by adding a finite output alphabet Γ160

and the definition of the transition relation as a finite subset δ ⊆ Q×Σ`a×Q×161

Γ∗ × {−1, 1}. The output produced on each transition is appended to the right162

of the output produced so far. A defines a relation [[A]] = {(u,w) | u ∈ L(A)163

and w is the output produced on an accepting run of u}.164
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The transducer A is said to be functional if for each input u ∈ dom(A), at165

most one output w can be produced. In this case, for each u ∈ dom(A), there is166

exactly one w ∈ Γ∗ such that (u,w) ∈ [[A]]. We also denote this by [[A]](u) = w.167

We consider a special symbol ⊥ /∈ Γ that will stand for undefined. We let168

[[A]](u) = ⊥ when u /∈ dom(A). Thus, the semantics of a functional transducer169

A is a map [[A]] : Σ∗ → D = Γ∗ ∪ {⊥} such that u ∈ dom(A) iff [[A]](u) 6= ⊥.170

We use non-deterministic unambiguous two-way transducers (2NUFT) in171

some proofs. A two-way transducer is unambiguous if each string u ∈ Σ∗ has172

at most one accepting run. Clearly, 2NUFTs are functional. A deterministic173

two-way transducer (2DFT) is one having a single initial state and where, from174

each state, on each symbol a ∈ Σ`a, at most one transition is enabled. In that175

case, the transition relation is a partial function δ : Q×Σ`a → Q×Γ∗×{−1, 1}.176

2DFTs are by definition unambiguous. It is known [11] that 2DFTs are equivalent177

to 2NUFTs.178

A 1DFT (1NUFT) represents a deterministic (non-deterministic unambigu-179

ous) transducer where the reading head only moves to the right.180

Example 3. Figure 2 shows a two-way transducer A with dom(A) = (ba∗)+b,181

[[A]](bam1b) = ε and [[A]](bam1bam2b · · · amkb) = am2bm1am3 bm2 · · · amkbmk−1
182

for k ≥ 2 and mi ∈ N for 1 ≤ i ≤ k.183

2.2. Regular Transducer Expressions184

Let Σ and Γ be finite input and output alphabets. Recall that ⊥ /∈ Γ is185

a special symbol that stands for undefined. We define the output monoid as186

D = Γ∗ ∪ {⊥} with the usual concatenation on words, ⊥ acting as a zero:187

d · ⊥ = ⊥ · d = ⊥ for all d ∈ D. The unit is the empty word 1D = ε.188

We define Regular Transducer Expressions (RTE) from Σ∗ to D using some
basic combinators. The syntax of RTE is defined with the following grammar:

C ::= d | K ?C : C | C � C | C � C | C←−� C | C� | C
←−
� | [K,C]2� | [K,C]

←−
2�

where d ∈ D ranges over output values, and K ⊆ Σ∗ ranges over regular189

languages of finite words. The semantics of an RTE C is a function [[C]] : Σ∗ → D190

defined inductively following the syntax of the expression, starting from constant191

functions. Since ⊥ stands for undefined, we define the domain of a function192

f : Σ∗ → D by dom(f) = f−1(D \ {⊥}) = Σ∗ \ f−1(⊥).193

Constants. For d ∈ D, we let [[d]] be the constant map defined by [[d]](w) = d194

for all w ∈ Σ∗.195

We have dom([[d]]) = Σ∗ if d 6= ⊥ and dom([[⊥]]) = ∅.196

Each regular combinator defined above allows to combine functions from Σ∗197

to D. For functions f, g : Σ∗ → D, w ∈ Σ∗ and a regular language K ⊆ Σ∗, we198

define the following combinators.199

If then else. (K ? f : g)(w) is defined as f(w) for w ∈ K, and g(w) for w /∈ K.200

We have dom(K ? f : g) = (dom(f) ∩K) ∪ (dom(g) \K).201

Hadamard product. (f � g)(w) = f(w) · g(w) (recall that (D, ·,1D) is a202

monoid).203

We have dom(f � g) = dom(f) ∩ dom(g).204
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Unambiguous Cauchy product and its reverse. If w admits a unique fac-205

torization w = u · v with u ∈ dom(f) and v ∈ dom(g) then we set206

(f � g)(w) = f(u) · g(v) and (f
←−� g)(w) = g(v) · f(u). Otherwise, we207

set (f � g)(w) = ⊥ = (f
←−� g)(w).208

We have dom(f � g) = dom(f
←−� g) ⊆ dom(f) · dom(g) and the inclusion is209

strict if the concatenation of dom(f) and dom(g) is ambiguous.210

Unambiguous Kleene-plus and its reverse. If w admits a unique factoriza-211

tion w = u1 · u2 · · ·un with n ≥ 1 and ui ∈ dom(f) for all 1 ≤ i ≤ n then212

we set f�(w) = f(u1) ·f(u2) · · · f(un) and f
←−
� (w) = f(un) · · · f(u2) ·f(u1).213

Otherwise, we set f�(w) = ⊥ = f
←−
� (w).214

We have dom(f�) = dom(f
←−
� ) ⊆ dom(f)+ and the inclusion is strict215

if the Kleene iteration dom(f)+ of dom(f) is ambiguous. Notice that216

dom(f�) = ∅ when ε ∈ dom(f).217

Unambiguous 2-chained Kleene-plus and its reverse. If w admits a uni-218

que factorization w = u1 · u2 · · ·un with n ≥ 1 and ui ∈ K for all 1 ≤219

i ≤ n then we set [K, f ]2�(w) = f(u1u2) · f(u2u3) · · · f(un−1un) and220

[K, f ]
←−
2�(w) = f(un−1un) · · · f(u2u3)·f(u1u2) (if n = 1, the empty product221

gives the unit of D: [K, f ]2�(w) = 1D = [K, f ]
←−
2�(w)). Otherwise, we set222

[K, f ]2�(w) = ⊥ = [K, f ]
←−
2�(w).223

Again, we have dom([K, f ]2�) = dom([K, f ]
←−
2�) ⊆ K+ and the inclusion is224

strict if the Kleene iteration K+ of K is ambiguous. Notice that, even if225

w ∈ K+ admits a unique factorization w = u1 ·u2 · · ·un with ui ∈ K for all226

1 ≤ i ≤ n, w is not necessarily in the domain of [K, f ]2� or [K, f ]
←−
2�. For w227

to be in this domain, it is further required that u1u2, u2u3, . . . , un−1un ∈228

dom(f). Notice that we have dom([K, f ]2�) = dom([K, f ]
←−
2�) = K+ when229

K+ is unambiguous and K2 ⊆ dom(f).230

Lemma 4. The domain of an RTE C is a regular language dom(C) ⊆ Σ∗.231

Example 5. Consider the RTEs

C1 = ([(a+ b)+#] ? ε : ⊥)�((a+ b)+ ? copy : ⊥)

C2 = #

C3 = ((a+ b)+ ? copy : ⊥)�([#(a+ b)+] ? ε : ⊥)

where copy = (a ? a : (b ? b : ⊥))
�

.232

Then, dom([[C2]]) = Σ∗, dom([[copy]]) = (a+ b)+ and dom([[C1]]) = dom([[C3]]) =233

(a+b)+#(a+b)+. Moreover, [[C1�C2�C3]](u#v) = v#u for all u, v ∈ (a+b)+.234

Example 6. Consider the RTEs

Ca = (b ? ε : ⊥) � (a ? a : ⊥)
�

Cb = (b ? ε : ⊥) � (a ? b : ⊥)
�

We have dom([[Ca]]) = ba+ = dom([[Cb]]) and [[Ca]](ban) = an and [[Cb]](ba
n) = bn.235

We deduce that dom([[Cb
←−� Ca]]) = ba+ba+ and [[Cb

←−� Ca]](banbam) = ambn.236
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Consider the expression

C = [ba+, Cb
←−� Ca]2� � (b ? ε : ⊥) .

Then, dom([[C]]) = (ba+)+b, and [[C]](bamb) = ε and for k ≥ 2 we have237

[[C]](bam1bam2b · · · amkb) = am2bm1am3bm2 · · · amk bmk−1 .238

Theorem 7. 2DFTs and RTEs define the same class of functions. More pre-239

cisely,240

1. given an RTE C, we can construct a 2DFT A such that [[A]] = [[C]],241

2. given a 2DFT A, we can construct an RTE C such that [[A]] = [[C]].242

The proof of (1) is given in the next section, while the proof of (2) will be243

given in Section 2.6 after some preliminaries in Section 2.5 on transition monoids244

for 2DFTs and the unambiguous forest factorization theorem.245

Remark 8. Notice that the reverse Cauchy product is redundant, it can be
expressed with the Hadamard product and the Cauchy product:

f
←−� g = ((dom(f) ? ε : ⊥) � g)� (f � (dom(g) ? ε : ⊥)) .

The unambiguous Kleene-plus is also redundant, it can be expressed with the
unambiguous 2-chained Kleene-plus:

f� = [dom(f), f � (dom(f) ? ε : ⊥)]2� � ((dom(f)∗ ? ε : ⊥) � f) .

Remark 9. We can extend the 2-chained Kleene-plus to k-chained Kleene-246

plus for any k ≥ 3. It is defined as follows: If w admits a unique factor-247

ization w = u1u2 . . . un, with n ≥ 1 and ui ∈ K for all 1 ≤ i ≤ n, then248

[K, f ]k�(w) = f(u1u2 . . . uk)f(u2u3 . . . uk+1) . . . f(un−k+1un−k+2 . . . un). Oth-249

erwise, we set [K, f ]k�(w) = ⊥. Notice that if n < k, we have an empty product250

which gives the unit of D: [K, f ]k�(w) = 1D. In [16], we have shown that adding251

the k-plus combinator (or its reverse) does not increase the expressive power of252

RTEs.253

Remark 10. The combinator expressions proposed in [5] are equivalent to our254

RTEs on finite words (see below). Our terminology and notation are all inspired255

from weighted automata literature. We prefer to stick to these classical notions256

since they are well-established and we believe they are more natural for string to257

string transducers.258

The base function L/d in [5] maps all strings in language L to the constant d,259

and is undefined for strings not in L. This can be written using our if-then-else260

L ? d : ⊥. The conditional choice combinator f . g of [5] maps an input σ to261

f(σ) if it is in dom(f), and otherwise it maps it to g(σ). This can be written262

in our syntax as dom(f) ? f : g. The split-sum combinator f ⊕ g of [5] is the263

classical Cauchy product f�g. The iterated sum Σf of [5] is the Kleene-plus f�.264

The left-split-sum and left-iterated sum of [5] correspond to our reverse Cauchy265

product f
←−� g and reverse Kleene-plus f

←−
� . The sum f + g of two functions in266

[5] is the classical Hadamard product f � g. Finally, the chained sum Σ(f, L) of267

[5] is our two-chained Kleene-plus [L, f ]2�.268
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2.3. RTE to 2DFT269

In this section, we prove Theorem 7(1), i.e., we show that given an RTE C,270

we can construct a 2DFT A such that [[A]] = [[C]]. We do this by structural271

induction on RTEs, starting with constant functions, and then later showing272

that 2DFTs are closed under all the combinators used in RTEs.273

Constant functions: We start with the constant function d ∈ D for which it274

is easy to construct a 2DFT A such that [[d]] = [[A]]. For d = ⊥, we take A such275

that dom(A) = ∅ (for instance we use a single state and an empty transition276

function). Assume now that d ∈ Γ∗. The 2DFT scans the word up to the277

right end marker, outputs d and stops. Formally, we let A = ({q},Σ,Γ, δ, q, {q})278

s.t. δ(q, a) = (q, ε,+1) for all a ∈ Σ ∪ {`} and δ(q,a) = (q, d,+1). Clearly,279

[[A]](w) = d for all w ∈ Σ∗.280

The inductive steps follow directly from:281

Lemma 11. Let K ⊆ Σ∗ be regular, and let f and g be RTEs with [[f ]] = [[Mf ]]282

and [[g]] = [[Mg]] for 2DFTs Mf and Mg respectively. Then, one can construct283

1. a 2DFT A such that [[K ? f : g]] = [[A]].284

2. a 2DFT A such that [[A]] = [[f � g]].285

3. 2DFTs A, B such that [[A]] = [[f � g]] and [[B]] = [[f
←−� g]].286

4. 2DFTs A, B such that [[A]] = [[f�]] and [[B]] = [[f
←−
� ]].287

5. 2DFTs A, B such that [[A]] = [[[K, f ]2�]] and [[B]] = [[[K, f ]
←−
2�]].288

Proof. (1) If then else. Let B be a complete DFA that accepts the regular289

language K. The idea of the proof is to construct a 2DFT A which first runs B290

on the input w until the end marker a is reached in some state q of B. Then,291

w ∈ K iff q ∈ F is some accepting state of B. The automaton A moves left all292

the way to `, and starts running either Mf or Mg depending on whether q ∈ F293

or not. Since B is complete, it is clear that dom(A) = dom(K ? f : g) and the294

output of A coincides with [[Mf ]] iff the input is in K, and otherwise coincides295

with [[Mg]].296

(2) Hadamard product. Given an input w, the constructed 2DFT A first297

runs Mf . Instead of executing a transition p
a/γ,+1−−−−−→ q with q a final state of298

Mf , it executes p
a/γ,−1−−−−−→ reset where reset is a new state. While in the reset299

state, it moves all the way back to ` and it starts running Mg by executing300

reset
`/γ′,+1−−−−−→ q′ if δg(q0,`) = (q′, γ′,+1) where δg is the transition function of301

Mg and q0 is the initial state of Mg. The final states of A are those of Mg, and302

its initial state is the initial state of Mf . Clearly, dom(A) = dom(Mf )∩dom(Mg)303

and the output of A is the concatenation of the outputs of Mf and Mg.304

(3) Cauchy product. The domain of a 2DFT is a regular language, accepted305

by the 2DFA obtained by ignoring the outputs. Since 2DFAs are effectively306

equivalent to (1)DFAs, we can construct from Mf and Mg two DFAs Cf =307

(Qf ,Σ, δf , sf , Ff ) and Cg = (Qg,Σ, δg, sg, Fg) such that L(Cf ) = dom(f) and308

