

Regular Transducer Expressions for Regular Transformations

Vrunda Dave, Paul Gastin, Shankara Narayanan

To cite this version:

Vrunda Dave, Paul Gastin, Shankara Narayanan. Regular Transducer Expressions for Regular Transformations. Information and Computation, 2022, 282, pp.104655. $10.1016/j.$ ic.2020.104655. hal-03709884

HAL Id: hal-03709884 <https://hal.science/hal-03709884v1>

Submitted on 30 Jun 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Regular Transducer Expressions for Regular Transformations¹

Vrunda Dave^a, Paul Gastin^b, Shankara Narayanan Krishna^a

^aDept of CSE, IIT Bombay, India vrunda,krishnas@cse.iitb.ac.in ${}^{b}LSV$, ENS Paris-Saclay & CNRS, Université Paris-Saclay, France paul.gastin@ens-paris-saclay.fr

Abstract

Functional MSO transductions, deterministic two-way transducers, as well as streaming string transducers are all equivalent models for regular functions. In this paper, we show that every regular function, either on finite words or on infinite words, captured by a deterministic two-way transducer, can be described with a regular transducer expression (RTE). For infinite words, the two-way transducer uses Muller acceptance and ω -regular look-ahead. RTEs are constructed from constant functions using the combinators if-then-else (deterministic choice), Hadamard product, and unambiguous versions of the Cauchy product, the 2-chained Kleene-iteration and the 2-chained omega-iteration. Our proof works for transformations of both finite and infinite words, extending the result on finite words of Alur et al. in LICS'14.

The construction of an RTE associated with a deterministic two-way transducer is guided by a regular expression which is "good" wrt. its transition monoid. "Good" expressions are unambiguous, ensuring the functionality of the output computed. Moreover, in "good" expressions, iterations (Kleene-plus or omega) are restricted to subexpressions corresponding to idempotent elements of the transition monoid. "Good" expressions can be obtained with an unambiguous version of Imre Simon's famous forest factorization theorem.

To handle infinite words, we introduce the notion of transition monoids for deterministic two-way Muller transducers with look-ahead, where the look-ahead is captured by some backward deterministic Büchi automaton.

This paper is an extended version of [15] presented at LICS'18.

1. Introduction

 One of the most fundamental results in theoretical computer science is that the class of regular languages corresponds to the class of languages recognised by finite state automata, to the class of languages definable in MSO, and to the class of languages whose syntactic monoid is finite. Regular languages are also those that can be expressed using regular expressions; this equivalence is given by Kleene's theorem. This beautiful correspondence between machines, logics and algebra in the case of regular languages paved the way to generalizations of this

¹This work has been partially supported by IRL RELAX

 fundamental theory to regular transformations [19], where, it was shown that regular transformations are those which are captured by two-way transducers and by MSO transductions a la Courcelle. Much later, streaming string transducers (SSTs) were introduced [1] as a model which makes a single pass through the input string and uses a finite set of variables that range over strings from the output alphabet. In [1], the equivalence between SSTs and MSO transductions was established, thereby showing that regular transformations are those which are captured by either SSTs, two-way transducers or MSO transductions. This theory was further extended to work for infinite string transformations [4]; the restriction from MSO transductions to first-order definable transductions, and their equivalence with aperiodic SSTs and aperiodic two-way transducers has also $_{20}$ been established over finite and infinite strings [20], [17]. Other generalizations such as [2], extend this theory to trees. More recently, this equivalence between SSTs and logical transductions is also shown to hold good even when one works with the origin semantics [8].

 Moving on, a natural problem pertains to the characterization of the output computed by two-way transducers or SSTs (over finite and infinite words) using regular-like expressions. For the strictly lesser expressive case of sequential one-way transducers, this regex characterization of the output is obtained as a special case of Sch¨utzenberger's famous equivalence [18] between weighted automata and regular weighted expressions. The question is much harder when one looks at two-way transducers, due to the fact that the output is generated in a one-way fashion, while the input is read in a two-way manner. Recently, [5] proposed a set of combinators, analogous to the operators used in forming regular expressions, to form combinator expressions and proved their equivalence with SSTs.

³⁵ Our Contributions. We generalize the result of [5] from finite to infinite words, and we propose a completely different proof technique based on transition monoids and on Simon's forest factorization theorem.

 Over finite words, we work with two-way deterministic transducers (denoted 2DFT) while over infinite words, the model considered is deterministic two- way transducers with regular look-ahead, equipped with the Muller acceptance 41 condition. Figure 1 gives an ω -2DMT_{la} (la stands for look-ahead and M in the 2DMT for Muller acceptance).

 In both cases of finite words and infinite words, we come up with a set ⁴⁴ of combinators which we use to form *regular transducer expressions* (RTE) 45 characterizing two-way transducer $(2DFT/\omega-2DMT_{1a})$.

⁴⁶ The Combinators. We describe our basic combinators that form the building blocks of RTEs. The semantics of an RTE is a partial function $f: \Sigma^{\infty} \to \Gamma^{\infty}$ 48 whose domain is denoted $\mathsf{dom}(f)$.

⁴⁹ The constant function $d \in \Gamma^*$ maps all strings in Σ^{∞} to some fixed finite output word d.

51 Given a string $w \in \Sigma^{\infty}$, the if-then-else combinator $K ? f : g$ checks if w is in \mathfrak{so} the regular language K or not, and produces $f(w)$ if $w \in K$ and $g(w)$ otherwise. 53 The Hadamard product $f \odot g$ when applied to w produces $f(w) \cdot g(w)$,

provided $f(w)$ is finite, otherwise it is undefined.

55 The unambiguous Cauchy product $f \square g$ when applied on $w \in \Sigma^{\infty}$ produces $f(u) \cdot g(v)$ if $w = u \cdot v$ is an unambiguous decomposition of w with $u \in \text{dom}(f) \cap \Sigma^*$ $57 \quad \text{and} \quad v \in \text{dom}(q)$.

Figure 1: An ω -2DMT_{la} \mathcal{A}' with $\llbracket \mathcal{A}' \rrbracket (u_1 \# u_2 \# \dots \# u_n \# v) = u_1^R u_1 \# u_2^R u_2 \# \dots \# u_n^R u_n \# v$ where $u_1, \ldots, u_n \in (a+b)^*$, $v \in (a+b)^\omega$ and u^R denotes the reverse of u. The Muller acceptance set is $\{\{q_5\}\}\.$ The look-ahead expressions $\Sigma^* \# \Sigma^\omega$ and $(\Sigma \setminus \{\#\})^\omega$ are used to check if there is a $\#$ in the remaining suffix of the input word.

S8 The unambiguous Kleene-plus f^{\boxplus} applied to $w \in \Sigma^*$ produces $f(u_1) \cdots f(u_n)$ 59 if $w = u_1 \cdots u_n$ is an unambiguous factorization of w, with each $u_i \in \text{dom}(f)$. 60 The unambiguous 2-chained Kleene-plus $[K, f]^{2 \boxplus}$ when applied to a string $w \in$ ⁶¹ Σ^* produces as output $f(u_1u_2) \cdot f(u_2u_3) \cdots f(u_{n-1}u_n)$ if w can be unambiguously

62 written as $u_1u_2\cdots u_n$, with each $u_i \in K$, for the regular language K.

We also have the reverses $f \sqsubseteq g, f^{\boxplus}$ and $[K, f]^{\geq \boxplus}$, which parse the input from
 \vdots left to right as before, but produce the output from right to left. For instance ⁶⁴ left to right as before, but produce the output from right to left. For instance, ←− ⁶⁵ with the notation above, $f^{\boxplus}(w)$ produces $f(u_n)\cdots f(u_1)$.

66 The unambiguous ω -iteration produces $f^{\omega}(w) = f(u_1)f(u_2) \cdots$ if $w \in \Sigma^{\omega}$ σ can be unambiguously decomposed as $w = u_1 u_2 \cdots$ with each $u_i \in \text{dom}(f) \cap \Sigma^*$. ⁶⁸ Finally, the unambiguous two-chained ω-iteration produces $[K, f]^{2\omega}(w) =$ ⁶⁹ $f(u_1u_2)f(u_2u_3)\cdots$ if $w \in \Sigma^\omega$ can be unambiguously decomposed as $w = u_1u_2\cdots$ ⁷⁰ with $u_i \in K$ for all $i \geq 1$, where $K \subseteq \Sigma^*$ is regular.

Example 1. Consider the RTE $C = C_4^{\boxplus} \boxdot C_2^{\omega}$ with

$$
C_1 = a ? a : (b ? b : (\# ? \# : \bot))
$$

\n
$$
C_2 = a ? a : (b ? b : \bot)
$$

\n
$$
C_3 = a ? a : (b ? b : (\# ? \varepsilon : \bot))
$$

\n
$$
C_4 = ((a + b)^* \#) ? (C_3 \stackrel{\text{f}}{=} \odot C_1 \stackrel{\text{f}}{=}) : \bot
$$

 T_1 Then dom (C_1) = dom (C_3) = $(a + b + \#)$ and dom (C_2) = $(a + b)$. Next, we $s_1 s_2$ see that $\textsf{dom}(C_4) = (a + b)^* \#$ and, for $u \in (a + b)^*$, $[[C_4]](u \#) = u^R u \#$ where ⁷³ u^R denotes the reverse of u. This gives $\textsf{dom}(C) = ((a + b)^* \#)^+ (a + b)^{\omega}$ with $u_1 = \llbracket C \rrbracket (u_1 \# u_2 \# \cdots u_n \# v) = u_1^R u_1 \# u_2^R u_2 \# \cdots \# u_n^R u_n \# v$ when $u_i \in (a + b)^*$ and $v \in (a+b)^{\omega}$. The RTE $C' = (a+b)^{\omega}$? C_2^{ω} : C corresponds to the ω -2DMT_{la} A^t 75 ⁷⁶ in Figure 1; that is, $\llbracket C' \rrbracket = \llbracket \mathcal{A}' \rrbracket$.

 σ Our main result is that two-way deterministic transducers and regular trans-⁷⁸ ducer expressions are effectively equivalent, both for finite and infinite words.

⁷⁹ Theorem 2.

80 (1) Given an RTE (resp. ω -RTE) we can effectively construct an equivalent Ω BET (resp. an ω -2DMT_{la}).

82 (2) Given a 2DFT (resp. an ω -2DMT_{la}) we can effectively construct an equiv- \sum_{83} alent RTE (resp. ω -RTE).

⁸⁴ The construction of an RTE starting from a two-way deterministic transducer 85 A is quite involved. It is based on the transition monoid $Tr M(\mathcal{A})$ of the transducer. This is a classical notion for two-way transducers over finite words, but not ⁸⁷ for two-way transducers *with look-ahead* on infinite words (to the best of our 88 knowledge). So we introduce the notion of transition monoid for ω -2DMT_{la}. We 89 handle the look-ahead with a backward deterministic Büchi automaton (BDBA), ⁹⁰ also called *complete unambiguous* or *strongly unambiguous* Büchi automata 91 [10, 24]. The translation of A to an RTE is crucially guided by a "good" (ω -92)regular expression induced by the transition monoid of A. The good (ω) -)regular expression facilitates a uniform treatment of finite and infinite words. As a remark, it is not a priori clear how the result of [5] extends to infinite words using the techniques therein.

A regular expression F over alphabet Σ is good wrt. a morphism φ from Σ^* σ to a monoid $(S, ., 1_S)$ if (i) it is unambiguous and (ii) for each subexpression 98 E of F, the image of all strings in $L(E)$ maps to a single monoid element s_E . Note that (ii) implies that for each subexpression E^+ of F, s_E is an idempotent. These good expressions are obtained thanks to an unambiguous version [21] of the celebrated forest factorization theorem due to Imre Simon [23]. Good rational expressions might be useful in settings beyond two-way transducers.

See [16, Appendix A.2] for a practical example using transducers.