L(Cg) = dom(g).309

Now, the set K of words w having at least two factorizations w = u1v1 = u2v2310

with u1, u2 ∈ dom(f), v1, v2 ∈ dom(g) and u1 6= u2 is also regular. This is easy311

since K can be written as K =
⋃
p∈Ff ,q∈Qg

Lp ·Mp,q ·Rq where312
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• Lp is the set of words which admit a run in Cf from its initial state to the313

final state p ∈ Ff ,314

• Mp,q is the set of words which admit a run in Cf from state p to some315

final state in Ff , and also admit a run in Cg from its initial state to state316

q ∈ Qg,317

• Rq is the set of words which admit a run in Cg from state q to some final318

state in Fg, and also admit a run in Cg from its initial state to some final319

state in Fg.320

Therefore, we have dom(f � g) = dom(f
←−� g) = (dom(f) · dom(g)) \ K is a321

regular language and we construct a complete DFA C = (Q,Σ, δ, q0, F ) which322

accepts this language.323

1. From Cf , Cg and C we construct a 1NUFT D such that dom(D) = dom(f�g)324

and on an input word w = u·v with u ∈ dom(f) and v ∈ dom(g) it produces325

the output u#v where # /∈ Σ is a new symbol. On an input word w ∈ Σ∗,326

the transducer D runs a copy of C. Simultaneously, D runs a copy of Cf on327

some prefix u of w, copying each input letter to the output. Whenever Cf is328

in a final state after reading u, the transducer D may non-deterministically329

decide to stop running Cf , to output #, and to start running Cg on the330

corresponding suffix v of w (w = u · v) while copying again each input331

letter to the output. The transducer D accepts if C accepts w and Cg332

accepts v. Then, we have u ∈ L(Cf ) = dom(f), v ∈ L(Cg) = dom(g) and333

w = u · v ∈ L(C) = dom(f � g). The output produced by D is u#v. The334

only non-deterministic choice in an accepting run of D is unambiguous335

since a word w ∈ L(C) = dom(f � g) has a unique factorization w = u · v336

with u ∈ dom(f) and v ∈ dom(g).337

2. We construct a 2DFT T which takes as input words of the form u#v with338

u, v ∈ Σ∗, runs Mf on u and then Mg on v. To do so, u is traversed in339

either direction depending on Mf , and the symbol # is interpreted as340

the right end marker a. We explain how T simulates a transition of Mf341

moving to the right of a, producing some output γ and going to a state q.342

If q is not final, then T moves to the right of # and then all the way to343

the end and rejects. If q is final, then T stays on # (simulated by moving344

right and then back left), producing the output γ, but goes to the initial345

state of Mg instead. T then runs Mg on v, interpreting # as `. When Mg346

moves to the right of a, T does the same and accepts iff Mg accepts.347

3. In a similar manner, we construct a 2DFT T ′ which takes as input strings348

of the form u#v, first runs Mg on v and then runs Mf on u. Assume that349

Mg wants to move to the right of a going to state q. If q is not final then350

T ′ also moves to the right of a and rejects. Otherwise, T ′ traverses back to351

` and runs Mf on u. When Mf wants to move to the right of # going to352

some state q and producing γ, T ′ moves also to the right of # producing353

γ and then all the way right producing ε. After moving to the right of a,354

it accepts if q is a final state of Mf and rejects otherwise.355

We construct a 2NUFT A′ as the composition of D and T . The composition356

of a 1NUFT and a 2DFT is a 2NUFT [11], hence A′ is a 2NUFT. Moreover,357
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[[A′]] = [[f � g]]. Using the equivalence of 2NUFT and 2DFT, we can convert A′358

into an equivalent 2DFT A. In a similar way, to obtain [[f
←−� g]], the 2NUFT B′359

is obtained as a composition of D and T ′ and is then converted to an equivalent360

2DFT B.361

(4) Kleene-plus. The proof is similar to case (3). First, we show that dom(f�)362

is regular. Notice that if ε ∈ dom(f) then dom(f�) = ∅, hence we assume below363

that ε /∈ dom(f). As in case (3), the language K of words w having at least364

two factorizations w = u1v1 = u2v2 with u1, u2 ∈ dom(f), v1, v2 ∈ dom(f)∗ and365

u1 6= u2 is regular. Hence, K ′ = dom(f)∗ ·K is regular and contains all words366

in dom(f)+ having several factorizations as products of words in dom(f). We367

deduce that dom(f�) = dom(f)+ \K ′ is regular and we can construct a complete368

DFA C recognizing this domain.369

As in case (3), from Cf and C, we construct a 1NUFT D which takes as input370

w and outputs u1#u2# · · ·#un iff there is an unambiguous decomposition of371

w as u1u2 · · ·un, with each ui ∈ dom(f). We then construct a 2DFT T that372

takes as input words of the form u1#u2# · · ·#un with each ui ∈ Σ∗ and runs373

Mf on each ui from left to right, i.e., starting with u1 and ending with un. The374

transducer T interprets # as ` (resp. a) when it is reached from the right (resp.375

left). The simulation by T reading # of a transition of Mf moving to the right376

of a is as in case (3), except that T goes to the initial state of Mf .377

The 2NUFT A′ is then obtained as the composition of D with the 2DFT378

T . Finally, a 2DFT A equivalent to the 2NUFT A′ is constructed. Likewise, B379

is obtained using the composition of D with a 2DFT T ′ that runs Mf on each380

factor ui from right to left.381

(5) 2-chained Kleene-plus. As in case (4), we construct the 1NUFT D which382

takes as input w and outputs u1#u2# · · ·#un iff there is an unambiguous383

decomposition of w as u1u2 · · ·un, with each ui ∈ K. We then construct a 2DFT384

D′ that takes as input words of the form u1#u2# · · ·#un with each ui ∈ Σ∗ and385

produces u1u2#u2u3# · · ·#un−1un. The 2NUFT A′ is then obtained as the386

composition of D′ with the 2DFT T constructed for case (4). Finally, a 2DFT A387

equivalent to the 2NUFT A′ is constructed. The output produced by A is thus388

[[Mf ]](u1u2) · [[Mf ]](u2u3) · · · [[Mf ]](un−1un). We proceed similarly for B.389

2.4. Unambiguous forest factorization390

In Section 2.6, we prove that, given a 2DFT A, we can obtain an RTE C391

such that [[A]] = [[C]]. We use the fact that any w ∈ Σ∗ in the domain of A can392

be factorized unambiguously into a good rational expression. The unambiguous393

factorization of words in Σ∗ guides the construction of the combinator expression394

for [[A]](w) over Γ in an inductive way.395

For rational expressions over Σ we will use the following syntax:

F ::= ∅ | ε | a | F ∪ F | F · F | F+

where a ∈ Σ. For reasons that will be clear below, we prefer to use the Kleene-396

plus instead of the Kleene-star, hence we also add ε explicitly in the syntax. An397

expression is said to be ε-free if it does not use ε.398

Let (S, ·,1S) be a finite monoid and ϕ : Σ∗ → S be a morphism. We say399

that a rational expression F is ϕ-good (or simply good when ϕ is clear from the400

context) when401
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1. the rational expression F is unambiguous,402

2. for each subexpression E of F we have ϕ(L(E)) = {sE} is a singleton set.403

Notice that ∅ cannot be used in a good expression since it does not satisfy the404

second condition. Also, the second condition implies that for each subexpression405

E+ of F we have sE · sE = sE is an idempotent.406

Theorem 12 (Unambiguous Forest Factorization [21]). For each s ∈ S, there407

is an ε-free good rational expression Fs such that L(Fs) = ϕ−1(s) \ {ε} ⊆ Σ+.408

Therefore, G = ε ∪
⋃
s∈S Fs is an unambiguous rational expression over Σ such409

that L(G) = Σ∗.410

Theorem 12 can be seen as an unambiguous version of Imre Simon’s forest411

factorization theorem [23]. Its proof, which can be found in [21], follows the412

same lines of the recent proofs of Simon’s theorem, see e.g. [12, 13]. For the413

sake of completeness, we summarize the proof idea and contributions in [21]414

here. Given a semigroup morphism ϕ : Σ+ → S, [21] constructs a universal,415

unambiguous automaton A, which is “good” wrt ϕ in the following sense: (1)416

A is unambiguous and accepts all words in Σ∗ ∪ Σω, (2) A has a unique initial417

state i which has no incoming transitions to it, as well as a unique final state f418

with no outgoing transitions from it, (3) the states of A are totally ordered as419

Q \ {i, f} < f < i, where Q is the set of states of A, (4) for each state q, the set420

of words that have a run originating at q and ending at q, visiting only states421

lower than q in the ordering are mapped to a unique idempotent eq ∈ S. These422

properties of A ensure that, for any word w ∈ Σ∗ ∪Σω, the unique accepting run423

of w produces a Ramsey split in the sense of [13], with the height of the split424

being bounded by the number of states of A. The construction of A proceeds425

according to the local divisor technique, which uses a lexicographic induction on426

(|S|, |ϕ(Σ)|). While the base cases (i) when S is a group, and (ii) |ϕ(Σ)| = 1 are427

easy, the inductive cases are non trivial. The inductive cases follow by identifying428

an element c ∈ S for which Sc ( S or cS ( S, and the details are in [21].429

The forest factorization theorem can be derived easily from the construction430

of A as follows : consider a morphism ϕ : Σ+ → S, and define a monotone431

bijection h : (Q,<) → ({1, 2, . . . , |Q|}, <). For any word w = a1a2 · · · ∈ Σ∞,432

consider the unique accepting run q0
a1→ q1

a2→ . . . of w in A. Define a split σ of w433

as σ(i) = h(qi) for all positions i ≥ 0 in w. Two positions i < j are σ-equivalent434

iff qi = qj and qk ≤ qi for all i ≤ k ≤ j. We obtain this way, w(i, j] = ai+1 . . . aj435

as a word whose run originates and ends in qi, while visiting only states whose436

orderings are lower. Thus, ϕ(w(i, j]) = eqi is the unique idempotent associated437

to qi, resulting in σ being a Ramsey split. Thus, we obtain a Ramsey split using438

the construction of A, s.t. the height of the factorization tree is bounded by the439

number of states of A.440

The second implication arising from the construction of A is that we obtain441

the good expressions used in this paper, by a state elimination of A, using the442

ordering on its states.443

In the rest of the section, we assume Theorem 12, and use it in obtaining444

an RTE corresponding to A. For the purposes of this paper, we work with the445

transition monoid of the two-way transducer.446

2.5. Transition monoid of 2NFAs447

Consider a two-way possibly non-deterministic automaton (2NFA) A. Let448

TrM be the transition monoid of A which is obtained by quotienting the free449
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monoid (Σ∗, ·, ε) by a congruence which equates words behaving alike in the450

underlying automaton. Transition monoids for two way automata were defined451

in [9] for finite words and later extended to infinite words [17]. We recall the452

definition.453

In a one way automaton, the canonical morphism Tr : Σ∗ → TrM is such that454

Tr(w) consists of the set of pairs (p, q) such that there is a run from state p455

to state q reading w. In the case of two-way automaton, we also consider the456

starting side (left/right) and ending side (left/right) of the reading head while457

going from state p to q. This is represented with a direction d amongst “left-left”458

(

y

), “left-right” (→), “right-left”(←) and “right-right”( x). Hence, an element of459

TrM is a set X of tuples (p, d, q) with p, q ∈ Q states of A and d ∈ {→, y , x,←}.460

The canonical morphism Tr : Σ∗ → TrM is such that Tr(w) is the set of triples461

(p, d, q) which are compatible with w. For instance, (p,→, q) ∈ Tr(w) iff A has a462

run starting in state p on the left most symbol of w and which exits w on its463

right and in state q. Likewise, (p, x, q) ∈ Tr(w) iff A has a run starting in state464

p on the right most symbol of w and which exits w on its right and in state q.465

The explanation is similar for other directions.466

Figure 3: Illustrations of subset of Tr(abb)

Consider the 2DFT A of Figure 2 and its underlying input 2DFA B. The run
for word babbabb starting from state q0 is shown in Figure 3. In the transition
monoid of B, we have

Tr(abb) = {(q0, x, q1), (q1,

y

, q5), (q1, x, q2), (q2,

y

, q4), (q2,←, q5),

(q3,

y

, q4), (q3,←, q5), (q4,

y

, q4), (q4, x, q1),

(q5,

y

, q5), (q5, x, q6), (q6,→, q2), (q6, x, q1)} .

Some of these triples are highlighted in Figure 3.467

It is well-known that TrM is a monoid and that Tr is a morphism, see468

for instance [7]. The left-right and right-right relations were already used by469

Shepherdson to prove the equivalence between two-way and one-way automata470

[22]. These relations define a right-congruence. We obtain a congruence by471

considering also the right-left and left-left relations. The quotient of the free472

monoid by this congruence is the transition monoid of the 2NFA.473

Let (p, d, q) ∈ Tr(w). If w = a ∈ Σ, then we know that reading a in state p,474

A may move in direction d and enter state q. If w = w1 · w2 for w1, w2 ∈ Σ+,475

then we can possibly decompose (p, d, q) into several “steps” depending on the476

behaviour of A on w starting in state p. As an example, see Figure 4, where we477
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decompose (p,→, q) ∈ Tr(w). We show only those elements of Tr(w1) and Tr(w2)478

which help in the decomposition; the pictorial depiction is visually intuitive.479

Figure 4: The first and second pictures are illustrations of subsets of Tr(w1) and Tr(w2)
respectively. (p,→, q1), (q2, x, q3), (q4, x, q5) ∈ Tr(w1) while (q1,

y

, q2), (q3,

y

, q4), (q5,→, q) ∈
Tr(w2). The third picture shows that (p,→, q) ∈ Tr(w1 ·w2): (p,→, q) consists of “steps” (p,→
, q1), (q1,

y

, q2), (q2, x, q3), (q3,

y

, q4), (q4, x, q5), (q5,→, q) alternately from Tr(w1) and Tr(w2).

Example 13. Let Σ = {a, b} and let A be the following 1DFT:480

q1 q2

b b

a

a481

Let TrM be the transition monoid of A and let Tr : Σ∗ → TrM be the canonical482

morphism. The expression F = a+(ba)+ is not Tr-good: one of the reasons483

why F is not Tr-good is that the subexpression a+ is such that Tr(a) is not an484

idempotent since Tr(a) = {(q1, q2), (q2, q1)} and Tr(a2) = {(q1, q1), (q2, q2)}, thus485

Tr(a2) 6= Tr(a). We have omitted the direction in the tuples as the underlying486

automaton is one way. Similarly, the subexpression (ba)+ is also not Tr-good.487

The expression F ′ = aba ∪ aaba ∪ a(aa)+ba ∪ a(baba)+ ∪ a(aa)+(baba)+ is not488

Tr-good, even though each of the expressions aba, aaba, a(aa)+ba, a(baba)+ and489

a(aa)+(baba)+ are Tr-good. F ′ is not Tr-good since Tr(L(F ′)) is not a singleton.490

The expression F ′′ = aba ∪ (aa)+ ∪ a(aa)+ba is Tr-good.491

2.6. 2DFT to RTE492

In Appendix A, we give a practical example showing how to compute an RTE493

equivalent to the transducer A of Figure 2.494

Consider a deterministic and complete two-way transducer A. Let TrM495

be the transition monoid of the underlying input automaton. We can apply496

the unambiguous factorization theorem to the morphism Tr : Σ∗ → TrM in497

order to obtain, for each s ∈ TrM, an ε-free good rational expression Fs for498

Tr−1(s) \ {ε}. We use the unambiguous expression G = ε∪
⋃
s∈TrM Fs as a guide499

when constructing RTEs corresponding to the 2DFT A.500

Lemma 14. Let F be an ε-free Tr-good rational expression and let Tr(F ) = sF be501

the corresponding element of the transition monoid TrM of A. We can construct502

a map CF : sF → RTE such that for each step x = (p, d, q) ∈ sF the following503

invariants hold:504

(I1) dom(CF (x)) = L(F ),505

(I2) for each u ∈ L(F ), [[CF (x)]](u) is the output produced by A when running506

step x on u (i.e., running A on u from p to q following direction d).507
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Proof. The proof is by structural induction on the rational expression. For each508

subexpression E of F we let Tr(E) = sE be the corresponding element of the509

transition monoid TrM of A. We start with atomic regular expressions. Since F510

is ε-free and ∅-free, we do not need to consider E = ε or E = ∅.511

atomic Assume that E = a ∈ Σ is an atomic subexpression. Since the 2DFT512

A is deterministic and complete, for each state p ∈ Q we have513

• either δ(p, a) = (q, γ, 1) and we let Ca((p,→, q)) = Ca((p, x, q)) =514

a ? γ : ⊥,515

• or δ(p, a) = (q, γ,−1) and we let Ca((p,
y

, q)) = Ca((p,←, q)) = a ? γ :516

⊥.517

Clearly, invariants (I1) and (I2) hold for all x ∈ Tr(a) = sE .518

union Assume that E = E1 ∪E2. Since the expression is good, we deduce that
sE = sE1 = sE2 . For each x ∈ sE we define CE(x) = E1 ?CE1(x) : CE2(x).
Since E is unambiguous we have L(E1) ∩ L(E2) = ∅. Using (I1) for E1

and E2, we deduce that

dom(CE(x)) = (L(E1) ∩ dom(CE1(x))) ∪ (dom(CE2(x)) \ L(E1))

= L(E1) ∪ L(E2) = L(E) .

Therefore, (I1) holds for E. Now, for each u ∈ L(E), either u ∈ L(E1) and519

[[CE(x)]](u) = [[CE1(x)]](u) or u ∈ L(E2) and [[CE(x)]](u) = [[CE2(x)]](u).520

In both cases, applying (I2) for E1 or E2, we deduce that [[CE(x)]](u) is521

the output produced by A when running step x on u.522

concatenation Assume that E = E1 · E2 is a concatenation. Since the expres-523

sion is good, we deduce that sE = sE1
· sE2

. Let x ∈ sE .524

• If x = (p,→, q) then, by definition of the product in the transi-
tion monoid TrM, there is a unique sequence of steps x1 = (p,→
, q1), x2 = (q1,

y

, q2), x3 = (q2, x, q3), x4 = (q3,

y

, q4), . . . , xi =
(qi−1, x, qi), xi+1 = (qi,→, q) with i ≥ 1, x1, x3, . . . , xi ∈ sE1

and
x2, x4, . . . , xi+1 ∈ sE2 (see Figure 4). We define

CE(x) = (CE1
(x1) � CE2

(x2))� (CE1
(x3) � CE2

(x4))� · · · �
(CE1

(xi) � CE2
(xi+1)) .

Notice that when i = 1 we simply have CE(x) = CE1
(x1) � CE2

(x2)525

with x2 = (q1,→, q).526

The concatenation L(E) = L(E1) · L(E2) is unambiguous. Therefore,527

for all y ∈ sE1 and z ∈ sE2 , using (I1) for E1 and E2, we obtain528

dom(CE1(y) �CE2(z)) = L(E). We deduce that dom(CE(x)) = L(E)529

and (I1) holds for E.530

Now, let u ∈ L(E) and let u = u1u2 be its unique factorization531

with u1 ∈ L(E1) and u2 ∈ L(E2). The step x = (p,→, q) per-532

formed by A on u is actually the concatenation of steps x1 on533

u1, followed by x2 on u2, followed by x3 on u1, followed by x4534

on u2, . . . , until xi+1 on u2. Using (I2) for E1 and E2, we de-535

duce that the output produced by A while running step x on u is536

[[CE1
(x1)]](u1) · [[CE2

(x2)]](u2) · · · [[CE1
(xi)]](u1) · [[CE2

(xi+1)]](u2) =537

[[CE(x)]](u).538
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• If x = (p,

y

, q) then, following the definition of the product in the539

transition monoid TrM, we distinguish two cases.540

Either x ∈ sE1
and we let CE(x) = CE1

(x) � (E2 ? ε : ⊥). Since541

dom(E2 ? ε : ⊥) = L(E2), we deduce as above that dom(CE(x)) =542

L(E). Moreover, let u ∈ L(E) and u = u1u2 be its unique factor-543

ization with u1 ∈ L(E1) and u2 ∈ L(E2). The step x = (p,

y

, q)544

performed by A on u reduces to the step x on u1. Using (I2) for E1,545

we deduce that the output produced by A while making step x on u546

is [[CE1
(x)]](u1) = [[CE(x)]](u).547

Figure 5: Let w = w1 · w2 ∈ L(E) with w1 ∈ L(E1), w2 ∈ L(E2). We have (p,→, q1), (q2, x

, q3), (q4,←, q) ∈ Tr(w1) and (q1,

y

, q2), (q3,

y

, q4) ∈ Tr(w2). Then (p,

y

, q) is composed of
“steps” (p,→, q1), (q1,

y
, q2), (q2, x, q3), (q3,

y

, q4), (q4,←, q) alternately from Tr(w1) and Tr(w2).

Or there is a unique sequence of steps (see Figure 5) x1 = (p,→, q1),
x2 = (q1,

y

, q2), x3 = (q2, x, q3), x4 = (q3,

y

, q4), . . . , xi = (qi−1,←, q)
with i ≥ 3, x1, x3, . . . , xi ∈ sE1

and x2, x4, . . . , xi−1 ∈ sE2
. We define

CE(x) = (CE1
(x1) � CE2

(x2))� (CE1
(x3) � CE2

(x4))� · · · �
(CE1

(xi) � (E2 ? ε : ⊥)) .

As for the first item, we can prove that invariants (I1) and (I2) are548

satisfied for E.549

• The cases x = (p,←, q) or x = (p, x, q) are handled symmetrically.
For instance, when x = (p,←, q), the unique sequence of steps is
x1 = (p,←, q1), x2 = (q1, x, q2), x3 = (q2,

y

, q3), x4 = (q3, x, q4), . . . ,
xi = (qi−1,

y

, qi), xi+1 = (qi,←, q) with i ≥ 1, x1, x3, . . . , xi ∈ sE2

and x2, x4, . . . , xi+1 ∈ sE1
(see Figure 6). We define

CE(x) = ((E1 ? ε : ⊥) � CE2(x1))� (CE1(x2) � CE2(x3))� · · · �
(CE1(xi−1) � CE2(xi))� (CE1(xi+1) � (E2 ? ε : ⊥)) .

Kleene-plus Assume that E = F+. Since the expression is good, we deduce550

that sE = sF = s is an idempotent of the transition monoid TrM. Let551

x ∈ s.552

• If x = (p,

y

, q). Since F+ is unambiguous, a word u ∈ L(F+) admits553

a unique factorization u = u1u2 · · ·un with n ≥ 1 and ui ∈ L(F ).554

Now, Tr(u1) = sE and since x = (p,

y

, q) ∈ sE the unique run ρ555

of A starting in state p on the left of u1 exits on the left in state556

q. Therefore, the unique run of A starting in state p on the left of557

u = u1u2 · · ·un only visits u1 and is actually ρ itself. Therefore, we558
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Figure 6: Let w = w1 · w2 ∈ L(E) with w1 ∈ L(E1), w2 ∈ L(E2). We have (p,←, q1), (q2,

y

, q3) ∈ Tr(w2) and (q1, x, q2), (q3,←, q) ∈ Tr(w1). Then (p,←, q) ∈ Tr(w) is composed of
“steps” (p,←, q1), (q1, x, q2), (q2,

y

, q3), (q3,←, q) alternately from Tr(w2) and Tr(w1).

Figure 7: In the Kleene-plus E = F+, a step x = (p,→, q) ∈ sE on some u = u1u2 · · ·un

with u` ∈ L(F ) is obtained by composing the following steps in sF : x1 = x, x2 = (q,

y

, p2),
x3 = (p2, x, p3), x4 = (p3,

y

, p4), x5 = (p4, x, p5), x6 = (p5,→, q).

set CE(x) = CF (x) � (F ∗ ? ε : ⊥) and we can easily check that (I1–I2)559

are satisfied.560

• Similarly for x = (p, x, q) we set CE(x) = (F ∗ ? ε : ⊥) � CF (x).561

• If x = (p,→, q). Recall that s is an idempotent, hence x ∈ s2. We562

distinguish two cases.563

Assume first that y = (q,→, q) ∈ s. Let u = u1u2 · · ·un be a word
with ui ∈ L(F ) for 1 ≤ i ≤ n. When reading u starting in state p on
the left, the transducer will use step x on u1 and then step y on each
ui with 2 ≤ i ≤ n. Therefore, we set

CE(x) = F ?CF (x) :
(
CF (x) � (CF (y))

�)
.

Otherwise, there exists a unique sequence of steps in s: x1 = x, x2 =
(q,

y

, p2), x3 = (p2, x, p3), x4 = (p3,

y

, p4), . . . , xi = (pi−1, x, pi),
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xi+1 = (pi,→, q) with i ≥ 3 (see Figure 7). We define

CE(x) =
(
CF (x) � (F ∗ ? ε : ⊥)

)
� [F,C ′]2�

C ′ =
(
(F ? ε : ⊥) � CF (x2)

)
� (CF (x3) � CF (x4))� · · · �

(CF (xi) � CF (xi+1))

Since the expression is good, the Kleene-plus E = F+ is unambigu-564

ous. We have dom(CF (xj)) = L(F ) for 1 ≤ j ≤ i + 1 by (I1). Also565

dom(F ∗ ? ε : ⊥) = L(F ∗). Since F+ is unambiguous, the concatena-566

tion F · F ∗ is also unambiguous and we get dom(CF (x) � (F ∗ ? ε :567

⊥)) = L(F ) · L(F ∗) = L(E). Also, the product F · F is unam-568

biguous and we deduce that dom(CF (xj) � CF (xj+1)) = L(F )2 for569

1 ≤ j ≤ i and dom((F ? ε : ⊥) � CF (x2)) = L(F )2. Therefore,570

dom(C ′) = L(F )2 and using once again that F+ is unambiguous,571

we deduce that dom([F,C ′]2�) = L(F+) = L(E). We deduce that572

dom(CE(x)) = L(E) and (I1) holds for E.573

Let now u ∈ L(F+) = dom(CE(x)). We have to show that the output574

γ ∈ D produced by A when running step x on u is [[CE(x)]](u). There575

is a unique factorization u = u1u2 · · ·un with n ≥ 1 and u` ∈ L(F )576

for 1 ≤ ` ≤ n.577

Assume first that n = 1 (see Figure 7 left). By definition, we have578

[[[F,C ′]2�]](u) = ε and [[CF (x) � (F ∗ ? ε : ⊥)]](u) = [[CF (x)]](u) which,579

by induction, is the output γ produced by A running step x on u.580

Therefore, [[CE(x)]](u) = γ · ε = γ.581

Assume now that n ≥ 2 (see Figure 7 middle for n = 2 and right for
n = 5). For 1 ≤ ` ≤ n and 1 ≤ j ≤ i+1, we denote γ`j = [[CF (xj)]](u`)
the output produced by A when running step xj on u`. We can check
(see Figure 7) that the output γ produced by A when running x on
u = u1u2 · · ·un is

γ = γ11(γ22γ
1
3γ

2
4 · · · γ1i γ2i+1)(γ32γ

2
3γ

3
4 · · · γ2i γ3i+1) · · · (γn2 γn−13 γn4 · · · γn−1i γni+1) .

We have [[C ′]](u`u`+1) = γ`+1
2 γ`3γ

`+1
4 · · · γ`i γ

`+1
i+1 for 1 ≤ ` < n. There-582

fore, we obtain γ = γ11 [[C ′]](u1u2)[[C ′]](u2u3) · · · [[C ′]](un−1un). Since583

[[CF (x) � (F ∗ ? ε : ⊥)]](u) = γ11 we deduce that γ = [[CE(x)]](u).584

• The case of x = (p,←, q) can be handled similarly.585

Lemma 14 is the main ingredient in the construction of an RTE equivalent586

to a 2DFT.587

Proof of Theorem 7 (2). First, we let Cε = [[A]](ε) ∈ Γ∗ ∪ {⊥}. Then, we will
define for each s ∈ TrM, an RTE Cs such that dom(Cs) = dom(A)∩(Tr−1(s)\{ε})
and [[Cs]](u) = [[A]](u) for all u ∈ dom(Cs). Assuming an arbitrary enumeration
s1, s2, . . . , sm of TrM, we define the final RTE as

CA = ε ?Cε : (Tr−1(s1) ?Cs1 : (Tr−1(s2) ?Cs2 : · · · (Tr−1(sm−1) ?Csm−1
: Csm))) .

It remains to define the RTE Cs for s ∈ TrM. We first define RTEs for steps in588

the 2DFT A on some input `u with u ∈ Tr−1(s) \ {ε}. Such a step must exit589

on the right since there are no transitions of A going left when reading `. So590

either the step (q0,→, q) starts on the left in the initial state q0 and exits on the591
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right in some state q. Or the step (p, x, q) starts on the right in some state p592

and exits on the right in some state q. See Figure 8.593

Let s` be the set of steps (p,→, q), (p, x, q) such that there is a transition
δ(p,`) = (q, γp,+1) in A. From the initial state q0 of A, there is a unique
sequence of steps x1 = (q0,→, q1), x2 = (q1,

y

, q2), x3 = (q2, x, q3), x4 = (q3,

y

, q4), . . . , xi = (qi−1, x, qi), xi+1 = (qi,→, q) with i ≥ 1, x1, x3, . . . , xi ∈ s` and
x2, x4, . . . , xi+1 ∈ s (see Figure 8 left). We define

C`Fs
((q0,→, q)) = γq0 � CFs

(x2)� γq2 � CFs
(x4)� · · · � γqi−1

� CFs
(xi+1) .

Notice that when i = 1 we simply have C`Fs((q0,→, q)) = γq0 � CFs((q1,→, q)).594

Since dom(CFs
(xi)) = L(Fs) = Tr−1(s)\{ε} for i = 2, 4, . . . , i+1, we deduce that595

dom(C`Fs
((q0,→, q))) = Tr−1(s)\{ε}. Moreover, for each u ∈ Tr−1(s)\{ε}, the596

output produced by A performing step (q0,→, q) on `u is [[C`Fs
((q0,→, q))]](u).597

Figure 8: (Left) Given steps of s, a step (q0,→, q) of `u for some u ∈ Fs, is obtained by
composing the following steps alternatively from s` and s: x1 = (q0,→, q1), x2 = (q1,

y

, q2),
x3 = (q2, x, q3), x4 = (q3,

y

, q4), x5 = (q4, x, q5), x6 = (q5,→, q). (Right) A step (p, x, q) of
`u for some u ∈ Fs, is obtained by composing the following steps alternatively from s and s`:
x1 = (p,←, q1), x2 = (q1, x, q2), x3 = (q2,

y

, q3), x4 = (q3, x, q4), x5 = (q4,→, q).