 Related Work. We briefly discuss two recent papers which are closely related to this paper. As mentioned above, we generalized the result of [5] from finite to infinite words. Actually, [5] works with copyless cost register automata (CCRA) over finite words. CCRA are generalizations of SSTs and compute a partial ¹⁰⁸ function from finite words over a finite alphabet to values from a monoid $(\mathbb{D}, +, 0)$. 109 SSTs correspond to CCRAs where the output monoid is the free monoid $(\Gamma^*, \cdot, \varepsilon)$ for some finite output alphabet Γ. The combinators introduced in [5] form the basis for a declarative language DReX [3] over finite words, which can express all regular string-to-string transformations, and can also be efficiently evaluated. The proof in [5] is rather simple in the case of commutative output monoids, and quite non-trivial in the other case. The output generated in a CCRA is stored in registers, and it is important to keep track of the flow of the content between registers on each input word. To this end, [5] uses shapes, which are bi-partite graphs over the set of registers. An edge from register X to register $_{118}$ Y in a shape implies that register X flows into register Y after reading the 119 input word. The expression representing $\llbracket A \rrbracket$ for a CCRA A is obtained by "summarizing" sets of paths having some fixed shape S , and then combining the summaries appropriately: this includes concatenation of shapes, as well as iteration. While concatenation of shapes is easy, the iteration of shapes is handled via a "normalization" which ensures that the iterated shapes are idempotent.

 Very recently, [6] proposed an alternative proof for the result of [5] over finite words. The proof of [6] has some similarities with the one we proposed in our extended abstract which appeared in [15]. Instead of using the transition monoid of a two-way automaton which fully describes how a word w acts on states 129 (starting on the left/right of w in state p, the run exists on the left/right of w in 130 state q), they define a flow automaton based on Shepherdson construction $[22]$.

Figure 2: A 2DFT A with $\llbracket A \rrbracket (ba^{m_1}ba^{m_2}b \dots a^{m_k}b) = a^{m_2}b^{m_1}a^{m_3}b^{m_2} \dots a^{m_k}b^{m_{k-1}}.$

 Then, they use the state elimination technique of Brzozowski and McCluskey to obtain flows labelled with function expressions. Their technique for handling concatenation is similar to ours. The main difference is in the way loops are handled. We use the unambiguous version of Simon's theorem so that Kleene- plus only occurs on idempotents, whereas [6] defines simple loops for which they give a direct translation, and then shows how to reduce arbitrary loops to simple ¹³⁷ ones.

¹³⁸ 2. Finite Words

¹³⁹ We start with the definition of two-way automata and transducers for the ¹⁴⁰ case of finite words.

¹⁴¹ 2.1. Two-way automata and transducers

142 Let Σ be a finite input alphabet and let \vdash, \dashv be two special symbols not 143 in Σ . We assume that every input string $w \in \Sigma^*$ is presented as $\vdash w \dashv$, where 144 \vdash , \dashv serve as left and right delimiters that appear nowhere else in w. We write 145 $\Sigma_{\vdash \dashv} = \Sigma \cup {\vdash, \dashv}.$ A two-way automaton $\mathcal{A} = (Q, \Sigma, \delta, I, F)$ has a finite set of 146 states Q, subsets $I, F \subseteq Q$ of initial and final states and a transition relation $147 \quad \delta \subseteq Q \times \Sigma_{++} \times Q \times \{-1,1\}.$ The -1 represents the reading head moving to the ¹⁴⁸ left, while a 1 represents the reading head moving to the right. The reading 149 head cannot move left when it is on \vdash . See Figure 2 for an example.

150 A configuration of A is represented by w_1qw_2 where $q \in Q$ and $w_1w_2 \in \vdash \Sigma^* \dashv$. ¹⁵¹ If $w_2 = \varepsilon$ the computation has come to an end. Otherwise, the reading head ¹⁵² of A is scanning the first symbol of $w_2 \neq \varepsilon$ in state q. If $w_2 = aw'_2$ and if $(q, a, q', -1) \in \delta$ (hence $a \neq \vdash$), then there is a transition from the configuration ¹⁵⁴ w'_1 *bqaw*'₂ to w'_1 q'*baw*'₂. Likewise, if $(q, a, q', 1) \in \delta$, we obtain a transition from ¹⁵⁵ w_1qaw_2' to $w_1aq'w_2'$. A run of A is a sequence of transitions; it is accepting if 156 it starts in a configuration $p\vdash w\vdash$ with $p\in I$ and ends in a configuration $\vdash w\vdash q$ 157 with $q \in F$. The language $\mathcal{L}(\mathcal{A})$ or domain dom(\mathcal{A}) of \mathcal{A} is the set of all words ¹⁵⁸ which have an accepting run in A.

 159 To extend the definition of a two-way automaton $\mathcal A$ into a two-way transducer. 160 $(Q, \Sigma, \delta, I, F)$ is extended to $(Q, \Sigma, \Gamma, \delta, I, F)$ by adding a finite output alphabet Γ 161 and the definition of the transition relation as a *finite* subset $\delta \subseteq Q \times \Sigma_{\vdash \dashv} \times Q \times$ $r^* \times \{-1, 1\}$. The output produced on each transition is appended to the right ¹⁶³ of the output produced so far. A defines a relation $\llbracket \mathcal{A} \rrbracket = \{(u, w) \mid u \in \mathcal{L}(\mathcal{A})\}$ 164 and w is the output produced on an accepting run of u .

165 The transducer A is said to be functional if for each input $u \in \text{dom}(\mathcal{A})$, at 166 most one output w can be produced. In this case, for each $u \in \text{dom}(\mathcal{A})$, there is 167 exactly one $w \in \Gamma^*$ such that $(u, w) \in [\![\mathcal{A}]\!]$. We also denote this by $[\![\mathcal{A}]\!] (u) = w$. 168 We consider a special symbol $\perp \notin \Gamma$ that will stand for undefined. We let $169 \quad \llbracket \mathcal{A} \rrbracket(u) = \perp$ when $u \notin \text{dom}(\mathcal{A})$. Thus, the semantics of a functional transducer 170 \mathcal{A} is a map $\llbracket \mathcal{A} \rrbracket : \Sigma^* \to \mathbb{D} = \Gamma^* \cup \{\perp\}$ such that $u \in \text{dom}(\mathcal{A})$ iff $\llbracket \mathcal{A} \rrbracket(u) \neq \bot$.

¹⁷¹ We use non-deterministic unambiguous two-way transducers (2NUFT) in ¹⁷² some proofs. A two-way transducer is unambiguous if each string $u \in \Sigma^*$ has ¹⁷³ at most one accepting run. Clearly, 2NUFTs are functional. A deterministic ¹⁷⁴ two-way transducer (2DFT) is one having a single initial state and where, from 175 each state, on each symbol $a \in \Sigma_{\vdash \dashv}$, at most one transition is enabled. In that $α₁₇₆$ case, the transition relation is a partial function $δ: Q \times Σ_{dash} → Q \times Γ[*] × {-1, 1}.$ ¹⁷⁷ 2DFTs are by definition unambiguous. It is known [11] that 2DFTs are equivalent 178 to 2NUFTs.

¹⁷⁹ A 1DFT (1NUFT) represents a deterministic (non-deterministic unambigu-¹⁸⁰ ous) transducer where the reading head only moves to the right.

181 Example 3. Figure 2 shows a two-way transducer A with dom $(A) = (ba^*)^+b$, $\llbracket \mathcal{A} \rrbracket(ba^{m_1}b) = \varepsilon$ and $\llbracket \mathcal{A} \rrbracket(ba^{m_1}ba^{m_2}b \cdots a^{m_k}b) = a^{m_2}b^{m_1}a^{m_3} b^{m_2} \cdots a^{m_k}b^{m_{k-1}}$ 182 183 for $k \geq 2$ and $m_i \in \mathbb{N}$ for $1 \leq i \leq k$.

¹⁸⁴ 2.2. Regular Transducer Expressions

185 Let Σ and Γ be finite input and output alphabets. Recall that $\bot \notin \Gamma$ is ¹⁸⁶ a special symbol that stands for *undefined*. We define the output monoid as $\mathbb{D} = \Gamma^* \cup \{\perp\}$ with the usual concatenation on words, \perp acting as a zero: 188 $d \cdot \bot = \bot \cdot d = \bot$ for all $d \in \mathbb{D}$. The unit is the empty word $\mathbf{1}_{\mathbb{D}} = \varepsilon$.

We define Regular Transducer Expressions (RTE) from Σ^* to $\mathbb D$ using some basic combinators. The syntax of RTE is defined with the following grammar:

$$
C ::= d \mid K ? C : C \mid C \odot C \mid C \boxdot C \mid C \stackrel{\leftarrow}{\boxdot} C \mid C^{\boxplus} \mid C^{\boxplus} \mid (K, C]^{2 \boxplus} \mid [K, C]^{\frac{\leftarrow}{2 \boxplus}}
$$

¹⁸⁹ where $d \in \mathbb{D}$ ranges over output values, and $K \subseteq \Sigma^*$ ranges over regular ¹⁹⁰ languages of *finite words*. The semantics of an RTE C is a function $\llbracket C \rrbracket: \Sigma^* \to \mathbb{D}$ ¹⁹¹ defined inductively following the syntax of the expression, starting from constant 192 functions. Since \perp stands for *undefined*, we define the *domain* of a function 193 $f: \Sigma^* \to \mathbb{D}$ by dom $(f) = f^{-1}(\mathbb{D} \setminus {\{\perp\}}) = \Sigma^* \setminus f^{-1}(\perp).$

194 **Constants.** For $d \in \mathbb{D}$, we let $\llbracket d \rrbracket$ be the constant map defined by $\llbracket d \rrbracket(w) = d$ 195 for all $w \in \Sigma^*$.

196 We have $\text{dom}(\llbracket d \rrbracket) = \Sigma^*$ if $d \neq \bot$ and $\text{dom}(\llbracket \bot \rrbracket) = \emptyset$.

Each regular combinator defined above allows to combine functions from Σ[∗] 197 198 to D. For functions $f, g: \Sigma^* \to \mathbb{D}, w \in \Sigma^*$ and a regular language $K \subseteq \Sigma^*$, we ¹⁹⁹ define the following combinators.

200 If then else. $(K ? f : g)(w)$ is defined as $f(w)$ for $w \in K$, and $g(w)$ for $w \notin K$. 201 We have dom $(K ? f : g) = (dom(f) \cap K) \cup (dom(g) \setminus K).$

202 **Hadamard product.** $(f \odot g)(w) = f(w) \cdot g(w)$ (recall that $(\mathbb{D}, \cdot, \mathbf{1}_{\mathbb{D}})$ is a ²⁰³ monoid).