Let p be a state of A. Either there is a step (p, x, q) ∈ s and we let C`Fs
((p, x

, q)) = CFs
((p, x, q)). Or, there is a unique sequence of steps x1 = (p,←, q1),

x2 = (q1, x, q2), x3 = (q2,

y

, q3), x4 = (q3, x, q4), . . . , xi = (qi−1,→, q) with
i ≥ 3, x1, x3, . . . , xi ∈ s and x2, x4, . . . , xi−1 ∈ s` (see Figure 8 right). We define

C`Fs
((p, x, q)) = CFs

(x1)� γq1 � CFs
(x3)� γq3 � · · · � γqi−2

� CFs
(xi) .

As above, we have dom(C`Fs
((p, x, q))) = Tr−1(s) \ {ε}. Moreover, for each598

u ∈ Tr−1(s) \ {ε}, the output produced by A performing step (p, x, q) on `u is599

[[C`Fs
((p, x, q))]](u).600

Figure 9: On input `ua, a step x = (q0,→, q) is obtained by composing the following steps
alternatively from steps of `u and sa: x1 = (q0,→, q1), x2 = (q1,

y

, q2), x3 = (q2, x, q3),
x4 = (q3,

y

, q4), x5 = (q4, x, q5) and x6 = (q5,→, q).
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Similarly, let sa be the set of steps (p,

y

, q) such that there is a transition601

δ(p,a) = (q, γp,−1) in A or steps (p,→, q) such that there is a transition602

δ(p,a) = (q, γp,+1) in A. From the initial state q0 of A, there is a unique603

sequence of steps x1 = (q0,→, q1), x2 = (q1,

y

, q2), x3 = (q2, x, q3), x4 = (q3,

y

604

, q4), . . . , xi = (qi−1, x, qi), xi+1 = (qi,→, q) with i ≥ 1, and x1, x3, . . . , xi are605

steps where C`Fs
is defined and x2, x4, . . . , xi+1 ∈ sa (see Figure 9).606

Notice that this sequence of steps corresponds to an accepting run iff q ∈ F is
an accepting state of A. Therefore, either q /∈ F and dom(A)∩(Tr−1(s)\{ε}) = ∅
so we set Cs = ⊥. Or, q ∈ F and Tr−1(s) \ {ε} ⊆ dom(A) so we define

Cs = C`Fs
(x1)� γq1 � C`Fs

(x3)� γq3 � · · · � C`Fs
(xi)� γqi .

We have dom(Cs) = Tr−1(s) \ {ε} and for all u ∈ dom(Cs) we have [[Cs]](u) =607

[[A]](u).608

3. Infinite Words609

In this section, we start looking at regular functions on infinite words. As610

in Section 2, we restrict our attention to two-way transducers as the model for611

computing regular functions. Given a finite alphabet Σ, let Σω denote the set of612

infinite words over Σ, and let Σ∞ = Σ∗ ∪ Σω be the set of all finite or infinite613

words over Σ.614

3.1. Two-way transducers over ω-words (ω-2DMTla)615

Let Σ be a finite input alphabet and let Γ be a finite output alphabet. Let `616

be a left end marker symbol not in Σ and let Σ` = Σ ∪ {`}. The input word is617

presented as `w where w ∈ Σω.618

Let R be a finite set of look-ahead ω-regular languages. For the ω-regular
languages in R, we may use any finite descriptions such as ω-regular expres-
sions or automata. Below, we will use complete unambiguous Büchi automata
(CUBA) [10], also called backward deterministic Büchi automata [24]). A de-
terministic two-way transducer (ω-2DMTla) over ω-words is given by A =
(Q,Σ,Γ, q0, δ,F ,R), where Q is a finite set of states, q0 ∈ Q is a unique initial
state, and δ : Q×Σ`×R 7→ Q×Γ∗×{−1,+1} is the partial transition function.
We request that for every pair (q, a) ∈ Q× Σ`, the subset R(q, a) of languages
R ∈ R such that δ(q, a,R) is defined forms a partition of Σω. This ensures that
A is complete and behaves deterministically. The set F ⊆ 2Q specifies the Muller
acceptance condition. As in the finite case, the reading head cannot move left
while on `. A configuration is represented by w′qaw′′ where w′a ∈ `Σ∗, w′′ ∈ Σω

and q is the current state, scanning letter a. From configuration w′qaw′′, let R
be the unique ω-regular language in R(q, a) such that w′′ ∈ R, the automaton
outputs γ and moves to{

w′aq′w′′ if δ(q, a,R) = (q′, γ,+1)

w′1q
′baw′′ if δ(q, a,R) = (q′, γ,−1) and w′ = w′1b .

The output γ ∈ Γ∗ is appended at the end of the output produced so far. A
run ρ of A on w ∈ Σω is a sequence of transitions starting from the initial
configuration q0`w where the reading head is on `:

q0`w
γ1−→ w′1q1w

′′
1

γ2−→ w′2q2w
′′
2

γ3−→ w′3q3w
′′
3

γ4−→ w′4q4w
′′
4 · · ·
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We say that ρ reads the whole word w if sup{|w′n| | n > 0} = ∞. The set of619

states visited by ρ infinitely often is denoted inf(ρ) ⊆ Q. The word w is accepted620

by A, i.e., w ∈ dom(A) if ρ reads the whole word w and inf(ρ) ∈ F is a Muller621

set. In this case, we let [[A]](w) = γ1γ2γ3γ4 · · · be the output produced by ρ.622

The notation ω-2DMTla signifies the use of the look-ahead (la) using the ω-623

regular languages in R. It must be noted that without look-ahead, the expressive624

power of two-way transducers over infinite words is lesser than regular transfor-625

mations over infinite words [4]. A classical example of this is given in Example626

15, where the look-ahead is necessary to obtain the required transformation.627

Example 15. Figure 1 shows an ω-2DMTla A′ over Σ = {a, b,#} that defines628

the transformation [[A′]](u1#u2# · · ·#un#v) = uR1 u1# uR2 u2# · · ·#uRnun#v629

where u1, . . . , un ∈ (a+ b)∗, v ∈ (a+ b)ω and uR denotes the reverse of u. The630

Muller acceptance set is {{q5}}. From state q1 reading `, or state q4 reading #,631

A′ uses the look ahead partition R(q1,`) = R(q4,#) = {Σ∗#Σω, (Σ \ {#})ω},632

which indicates the presence or absence of a # in the remaining suffix of the633

word being read. For all other transitions, the look-ahead language is Σω, hence634

it is omitted. Also, to keep the picture light, the automaton is not complete, i.e.,635

we have omitted the transitions going to a sink state. It can be seen that any636

maximal string u between two consecutive occurrences of # is replaced with uRu;637

the infinite suffix over {a, b}ω is then reproduced as it is.638

Remark 16. The model used here is a two-way, deterministic Muller automaton,639

which has for each pair (q, a) consisting of a state and symbol, a tuple of look-640

ahead ω-regular languages which are mutually exclusive. The model (denoted641

2WSTla) used in [4] however is a two-way deterministic Muller automaton which642

is equipped with a look-behind automaton (a NFA) and a look-ahead automaton643

(a possibly non-deterministic Muller automaton). It is easy to see that the two644

models are equivalent, see [16] for details.645

3.2. ω-Regular Transducer Expressions (ω-RTE)646

As in the case of finite words, we define regular transducer expressions for647

infinite words. Let Σ and Γ be finite input and output alphabets and let ⊥ stand648

for undefined. We define the output domain as D = Γ∞ ∪ {⊥} , with the usual649

concatenation of a finite word on the left with a finite or infinite word on the650

right. Again, ⊥ acts as zero and the unit is the empty word 1D = ε.651

The syntax of ω-Regular Transducer Expressions (ω-RTE) from Σω to D is
defined by:

C ::= L ?C : C | C � C | E � C | Eω | [K,E]2ω

where K ⊆ Σ+ ranges over regular languages of finite non-empty words, L ⊆ Σω652

ranges over ω-regular languages of infinite words and E is an RTE over finite653

words as defined in Section 2.2. The semantics [[E]] : Σ∗ → Γ∗ ∪ {⊥} of the654

finitary combinator expressions E ∈ RTE is unchanged (see Section 2.2). The655

semantics of an ω-RTE C is a function [[C]] : Σω → D. Given a regular language656

K ⊆ Σ+, an ω-regular language L ⊆ Σω, and functions f : Σ∗ → Γ∗ ∪ {⊥},657

g, h : Σω → D, we define658

If then else. We have dom(L ? g : h) = (dom(g) ∩ L) ∪ (dom(h) \ L).659

Moreover, (L ? g : h)(w) is defined as g(w) for w ∈ dom(g) ∩ L, and h(w)660

for w ∈ dom(h) \ L.661
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Hadamard product. We have dom(g � h) = g−1(Γ∗) ∩ dom(h).662

Moreover, (g�h)(w) = g(w)·h(w) for w ∈ dom(g)∩dom(h) with g(w) ∈ Γ∗.663

Unambiguous Cauchy product. If w ∈ Σω admits a unique factorization664

w = u · v with u ∈ dom(f) and v ∈ dom(g) then we set (f � g)(w) =665

f(u) · g(v). Otherwise, we set (f � g)(w) = ⊥.666

Unambiguous ω-iteration. If w ∈ Σω admits a unique infinite factorization667

w = u1u2u3 · · · with ui ∈ dom(f) for all i ≥ 1 then we set fω(w) =668

f(u1)f(u2)f(u3) · · · ∈ Γ∞. Otherwise, we set fω(w) = ⊥.669

Unambiguous 2-chained ω-iteration. If w ∈ Σω admits a unique factoriza-670

tion w = u1u2u3 · · · with ui ∈ K for all i ≥ 1 and if moreover uiui+1 ∈671

dom(f) for all i ≥ 1 then we set [K, f ]2ω(w) = f(u1u2)f(u2u3)f(u3u4) · · · .672

Otherwise, we set [K, f ]2ω(w) = ⊥.673

Remark 17. Let Cε = (Σ ? ε : ⊥)ω. We have dom(Cε) = Σω and [[Cε]](w) = ε674

for all w ∈ Σω. Now, for γ ∈ Γ+, let Cγ = (Σ ? γ : ⊥) � Cε. We have675

dom(Cγ) = Σω and [[Cγ ]](w) = γ for all w ∈ Σω. Therefore, we can freely use676

constants γ ∈ Γ∗ when defining ω-RTEs.677

Remark 18. We can express the ω-iteration with the 2-chained ω-iteration as678

follows: fω = [dom(f), f � (dom(f) ? ε : ⊥)]2ω.679

Remark 19. In a similar manner to [K, f ]k�, we can extend 2-chained ω-680

iteration as well to k-chained ω-iteration for any k ≥ 3. It is defined as fol-681

lows: If w admits a unique factorization w = u1u2 . . ., with ui ∈ K for all682

i ≥ 1, then [K, f ]kω(w) = f(u1u2 . . . uk)f(u2u3 . . . uk+1) . . .. Otherwise, we set683

[K, f ]kω(w) = ⊥. In [16], we have shown that adding k-chained ω-iteration does684

not increase the expressive power of ω-RTEs.685

Example 20. We now give the ω-RTE for the transformation given in Exam-
ple 15. It was also sketched in Example 1. Let

E1 = a ? a : (b ? b : (# ? # : ⊥))

E2 = a ? a : (b ? b : ⊥)

E3 = a ? a : (b ? b : (# ? ε : ⊥)) .

Then dom(E1) = dom(E3) = (a+ b+ #) and dom(E2) = (a+ b). Let

E4 = ((a+ b)∗#) ? (E3

←−
� � E1

�) : ⊥ .

We have dom(E4) = (a+ b)∗# and, for u ∈ (a+ b)∗, [[E4]](u#) = uRu# where
uR denotes the reverse of u. Next, let

C1 = E4
� � Eω2 .

Then, dom(C1) = [(a+ b)∗#]+(a+ b)ω, and

[[C1]](u1#u2# · · ·un#v) = uR1 u1#uR2 u2# · · ·#uRnun#v

when ui ∈ (a+ b)∗ and v ∈ (a+ b)ω. Finally, let

C = (a+ b)ω ?Eω2 : C1 .

We have dom(C) = [(a+b)∗#]∗(a+b)ω and [[C]] = [[A′]] where A′ is the transducer686

of Figure 1.687

22



The main theorem connecting ω-2DMTla and ω-RTE is as follows.688

Theorem 21. ω-2DMTla and ω-RTEs define the same class of functions. More689

precisely,690

1. given an ω-RTE C, we can construct an ω-2DMTla A such that [[A]] = [[C]].691

2. given an ω-2DMTla A, we can construct an ω-RTE C such that [[A]] = [[C]],692

The proof of (1) is given in the next section, while the proof of (2) will be693

given in Section 3.7 after some preparatory work on backward deterministic Büchi694

automata (Section 3.4) which are used to remove the look-ahead of ω-2DMTla695

(Section 3.5), and the notion of transition monoid for ω-2DMTla (Section 3.6)696

used in the unambiguous forest factorization theorem extended to infinite words697

(Theorem 28).698

3.3. ω-RTE to ω-2DMTla699

In this section, we prove one direction of Theorem 21: given an ω-RTE C, we700

can construct an ω-2DMTla A such that [[A]] = [[C]]. The proof is by structural701

induction and follows immediately from702

Lemma 22. Let K ⊆ Σ∗ be regular and L ⊆ Σω be ω-regular. Let f be an RTE703

with [[f ]] = [[Mf ]] for some 2DFT Mf . Let g, h be ω-RTEs with [[g]] = [[Mg]] and704

[[h]] = [[Mh]] for ω-2DMTla Mg and Mh respectively. Then, one can construct705

1. an ω-2DMTla A such that [[L ? g : h]] = [[A]],706

2. an ω-2DMTla A such that [[A]] = [[g � h]],707

3. an ω-2DMTla A such that [[A]] = [[f � g]],708

4. an ω-2DMTla A such that [[A]] = [[fω]],709

5. an ω-2DMTla A such that [[A]] = [[[K, f ]2ω]].710

Proof. Throughout the proof, we let Mg = (Qg,Σ,Γ, sg, δgFg,Rg) and Mh =711

(Qh,Σ,Γ, sh, δh,Fh,Rh) be the ω-2DMTla such that [[Mg]] = [[g]] and [[Mh]] = [[h]].712

(1) If then else. The set of states of A is QA = {q0} ∪ Qg ∪ Qh with q0 /∈713

Qg ∪Qh. In state q0, we have the transitions δA(q0, (`, R ∩ L)) = (q, γ,+1) if714

δg(sg, (`, R)) = (q, γ,+1) and δA(q0, (`, R′\L)) = (q′, γ′,+1) if δh(sh, (`, R′)) =715

(q′, γ′,+1). This invokes Mg (Mh) iff the input w is in L (not in L). The Muller716

set F is simply a union Fg ∪ Fh of the respective Muller sets of Mg and Mh. It717

is clear that [[A]] coincides with [[Mg]] iff the input string is in L, and otherwise,718