204 We have dom(f \odot q) = dom(f) ∩ dom(q).

205 Unambiguous Cauchy product and its reverse. If w admits a unique fac-206 torization $w = u \cdot v$ with $u \in \text{dom}(f)$ and $v \in \text{dom}(g)$ then we set $(f \boxdot g)(w) = f(u) \cdot g(v)$ and $(f \boxdot g)(w) = g(v) \cdot f(u)$. Otherwise, we set $(f \sqcup g)(w) = \bot = (f \sqcup g)(w)$. 209 We have dom($f \sqcup g$) = dom($f \sqsubseteq g$) ⊆ dom(f) · dom(g) and the inclusion is 210 strict if the concatenation of $\text{dom}(f)$ and $\text{dom}(q)$ is ambiguous. $_{211}$ Unambiguous Kleene-plus and its reverse. If w admits a unique factoriza- 212 tion $w = u_1 \cdot u_2 \cdots u_n$ with $n \ge 1$ and $u_i \in \text{dom}(f)$ for all $1 \le i \le n$ then we set $f^{\boxplus}(w) = f(u_1) \cdot f(u_2) \cdots f(u_n)$ and $f^{\boxplus}(w) = f(u_n) \cdots f(u_2) \cdot f(u_1)$. 214 Otherwise, we set $f^{\boxplus}(w) = \bot = f^{\overleftrightarrow{\boxplus}}(w)$. 215 We have $\text{dom}(f^{\boxplus}) = \text{dom}(f^{\boxplus}) \subseteq \text{dom}(f)^{+}$ and the inclusion is strict ²¹⁶ if the Kleene iteration $\text{dom}(f)^+$ of $\text{dom}(f)$ is ambiguous. Notice that $_{217}$ dom $(f^{\boxplus}) = \emptyset$ when $\varepsilon \in \text{dom}(f)$. 218 Unambiguous 2-chained Kleene-plus and its reverse. If w admits a uni-219 que factorization $w = u_1 \cdot u_2 \cdots u_n$ with $n \geq 1$ and $u_i \in K$ for all $1 \leq$ 220 $i \leq n$ then we set $[K, f]^{2\mathbb{H}}(w) = f(u_1u_2) \cdot f(u_2u_3) \cdots f(u_{n-1}u_n)$ and $[K, f] \stackrel{\overbrace{\smash{\text{221}}}}{=} (w) = f(u_{n-1}u_n) \cdots f(u_2u_3) \cdot f(u_1u_2) \text{ (if } n = 1 \text{, the empty product})$ gives the unit of D: $[K, f]^{\text{2H}}(w) = \mathbf{1}_\mathbb{D} = [K, f]^{\text{2H}}(w)$. Otherwise, we set 223 $[K, f]^{2 \boxplus}(w) = \bot = [K, f]^{2 \boxplus}(w).$ Again, we have $\text{dom}([K, f]^{2 \boxplus}) = \text{dom}([K, f]^{2 \boxplus}) \subseteq K^+$ and the inclusion is strict if the Kleene iteration K^+ of K is ambiguous. Notice that, even if $w \in K^+$ admits a unique factorization $w = u_1 \cdot u_2 \cdots u_n$ with $u_i \in K$ for all 227 $1 \leq i \leq n$, w is not necessarily in the domain of $[K, f]^{2 \boxplus}$ or $[K, f]^{\overline{2 \boxplus}}$. For w to be in this domain, it is further required that $u_1u_2, u_2u_3, \ldots, u_{n-1}u_n \in$ $dom(f)$. Notice that we have $dom([K, f]^{2 \boxplus}) = dom([K, f]^{2 \boxplus}) = K^+$ when ²³⁰ *K*⁺ is unambiguous and $K^2 \subseteq \text{dom}(f)$.

231 Lemma 4. The domain of an RTE C is a regular language dom $(C) \subseteq \Sigma^*$.

Example 5. Consider the RTEs

$$
C_1 = ([(a+b)^{+} \#] ? \varepsilon : \bot) \boxdot ((a+b)^{+} ? \text{copy} : \bot)
$$

\n
$$
C_2 = \#
$$

\n
$$
C_3 = ((a+b)^{+} ? \text{copy} : \bot) \boxdot ([\# (a+b)^{+}] ? \varepsilon : \bot)
$$

232 where $\mathsf{copy} = (a ? a : (b ? b : \bot))^{\boxplus}.$

 \mathbb{Z}_{233} $Then, dom([\llbracket C_2 \rrbracket) = \Sigma^*$, $dom([\llbracket \text{copy} \rrbracket) = (a + b)^+$ $and dom([\llbracket C_1 \rrbracket) = dom([\llbracket C_3 \rrbracket) =$

234 $(a+b)^{+} \#(a+b)^{+}$. Moreover, $\llbracket C_1 \odot C_2 \odot C_3 \rrbracket (u \# v) = v \# u$ for all $u, v \in (a+b)^{+}$.

Example 6. Consider the RTEs

$$
C_a = (b? \varepsilon : \bot) \boxdot (a? a : \bot)^{\boxplus}
$$

$$
C_b = (b? \varepsilon : \bot) \boxdot (a? b : \bot)^{\boxplus}
$$

- 235 We have $\textsf{dom}([\![C_a]\!]) = ba^+ = \textsf{dom}([\![C_b]\!])$ and $[\![C_a]\!](ba^n) = a^n$ and $[\![C_b]\!](ba^n) = b^n$.
- We deduce that $\text{dom}([\llbracket C_b \sqsubseteq C_a]) = ba^+ba^+$ and $[\llbracket C_b \sqsubseteq C_a] (ba^nba^m) = a^m b^n$.

Consider the expression

$$
C = [ba^+, C_b \stackrel{\leftarrow}{\Box} C_a]^{\text{2H}} \boxdot (b? \varepsilon : \bot).
$$

237 Then, $\text{dom}(\llbracket C \rrbracket) = (ba^+)^+b$, and $\llbracket C \rrbracket (ba^m b) = \varepsilon$ and for $k \geq 2$ we have $\llbracket C \rrbracket (ba^{m_1}ba^{m_2}b\cdots a^{m_k}b) = a^{m_2}b^{m_1}a^{m_3}b^{m_2}\cdots a^{m_k}b^{m_{k-1}}.$

239 Theorem 7. 2DFTs and RTEs define the same class of functions. More pre- 240 cisely.

²⁴¹ 1. given an RTE C, we can construct a 2DFT A such that $\llbracket \mathcal{A} \rrbracket = \llbracket C \rrbracket$,

242 2. given a 2DFT A, we can construct an RTE C such that $\llbracket \mathcal{A} \rrbracket = \llbracket C \rrbracket$.

²⁴³ The proof of (1) is given in the next section, while the proof of (2) will be ²⁴⁴ given in Section 2.6 after some preliminaries in Section 2.5 on transition monoids ²⁴⁵ for 2DFTs and the unambiguous forest factorization theorem.

Remark 8. Notice that the reverse Cauchy product is redundant, it can be expressed with the Hadamard product and the Cauchy product:

 $f \overset{\leftarrow}{\boxdot} g = ((\mathsf{dom}(f)\,?\,\varepsilon:\bot) \boxdot g) \odot (f \boxdot (\mathsf{dom}(g)\,?\,\varepsilon:\bot))\,.$

The unambiguous Kleene-plus is also redundant, it can be expressed with the unambiguous 2-chained Kleene-plus:

 $f^{\boxplus} = [\textsf{dom}(f), f \boxdot (\textsf{dom}(f)\,?\,\varepsilon:\bot)]^{2\boxplus} \odot ((\textsf{dom}(f)^*\,?\,\varepsilon:\bot) \boxdot f)\,.$

²⁴⁶ Remark 9. We can extend the 2-chained Kleene-plus to k-chained Kleene-²⁴⁷ plus for any $k \geq 3$. It is defined as follows: If w admits a unique factor-248 ization $w = u_1u_2...u_n$, with $n \geq 1$ and $u_i \in K$ for all $1 \leq i \leq n$, then 249 $[K, f]^{k \boxplus}(w) = f(u_1u_2 \ldots u_k) f(u_2u_3 \ldots u_{k+1}) \ldots f(u_{n-k+1}u_{n-k+2} \ldots u_n).$ Oth-²⁵⁰ erwise, we set $[K, f]^{k \boxplus}(w) = \bot$. Notice that if $n < k$, we have an empty product 251 which gives the unit of $\mathbb{D}: [K, f]^{k \boxplus}(w) = \mathbf{1}_{\mathbb{D}}$. In [16], we have shown that adding ²⁵² the k-plus combinator (or its reverse) does not increase the expressive power of ²⁵³ RTEs.

 Remark 10. The combinator expressions proposed in [5] are equivalent to our RTEs on finite words (see below). Our terminology and notation are all inspired from weighted automata literature. We prefer to stick to these classical notions since they are well-established and we believe they are more natural for string to string transducers.

²⁵⁹ The base function L/d in [5] maps all strings in language L to the constant d, ²⁶⁰ and is undefined for strings not in L. This can be written using our if-then-else 261 L? d : ⊥. The conditional choice combinator $f \triangleright g$ of [5] maps an input σ to 262 f(σ) if it is in dom(f), and otherwise it maps it to $q(σ)$. This can be written 263 in our syntax as dom(f)? f : g. The split-sum combinator $f \oplus g$ of [5] is the classical Cauchy product $f \boxdot g$. The iterated sum Σf of [5] is the Kleene-plus f^{\boxplus} .
The left split sum and left iterated sum of [5] correspond to our reverse Cauchy 265 The left-split-sum and left-iterated sum of [5] correspond to our reverse Cauchy ₂₆₆ product $f \oplus g$ and reverse Kleene-plus $f \oplus$. The sum $f + g$ of two functions in
 $\overline{f} = \overline{f} \oplus f$ is the closesical Hadamard product $f \odot g$. Finally, the chained sum $\Sigma(f, I)$ of ²⁶⁷ [5] is the classical Hadamard product $f \odot g$. Finally, the chained sum $\Sigma(f, L)$ of

 $\left[5\right]$ is our two-chained Kleene-plus $[L, f]^{2 \overline{\boxplus}}$.

²⁶⁹ 2.3. RTE to 2DFT

 $_{270}$ In this section, we prove Theorem 7(1), i.e., we show that given an RTE C, ²⁷¹ we can construct a 2DFT A such that $\|\mathcal{A}\| = \|C\|$. We do this by structural ²⁷² induction on RTEs, starting with constant functions, and then later showing ²⁷³ that 2DFTs are closed under all the combinators used in RTEs.

274 Constant functions: We start with the constant function $d \in \mathbb{D}$ for which it 275 is easy to construct a 2DFT A such that $\llbracket d \rrbracket = \llbracket \mathcal{A} \rrbracket$. For $d = \bot$, we take A such 276 that $\text{dom}(\mathcal{A}) = \emptyset$ (for instance we use a single state and an empty transition ²⁷⁷ function). Assume now that $d \in \Gamma^*$. The 2DFT scans the word up to the ²⁷⁸ right end marker, outputs d and stops. Formally, we let $\mathcal{A} = (\lbrace q \rbrace, \Sigma, \Gamma, \delta, q, \lbrace q \rbrace)$ 279 s.t. $\delta(q, a) = (q, \varepsilon, +1)$ for all $a \in \Sigma \cup \{\vdash\}$ and $\delta(q, \dashv) = (q, d, +1)$. Clearly, 280 $\llbracket \mathcal{A} \rrbracket(w) = d$ for all $w \in \Sigma^*$.

²⁸¹ The inductive steps follow directly from:

282 Lemma 11. Let $K \subseteq \Sigma^*$ be regular, and let f and g be RTEs with $[[f]] = [[M_f]]$ ²⁸³ and $[\![g]\!] = [\![M_g]\!]$ for 2DFTs M_f and M_g respectively. Then, one can construct

- ²⁸⁴ 1. a 2DFT A such that $[[K? f : g]] = [[A]]$.
- 285 2. a 2DFT A such that $\llbracket \mathcal{A} \rrbracket = \llbracket f \odot g \rrbracket$.

286 3. 2DFTs A, B such that $[\![A]\!] = [\![f \sqcup g]\!]$ and $[\![\mathcal{B}]\!] = [\![f \sqsubseteq g]\!]$.

287 4. 2DFTs A, B such that $\llbracket \mathcal{A} \rrbracket = \llbracket f^{\boxplus} \rrbracket$ and $\llbracket \mathcal{B} \rrbracket = \llbracket f^{\overleftarrow{\boxplus}} \rrbracket$.

²⁸⁸ 5. 2DFTs A, B such that $\llbracket \mathcal{A} \rrbracket = \llbracket [K, f]^{2 \boxplus} \rrbracket$ and $\llbracket \mathcal{B} \rrbracket = \llbracket [K, f]^{2 \boxplus} \rrbracket$.