[[A]] coincides with [[Mh]].719

(2) Hadamard product. Recall that for a word w to be in dom(g � h) we720

should have w ∈ dom(g)∩dom(h) and also [[g]](w) ∈ Γ∗. Hence, Mg will produce721

[[g]](w) after reading a finite prefix of w. We create a look ahead which indicates722

the position where the transducer Mg can stop reading the input word w so that723

we can reset the head to the left most position and start Mh. The look ahead724

should satisfy two conditions for this purpose:725

• Mg will not visit any position to the left of the current position in its726

remaining run on w.727

• The output produced by running Mg on the suffix of w should be ε.728

To accommodate these two conditions, we construct for each state q ∈ Qg, a729

transducer Aq and we define an ω-regular look ahead language as Lq = dom(Aq).730

The structure of Aq is the same as Mg except that we731
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• add a new initial state ιq and the transition δq(ιq,`,Σω) = (q, ε,+1),732

• remove all transitions from Mg where the output is γ 6= ε,733

• remove all transitions from Mg where the input symbol is `.734

We explain the construction of the ω-2DMTla A such that [[g � h]] = [[A]]. The735

set of states of A are QA = Qg ∪Qh ∪ {reset}. Backward transitions in A and736

Mg are the same: δA(q, a,R) = (q′, γ,−1) iff δg(q, a,R) = (q′, γ,−1). Forward737

transitions of Mg are divided into two depending on the look ahead. If we have738

δg(q, a,R) = (q′, γ,+1) in Mg for an a ∈ Σ`, then739

δA(q, a,R \ Lq′) = (q′, γ,+1) and δA(q, a,R ∩ Lq′) = (reset, γ,+1).740

From the reset state, we go to the left until ` is reached and then start running Mh.741

So, δA(reset, a,Σω) = (reset, ε,−1) for all a ∈ Σ and δA(reset,`, R) = (q′′, γ,+1)742

if δh(sh,`, R) = (q′′, γ,+1). The accepting set is the same as the Muller accepting743

set Fh of Mh.744

(3) Cauchy product. From the transducers Mf and Mg, we can construct a745

DFA Df = (Qf ,Σ, δf , sf , Ff ) that accepts dom(Mf ) and a deterministic Muller746

automaton (DMA) Dg = (Qg,Σ, δg, sg,Fg) that accepts dom(Mg).747

Now, the set L of words w having at least two factorizations w = u1v1 = u2v2748

with u1, u2 ∈ dom(f), v1, v2 ∈ dom(g) and u1 6= u2 is ω-regular. This is easy749

since L can be written as L =
⋃
p∈Ff ,q∈Qg

Lp ·Mp,q ·Rq where750

• Lp ⊆ Σ∗ is the regular set of words which admit a run in Df from its initial751

state to state p,752

• Mp,q ⊆ Σ∗ is the regular set of words which admit a run in Df from state753

p to some final state in Df , and also admit a run in Dg from the initial754

state to some state q in Dg,755

• Rq ⊆ Σω is the ω-regular set of words which (i) admit an accepting run756

from state q in Dg and also (ii) admit an accepting run in Dg from its757

initial state sg.758

Therefore, dom(f � g) = (dom(f) · dom(g)) \ L is ω-regular.759

First we construct an ω-1DMTla D such that dom(D) = dom(f � g) and760

on an input word w = uv with u ∈ dom(f) and v ∈ dom(g), it produces the761

output u#v where # /∈ Σ is a new symbol. From its initial state while reading762

`, D uses the look-ahead to check whether the input word w is in dom(f � g)763

or not. If yes, it moves right and enters the initial state of Df . If not, it goes764

to a sink state and rejects. While running Df , D copies each input letter to765

output. Upon reaching a final state of Df , we use the look-ahead dom(g) to see766

whether we should continue running Df or we should switch to Dg. Formally, if767

δf (q, a) = q′ ∈ Ff the corresponding transitions of D are768

δD(q, a, dom(g)) = (sg, a#,+1) and δD(q, a,Σω \ dom(g)) = (q′, a,+1).769

While running Dg, D copies each input letter to output. Accepting sets of D are770

the accepting sets of the DMA Dg. Thus, D produces an output u#v for an input771

string w = uv which is in dom(f � g) such that u ∈ dom(f) and v ∈ dom(g).772

Next we construct an ω-2DMTla T which takes input words of the form u#v773

with u ∈ Σ∗ and v ∈ Σω, runs Mf on u and Mg on v. To do so, u is traversed774

in either direction depending on Mf and the symbol # is interpreted as right775

end marker a for Mf . While simulating a transition of Mf moving right of a,776

producing the output γ and reaching state q, there are two possibilities. If q is777

not a final state of Mf then T moves to the right of #, goes to some sink state778

and rejects. If q is a final state of Mf , then T stays on # producing the output779

γ and goes to the initial state of Mg. Then, T runs Mg on v interpreting # as780
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`. The Muller accepting set of T is the same as Mg.781

We construct an ω-2DMTla A as the composition of D and T . Regular782

transformations are definable by ω-2DMTla [4] and are closed under composition783

[14]. Thus the composition of an ω-1DMTla and an ω-2DMTla is an ω-2DMTla.784

We deduce that A is an ω-2DMTla. Moreover [[A]] = [[f � g]].785

(4) ω-iteration. By Remark 18, this is a derived operator and hence the result786

follows from the next case.787

(5) 2-chained ω-iteration. First we show that the set of words w in Σω having788

an unambiguous decomposition w = u1u2 · · · with ui ∈ K for each i is ω-regular.789

As in case (3) above, the language L of words w having at least two factorizations790

w = u1v1 = u2v2 with u1, u2 ∈ K, v1, v2 ∈ Kω and u1 6= u2 is ω-regular. Hence,791

L′ = K∗ ·L is ω-regular and contains all words in Σω having several factorizations792

as products of words in K. We deduce that Σω \ L′ is ω-regular.793

As in case (3) above, we construct an ω-1DMTla D which takes as input w and794

outputs u1#u2# · · · iff there is an unambiguous decomposition of w as u1u2 · · ·795

with each ui ∈ K. We then construct an ω-2DMT D′ that takes as input words796

of the form u1#u2# · · · with each ui ∈ Σ∗ and produces u1u2#u2u3# · · · .797

Next we construct an ω-2DMT T that takes as input words of the form798

w1#w2# · · · with each wi ∈ Σ∗ and runs Mf on each wi from left to right. The799

transducer T interprets # as ` (resp. a) when it is reached from the right (resp.800

from left). While simulating a transition of Mf moving right of a, we proceed801

as in case (3) above, except that T goes to the initial state of Mf instead.802

The ω-2DMTla A is then obtained as the composition of D, D′ and T . The803

output produced by A is thus [[Mf ]](u1u2)[[Mf ]](u2u3) · · · .804

3.4. Backward deterministic Büchi automata (BDBA)805

A Büchi automaton over the input alphabet Σ is a tuple B = (P,Σ,∆,Fin)806

where P is a finite set of states, Fin ⊆ P is the set of final (accepting) states,807

and ∆ ⊆ P × Σ× P is the transition relation. A run of B over an infinite word808

w = a1a2a3 · · · is a sequence ρ = p0, a1, p1, a2, p2, . . . such that (pi−1, ai, pi) ∈ ∆809

for all i ≥ 1. The run is final (accepting) if inf(ρ) ∩ Fin 6= ∅ where inf(ρ) is the810

set of states visited infinitely often by ρ. This is a Büchi acceptance condition.811

The Büchi automaton B is backward deterministic (BDBA) or complete812

unambiguous (CUBA) if for all infinite words w ∈ Σω, there is exactly one813

run ρ of B over w which is final, this run is denoted B(w). The fact that we814

request at least/most one final run on w explains why the automaton is called815

complete/unambiguous. Wlog, we may assume that all states of B are useful, i.e.,816

for all p ∈ P there exists some w ∈ Σω such that B(w) starts from state p. In817

that case, it is easy to check that the transition relation is backward deterministic818

and complete: for all (p, a) ∈ P × Σ there is exactly one state p′ such that819

(p′, a, p) ∈ ∆. We write p′
a←− p and state p′ is denoted ∆−1(p, a). In other words,820

the inverse of the transition relation ∆−1 : P × Σ→ P is a total function.821

For each state p ∈ P , we let L(B, p) be the set of infinite words w ∈ Σω such822

that B(w) starts from p. Notice that, Σω =
⊎
p∈P L(B, p), i.e., words in Σω are823

partitioned according to the starting state of their unique final run. For every824

subset I ⊆ P of initial states, the language L(B, I) =
⋃
p∈I L(B, p) is ω-regular.825
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Example 23. For instance, the automaton B below is a BDBA. Moreover,826

we have L(B, p2) = (Σ \ {#})ω, L(B, p4) = (#Σ∗)ω, and L(B, {p1, p3, p4}) =827

Σ∗#Σω.828

p1 p2

Σ Σ \ {#}

#
p3 p4

Σ \ {#} #

Σ \ {#}

#

Deterministic Büchi automata (DBA) are strictly weaker than non-deterministic829

Büchi automata (NBA) but backward determinism keeps the full expressive830

power.831

Theorem 24 (Carton & Michel [10]). A language L ⊆ Σω is ω-regular iff832

L = L(B, I) for some BDBA B and initial set I.833

The proof in [10] is constructive, starting with an NBA with m states, they834

construct an equivalent BDBA with (3m)m states.835

A crucial fact on BDBA is that they are easily closed under Boolean operations.836

In particular, the complement, which is quite difficult for NBAs, becomes trivial837

with BDBAs: L(B, P \ I) = Σω \ L(B, I). For intersection and union, we simply838

use the classical cartesian product of two automata B1 and B2. This clearly839

preserves the backward determinism. For intersection, we use a generalized840

Büchi acceptance condition, i.e., a conjunction of Büchi acceptance conditions.841

For BDBAs, generalized and classical Büchi acceptance conditions are equivalent842

[10]. We obtain immediately843

Corollary 25. Let R be a finite family of ω-regular languages. There is a BDBA844

B and a tuple of initial sets (IR)R∈R such that R = L(B, IR) for all R ∈ R.845

3.5. Replacing the look-ahead of an ω-2DMTla with a BDBA846

Let A = (Q,Σ,Γ, q0, δ,F ,R) be an ω-2DMTla. By Corollary 25 there is a847

BDBA B = (P,Σ,∆,Fin) and a tuple (IR)R∈R of initial sets for the finite family848

R of ω-regular languages used as look-ahead by the transducer A. Recall that849

for every pair (q, a) ∈ Q× Σ`, the subset R(q, a) of languages R ∈ R such that850

δ(q, a,R) is defined forms a partition of Σω. We deduce that (IR)R∈R(q,a) is a851

partition of P .852

We construct an ω-2DMT Ã = (Q, Σ̃,Γ, q0, δ̃,F) without look-ahead over the853

extended alphabet Σ̃ = Σ × P which is equivalent to A in some sense made854

precise below. Intuitively, in a pair (a, p) ∈ Σ̃`, the state p of B gives the855

look-ahead information required by A. Formally, the deterministic transition856

function δ̃ : Q× Σ̃` → Q× Γ∗ × {−1,+1} is defined as follows: for q ∈ Q and857

(a, p) ∈ Σ̃` we let δ̃(q, (a, p)) = δ(q, a,R) for the unique R ∈ R(q, a) such that858

p ∈ IR.859

Example 26. For instance, the ω-2DMT Ã constructed from the ω-2DMTla of860

Figure 1 and the BDBA B of Example 23 is depicted below, where • stands for861

an arbitrary state of B.862
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q1 q2 q3

q4q5

(⊢, p1)/ε, +1

(⊢, p3)/ε, +1

(⊢, p4)/ε, +1

(⊢, p2)/ε, +1

(a, •)/ε, +1

(b, •)/ε, +1

(#, •)/ε, −1

(a, •)/a, −1

(b, •)/b, −1

(#, •)/ε, +1

(⊢, •)/ε, +1

(a, •)/a, +1

(b, •)/b, +1

(#, p1)/#, +1

(#, p3)/#, +1

(#, p4)/#, +1

(#, p2)/#, +1

(a, •)/a, +1

(b, •)/b, +1

Let w = a1a2a3 · · · ∈ Σω and let B(w) = p0, a1, p1, a2, p2, . . . be the unique

final run of B on w. We define ˜̀w = (`, p0)(a1, p1)(a2, p2) · · · ∈ Σ̃`
ω

. We can
easily check by induction that the unique run of A on w

q0`w
γ1−→ w′1q1w

′′
1

γ2−→ w′2q2w
′′
2

γ3−→ w′3q3w
′′
3

γ4−→ w′4q4w
′′
4 · · ·

corresponds to the unique run of Ã on ˜̀w
q0 ˜̀w γ1−→ w̃′1q1w̃

′′
1

γ2−→ w̃′2q2w̃
′′
2

γ3−→ w̃′3q3w̃
′′
3

γ4−→ w̃′4q4w̃
′′
4 · · ·

where for all i > 0 we have ˜̀w = w̃′iw̃
′′
i and |w′i| = |w̃′i|. Indeed, assume863

that in a configuration w′qaw′′ with `w = w′aw′′ the transducer A takes the864

transition q
(a,R)−−−→ (q′, γ,+1) and reaches configuration w′aq′w′′. Then, w′′ ∈ R865

and the corresponding configuration w̃′q(a, p)w̃′′ with ˜̀w = w̃′(a, p)w̃′′ and866

|w′| = |w̃′| is such that p ∈ IR. Therefore, the transducer Ã takes the transition867

q
(a,p)−−−→ (q′, γ,+1) and reaches configuration w̃′(a, p)q′w̃′′. The proof is similar868

for backward transitions. We have shown that A and Ã are equivalent in the869

following sense:870

Lemma 27. For all words w ∈ Σω, the ω-2DMTla A starting from `w accepts871

iff the ω-2DMT Ã starting from ˜̀w accepts, and in this case they compute the872

same output in Γ∞.873

3.6. Transition monoid of an ω-2DMTla874

We use the notations of the previous sections, in particular for the ω-2DMTla875

A, the BDBA B and the corresponding ω-2DMT Ã. As in the case of 2NFAs over876

finite words, we will define a congruence on Σ+ such that two words u, v ∈ Σ+
877

are equivalent iff they behave the same in the ω-2DMTla A, when placed in an878

arbitrary right context w ∈ Σω. The right context w is abstracted with the first879

state p of the unique final run B(w).880

The ω-2DMT Ã does not use look-ahead, hence, we may use for Ã the classical881

notion of transition monoid. Actually, in order to handle the Muller acceptance882

condition of Ã, we need a slight extension of the transition monoid defined in883

Section 2.5. More precisely, the abstraction of a finite word ũ ∈ Σ̃+ will be the884

set T̃r(ũ) of tuples (q, d,X, q′) with q, q′ ∈ Q, X ⊆ Q and d ∈ {→, y , x,←} such885
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that the unique run of Ã on ũ starting in state q on the left of ũ if d ∈ {→, y }886

(resp. on the right if d ∈ { x,←}) exits in state q′ on the left of ũ if d ∈ { y ,←}887