289 Proof. (1) If then else. Let β be a complete DFA that accepts the regular 290 language K. The idea of the proof is to construct a 2DFT $\mathcal A$ which first runs $\mathcal B$ 291 on the input w until the end marker \exists is reached in some state q of β . Then, ²⁹² w ∈ K iff $q \in F$ is some accepting state of β . The automaton A moves left all ²⁹³ the way to \vdash , and starts running either M_f or M_g depending on whether $q \in F$ 294 or not. Since B is complete, it is clear that $\text{dom}(\mathcal{A}) = \text{dom}(K? f : g)$ and the 295 output of A coincides with $[M_f]$ iff the input is in K, and otherwise coincides 296 with $\llbracket M_a \rrbracket$.

 297 (2) Hadamard product. Given an input w, the constructed 2DFT A first ²⁹⁸ runs M_f . Instead of executing a transition $p \xrightarrow{\rightarrow/\gamma, +1} q$ with q a final state of 299 M_f , it executes $p \stackrel{\dashv / \gamma, -1}{\longrightarrow}$ reset where reset is a new state. While in the reset 300 state, it moves all the way back to \vdash and it starts running M_g by executing ^{$+/\gamma',+1$}, q' if $\delta_g(q_0,\vdash)=(q',\gamma',+1)$ where δ_g is the transition function of ³⁰² M_g and q_0 is the initial state of M_g . The final states of A are those of M_g , and 303 its initial state is the initial state of M_f . Clearly, $\text{dom}(\mathcal{A}) = \text{dom}(M_f) \cap \text{dom}(M_g)$ 304 and the output of A is the concatenation of the outputs of M_f and M_g .

 (3) Cauchy product. The domain of a 2DFT is a regular language, accepted by the 2DFA obtained by ignoring the outputs. Since 2DFAs are effectively ³⁰⁷ equivalent to (1)DFAs, we can construct from M_f and M_g two DFAs C_f = $(Q_f, \Sigma, \delta_f, s_f, F_f)$ and $\mathcal{C}_g = (Q_g, \Sigma, \delta_g, s_g, F_g)$ such that $\mathcal{L}(\mathcal{C}_f) = \text{dom}(f)$ and $\mathcal{L}(\mathcal{C}_q) = \text{dom}(g)$.

310 Now, the set K of words w having at least two factorizations $w = u_1v_1 = u_2v_2$ 311 with $u_1, u_2 \in \text{dom}(f), v_1, v_2 \in \text{dom}(g)$ and $u_1 \neq u_2$ is also regular. This is easy ³¹² since K can be written as $K = \bigcup_{p \in F_f, q \in Q_q} L_p \cdot M_{p,q} \cdot R_q$ where

 \bullet L_p is the set of words which admit a run in \mathcal{C}_f from its initial state to the $_{314}$ final state $p \in F_f$,

³¹⁵ • $M_{p,q}$ is the set of words which admit a run in C_f from state p to some δ ₃₁₆ final state in F_f , and also admit a run in \mathcal{C}_g from its initial state to state 317 $q \in Q_q$,

³¹⁸ • R_q is the set of words which admit a run in C_g from state q to some final 319 state in F_g , and also admit a run in \mathcal{C}_g from its initial state to some final $_{320}$ state in F_q .

Therefore, we have $\text{dom}(f \sqcup g) = \text{dom}(f \sqsubseteq g) = (\text{dom}(f) \cdot \text{dom}(g)) \setminus K$ is a
secondary language and we construct a complete DFA $C - (O \sum \delta g \cdot F)$ which 322 regular language and we construct a complete DFA $\mathcal{C} = (Q, \Sigma, \delta, q_0, F)$ which ³²³ accepts this language.

324 1. From \mathcal{C}_f , \mathcal{C}_g and $\mathcal C$ we construct a 1NUFT $\mathcal D$ such that $\text{dom}(\mathcal D) = \text{dom}(f \boxdot g)$
325 and on an input word $w = u \cdot v$ with $u \in \text{dom}(f)$ and $v \in \text{dom}(g)$ it produces and on an input word $w = u \cdot v$ with $u \in \text{dom}(f)$ and $v \in \text{dom}(g)$ it produces the output $u \# v$ where $\# \notin \Sigma$ is a new symbol. On an input word $w \in \Sigma^*$, ³²⁷ the transducer D runs a copy of C. Simultaneously, D runs a copy of C_f on some prefix u of w, copying each input letter to the output. Whenever C_f is \sum_{329} in a final state after reading u, the transducer D may non-deterministically α ₃₃₀ decide to stop running C_f , to output #, and to start running C_g on the 331 corresponding suffix v of $w(w = u \cdot v)$ while copying again each input ³³² letter to the output. The transducer D accepts if C accepts w and C_q 333 accepts v. Then, we have $u \in \mathcal{L}(\mathcal{C}_f) = \text{dom}(f), v \in \mathcal{L}(\mathcal{C}_g) = \text{dom}(g)$ and 334 $w = u \cdot v \in \mathcal{L}(\mathcal{C}) = \text{dom}(f \sqcup g)$. The output produced by \mathcal{D} is $u \# v$. The only non-deterministic choice in an accepting run of \mathcal{D} is unambiguous only non-deterministic choice in an accepting run of D is unambiguous since a word $w \in \mathcal{L}(\mathcal{C}) = \text{dom}(f \sqcup g)$ has a unique factorization $w = u \cdot v$
with $u \in \text{dom}(f)$ and $v \in \text{dom}(g)$. with $u \in \text{dom}(f)$ and $v \in \text{dom}(g)$.

³³⁸ 2. We construct a 2DFT $\mathcal T$ which takes as input words of the form $u\#v$ with 339 $u, v \in \Sigma^*$, runs M_f on u and then M_g on v. To do so, u is traversed in ³⁴⁰ either direction depending on M_f , and the symbol $\#$ is interpreted as ³⁴¹ the right end marker \vdash . We explain how $\mathcal T$ simulates a transition of M_f 342 moving to the right of \exists , producing some output γ and going to a state q. ³⁴³ If q is not final, then $\mathcal T$ moves to the right of $\#$ and then all the way to ³⁴⁴ the end and rejects. If q is final, then $\mathcal T$ stays on $\#$ (simulated by moving $\frac{3}{45}$ right and then back left), producing the output γ , but goes to the initial 346 state of M_g instead. T then runs M_g on v, interpreting $\#$ as \vdash . When M_g 347 moves to the right of \neg , \mathcal{T} does the same and accepts iff M_g accepts.

 348 3. In a similar manner, we construct a 2DFT \mathcal{T}' which takes as input strings 349 of the form $u \# v$, first runs M_q on v and then runs M_f on u. Assume that ³⁵⁰ M_g wants to move to the right of \exists going to state q. If q is not final then ³⁵¹ \mathcal{T}' also moves to the right of \dashv and rejects. Otherwise, \mathcal{T}' traverses back to ³⁵² \vdash and runs M_f on u. When M_f wants to move to the right of # going to some state q and producing γ , \mathcal{T}' moves also to the right of # producing ³⁵⁴ γ and then all the way right producing ε . After moving to the right of \exists , $\frac{355}{355}$ it accepts if q is a final state of M_f and rejects otherwise.

356 We construct a 2NUFT \mathcal{A}' as the composition of \mathcal{D} and \mathcal{T} . The composition 357 of a 1NUFT and a 2DFT is a 2NUFT [11], hence \mathcal{A}' is a 2NUFT. Moreover,

 $[\![\mathcal{A}^\prime]\!] = [\![f \boxdot g]\!]$. Using the equivalence of 2NUFT and 2DFT, we can convert \mathcal{A}^\prime 358 into an equivalent 2DFT A. In a similar way, to obtain $[f \sqsubseteq g]$, the 2NUFT \mathcal{B}'
is obtained as a composition of \mathcal{D} and \mathcal{T}' and is then converted to an equivalent 359 360 is obtained as a composition of D and T' and is then converted to an equivalent 361 2DFT B.

362 (4) **Kleene-plus.** The proof is similar to case (3). First, we show that $\text{dom}(f^{\boxplus})$ 363 is regular. Notice that if $\varepsilon \in \text{dom}(f)$ then $\text{dom}(f^{\boxplus}) = \emptyset$, hence we assume below 364 that $\varepsilon \notin \text{dom}(f)$. As in case (3), the language K of words w having at least ³⁶⁵ two factorizations $w = u_1v_1 = u_2v_2$ with $u_1, u_2 \in \text{dom}(f)$, $v_1, v_2 \in \text{dom}(f)^*$ and 366 $u_1 \neq u_2$ is regular. Hence, $K' = \text{dom}(f)^* \cdot K$ is regular and contains all words \sum_{367} in dom $(f)^+$ having several factorizations as products of words in dom (f) . We ³⁶⁸ deduce that $\textsf{dom}(f^{\boxplus}) = \textsf{dom}(f)^+ \setminus K'$ is regular and we can construct a complete 369 DFA C recognizing this domain.

 Δ_{370} As in case (3), from C_f and C, we construct a 1NUFT D which takes as input 371 w and outputs $u_1 \# u_2 \# \cdots \# u_n$ iff there is an unambiguous decomposition of 372 w as $u_1u_2\cdots u_n$, with each $u_i \in \text{dom}(f)$. We then construct a 2DFT $\mathcal T$ that ³⁷³ takes as input words of the form $u_1 \# u_2 \# \cdots \# u_n$ with each $u_i \in \Sigma^*$ and runs M_f on each u_i from left to right, i.e., starting with u_1 and ending with u_n . The 375 transducer $\mathcal T$ interprets $\#$ as \vdash (resp. \neg) when it is reached from the right (resp. 376 left). The simulation by $\mathcal T$ reading $\#$ of a transition of M_f moving to the right 377 of \exists is as in case (3), except that $\mathcal T$ goes to the initial state of M_f .

 T_{378} The 2NUFT \mathcal{A}' is then obtained as the composition of \mathcal{D} with the 2DFT \mathcal{T} . Finally, a 2DFT A equivalent to the 2NUFT \mathcal{A}' is constructed. Likewise, \mathcal{B} 380 is obtained using the composition of D with a 2DFT \mathcal{T}' that runs M_f on each 381 factor u_i from right to left.

382 (5) 2-chained Kleene-plus. As in case (4), we construct the 1NUFT $\mathcal D$ which ³⁸³ takes as input w and outputs $u_1 \# u_2 \# \cdots \# u_n$ iff there is an unambiguous 384 decomposition of w as $u_1u_2\cdots u_n$, with each $u_i \in K$. We then construct a 2DFT 385 D' that takes as input words of the form $u_1 \# u_2 \# \cdots \# u_n$ with each $u_i \in \Sigma^*$ and 386 produces $u_1u_2\#u_2u_3\#\cdots\#u_{n-1}u_n$. The 2NUFT \mathcal{A}' is then obtained as the ³⁸⁷ composition of D' with the 2DFT $\mathcal T$ constructed for case (4). Finally, a 2DFT $\mathcal A$ 388 equivalent to the 2NUFT \mathcal{A}' is constructed. The output produced by \mathcal{A} is thus 389 $[M_f](u_1u_2) \cdot [M_f](u_2u_3) \cdots [M_f](u_{n-1}u_n)$. We proceed similarly for B. \Box

³⁹⁰ 2.4. Unambiguous forest factorization

 \mathcal{S}_{391} In Section 2.6, we prove that, given a 2DFT \mathcal{A} , we can obtain an RTE C such that $\llbracket \mathcal{A} \rrbracket = \llbracket C \rrbracket$. We use the fact that any $w \in \Sigma^*$ in the domain of A can ³⁹³ be factorized unambiguously into a good rational expression. The unambiguous $_{394}$ factorization of words in Σ^* guides the construction of the combinator expression 395 for $\llbracket \mathcal{A} \rrbracket(w)$ over Γ in an inductive way.

For rational expressions over Σ we will use the following syntax:

$$
F ::= \emptyset \mid \varepsilon \mid a \mid F \cup F \mid F \cdot F \mid F^+
$$

396 where $a \in \Sigma$. For reasons that will be clear below, we prefer to use the Kleene- 397 plus instead of the Kleene-star, hence we also add ε explicitly in the syntax. An 398 expression is said to be ε -free if it does not use ε .