(resp. on the right if d ∈ {→, x}) and visits the set of states X while in ũ (i.e.,888

including q but not q′ unless q′ is also visited before the run exits ũ).889

For instance, with the automaton Ã of Example 26, we have (q4,→, {q2, q3, q4},890

q5) ∈ T̃r(ũ) when ũ ∈ ((a, p1) + (b, p1))∗(#, p1)((a, p1) + (b, p1))∗(#, p2).891

We denote by T̃rM = {T̃r(ũ) | ũ ∈ Σ̃+} ∪ {1
T̃rM
} the transition monoid of892

Ã with unit 1
T̃rM

. The classical product of the transition monoid of a two-893

way automaton [7] is extended by taking the union of the sets X occurring894

in a sequence of steps. For instance, if we have steps (q0,→, X1, q1), (q2, x895

, X3, q3), . . . , (qi−1, x, Xi, qi) in T̃r(ũ) and (q1,
y

, X2, q2), (q3,

y

, X4, q4), . . . ,896

(qi,→, Xi+1, qi+1) in T̃r(ṽ) then there is a step (q0,→, X1 ∪ · · · ∪Xi+1, qi+1) in897

T̃r(ũ · ṽ) = T̃r(ũ) · T̃r(ṽ). We denote by T̃r : Σ̃∗ → T̃rM the canonical morphism.898

Let u = a1 · · · an ∈ Σ+ be a finite word of length n > 0 and let p ∈ P .899

We define the sequence of states p0, p1, . . . , pn by pn = p and for all 0 ≤900

i < n we have pi
ai+1←−−− pi+1 in B. Notice that for all infinite words w ∈901

L(B, p), the unique run B(uw) starts with p0, a1, p1, . . . , an, pn. We define ũp =902

(a1, p1)(a2, p2) · · · (an, pn) ∈ Σ̃+.903

We are now ready to define the finite abstraction Tr(u) of a finite word904

u ∈ Σ+ with respect to the pair (A,B): we let Tr(u) = (rp, bp, sp)p∈P where905

for each p ∈ P , sp = T̃r(ũp) ∈ T̃rM is the abstraction of ũp with respect to Ã,906

rp ∈ P is the unique state of B such that rp
u←− p, bp = 1 if the word ũp contains907

a final state of B and bp = 0 otherwise.908

We define the transition monoid of (A,B) as the set TrM = {Tr(u) | u ∈909

Σ+} ∪ {1TrM} where 1TrM is the unit. The product of σ1 = (rp1 , b
p
1, s

p
1)p∈P and910

σ = (rp, bp, sp)p∈P is defined to be σ1 ·σ = (rr
p

1 , b
rp

1 ∨bp, sr
p

1 ·sp)p∈P . We can check911

that this product is associative, so that (TrM, ·,1TrM) is a monoid. Moreover,912

let u, v ∈ Σ+ be such that Tr(u) = σ1 and Tr(v) = σ. For each p ∈ P , we can913

check that ũv
p

= ũr
p · ṽp. We deduce easily that Tr(uv) = σ1 · σ = Tr(u) · Tr(v).914

Therefore, Tr : Σ∗ → TrM is a morphism.915

3.7. ω-2DMTla to ω-RTE916

We prove in this section that from an ω-2DMTla A we can construct an917

equivalent ω-RTE. The proof follows the ideas already used for finite words in918

Section 2.6. We will use the following generalization to infinite words of the919

unambiguous forest factorization Theorem 12.920

Theorem 28 (Unambiguous Forest Factorization [21]). Let ϕ : Σ∗ → S be921

a morphism to a finite monoid (S, ·,1S). There is an unambiguous rational922

expression G =
⋃m
k=1 Fk ·Gωk over Σ such that L(G) = Σω and Fk ·G+

k are ε-free923

ϕ-good rational expressions for all 1 ≤ k ≤ m.924

We will apply this theorem to the morphism Tr : Σ∗ → TrM defined in925

Section 3.6. We use the unambiguous expression G =
⋃m
k=1 Fk ·Gωk as a guide926

when constructing ω-RTEs corresponding to the ω-2DMTla A.927

The following lemma is similar to Lemma 14. It shows how to construct the928

RTEs associated with steps of elements of the transition monoid TrM.929

Lemma 29. Let G be an ε-free Tr-good rational expression and let Tr(G) =930

σG = (rpG, b
p
G, s

p
G)p∈P be the corresponding element of the transition monoid TrM931
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of (A,B). For each state p ∈ P , we can construct a map CpG : spG → RTE such932

that for each step x = (q, d,X, q′) ∈ spG the following invariants hold:933

(J1) dom(CpG(x)) = L(G),934

(J2) for each u ∈ L(G), [[CpG(x)]](u) is the output produced by Ã when running935

step x on ũp (i.e., running Ã on ũp from q to q′ following direction d).936

Proof. The proof is by structural induction on the rational expression. For each937

subexpression E of G we let Tr(E) = σE = (rpE , b
p
E , s

p
E)p∈P be the corresponding938

element of the transition monoid TrM of (A,B). We start with atomic regular939

expressions. Since G is ε-free and ∅-free, we do not need to consider E = ε940

or E = ∅. The construction is similar to the one given in Section 2.6. The941

interesting cases are concatenation and Kleene-plus.942

atomic Assume that E = a ∈ Σ is an atomic subexpression. Notice that943

ãp = (a, p) for all p ∈ P . Since the ω-2DMT Ã is deterministic and944

complete, for each state q ∈ Q we have945

• either δ̃(q, (a, p)) = (q′, γ, 1) and we let Cpa((q,→, {q}, q′)) = Cpa((q, x946

, {q}, q′)) = a ? γ : ⊥,947

• or δ̃(q, (a, p)) = (q′, γ,−1) and we let Cpa((q,

y

, {q}, q′)) = Cpa((q,←948

, {q}, q′)) = a ? γ : ⊥.949

Clearly, invariants (J1) and (J2) hold for all x ∈ spE .950

union Assume that E = E1 ∪E2. Since E is good, we deduce that σE = σE1 =951

σE2
. For each p ∈ P and x ∈ spE we define CpE(x) = E1 ?CpE1

(x) : CpE2
(x).952

Since E is unambiguous we have L(E1) ∩ L(E2) = ∅. As in Section 2.6 we953

can prove easily that invariants (J1) and (J2) hold for all x ∈ spE .954

concatenation Assume that E = E1 · E2 is a concatenation. Since E is good,955

we deduce that σE = σE1 · σE2 . Let p ∈ P and p1 = rpE2
. We have956

spE = sp1E1
· spE2

. Let x ∈ spE .957

If x = (q,→, X, q′) then, by definition of the product in the transition

monoid T̃rM, there is a unique sequence of steps x1 = (q,→, X1, q1),
x2 = (q1,

y

, X2, q2), x3 = (q2, x, X3, q3), x4 = (q3,

y

, X4, q4), . . . , xi =
(qi−1, x, Xi, qi), xi+1 = (qi,→, Xi+1, q

′) with i ≥ 1, x1, x3, . . . , xi ∈ sp1E1

and x2, x4, . . . , xi+1 ∈ spE2
and X = X1 ∪ · · · ∪Xi+1 (see Figure 10). We

define

CpE(x) = (Cp1E1
(x1) � CpE2

(x2))� (Cp1E1
(x3) � CpE2

(x4))� · · · �
(Cp1E1

(xi) � CpE2
(xi+1)) .

Notice that when i = 1 we have CpE(x) = Cp1E1
(x1) � CpE2

(x2) with x2 =958

(q1,→, X2, q
′).959

The concatenation L(E) = L(E1) · L(E2) is unambiguous. Therefore, for960

all y ∈ sp1E1
and z ∈ spE2

, using (J1) for E1 and E2, we obtain dom(Cp1E1
(y)�961

CpE2
(z)) = L(E). We deduce that dom(CE(x)) = L(E) and (J1) holds for962

E and x = (q,→, X, q′).963

Now, let u ∈ L(E) and let u = u1u2 be its unique factorization with
u1 ∈ L(E1) and u2 ∈ L(E2). We have ũ1u2

p
= ũ1

p1 · ũ2p. Hence, the step

x = (q,→, X, q′) performed by Ã on ũp is actually the concatenation of
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Figure 10: In the concatenation E = E1 ·E2, a step x = (q,→, X, q′) ∈ spE on some u1u2 with
u1 ∈ E1 and u2 ∈ E2, is obtained by composing the following steps alternatively from sp1E1

and spE2
for a unique state p1: x1 = (q,→, X1, q1), x2 = (q1,

y
, X2, q2), x3 = (q2, x, X3, q3),

x4 = (q3,

y

, X4, q4), x5 = (q4, x, X5, q5), x6 = (q5,→, X6, q′) with X = X1 ∪ · · · ∪X6.

steps x1 on ũ1
p1 , followed by x2 on ũ2

p
, followed by x3 on ũ1

p1 , followed
by x4 on ũ2

p
, . . . , until xi+1 on ũ2

p
. Using (J2) for E1 and E2, we deduce

that the output produced by Ã while making step x on ũp is

[[Cp1E1
(x1)]](u1) · [[CpE2

(x2)]](u2) · · · [[Cp1E1
(xi)]](u1) · [[CpE2

(xi+1)]](u2)

= [[CpE(x)]](u)

Therefore, (J2) holds for E and step x = (q,→, X, q′). The proof is obtained964

mutatis mutandis for the other cases x = (q,

y

, X, q′) or x = (q, x, X, q′)965

or x = (q,←, X, q′).966

Kleene-plus Assume that E = F+. Since E is good, we deduce that σE =967

σF = σ = (rp, bp, sp)p∈P is an idempotent of the transition monoid TrM.968

Notice that for all p ∈ P , since σ is an idempotent, we have rr
p

= rp.969

We first define CpE for states p ∈ P such that p = rp. Let x ∈ sp.970

• If x = (q,

y

, X, q′). Since F+ is unambiguous, a word u ∈ L(F+)971

admits a unique factorization u = u1u2 · · ·un with n ≥ 1 and ui ∈972

L(F ). Now, Tr(ui) = σ for all 1 ≤ i ≤ n and since p = rp we deduce973

that ũp = ũ1
p
ũ2
p · · · ũnp. Since x = (q,

y

, X, q′) ∈ sp, the unique974

run ρ of Ã starting in state q on the left of ũ1
p

exits on the left in975

state q′. Therefore, the unique run of Ã starting in state q on the976

left of ũp only visits ũ1
p

and is actually ρ itself. Therefore, we set977

CpE(x) = CpF (x) � (F ∗ ? ε : ⊥) and we can easily check that (J1–J2)978

are satisfied.979

• Similarly for x = (q, x, X, q′) we set CpE(x) = (F ∗ ? ε : ⊥) � CpF (x).980

• If x = (q,→, X, q′). Since σ is an idempotent, we have x ∈ sp · sp. We981

distinguish two cases depending on whether the step y ∈ sp starting982

in state q′ from the left goes to the right or goes back to the left.983

First, if y = (q′,→, X2, q2) ∈ sp goes to the right. Since sp is an984

idempotent, following x in sp · sp is the same as following x in (the985

first) sp and then y in (the second) sp. Therefore, we must have986

q2 = q′ and X2 ⊆ X. In this case, we set CpE(x) = F ?CpF (x) :987 (
CpF (x) � (CpF (y))

�)
.988

Second, if y = (q′,

y

, X2, q2) ∈ sp goes to the left. Since sp is an
idempotent, there exists a unique sequence of steps in sp: x1 = x,
x2 = y, x3 = (q2, x, X3, q3), x4 = (q3,

y

, X4, q4), . . . , xi = (qi−1, x
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Figure 11: In the Kleene-plus E = F+, a step x = (q,→, X, q′) ∈ spE on some u = u1u2 · · ·un

with u` ∈ L(F ) is obtained by composing the following steps in spF : x1 = x, x2 = (q′,

y

, X2, q2),
x3 = (q2, x, X3, q3), x4 = (q3,

y

, X4, q4), x5 = (q4, x, X5, q5), x6 = (q5,→, X6, q′) with
X = X1 ∪ · · · ∪X6.

, Xi, qi), xi+1 = (qi,→, Xi+1, q
′) with i ≥ 3 (see Figure 11). We define

CpE(x) =
(
CpF (x) � (F ∗ ? ε : ⊥)

)
� [F,C ′]2�

C ′ =
(
(F ? ε : ⊥) � CpF (x2)

)
� (CpF (x3) � CpF (x4))� · · · �

(CpF (xi) � CpF (xi+1))

The proof of correctness, i.e., that (J1–J2) are satisfied for E, is as in989

Section 2.6.990

• If x = (q,←, X, q′), the proof is obtained mutatis mutandis, using the991

backward unambiguous (2-chained) Kleene-plus C
←−
� and [K,C]

←−
2�.992

Now, we consider p ∈ P with rp 6= p. We let p′ = rp. We have already993

noticed that since σ is idempotent we have rp
′

= p′. Consider a word994

u ∈ L(F+). Since F+ is unambiguous, u admits a unique factorization995

u = u1 · · ·un−1un with n ≥ 1 and ui ∈ L(F ). Now, Tr(ui) = σ for all 1 ≤996

i ≤ n. Using rp = p′ and rp
′

= p′ we deduce that ũp = ũ1
p′ · · · ũn−1

p′

ũn
p
.997

So when n > 1, the expression CpE that we need to compute is like the998

concatenation of Cp
′

E on the first n− 1 factors with CpF on the last factor.999

Since rp
′

= p′ we have already seen how to compute Cp
′

E . We also know1000

how to handle concatenation. So it should be no surprise that we can1001

compute CpE when p 6= rp. We define now formally CpE(x) for x ∈ sp.1002

• If x = (q,

y

, X, q′) ∈ sp. There are two cases depending on whether1003

the step y ∈ sp′ starting in state q from the left goes back to the left1004

or goes to the right.1005

If it goes back to the left, then y = (q,

y

, X, q′) = x since sp = sp
′ · sp
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Figure 12: (Left) Given a look-ahead p ∈ P , a step (q,→, q′) of `u for some u with Tr(u) =
(rp, bp, sp)p∈P , is obtained by composing the following steps alternatively from sp` and sp:
x1 = (q,→, q1), x2 = (q1,

y

, X2, q2), x3 = (q2, x, q3), x4 = (q3,

y
, X4, q4), x5 = (q4, x, q5),

x6 = (q5,→, X6, q′). (Right) Similarly, a step (q, x, q′) of `u is obtained by composing the
following steps alternatively from sp and sp`: x1 = (q,←, X1, q1), x2 = (q1, x, q2), x3 =
(q2,

y

, X3, q3), x4 = (q3, x, q4), x5 = (q4,→, X5, q′).

(recall that σ is idempotent) and we define

CpE(x) = F ?CpF (x) : (Cp
′

F (x) � (F+ ? ε : ⊥)) .

If it goes to the right, then y = (q,→, X1, q1) and there exists a
unique sequence of steps: x1 = y, x2 = (q1,

y

, X2, q2), x3 = (q2, x

, X3, q3), x4 = (q3,

y

, X4, q4), . . . , xi = (qi−1,←, Xi, q
′) with i ≥ 3,

x1, x3, . . . , xi ∈ sp
′

and x2, . . . , xi−1 ∈ sp. Notice that X = X1∪ · · ·∪
Xi. We define CpE(x) = F ?CpF (x) : C ′ where

C ′ = (Cp
′

E (x1) � CpF (x2))� · · · � (Cp
′

E (xi−2) � CpF (xi−1))�(
Cp
′

E (xi) � (F ? ε : ⊥)
)
.