Let $(S, \cdot, \mathbf{1}_S)$ be a *finite* monoid and $\varphi \colon \Sigma^* \to S$ be a morphism. We say 400 that a rational expression F is φ -good (or simply good when φ is clear from the

⁴⁰¹ context) when

 $\frac{402}{402}$ 1. the rational expression F is unambiguous,

403 2. for each subexpression E of F we have $\varphi(\mathcal{L}(E)) = \{s_E\}$ is a singleton set. And Notice that \emptyset cannot be used in a good expression since it does not satisfy the ⁴⁰⁵ second condition. Also, the second condition implies that for each subexpression 406 E^+ of F we have $s_E \cdot s_E = s_E$ is an idempotent.

407 **Theorem 12** (Unambiguous Forest Factorization [21]). For each $s \in S$, there ⁴⁰⁸ is an ε -free good rational expression F_s such that $\mathcal{L}(F_s) = \varphi^{-1}(s) \setminus {\varepsilon} \subseteq \Sigma^+$. 409 Therefore, $G = \varepsilon \cup \bigcup_{s \in S} F_s$ is an unambiguous rational expression over Σ such 410 that $\mathcal{L}(G) = \Sigma^*$.

⁴¹¹ Theorem 12 can be seen as an unambiguous version of Imre Simon's forest ⁴¹² factorization theorem [23]. Its proof, which can be found in [21], follows the ⁴¹³ same lines of the recent proofs of Simon's theorem, see e.g. [12, 13]. For the ⁴¹⁴ sake of completeness, we summarize the proof idea and contributions in [21] ⁴¹⁵ here. Given a semigroup morphism $\varphi: \Sigma^+ \to S$, [21] constructs a universal, 416 unambiguous automaton A, which is "good" wrt φ in the following sense: (1) 417 A is unambiguous and accepts all words in $\Sigma^* \cup \Sigma^\omega$, (2) A has a unique initial 418 state i which has no incoming transitions to it, as well as a unique final state f 419 with no outgoing transitions from it, (3) the states of A are totally ordered as 420 $Q \setminus \{i, f\} < f < i$, where Q is the set of states of A, (4) for each state q, the set 421 of words that have a run originating at q and ending at q, visiting only states ⁴²² lower than q in the ordering are mapped to a unique idempotent $e_q \in S$. These 423 properties of A ensure that, for any word $w \in \Sigma^* \cup \Sigma^\omega$, the unique accepting run $_{424}$ of w produces a Ramsey split in the sense of [13], with the height of the split 425 being bounded by the number of states of A. The construction of A proceeds ⁴²⁶ according to the local divisor technique, which uses a lexicographic induction on \mathcal{A}_{427} (|S|, | $\varphi(\Sigma)$ |). While the base cases (i) when S is a group, and (ii) $|\varphi(\Sigma)| = 1$ are ⁴²⁸ easy, the inductive cases are non trivial. The inductive cases follow by identifying 429 an element $c \in S$ for which $Sc \subsetneq S$ or $cS \subsetneq S$, and the details are in [21].

⁴³⁰ The forest factorization theorem can be derived easily from the construction 431 of A as follows : consider a morphism $\varphi : \Sigma^+ \to S$, and define a monotone 432 bijection $h:(Q,<) \rightarrow (\{1,2,\ldots, |Q|\},<)$. For any word $w = a_1a_2\cdots \in \Sigma^{\infty}$, ⁴³³ consider the unique accepting run $q_0 \stackrel{a_1}{\rightarrow} q_1 \stackrel{a_2}{\rightarrow} \ldots$ of w in A. Define a split σ of w 434 as $\sigma(i) = h(q_i)$ for all positions $i \geq 0$ in w. Two positions $i < j$ are σ -equivalent 435 iff $q_i = q_j$ and $q_k \leq q_i$ for all $i \leq k \leq j$. We obtain this way, $w(i, j] = a_{i+1} \ldots a_j$ $\frac{436}{436}$ as a word whose run originates and ends in q_i , while visiting only states whose ⁴³⁷ orderings are lower. Thus, $\varphi(w(i,j)) = e_{q_i}$ is the unique idempotent associated ⁴³⁸ to q_i , resulting in σ being a Ramsey split. Thus, we obtain a Ramsey split using 439 the construction of A , s.t. the height of the factorization tree is bounded by the 440 number of states of \mathcal{A} .

⁴⁴¹ The second implication arising from the construction of A is that we obtain 442 the good expressions used in this paper, by a state elimination of A, using the ⁴⁴³ ordering on its states.

⁴⁴⁴ In the rest of the section, we assume Theorem 12, and use it in obtaining 445 an RTE corresponding to \mathcal{A} . For the purposes of this paper, we work with the ⁴⁴⁶ transition monoid of the two-way transducer.

⁴⁴⁷ 2.5. Transition monoid of 2NFAs

⁴⁴⁸ Consider a two-way possibly non-deterministic automaton (2NFA) A. Let 449 TrM be the transition monoid of A which is obtained by quotienting the free

450 monoid $(\Sigma^*, \cdot, \varepsilon)$ by a congruence which equates words behaving alike in the underlying automaton. Transition monoids for two way automata were defined in [9] for finite words and later extended to infinite words [17]. We recall the definition.

⁴⁵⁴ In a one way automaton, the canonical morphism $\text{Tr}: \Sigma^* \to \text{Tr}M$ is such that $Tr(w)$ consists of the set of pairs (p, q) such that there is a run from state p $\frac{456}{456}$ to state q reading w. In the case of two-way automaton, we also consider the ⁴⁵⁷ starting side (left/right) and ending side (left/right) of the reading head while 458 going from state p to q . This is represented with a *direction d* amongst "left-left" ⁴⁵⁹ ($(\supset),$ "left-right" (\rightarrow) , "right-left" (\leftarrow) and "right-right" (\subset) . Hence, an element of 460 TrM is a set X of tuples (p, d, q) with $p, q \in Q$ states of A and $d \in \{\rightarrow, \geq, \leq, \leftarrow\}.$ ⁴⁶¹ The canonical morphism $\text{Tr}: \Sigma^* \to \text{Tr}M$ is such that $\text{Tr}(w)$ is the set of triples $\mathfrak{p}_1(a, d, q)$ which are compatible with w. For instance, $(p, \rightarrow, q) \in \mathsf{Tr}(w)$ iff A has a ⁴⁶³ run starting in state p on the left most symbol of w and which exits w on its $_{464}$ right and in state q. Likewise, $(p,\zeta,q) \in \text{Tr}(w)$ iff A has a run starting in state μ ₄₆₅ p on the right most symbol of w and which exits w on its right and in state q. ⁴⁶⁶ The explanation is similar for other directions.

Figure 3: Illustrations of subset of $Tr(abb)$

Consider the 2DFT $\mathcal A$ of Figure 2 and its underlying input 2DFA $\mathcal B$. The run for word babbabb starting from state q_0 is shown in Figure 3. In the transition monoid of β , we have

$$
\text{Tr}(abb) = \{ (q_0, \zeta, q_1), (q_1, \zeta, q_5), (q_1, \zeta, q_2), (q_2, \zeta, q_4), (q_2, \leftarrow, q_5),
$$

$$
(q_3, \zeta, q_4), (q_3, \leftarrow, q_5), (q_4, \zeta, q_4), (q_4, \zeta, q_1),
$$

$$
(q_5, \zeta, q_5), (q_5, \zeta, q_6), (q_6, \rightarrow, q_2), (q_6, \zeta, q_1) \}.
$$

⁴⁶⁷ Some of these triples are highlighted in Figure 3.

 It is well-known that TrM is a monoid and that Tr is a morphism, see for instance [7]. The left-right and right-right relations were already used by Shepherdson to prove the equivalence between two-way and one-way automata [22]. These relations define a right-congruence. We obtain a congruence by considering also the right-left and left-left relations. The quotient of the free monoid by this congruence is the transition monoid of the 2NFA.

474 Let $(p, d, q) \in Tr(w)$. If $w = a \in \Sigma$, then we know that reading a in state p, ⁴⁷⁵ A may move in direction d and enter state q. If $w = w_1 \cdot w_2$ for $w_1, w_2 \in \Sigma^+$, 476 then we can possibly decompose (p, d, q) into several "steps" depending on the 477 behaviour of A on w starting in state p. As an example, see Figure 4, where we

 478 decompose $(p, \rightarrow, q) \in Tr(w)$. We show only those elements of $Tr(w_1)$ and $Tr(w_2)$ ⁴⁷⁹ which help in the decomposition; the pictorial depiction is visually intuitive.

Figure 4: The first and second pictures are illustrations of subsets of $Tr(w_1)$ and $Tr(w_2)$ respectively. $(p, \rightarrow, q_1), (q_2, \leq, q_3), (q_4, \leq, q_5) \in \text{Tr}(w_1)$ while $(q_1, \geq, q_2), (q_3, \geq, q_4), (q_5, \rightarrow, q) \in$ Tr(w2). The third picture shows that $(p, \to, q) \in Tr(w_1 \cdot w_2)$: (p, \to, q) consists of "steps" (p, \to, q) $(q_1, q_1), (q_1, q_2), (q_2, q_3), (q_3, q_4), (q_4, q_5), (q_5, q_5), (q_5, q_4)$ alternately from $Tr(w_1)$ and $Tr(w_2)$.

480 **Example 13.** Let $\Sigma = \{a, b\}$ and let A be the following 1DFT:

482 Let TrM be the transition monoid of A and let $\text{Tr}: \Sigma^* \to \text{TrM}$ be the canonical 483 morphism. The expression $F = a^+(ba)^+$ is not Tr-good: one of the reasons ⁴⁸⁴ why F is not Tr-good is that the subexpression a^+ is such that $Tr(a)$ is not an 485 idempotent since $\textsf{Tr}(a) = \{(q_1, q_2), (q_2, q_1)\}\$ and $\textsf{Tr}(a^2) = \{(q_1, q_1), (q_2, q_2)\}\$, thus 486 $Tr(a^2) \neq Tr(a)$. We have omitted the direction in the tuples as the underlying α_{487} automaton is one way. Similarly, the subexpression $(ba)^+$ is also not Tr-good. ⁴⁸⁸ The expression $F' = aba \cup aaba \cup a(aa)^+ba \cup a(baba)^+ \cup a(aa)^+(baba)^+$ is not ⁴⁸⁹ Tr-good, even though each of the expressions aba, $aaba$, $a(aa)^+ba$, $a(baba)^+$ and ⁴⁹⁰ $a(aa)^+(baba)^+$ are Tr-good. F' is not Tr-good since $\text{Tr}(\mathcal{L}(F'))$ is not a singleton. ⁴⁹¹ The expression $F'' = aba \cup (aa)^+ \cup a(aa)^+ba$ is Tr-good.

⁴⁹² 2.6. 2DFT to RTE

⁴⁹³ In Appendix A, we give a practical example showing how to compute an RTE $_{494}$ equivalent to the transducer $\mathcal A$ of Figure 2.

⁴⁹⁵ Consider a deterministic and complete two-way transducer A. Let TrM ⁴⁹⁶ be the transition monoid of the underlying input automaton. We can apply 497 the unambiguous factorization theorem to the morphism $\text{Tr}: \Sigma^* \to \text{TrM}$ in 498 order to obtain, for each $s \in \text{TrM}$, an ε -free good rational expression F_s for $Tr^{-1}(s) \setminus \{\varepsilon\}.$ We use the unambiguous expression $G = \varepsilon \cup \bigcup_{s \in \text{TrM}} F_s$ as a guide 500 when constructing RTEs corresponding to the 2DFT \mathcal{A} .

501 Lemma 14. Let F be an ε -free Tr-good rational expression and let $Tr(F) = s_F$ be 502 the corresponding element of the transition monoid TrM of A. We can construct 503 a map $C_F: s_F \to \textsf{RTE}$ such that for each step $x = (p, d, q) \in s_F$ the following ⁵⁰⁴ invariants hold:

- $_{505}$ (l_1) dom $(C_F(x)) = \mathcal{L}(F)$
- 506 (I₂) for each $u \in \mathcal{L}(F)$, $\llbracket C_F(x) \rrbracket(u)$ is the output produced by A when running \mathcal{L} step x on u (i.e., running A on u from p to q following direction d).

₅₀₈ Proof. The proof is by structural induction on the rational expression. For each 509 subexpression E of F we let $Tr(E) = s_E$ be the corresponding element of the $_{510}$ transition monoid TrM of A. We start with atomic regular expressions. Since F 511 is ε -free and \emptyset -free, we do not need to consider $E = \varepsilon$ or $E = \emptyset$.

512 **atomic** Assume that $E = a \in \Sigma$ is an atomic subexpression. Since the 2DFT \mathcal{A} is deterministic and complete, for each state $p \in Q$ we have

- \bullet either $\delta(p, a) = (q, \gamma, 1)$ and we let $C_a((p, \rightarrow, q)) = C_a((p, \leq, q))$ $a ? \gamma : \bot$
-
- 516 or $\delta(p, a) = (q, \gamma, -1)$ and we let $C_a((p, \gamma, q)) = C_a((p, \leftarrow, q)) = a ? \gamma$: 517 \perp .

518 Clearly, invariants (I_1) and (I_2) hold for all $x \in Tr(a) = s_E$.

union Assume that $E = E_1 \cup E_2$. Since the expression is good, we deduce that $s_E = s_{E_1} = s_{E_2}$. For each $x \in s_E$ we define $C_E(x) = E_1? C_{E_1}(x) : C_{E_2}(x)$. Since E is unambiguous we have $\mathcal{L}(E_1) \cap \mathcal{L}(E_2) = \emptyset$. Using (I_1) for E_1 and E_2 , we deduce that

$$
dom(C_E(x)) = (\mathcal{L}(E_1) \cap dom(C_{E_1}(x))) \cup (dom(C_{E_2}(x)) \setminus \mathcal{L}(E_1))
$$

= $\mathcal{L}(E_1) \cup \mathcal{L}(E_2) = \mathcal{L}(E)$.

519 Therefore, (I_1) holds for E. Now, for each $u \in \mathcal{L}(E)$, either $u \in \mathcal{L}(E_1)$ and $\mathbb{E}_{\mathbb{E}_{\mathbb{E}}[GE]}[C_{E}(x)](u) = \llbracket C_{E_1}(x) \rrbracket(u) \text{ or } u \in \mathcal{L}(E_2) \text{ and } \llbracket C_E(x) \rrbracket(u) = \llbracket C_{E_2}(x) \rrbracket(u).$ \mathbb{S}_{21} In both cases, applying (I_2) for E_1 or E_2 , we deduce that $\llbracket C_E(x) \rrbracket(u)$ is \mathcal{L}_{522} the output produced by A when running step x on u.

523 concatenation Assume that $E = E_1 \cdot E_2$ is a concatenation. Since the expression is good, we deduce that $s_E = s_{E_1} \cdot s_{E_2}$. Let $x \in s_E$.

> • If $x = (p, \rightarrow, q)$ then, by definition of the product in the transition monoid TrM, there is a unique sequence of steps $x_1 = (p, \rightarrow)$ $(a_1, q_1), x_2 = (q_1, z, q_2), x_3 = (q_2, z, q_3), x_4 = (q_3, z, q_4), \ldots, x_i =$ $(q_{i-1}, \zeta, q_i), x_{i+1} = (q_i, \to, q)$ with $i \geq 1, x_1, x_3, \ldots, x_i \in s_{E_1}$ and $x_2, x_4, \ldots, x_{i+1} \in s_{E_2}$ (see Figure 4). We define

$$
C_E(x) = (C_{E_1}(x_1) \boxdot C_{E_2}(x_2)) \odot (C_{E_1}(x_3) \boxdot C_{E_2}(x_4)) \odot \cdots \odot (C_{E_1}(x_i) \boxdot C_{E_2}(x_{i+1})).
$$

S25 Notice that when $i = 1$ we simply have $C_E(x) = C_{E_1}(x_1) \square C_{E_2}(x_2)$ 526 with $x_2 = (q_1, \to, q)$.

⁵²⁷ The concatenation $\mathcal{L}(E) = \mathcal{L}(E_1) \cdot \mathcal{L}(E_2)$ is unambiguous. Therefore, f_{228} for all $y \in s_{E_1}$ and $z \in s_{E_2}$, using (I_1) for E_1 and E_2 , we obtain $\text{dom}(C_{E_1}(y) \sqcup C_{E_2}(z)) = \mathcal{L}(E)$. We deduce that $\text{dom}(C_E(x)) = \mathcal{L}(E)$ α and (I_1) holds for E.

531 Now, let $u \in \mathcal{L}(E)$ and let $u = u_1u_2$ be its unique factorization 532 with $u_1 \in \mathcal{L}(E_1)$ and $u_2 \in \mathcal{L}(E_2)$. The step $x = (p, \rightarrow, q)$ per- \mathfrak{f} ⁵³³ formed by A on u is actually the concatenation of steps x_1 on u_1 , followed by x_2 on u_2 , followed by x_3 on u_1 , followed by x_4 535 on $u_2, \ldots,$ until x_{i+1} on u_2 . Using (l_2) for E_1 and E_2 , we de- $\frac{1}{536}$ duce that the output produced by A while running step x on u is 537 $\llbracket C_{E_1}(x_1) \rrbracket (u_1) \cdot \llbracket C_{E_2}(x_2) \rrbracket (u_2) \cdots \llbracket C_{E_1}(x_i) \rrbracket (u_1) \cdot \llbracket C_{E_2}(x_{i+1}) \rrbracket (u_2) =$ 538 $\llbracket C_E(x) \rrbracket(u).$

 \bullet If $x = (p, \geq, q)$ then, following the definition of the product in the transition monoid TrM, we distinguish two cases.

Either $x \in s_{E_1}$ and we let $C_E(x) = C_{E_1}(x) \square (E_2? \varepsilon : \bot)$. Since $\mathsf{dom}(E_2? \varepsilon : \bot) = \mathcal{L}(E_2)$, we deduce as above that $\mathsf{dom}(C_E(x)) =$ ⁵⁴³ L(E). Moreover, let $u \in \mathcal{L}(E)$ and $u = u_1u_2$ be its unique factor-544 ization with $u_1 \in \mathcal{L}(E_1)$ and $u_2 \in \mathcal{L}(E_2)$. The step $x = (p, \geq, q)$ \mathcal{F}_{545} performed by A on u reduces to the step x on u_1 . Using (I₂) for E_1 , \mathcal{F}_{546} we deduce that the output produced by A while making step x on u e_{47} is $[[C_{E_1}(x)]](u_1) = [[C_E(x)]](u).$

Figure 5: Let $w = w_1 \cdot w_2 \in \mathcal{L}(E)$ with $w_1 \in \mathcal{L}(E_1)$, $w_2 \in \mathcal{L}(E_2)$. We have (p, \rightarrow, q_1) , $(q_2, \subset$ $(a_1, a_2), (a_4, \leftarrow, q) \in Tr(w_1)$ and $(q_1, \geq, q_2), (q_3, \geq, q_4) \in Tr(w_2)$. Then (p, \geq, q) is composed of "steps" $(p, \to, q_1), (q_1, \gt, q_2), (q_2, \lt, q_3), (q_3, \gt, q_4), (q_4, \gets, q)$ alternately from $Tr(w_1)$ and $Tr(w_2)$.

Or there is a unique sequence of steps (see Figure 5) $x_1 = (p, \rightarrow, q_1)$, $x_2 = (q_1, \geqslant, q_2), x_3 = (q_2, \leqslant, q_3), x_4 = (q_3, \geqslant, q_4), \ldots, x_i = (q_{i-1}, \leftarrow, q)$ with $i \geq 3, x_1, x_3, \ldots, x_i \in s_{E_1}$ and $x_2, x_4, \ldots, x_{i-1} \in s_{E_2}$. We define

$$
C_E(x) = (C_{E_1}(x_1) \boxdot C_{E_2}(x_2)) \odot (C_{E_1}(x_3) \boxdot C_{E_2}(x_4)) \odot \cdots \odot (C_{E_1}(x_i) \boxdot (E_2? \varepsilon : \bot)).
$$

As for the first item, we can prove that invariants (I_1) and (I_2) are satisfied for E .

• The cases $x = (p, \leftarrow, q)$ or $x = (p, \leq, q)$ are handled symmetrically. For instance, when $x = (p, \leftarrow, q)$, the unique sequence of steps is $x_1 = (p, \leftarrow, q_1), x_2 = (q_1, \subseteq, q_2), x_3 = (q_2, \supseteq, q_3), x_4 = (q_3, \subseteq, q_4), \ldots,$ $x_i = (q_{i-1}, \geq, q_i), x_{i+1} = (q_i, \leftarrow, q) \text{ with } i \geq 1, x_1, x_3, \ldots, x_i \in s_{E_2}$ and $x_2, x_4, \ldots, x_{i+1} \in s_{E_1}$ (see Figure 6). We define

$$
C_E(x) = ((E_1? \varepsilon : \bot) \boxdot C_{E_2}(x_1)) \odot (C_{E_1}(x_2) \boxdot C_{E_2}(x_3)) \odot \cdots \odot
$$

$$
(C_{E_1}(x_{i-1}) \boxdot C_{E_2}(x_i)) \odot (C_{E_1}(x_{i+1}) \boxdot (E_2? \varepsilon : \bot)).
$$

550 **Kleene-plus** Assume that $E = F^+$. Since the expression is good, we deduce ϵ_{551} that $s_E = s_F = s$ is an idempotent of the transition monoid TrM. Let 552 $x \in s$.

• If $x = (p, \geqslant, q)$. Since F^+ is unambiguous, a word $u \in \mathcal{L}(F^+)$ admits 554 a unique factorization $u = u_1 u_2 \cdots u_n$ with $n \geq 1$ and $u_i \in \mathcal{L}(F)$. 555 Now, $Tr(u_1) = s_E$ and since $x = (p, \geq, q) \in s_E$ the unique run ρ 556 of A starting in state p on the left of u_1 exits on the left in state σ ₅₅₇ associately q. Therefore, the unique run of A starting in state p on the left of ⁵⁵⁸ $u = u_1 u_2 \cdots u_n$ only visits u_1 and is actually ρ itself. Therefore, we

$$
\begin{array}{c} 548 \\ 549 \end{array}
$$

16

Figure 6: Let $w = w_1 \cdot w_2 \in \mathcal{L}(E)$ with $w_1 \in \mathcal{L}(E_1)$, $w_2 \in \mathcal{L}(E_2)$. We have (p, \leftarrow, q_1) , $(q_2, \gt$, $q_3) \in \text{Tr}(w_2)$ and (q_1, \leq, q_2) , $(q_3, \leftarrow, q) \in \text{Tr}(w_1)$. Then $(p, \leftarrow, q) \in \text{Tr}(w)$ is composed of "steps" $(p, \leftarrow, q_1), (q_1, \leftarrow, q_2), (q_2, \rightgt, q_3), (q_3, \leftarrow, q)$ alternately from $Tr(w_2)$ and $Tr(w_1)$.