We can check that (J1–J2) are satisfied for (E, p, x).1006

• If x = (q,←, X, q′) ∈ sp. There are two cases depending on whether1007

the step y ∈ sp′ starting in state q′ from the right goes to the left or1008

goes back to the right.1009

If it goes to the left, then y = (q′,←, X ′, q′) with X ′ ⊆ X and we
define

CpE(x) = F ?CpF (x) : (Cp
′

E (y)
←−� CpF (x)) .

If it goes back to the right, then y = (q′, x, X2, q2) and there exists
a unique sequence of steps: x1 = x, x2 = y, x3 = (q2,

y

, X3, q3),
x4 = (q3, x, X4, q4), . . . , xi = (qi−1,

y

, Xi, qi) xi+1 = (qi,←, Xi+1, q
′)

with i ≥ 3, x1, x3, . . . , xi ∈ sp and x2, . . . , xi+1 ∈ sp
′
. Notice that

X2 ∪ · · · ∪Xi+1 ⊆ X. We define CpE(x) = F ?CpF (x) : C ′ where

C ′ = (Cp
′

E (x2)
←−� CpF (x1))� · · · � (Cp

′

E (xi−1)
←−� CpF (xi−2))�

(Cp
′

E (xi+1)
←−� CpF (xi)) .

We can check that (J1–J2) are satisfied for (E, p, x).1010

• The cases x = (q,→, X, q′) ∈ sp and x = (q, x, X, q′) ∈ sp can be1011

handled similarly.1012

We now define RTEs corresponding to the left part of the computation of1013

the ω-2DMTla A, i.e., on some input `u consisting of the left end-marker and1014

some finite word u ∈ Σ+. As before, the look-ahead is determined by the state1015

of the BDBA B.1016
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Lemma 30. Let F be an ε-free Tr-good rational expression. For each state1017

p ∈ P and q ∈ Q, there is a unique state q′ ∈ Q and RTEs Cp`F ((q,→, q′)) (resp.1018

Cp`F ((q, x, q′))) such that the following invariants hold:1019

(K1) dom(Cp`F ((q,→, q′))) = L(F ) (resp. dom(Cp`F ((q, x, q′))) = L(F )),1020

(K2) for each u ∈ L(F ), [[Cp`F ((q,→, q′))]](u) (resp. [[Cp`F ((q, x, q′))]](u)) is the1021

output produced by Ã on ˜̀up when starting on the left (resp. right) in state1022

q until it exists on the right in state q′.1023

Proof. Let σ = (rp, bp, sp)p∈P = Tr(F ). We fix some state p ∈ P . For all words1024

u ∈ L(F ), we have ˜̀up = (`, rp)ũp. Let sp` be the set of steps (q,→, q′), (q, x, q′)1025

such that δ̃(q, (`, rp)) = (q′, γpq ,+1) in Ã.1026

For each q ∈ Q, there is a unique sequence of steps x1 = (q,→, q1), x2 =
(q1,

y

, X2, q2), x3 = (q2, x, q3), x4 = (q3,

y
, X4, q4), . . . , xi = (qi−1, x, qi), xi+1 =

(qi,→, Xi+1, q
′) with i ≥ 1, x1, x3, . . . , xi ∈ sp` and x2, x4, . . . , xi+1 ∈ sp (see

Figure 12 left). We define

Cp`F ((q,→, q′)) = γpq � C
p
F (x2)� γpq2 � C

p
F (x4)� · · · � γpqi−1

� CpF (xi+1) .

Using Lemma 29, we can show that L(F ) = dom(Cp`F ((q,→, q′))) and also that1027

for each u ∈ L(F ), [[Cp`F ((q,→, q′))]](u) is the output produced by Ã on ˜̀up1028

when starting on the left in state q until it exists on the right in state q′.1029

For each q ∈ Q, there is a unique sequence of steps x1 = (q,←, X1, q1),
x2 = (q1, x, q2), x3 = (q2,

y

, X3, q3), x4 = (q3, x, q4), . . . , xi = (qi−1, x, qi),
xi+1 = (qi,→, Xi+1, q

′) with i ≥ 2, x2, x4, . . . , xi ∈ sp` and x1, x3, . . . , xi+1 ∈ sp
(see Figure 12 right). We define

Cp`F ((q, x, q′)) = CpF (x1)� γpq1 � C
p
F (x3)� γpq3 � · · · � γ

p
qi−1
� CpF (xi+1) .

Using Lemma 29, we can show that L(F ) = dom(Cp`F ((q, x, q′))) and also that1030

for each u ∈ L(F ), [[Cp`F ((q, x, q′))]](u) is the output produced by Ã on ˜̀up1031

when starting on the right in state q until it exists on the right in state q′.1032

Lemma 31. Let F ·Gω be an unambiguous rational expression such that F and1033

G are ε-free Tr-good rational expressions and Tr(G) = σ = (rp, bp, sp)p∈P is an1034

idempotent in the transition monoid TrM of (A,B). We can construct an ω-RTE1035

CFGω such that dom(CFGω ) = L(FGω)∩dom(A) and for each w ∈ dom(CFGω ),1036

[[CFGω ]](w) = [[A]](w).1037

Proof. We first show that there exists one and only one state p ∈ P such that1038

rp = p and bp = 1. For the existence, consider a word w = u1u2u3 · · · ∈ L(FGω)1039

with u1 ∈ L(F ) and un ∈ L(G) for all n ≥ 2. By definition of BDBA there is a1040

unique final run of B over w: p0, u1, p1, u2, p2, . . .. Let us show first that pn = p11041

for all n ≥ 1. Since σ is idempotent, we have Tr(u2 · · ·un+1) = Tr(un+1). Since1042

p1
u2···un+1←−−−−−− pn+1 and pn

un+1←−−− pn+1, we deduce that p1 = rpn+1 = pn. This1043

implies p1 = rp2 = rp1 . Let p = p1 so that p = rp and the final run of B on1044

w is p0, u1, p, u2, p, . . .. Now, for all n ≥ 2 we have Tr(un) = σ and we deduce1045

that p
un←−− p visits a final state from Fin iff bp = 1. Since the run is accepting,1046

we deduce that indeed bp = 1. To prove the unicity, let p ∈ P with p = rp and1047

bp = 1. Let v ∈ L(G). We have p
v←− p and this subrun visits a final state from1048

Fin. Therefore, p, v, p, v, p, v, p, . . . is a final run of B on vω. Since B is BDBA,1049

there is a unique final run of B on vω, which proves the unicity of p.1050

33



We apply Lemma 30. We denote by s′`F the set of triples (q, d, q′) ∈ Q×{→1051

, x} ×Q such that the RTE Cp`F (q, d, q′) is defined.1052

Starting from the initial state q0 of A, there exists a unique sequence of steps
x′1 = (q0,→, q′1), x′2 = (q′1,

y

, X ′2, q
′
2), x′3 = (q′2, x, q′3), x′4 = (q′3,

y
, X ′4, q

′
4), . . . ,

x′i = (q′i−1, x, q′i), x′i+1 = (q′i,→, X ′i+1, q) with i ≥ 1, x′1, x
′
3, . . . , x

′
i ∈ s′`F and

x′2, x
′
4, . . . , x

′
i+1 ∈ sp. We define

C1 =
(
Cp`F (x′1) � CpG(x′2)

)
�
(
Cp`F (x′3) � CpG(x′4)

)
� · · · �

(
Cp`F (x′i) � CpG(x′i+1)

)
C2 = C1 � (Gω ? ε : ⊥) .

We have dom(C1) = FG and ˜̀u1u2
p

= ˜̀u1pũ2p for all u1 ∈ F and u2 ∈ G.1053

Moreover, [[C1]](u1u2) is the output produced by Ã on ˜̀u1u2
p

when starting on1054

the left in the initial state q0 until it exists on the right in state q. Now, C2 is1055

an ω-RTE with dom(C2) = FGω and for all w = u1u2u3 . . . ∈ FGω with u1 ∈ F1056

and un ∈ G for all n > 1, we have [[C2]](w) = [[C1]](u1u2) ∈ Γ∗.1057

Now, we distinguish two cases. First, assume that there is a step x =
(q,→, X, q′) ∈ sp. Since σ is idempotent, so is sp, and since x′i+1 = (q′i,→
, X ′i+1, q) ∈ sp we deduce that q′ = q. Therefore, the unique run of Ã on˜̀w = ˜̀u1pũ2pũ3p · · · follows the steps x′1x

′
2 · · ·x′ix′i+1xxx · · · . Hence, the set of

states visited infinitely often along this run is X and the run is accepting iff
X ∈ F is a Muller set. Therefore, if X /∈ F we have FGω ∩ dom(A) = ∅ and we
set CFGω = ⊥. Now, if X ∈ F we have FGω ⊆ dom(A) and we set

CFGω = C2 �
(
(FG ? ε : ⊥) � CpG(x)ω

)
.

We have dom(CFGω) = FGω and for all w = u1u2u3 . . . ∈ FGω with u1 ∈ F
and un ∈ G for all n > 1, we have

[[CFGω ]](w) = [[C1]](u1u2)[[CpG(x)]](u3)[[CpG(x)]](u4) · · · .

By (J2), we know that for all n ≥ 3, [[CpG(x)]](un) is the output produced by1058

Ã when running step x = (q,→, X, q) on ũn
p
. We deduce that [[CFGω ]](w) =1059

[[Ã]]( ˜̀w) = [[A]](w) as desired.1060

The second case is when the unique step x1 = (q,

y

, X1, q1) in sp which starts
from the left in state q exits on the left. Since sp is idempotent and x′i+1 = (q′i,→
, X ′i+1, q) ∈ sp, by definition of the product sp · sp, there is a unique sequence of
steps x2 = (q1, x, X2, q2), x3 = (q2,

y

, X3, q3), . . . , xj = (qj−1, x, Xj , qj), xj+1 =
(qj ,→, Xj+1, q) in sp with j ≥ 2. Therefore, for all w = u1u2u3 . . . ∈ FGω with

u1 ∈ F and un ∈ G for all n > 1, the unique run of Ã on ˜̀w = ˜̀u1pũ2pũ3p · · ·
follows the steps x′1x

′
2 · · ·x′ix′i+1(x1x2x3 · · ·xjxj+1)ω. Hence, the set of states

visited infinitely often along this run is X = X1 ∪X2 ∪ · · · ∪Xj+1. We deduce
that the run is accepting iff X ∈ F is a Muller set. Therefore, if X /∈ F we
have FGω ∩ dom(A) = ∅ and we set CFGω = ⊥. Now, if X ∈ F we have
FGω ⊆ dom(A) and we set

C3 =
(
(G ? ε : ⊥) � CpG(x1)

)
�
(
CpG(x2) � CpG(x3)

)
� · · · �(

CpG(xj) � CpG(xj+1)
)

CFGω = C2 �
(
(F ? ε : ⊥) � [G,C3]2ω

)
.
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We have dom(CFGω) = FGω and for all w = u1u2u3 . . . ∈ FGω with u1 ∈ F
and un ∈ G for all n > 1, we have

[[CFGω ]](w) = [[C1]](u1u2)[[C3]](u2u3)[[C3]](u3u4) · · · .

Using (J2), we can check that this is the output produced by Ã when running1061

on ˜̀w. We deduce that [[CFGω ]](w) = [[Ã]]( ˜̀w) = [[A]](w) as desired.1062

We are now ready to prove that ω-2DMTla are no more expressive than1063

ω-RTEs.1064

Proof of Theorem 21 (2). We use the notations of the previous sections, in par-
ticular for the ω-2DMTla A, the BDBA B. We apply Theorem 28 to the canonical
morphism Tr from Σ∗ to the transition monoid TrM of (A,B). We obtain an
unambiguous rational expression G =

⋃m
k=1 Fk ·Gωk over Σ such that L(G) = Σω

and for all 1 ≤ k ≤ m the expressions Fk and Gk are ε-free Tr-good rational ex-
pressions and σGk

is an idempotent, where Tr(Gk) = {σGk
}. For each 1 ≤ k ≤ m,

let Ck = CFkGω
k

be the ω-RTE given by Lemma 31. We define the final ω-RTE as

C = F1G
ω
1 ?C1 : (F2G

ω
2 ?C2 : · · · (Fm−1Gωm−1 ?Cm−1 : Cm)) .

From Lemma 31, we can easily check that dom(C) = dom(A) and [[C]](w) =1065

[[A]](w) for all w ∈ dom(C).1066

4. Conclusion1067

The main contribution of the paper is to give a characterisation of regular1068

string transductions using some combinators, giving rise to regular transducer1069

expressions (RTE). Our proof uniformly works well for finite and infinite string1070

transformations. RTE are a succinct specification mechanism for regular transfor-1071

mations just like regular expressions are for regular languages. It is worthwhile1072

to consider extensions of our technique to regular tree transformations, or in1073

other settings where more involved primitives such as sorting or counting are1074

needed. The minimality of our combinators in achieving expressive completeness,1075

as well as computing complexity measures for the conversion between RTEs and1076

two-way transducers are open.1077
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Computer Science, 297(1-3):37–81, Mar 2003.1118
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Appendix A. 2DFT to RTE: A practical example1167

We show in this section how one computes an RTE equivalent to the 2DFT1168

A of Figure 2.1169

1. We work with the morphism Tr : Σ∗ → TrM which maps words w ∈ Σ∗ to1170

the transition monoid TrM of A. An element X ∈ TrM is a set consisting of1171

triples (p, d, q), where d is a direction {y , x,→,←}. Given a word w ∈ Σ∗,1172

a triple (p,

y

, q) ∈ Tr(w) iff when starting in state p on the left most symbol1173

of w, the run of A leaves w on the left in state q. The other directions x1174

(start at the rightmost symbol of w in state p and leave w on the right1175

in state q), ← and → are similar. In general, we have w ∈ dom(A) iff on1176

input `w a, starting on ` in the initial state of A, the run exits on the1177

right of a in some final state of A. With the automaton A of Figure 2 we1178

have w ∈ dom(A) iff (q0,→, q2) ∈ Tr(w).1179

2. For each X ∈ TrM such that (q0,→, q2) ∈ X, we find an RTE CX whose1180

domain is Tr−1(X) and such that [[A]](w) = [[CX ]](w) for all w ∈ Tr−1(X).1181

The RTE corresponding to [[A]] is the disjoint union of all these RTEs and is1182

written using the if-then-else construct iterating over for all such elementsX.1183