Figure 7: In the Kleene-plus $E = F^+$, a step $x = (p, \rightarrow, q) \in s_E$ on some $u = u_1 u_2 \cdots u_n$ with $u_\ell \in \mathcal{L}(F)$ is obtained by composing the following steps in s_F : $x_1 = x, x_2 = (q, \geq, p_2)$, $x_3 = (p_2, \zeta, p_3), x_4 = (p_3, \gtrsim, p_4), x_5 = (p_4, \zeta, p_5), x_6 = (p_5, \rightarrow, q).$

with $u_i \in \mathcal{L}(F)$ for $1 \leq i \leq n$. When reading u starting in state p on the left, the transducer will use step x on u_1 and then step y on each u_i with $2 \leq i \leq n$. Therefore, we set

$$
C_E(x) = F ? C_F(x) : (C_F(x) \boxdot (C_F(y))^{\boxplus}).
$$

Otherwise, there exists a unique sequence of steps in s: $x_1 = x, x_2 =$ $(q, \geq, p_2), x_3 = (p_2, \leq p_3), x_4 = (p_3, \geq, p_4), \ldots, x_i = (p_{i-1}, \leq p_i),$ $x_{i+1} = (p_i, \rightarrow, q)$ with $i \geq 3$ (see Figure 7). We define

$$
C_E(x) = (C_F(x) \boxdot (F^* ? \varepsilon : \bot)) \odot [F, C']^{2\boxplus}
$$

\n
$$
C' = ((F ? \varepsilon : \bot) \boxdot C_F(x_2)) \odot (C_F(x_3) \boxdot C_F(x_4)) \odot \cdots \odot
$$

\n
$$
(C_F(x_i) \boxdot C_F(x_{i+1}))
$$

 $Sine$ Since the expression is good, the Kleene-plus $E = F^+$ is unambigu-⁵⁶⁵ ous. We have $\text{dom}(C_F(x_i)) = \mathcal{L}(F)$ for $1 \leq j \leq i+1$ by (I_1) . Also $\mathfrak{dom}(F^* ? \varepsilon : \bot) = \mathcal{L}(F^*)$. Since F^+ is unambiguous, the concatena-⁵⁶⁷ tion $F \cdot F^*$ is also unambiguous and we get $\mathsf{dom}(C_F(x) \sqcup (F^* ? \varepsilon :$ $(\perp) = \mathcal{L}(F) \cdot \mathcal{L}(F^*) = \mathcal{L}(E)$. Also, the product $F \cdot F$ is unambiguous and we deduce that $\text{dom}(C_F(x_j) \square C_F(x_{j+1})) = \mathcal{L}(F)^2$ for $1 \leq i \leq j$ and $\text{dom}(F2 \subset \square) \square C_F(x_j) = \mathcal{L}(F)^2$. Therefore $1 \leq j \leq i$ and $\text{dom}((F? \varepsilon : \bot) \boxdot C_F(x_2)) = \mathcal{L}(F)^2$. Therefore,
dom($C') = \mathcal{L}(F)^2$ and using once again that F^+ is unambiguous $\mathsf{dom}(C') = \mathcal{L}(F)^2$ and using once again that F^+ is unambiguous, ⁵⁷² we deduce that $\text{dom}([F, C']^{2 \boxplus}) = \mathcal{L}(F^+) = \mathcal{L}(E)$. We deduce that $\mathsf{dom}(C_E(x)) = \mathcal{L}(E) \text{ and } (\mathsf{I}_1) \text{ holds for } E.$ $\text{Let now } u \in \mathcal{L}(F^+) = \text{dom}(C_E(x)).$ We have to show that the output ⁵⁷⁵ $\gamma \in \mathbb{D}$ produced by A when running step x on u is $[C_E(x)](u)$. There 576 is a unique factorization $u = u_1u_2 \cdots u_n$ with $n \geq 1$ and $u_\ell \in \mathcal{L}(F)$ 577 for $1 < \ell < n$. 578 Assume first that $n = 1$ (see Figure 7 left). By definition, we have ⁵⁷⁹ $[[F, C']^{2\boxplus}](u) = \varepsilon$ and $[[C_F(x) \boxdot (F^*? \varepsilon : \bot)](u) = [[C_F(x)]](u)$ which, \mathcal{L}_{580} by induction, is the output γ produced by A running step x on u. 581 Therefore, $\llbracket C_E(x) \rrbracket(u) = \gamma \cdot \varepsilon = \gamma$. Assume now that $n \geq 2$ (see Figure 7 middle for $n = 2$ and right for $n = 5$). For $1 \leq \ell \leq n$ and $1 \leq j \leq i+1$, we denote $\gamma_j^{\ell} = \llbracket C_F(x_j) \rrbracket (u_{\ell})$ the output produced by A when running step x_i on u_ℓ . We can check (see Figure 7) that the output γ produced by A when running x on $u = u_1 u_2 \cdots u_n$ is $\gamma = \gamma_1^1(\gamma_2^2\gamma_3^1\gamma_4^2\cdots\gamma_i^1\gamma_{i+1}^2)(\gamma_2^3\gamma_3^2\gamma_4^3\cdots\gamma_i^2\gamma_{i+1}^3)\cdots(\gamma_2^n\gamma_3^{n-1}\gamma_4^n\cdots\gamma_i^{n-1}\gamma_{i+1}^n).$

⁵⁸⁶ Lemma 14 is the main ingredient in the construction of an RTE equivalent ⁵⁸⁷ to a 2DFT.

Proof of Theorem 7 (2). First, we let $C_{\varepsilon} = [\![A]\!] (\varepsilon) \in \Gamma^* \cup \{\bot\}.$ Then, we will define for each $s \in \text{TrM}$, an RTE C_s such that $\text{dom}(C_s) = \text{dom}(\mathcal{A}) \cap (\text{Tr}^{-1}(s) \setminus \{\varepsilon\})$ and $[[C_s](u) = [[\mathcal{A}]](u)$ for all $u \in \text{dom}(C_s)$. Assuming an arbitrary enumeration s_1, s_2, \ldots, s_m of TrM, we define the final RTE as

$$
C_{\mathcal{A}} = \varepsilon ? C_{\varepsilon} : (\text{Tr}^{-1}(s_1) ? C_{s_1} : (\text{Tr}^{-1}(s_2) ? C_{s_2} : \cdots (\text{Tr}^{-1}(s_{m-1}) ? C_{s_{m-1}} : C_{s_m}))) .
$$

588 It remains to define the RTE C_s for $s \in \text{TrM}$. We first define RTEs for steps in the 2DFT A on some input $\vdash u$ with $u \in \text{Tr}^{-1}(s) \setminus \{\varepsilon\}$. Such a step must exit 590 on the right since there are no transitions of A going left when reading \vdash . So ϵ_{591} either the step (q_0, \rightarrow, q) starts on the left in the initial state q_0 and exits on the 592 right in some state q. Or the step (p,ζ,q) starts on the right in some state p 593 and exits on the right in some state q . See Figure 8.

Let s_{\vdash} be the set of steps $(p, \rightarrow, q), (p, \subseteq, q)$ such that there is a transition $\delta(p, \vdash) = (q, \gamma_p, +1)$ in A. From the initial state q_0 of A, there is a unique sequence of steps $x_1 = (q_0, \to, q_1), x_2 = (q_1, \gt, q_2), x_3 = (q_2, \gt, q_3), x_4 = (q_3, \gt$ $(a_1, q_1), \ldots, x_i = (q_{i-1}, \zeta, q_i), x_{i+1} = (q_i, \to, q) \text{ with } i \geq 1, x_1, x_3, \ldots, x_i \in s_{\vdash} \text{ and }$ $x_2, x_4, \ldots, x_{i+1} \in s$ (see Figure 8 left). We define

$$
C_{\vdash F_s}((q_0, \rightarrow, q)) = \gamma_{q_0} \odot C_{F_s}(x_2) \odot \gamma_{q_2} \odot C_{F_s}(x_4) \odot \cdots \odot \gamma_{q_{i-1}} \odot C_{F_s}(x_{i+1}).
$$

594 Notice that when $i=1$ we simply have $C_{\vdash F_s}((q_0,\rightarrow,q))=\gamma_{q_0}\odot C_{F_s}((q_1,\rightarrow,q)).$ Since $\textsf{dom}(C_{F_s}(x_i)) = \mathcal{L}(F_s) = \textsf{Tr}^{-1}(s) \setminus \{\varepsilon\}$ for $i = 2, 4, \ldots, i+1$, we deduce that 596 dom $(C_{\vdash F_s}((q_0,\to,q))) = \text{Tr}^{-1}(s) \setminus \{\varepsilon\}.$ Moreover, for each $u \in \text{Tr}^{-1}(s) \setminus \{\varepsilon\},$ the 597 output produced by A performing step (q_0, \to, q) on $\vdash u$ is $[\![C_{\vdash F_s}((q_0, \to, q))]](u)$.

Figure 8: (Left) Given steps of s, a step (q_0, \to, q) of $\vdash u$ for some $u \in F_s$, is obtained by composing the following steps alternatively from s_{\vdash} and $s: x_1 = (q_0, \rightarrow, q_1), x_2 = (q_1, \rightarrow, q_2),$ $x_3 = (q_2, \zeta, q_3), x_4 = (q_3, \zeta, q_4), x_5 = (q_4, \zeta, q_5), x_6 = (q_5, \to, q).$ (Right) A step (p, ζ, q) of $\vdash u$ for some $u \in F_s$, is obtained by composing the following steps alternatively from s and s_{\vdash}: $x_1 = (p, \leftarrow, q_1), x_2 = (q_1, \subset, q_2), x_3 = (q_2, \supseteq, q_3), x_4 = (q_3, \subsetneq, q_4), x_5 = (q_4, \rightarrow, q).$

Let p be a state of A. Either there is a step $(p, \zeta, q) \in s$ and we let $C_{\vdash F_s}(p, \zeta)$ (c, q)) = $C_{F_s}((p, \zeta, q))$. Or, there is a unique sequence of steps $x_1 = (p, \leftarrow, q_1)$, $x_2 = (q_1, \zeta, q_2), x_3 = (q_2, \zeta, q_3), x_4 = (q_3, \zeta, q_4), \ldots, x_i = (q_{i-1}, \to, q)$ with $i \geq 3, x_1, x_3, \ldots, x_i \in s$ and $x_2, x_4, \ldots, x_{i-1} \in s_{\vdash}$ (see Figure 8 right). We define

$$
C_{\vdash F_s}((p,\zeta,q))=C_{F_s}(x_1)\odot \gamma_{q_1}\odot C_{F_s}(x_3)\odot \gamma_{q_3}\odot \cdots \odot \gamma_{q_{i-2}}\odot C_{F_s}(x_i)\,.
$$

598 As above, we have $\textsf{dom}(C_{\vdash F_s}((p,\zeta,q))) = \textsf{Tr}^{-1}(s) \setminus \{\varepsilon\}.$ Moreover, for each $u \in \text{Tr}^{-1}(s) \setminus \{\varepsilon\},\$ the output produced by A performing step (p,ζ,q) on $\vdash u$ is 600 $\llbracket C_{\vdash F_s}((p,\zeta,q)) \rrbracket(u).$

Figure 9: On input $\vdash u^{\perp}$, a step $x = (q_0, \rightarrow, q)$ is obtained by composing the following steps alternatively from steps of $\vdash u$ and s_{\dashv} : $x_1 = (q_0, \rightarrow, q_1)$, $x_2 = (q_1, \triangleright, q_2)$, $x_3 = (q_2, \substack{\frown}{\varsigma}, q_3)$, $x_4 = (q_3, \geqslant, q_4), x_5 = (q_4, \leqslant, q_5) \text{ and } x_6 = (q_5, \rightarrow, q).$

601 Similarly, let s_{\perp} be the set of steps (p,\geq, q) such that there is a transition 602 $\delta(p, \dashv) = (q, \gamma_p, -1)$ in A or steps (p, \dashrightarrow, q) such that there is a transition 603 $\delta(p, \dashv) = (q, \gamma_p, \dashv)$ in A. From the initial state q_0 of A, there is a unique 604 sequence of steps $x_1 = (q_0, \to, q_1), x_2 = (q_1, \gt, q_2), x_3 = (q_2, \gt, q_3), x_4 = (q_3, \gt,$ $(a_5, a_4), \ldots, x_i = (q_{i-1}, \zeta, q_i), x_{i+1} = (q_i, \to, q) \text{ with } i \geq 1, \text{ and } x_1, x_3, \ldots, x_i \text{ are } i$ 606 steps where $C_{\vdash F_s}$ is defined and $x_2, x_4, \ldots, x_{i+1} \in s_{\dashv}$ (see Figure 9).