For instance, if the monoid elements containing (q0,→, q2) are X1, X2, X31184

then we set C = Tr−1(X1) ?CX1 : (Tr−1(X2) ?CX2 : (Tr−1(X3) ?CX3 : ⊥))1185

where ⊥ stands for a nowhere defined function, i.e., dom(⊥) = ∅.1186

3. Consider the language L = (ba+)+b ⊆ dom(A). Notice that the regular1187

expression (ba+)+b is not “good”. For instance, condition (ii) is violated1188

since Tr(bab) 6= Tr(babab). Indeed, we can see in Figure A.13 that if we1189

start on the right of bab in state q3 then we exit on the left in state q5:1190

(q3,←, q5) ∈ Tr(bab). On the other hand, if we start on the right of babab1191

in state q3 then we exit on the right in state q2: (q3, x, q2) ∈ Tr(babab).1192

Also, (q5,→, q1) ∈ Tr(bab) while (q5,→, q2) ∈ Tr(babab). It can be seen1193

that Tr(a)2 is an idempotent, hence Tr(a+) = Tr(a). We deduce also1194

Tr(ba+b) = Tr(bab)3. Finally, we have Tr((ba+)nb) = Tr(babab)4 for all1195

n ≥ 2. Therefore, to obtain the RTE corresponding to L, we compute1196

RTEs corresponding to ba+b and (ba+)+ba+b satisfying conditions (i) and1197

(ii) of “good” rational expressions.1198

4. While ba+b is good since Tr(a) is an idempotent, (ba+)+ba+b is not good,1199

the reason being that Tr(ba+) is not an idempotent. We can check that1200

Tr(ba+ba+)5 is still not idempotent, while Tr((ba+)i) = Tr((ba+)3) for1201

all i ≥ 3, (see Figure A.13: we only need to argue for (q0,→, q3), (q5,→1202

, q3) and (q6,→, q3) in Tr((ba)i), i ≥ 3, all other entries trivially carry1203

over). In particular, Tr((ba+)3) is an idempotent6. Thus, to compute1204

the RTE for L = (ba+)+b, we consider the RTEs corresponding to the1205

2Tr(a) = {(q1,→, q1), (q1, x, q1), (q2,→, q3), (q2, x, q3), (q3,→, q3), (q3, x, q3),
(q4,←, q4), (q4,

y

, q4), (q5,←, q5), (q5,

y

, q5), (q6,→, q6), (q6, x, q6)}
3Tr(ba+b) = {(q0,→, q2), (q0, x, q1), (q1,

y

, q5), (q1, x, q2), (q2,

y

, q4), (q2,←, q5),
(q3,

y

, q4), (q3,←, q5), (q4,

y

, q5), (q4, x, q1), (q5,→, q1), (q5, x, q6), (q6,→, q2), (q6, x, q1)}
4Tr(ba+ba+b) = {(q0,→, q2), (q0, x, q1), (q1,

y

, q5), (q1, x, q2), (q2,

y

, q4), (q2, x, q2),
(q3,

y

, q4), (q3, x, q2), (q4,

y

, q5), (q4, x, q1), (q5,→, q2), (q5, x, q6), (q6,→, q2), (q6, x, q1)}
5Tr(ba+ba+) = {(q0,→, q3), (q1,

y

, q5), (q1, x, q1), (q2,

y

, q4), (q2, x, q3), (q3,

y

, q4),
(q3, x, q3), (q4,

y

, q5), (q4, x, q1), (q5,→, q1), (q5, x, q6), (q6,→, q3), (q6, x, q6)}
6Tr((ba+)3) = {(q0,→, q3), (q1,

y

, q5), (q1, x, q1), (q2,

y

, q4), (q2, x, q3), (q3,

y

, q4),
(q3, x, q3), (q4,

y

, q5), (q4, x, q1), (q5,→, q3), (q5, x, q6), (q6,→, q3), (q6, x, q6)}
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“good” regular expressions E1 = ba+b, E2 = ba+ba+b, E3 = [(ba+)3]+b,1206

E4 = [(ba+)3]+ba+b and E5 = [(ba+)3]+ba+ba+b.1207

Figure A.13: Run of A on an input word in (ba+)+b.

5. We define by induction, for each “good” expression E and “step” x =1208

(p, d, q) in the monoid element X = Tr(E) associated with E, an RTE CE(x)1209

whose domain is E and, given a word w ∈ E, it computes [[CE(x)]](w)1210

the output of A when running step x on w. For instance, if E = a and1211

x = (q5,←, q5) the output is b so we set Ca(q5,←, q5) = (a ? b : ⊥). The if-1212

then-else ensures that the domain is a. Similarly, we get the RTE associated1213

with all atomic expressions and steps. For instance, Cb(q1,→, q2) = (b ? ε :1214

⊥) = Cb(q3,

y
, q4). For u, v ∈ Σ∗, we introduce the macro u/v = u ? v : ⊥.1215

We have dom(u/v) = {u} and [[u/v]](u) = v.1216

We turn to the good expression a+. If we start on the right of a word w ∈ a+1217

from state q5 then we read the word from right to left using always the1218

step (q5,←, q5). Therefore, we have Ca+(q5,←, q5) = (Ca(q5,←, q5))
←−
�

=1219

(a/b)
←−
�

. Similarly, Ca+(q4,←, q4) = (a/a)
←−
�

, Ca+(q1,→, q1) = (a/ε)
�

=1220

Ca+(q6,→, q6). Now if we start on the left of a word w ∈ a+ from1221

state q2 then we first take the step (q2,→, q3) and then we iterate the1222

step (q3,→, q3). Therefore, we have Ca+(q2,→, q3) = a ?Ca(q2,→, q3) :1223

(Ca(q2,→, q3) � (Ca(q3,→, q3))
�

) = a ? (a/ε) :
(
(a/ε) � (a/ε)

�)
, which is1224

equivalent to the RTE (a/ε)
�

.1225

We consider now E = ba+ba+ and the step x = (q0,→, q3). We have (see
Figure A.13)

CE(x) = Cb(q0,→, q1) � Ca+(q1,→, q1) � Cb(q1,→, q2) � Ca+(q2,→, q3)

= (b/ε) � (a/ε)
� � (b/ε) � (a/ε)

�

≈ (ba+ba+ ? ε : ⊥) .

More interesting is the step y = (q4, x, q1) since on a word w ∈ E, the run
which starts on the right in state q4 goes all the way to the left until it
reads the first b in state q5 and then moves to the right until it exits in
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state q1 (see Figure A.13). Therefore, we have

CE(y) =
(
(b/ε)

←−� Ca+(q5,←, q5)
←−� Cb(q4,←, q5)

←−� Ca+(q4,←, q4)
)
�(

Cb(q5,→, q6) � Ca+(q6,→, q6) � Cb(q6,→, q1) � Ca+(q1,→, q1)
)

=
(
(b/ε)

←−� (a/b)
←−
� ←−� (b/ε)

←−� (a/a)
←−
�)�(

(b/ε) � (a/ε)
� � (b/ε) � (a/ε)

�)
≈ (b/ε)

←−� (a/b)
←−
� ←−� (b/ε)

←−� (a/a)
←−
�
.

The leftmost (b/ε) in the first line is used to make sure that the input
word belongs to E = ba+ba+. Composing these steps on the right with b,
we obtain the RTE C2 = CE2

(q0,→, q2) which describes the behaviour of
A on the subset E2 = ba+ba+b ⊆ dom(A):

C2 =
(
CE(x) � Cb(q3,

y
, q4)

)
�
(
CE(y) � Cb(q1,→, q2)

)
=
(
CE(x) � (b/ε)

)
�
(
CE(y) � (b/ε)

)
≈
(
(b/ε)

←−� (a/b)
←−
� ←−� (b/ε)

←−� (a/a)
←−
�)� (b/ε) .

Therefore, [[C2]](bam1bam2b) = am2bm1 = [[A]](bam1bam2b).1226

The computation of the RTE CE3(q0,→, q2) for E3 = [(ba+)3]+b ⊆ dom(A)1227

is shown below. This involves the use of the 2-chained Kleene-plus.1228

Figure A.14: run of a word in E3 = [(ba+)3]+b

We want to compute the RTE for the step (q0,→, q2) on a word u ∈ E3. It
can be decomposed as shown in Figure A.14. Unlike the case of E2, we
have to use the 2-chained Kleene plus. Let F = (ba+)3 so that E3 = F+b.
We have (see Figure A.14),

CE3(q0,→, q2) = (CF+(q0,→, q3) � Cb(q3,

y

, q4))�
(CF+(q4, x, q1) � Cb(q1,→, q2)) .

We know that Cb(q3,

y

, q4) = (b/ε) = Cb(q1,→, q2) hence it remains to com-1229

pute CF+(q0,→, q3) and CF+(q4, x, q1). First we define RTEs associated1230
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with atomic expressions and steps which are going to be used in constructing1231

CE3
(q0,→, q2). They are Cb(q3,

y

, q4) = Cb(q6,→, q1) = Cb(q1,→, q2) =1232

Cb(q5,→, q6) = (b/ε) and Ca+(q2,→, q3) = Ca+(q1,→, q1) = (a/ε)
�

,1233

Ca+(q4,←, q4) = (a/a)
←−
�

, Ca+(q5,←, q5) = (a/b)
←−
�

. We compute RTE1234

CF (x) for the relevant steps x in the monoid element X = Tr(F ). F is an1235

unambiguous catenation of E2 = ba+ba+b with a+ and from Figure A.13,1236

it can be seen that:1237

(a) For y1 = (q0,→, q3)

CF (y1) = CE2
(q0,→, q2) � Ca+(q2,→, q3)

=
(
(b/ε)

←−� (a/b)
←−
� ←−� (b/ε)

←−� (a/a)
←−
�)� (b/ε) � (a/ε)

�

where CE2(q0,→, q2) has been computed in Section 1.1238

For example, [[CF (y1)]](bam1bam2bam3) = am2bm1 .1239

(b) Continuing with the computation for (ba+)3 as in Figure A.14, for
y2 = (q3,

y

, q4), we take the Cauchy product of Cb(q3,

y

, q4) with
(a+ba+ba+ ? ε : ⊥).

CF (y2) = Cb(q3,

y

, q4) � (a+ba+ba+ ? ε : ⊥) ≈ ((ba+)3 ? ε : ⊥)

[[CF (y2)]](bam1bam2bam3) = ε.1240

(c) For y3 = (q4, x, q1), we have

CF (y3) = (ba+ ? ε : ⊥)
←−� Cba+ba+(y3)

= (ba+ ? ε : ⊥)
←−�
(
(b/ε)

←−� (a/b)
←−
� ←−� (b/ε)

←−� (a/a)
←−
�)

≈ (ba+b ? ε : ⊥) �
(
(a/b)

←−
� ←−� (b/ε)

←−� (a/a)
←−
�)

where Cba+ba+(y3) is already computed in Section 1.1241

As an example, [[CF (y3)]](bam1bam2bam3) = am3bm2 .1242

(d) For y4 = (q1,

y

, q5), it is similar to the CE(y) computed for CE2
in

Section 1. Here we have

CF (y4) = Cba+b(y4) � (a+ba+ ? ε : ⊥)

=
(
(Cb(q1,→, q2) � Ca+(q2,→, q3) � (b/ε))�

(Cb(q4,←, q5)
←−� Ca+(q4,←, q4)

←−� Cb(q3,

y

, q4))
)

�

(a+ba+ ? ε : ⊥)

= (((b/ε) � (a/ε)
� � (b/ε))� ((b/ε)

←−� (a/a)
←−
� ←−� (b/ε))) �

(a+ba+ ? ε : ⊥)

≈
(
(b/ε)

←−� (a/a)
←−
� ←−� (b/ε)

)
� (a+ba+ ? ε : ⊥)

As an example, [[CF (y4)]](bam1bam2bam3) = am1 .1243

(e) For y5 = (q5, x, q6), in the computation of CF (y5) we need Cba+(y5).
Thus, we compute Cba+(y5) below whose computation is similar to
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CE(y) computed above.

Cba+(y5) = ((b/ε)
←−� Ca+(q5,←, q5))� (Cb(q5,→, q6) � Ca+(q6,→, q6))

= ((b/ε)
←−� (a/b)

←−
�

)� ((b/ε) � (a/ε)
�

) ≈ (b/ε)
←−� (a/b)

←−
�

We can compute CF (y5) as

CF (y5) = (ba+ba+ ? ε : ⊥) � Cba+(y5) ≈ (ba+ba+b ? ε : ⊥)
←−� (a/b)

←−
�

As an example, [[CF (y5)]](bam1bam2bam3) = bm3 .1244

(f) For y6 = (q6,→, q3), the computation of CF (y6) is similar to that of
Cba+ba+(q0,→, q2) computed above. We need Cba+ba+(q6,→, q3) and
Cba+ba+b(q6,→, q2). We see the computation of these below.

Cba+ba+(q6,→, q3) = Cb(q6,→, q1) � Ca+(q1,→, q1) �
Cb(q1,→, q2) � Ca+(q2,→, q3)

= (b/ε) � (a/ε)
� � (b/ε) � (a/ε)

�

≈ (ba+ba+ ? ε : ⊥)

Cba+ba+b(q6,→, q2) = (Cba+ba+(q6,→, q3) � Cb(q3,

y

, q4))�
(Cba+ba+(q4, x, q1) � Cb(q1,→, q2))

≈ (ba+ba+b ? ε : ⊥)�

(((b/ε)
←−� (a/b)

←−
� ←−� (b/ε)

←−� (a/a)
←−
�

) � (b/ε))

≈
(
(b/ε)

←−� (a/b)
←−
� ←−� (b/ε)

←−� (a/a)
←−
�)� (b/ε)

Note that Cba+ba+(q4, x, q1) has been computed in Section 1. Now
we concatenate with Ca+(q2,→, q3) needed in the computation.

CF (y6) = Cba+ba+b(q6,→, q2) � Ca+(q2,→, q3)

=
(
(b/ε)

←−� (a/b)
←−
� ←−� (b/ε)

←−� (a/a)
←−
�)� (b/ε) � (a/ε

�
)

≈
(
(b/ε)

←−� (a/b)
←−
� ←−� (b/ε)

←−� (a/a)
←−
�)� (ba+ ? ε : ⊥)

As an example, [[CF (y6)]](bam1bam2bam3) = am2bm1 .1245

Now we are in a position to compute RTE CF+(q0,→, q3). As shown in
figureA.14, it is a concatenation of step y1 and then steps y2, y3, y4, y5
and y6 repetitively. Consecutive pairs of (ba+)3 are needed to compute the
RTE and thanks to the 2-chained Kleene plus, we can define the RTE for
the same.

CF+(y1) = (CF (y1) � (F ∗ ? ε : ⊥))� [F,C ′]2�

C ′ = ((F ? ε : ⊥) � CF (y2))� (CF (y3) � CF (y4))� (CF (y5) � CF (y6))

As an example,1246

[[CF+(y1)]](bam1bam2bam3bam4bam5bam6) = am2bm1am3bm2am4bm3am5bm4 .1247

Finally, we compute RTE for y = (q0,→, q2) for the expression E3 =
[(ba+)3]+b by concatenating b with the above RTE.

CE3
(y) = (CF+(q0,→, q3) � Cb(q3,

y

, q4))� (CF+(q4, x, q1) � Cb(q1,→, q2))
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Notice that CF+(q4, x, q1) = (F ∗ ? ε : ⊥) � CF (y3).1248

We have already seen that CE3
(y) computes the output produced by a

successful run on a word w ∈ E3. Applying the RTE as above, we have,
for example,

[[CE3
(y)]](bam1bam2bam3bam4bam5bam6b)

= am2bm1am3bm2am4bm3am5bm4am6bm5
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