Notice that this sequence of steps corresponds to an accepting run iff $q \in F$ is an accepting state of A. Therefore, either $q \notin F$ and $\textsf{dom}(\mathcal{A}) \cap (\textsf{Tr}^{-1}(s) \setminus {\varepsilon}) = \emptyset$ so we set $C_s = \bot$. Or, $q \in F$ and $Tr^{-1}(s) \setminus {\{\varepsilon\}} \subseteq \text{dom}(\mathcal{A})$ so we define

$$
C_s = C_{\vdash F_s}(x_1) \odot \gamma_{q_1} \odot C_{\vdash F_s}(x_3) \odot \gamma_{q_3} \odot \cdots \odot C_{\vdash F_s}(x_i) \odot \gamma_{q_i}.
$$

⁶⁰⁷ We have $\textsf{dom}(C_s) = \textsf{Tr}^{-1}(s) \setminus \{\varepsilon\}$ and for all $u \in \textsf{dom}(C_s)$ we have $[[C_s]](u) =$ 608 $\mathcal{A} \mathcal{A}(u)$. П

⁶⁰⁹ 3. Infinite Words

⁶¹⁰ In this section, we start looking at regular functions on infinite words. As ⁶¹¹ in Section 2, we restrict our attention to two-way transducers as the model for 612 computing regular functions. Given a finite alphabet Σ , let Σ^{ω} denote the set of 613 infinite words over Σ, and let $\Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}$ be the set of all finite or infinite ⁶¹⁴ words over Σ.

615 3.1. Two-way transducers over ω -words (ω -2DMT_{la})

616 Let Σ be a finite input alphabet and let Γ be a finite output alphabet. Let \vdash 617 be a left end marker symbol not in Σ and let $\Sigma_{\vdash} = \Sigma \cup {\uparrow\vdash}$. The input word is 618 presented as $\vdash w$ where $w \in \Sigma^\omega$.

Let R be a finite set of *look-ahead* ω -regular languages. For the ω -regular languages in \mathcal{R} , we may use any finite descriptions such as ω -regular expressions or automata. Below, we will use *complete unambiguous Büchi automata* (CUBA) [10], also called *backward deterministic Büchi automata* [24]). A deterministic two-way transducer (ω -2DMT_{la}) over ω -words is given by \mathcal{A} = $(Q, \Sigma, \Gamma, q_0, \delta, \mathcal{F}, \mathcal{R})$, where Q is a finite set of states, $q_0 \in Q$ is a unique initial state, and $\delta: Q \times \Sigma_{\vdash} \times \mathcal{R} \mapsto Q \times \Gamma^* \times \{-1, +1\}$ is the partial transition function. We request that for every pair $(q, a) \in Q \times \Sigma_{\vdash}$, the subset $\mathcal{R}(q, a)$ of languages $R \in \mathcal{R}$ such that $\delta(q, a, R)$ is defined forms a partition of Σ^{ω} . This ensures that A is complete and behaves deterministically. The set $\mathcal{F} \subseteq 2^Q$ specifies the Muller acceptance condition. As in the finite case, the reading head cannot move left while on \vdash . A configuration is represented by $w'qaw''$ where $w'a \in \vdash \Sigma^*$, $w'' \in \Sigma^{\omega}$ and q is the current state, scanning letter a . From configuration $w'qaw''$, let R be the unique ω -regular language in $\mathcal{R}(q, a)$ such that $w'' \in R$, the automaton outputs γ and moves to

$$
\begin{cases} w'aq'w'' & \text{if } \delta(q,a,R) = (q',\gamma,+1) \\ w'_1q'baw'' & \text{if } \delta(q,a,R) = (q',\gamma,-1) \text{ and } w' = w'_1b. \end{cases}
$$

The output $\gamma \in \Gamma^*$ is appended at the end of the output produced so far. A run ρ of A on $w \in \Sigma^{\omega}$ is a sequence of transitions starting from the initial configuration $q_0 \vdash w$ where the reading head is on \vdash :

$$
q_0 \vdash w \xrightarrow{\gamma_1} w_1' q_1 w_1'' \xrightarrow{\gamma_2} w_2' q_2 w_2'' \xrightarrow{\gamma_3} w_3' q_3 w_3'' \xrightarrow{\gamma_4} w_4' q_4 w_4'' \cdots
$$

⁶¹⁹ We say that ρ reads the whole word w if $\sup\{|w'_n| \mid n > 0\} = \infty$. The set of ϵ_{020} states visited by ρ infinitely often is denoted $\text{inf}(\rho) \subseteq Q$. The word w is accepted 621 by A, i.e., $w \in \text{dom}(\mathcal{A})$ if ρ reads the whole word w and $\text{inf}(\rho) \in \mathcal{F}$ is a Muller 622 set. In this case, we let $[\![A]\!](w) = \gamma_1 \gamma_2 \gamma_3 \gamma_4 \cdots$ be the output produced by ρ .

623 The notation ω -2DMT_{la} signifies the use of the look-ahead (la) using the ω - ϵ_{624} regular languages in \mathcal{R} . It must be noted that without look-ahead, the expressive ⁶²⁵ power of two-way transducers over infinite words is lesser than regular transfor- ϵ_{626} mations over infinite words [4]. A classical example of this is given in Example ⁶²⁷ 15, where the look-ahead is necessary to obtain the required transformation.

Example 15. Figure 1 shows an ω -2DMT_{la} A' over $\Sigma = \{a, b, \# \}$ that defines $\begin{array}{rcl} \hbox{\tiny{629}} \quad the \,\, transition \,\, \llbracket \mathcal{A}' \rrbracket (u_1 \# u_2 \# \cdots \# u_n \# v) \, = \, u_1^R u_1 \# \,\, u_2^R u_2 \# \cdots \# u_n^R u_n \# v \end{array}$ ω where $u_1, \ldots, u_n \in (a + b)^*$, $v \in (a + b)^\omega$ and u^R denotes the reverse of u. The 631 Muller acceptance set is $\{\{q_5\}\}\$. From state q_1 reading \vdash , or state q_4 reading $\#$, ⁶³² \mathcal{A}' uses the look ahead partition $\mathcal{R}(q_1, \vdash) = \mathcal{R}(q_4, \#) = \{\Sigma^* \# \Sigma^\omega, (\Sigma \setminus \{\#\})^\omega\},$ 633 which indicates the presence or absence of a $\#$ in the remaining suffix of the $\mathcal{L}_{\mathcal{S}_{34}}$ word being read. For all other transitions, the look-ahead language is Σ^{ω} , hence ⁶³⁵ it is omitted. Also, to keep the picture light, the automaton is not complete, i.e., ⁶³⁶ we have omitted the transitions going to a sink state. It can be seen that any $_{\rm 637}$ maximal string u between two consecutive occurrences of $\#$ is replaced with $u^R u,$ ω_{S38} the infinite suffix over $\{a, b\}^{\omega}$ is then reproduced as it is.

Remark 16. The model used here is a two-way, deterministic Muller automaton, ω_{640} which has for each pair (q, a) consisting of a state and symbol, a tuple of look- ahead ω -regular languages which are mutually exclusive. The model (denoted $\frac{642}{100}$ 2WST_{la}) used in [4] however is a two-way deterministic Muller automaton which is equipped with a look-behind automaton (a NFA) and a look-ahead automaton (a possibly non-deterministic Muller automaton). It is easy to see that the two models are equivalent, see [16] for details.

⁶⁴⁶ 3.2. ω-Regular Transducer Expressions (ω-RTE)

⁶⁴⁷ As in the case of finite words, we define regular transducer expressions for 648 infinite words. Let Σ and Γ be finite input and output alphabets and let \bot stand 649 for undefined. We define the output domain as $\mathbb{D} = \Gamma^{\infty} \cup \{\perp\}$, with the usual ⁶⁵⁰ concatenation of a finite word on the left with a finite or infinite word on the 651 right. Again, \perp acts as zero and the unit is the empty word $1_{\mathbb{D}} = \varepsilon$.

The syntax of ω -Regular Transducer Expressions (ω -RTE) from Σ^{ω} to \mathbb{D} is defined by:

$$
C ::= L? C : C \mid C \odot C \mid E \sqcup C \mid E^{\omega} \mid [K, E]^{2\omega}
$$

⁶⁵² where $K \subseteq \Sigma^+$ ranges over *regular* languages of *finite non-empty words*, $L \subseteq \Sigma^{\omega}$ ϵ_{653} ranges over ω -regular languages of *infinite words* and E is an RTE over finite ⁶⁵⁴ words as defined in Section 2.2. The semantics $[[E] : \Sigma^* \to \Gamma^* \cup \{\perp\}$ of the 655 finitary combinator expressions $E \in$ RTE is unchanged (see Section 2.2). The 656 semantics of an ω-RTE C is a function $\llbracket C \rrbracket: \Sigma^\omega \to \mathbb{D}$. Given a regular language ⁶⁵⁷ $K \subseteq \Sigma^+$, an ω -regular language $L \subseteq \Sigma^{\omega}$, and functions $f: \Sigma^* \to \Gamma^* \cup {\{\perp\}},$ ⁶⁵⁸ $g, h: \Sigma^{\omega} \to \mathbb{D}$, we define

659 If then else. We have dom $(L? q : h) = (dom(q) \cap L) \cup (dom(h) \setminus L)$.

660 Moreover, $(L? q : h)(w)$ is defined as $q(w)$ for $w \in \text{dom}(q) \cap L$, and $h(w)$ $\begin{array}{lll} \text{661} & \text{for } w \in \text{dom}(h) \setminus L. \end{array}$

662 **Hadamard product.** We have $\textsf{dom}(g \odot h) = g^{-1}(\Gamma^*) \cap \textsf{dom}(h)$.

Moreover, $(g \odot h)(w) = g(w) \cdot h(w)$ for $w \in \text{dom}(g) \cap \text{dom}(h)$ with $g(w) \in \Gamma^*$.

664 Unambiguous Cauchy product. If $w \in \Sigma^{\omega}$ admits a unique factorization 665 w = u · v with $u \in \text{dom}(f)$ and $v \in \text{dom}(g)$ then we set $(f \Box g)(w) =$
666 $f(u) \cdot g(v)$. Otherwise, we set $(f \Box g)(w) = \bot$. $f(u) \cdot g(v)$. Otherwise, we set $(f \boxdot g)(w) = \bot$.

⁶⁶⁷ Unambiguous ω-iteration. If $w \in \Sigma^{\omega}$ admits a unique infinite factorization $w = u_1 u_2 u_3 \cdots$ with $u_i \in \text{dom}(f)$ for all $i \geq 1$ then we set $f^{\omega}(w) =$ ⁶⁶⁹ $f(u_1)f(u_2)f(u_3)\cdots \in \Gamma^{\infty}$. Otherwise, we set $f^{\omega}(w) = \bot$.

⁶⁷⁰ Unambiguous 2-chained ω-iteration. If $w \in \Sigma^{\omega}$ admits a unique factoriza-671 tion $w = u_1 u_2 u_3 \cdots$ with $u_i \in K$ for all $i > 1$ and if moreover $u_i u_{i+1} \in$ $\mathfrak{dom}(f)$ for all $i \geq 1$ then we set $[K, f]^{2\omega}(w) = f(u_1u_2)f(u_2u_3)f(u_3u_4)\cdots$.

⁶⁷³ Otherwise, we set $[K, f]^{2\omega}(w) = \bot$.

674 **Remark 17.** Let $C_{\varepsilon} = (\Sigma? \varepsilon : \bot)^\omega$. We have dom $(C_{\varepsilon}) = \Sigma^\omega$ and $[C_{\varepsilon}](w) = \varepsilon$ σ_{55} for all $w \in \Sigma^{\omega}$. Now, for $\gamma \in \Gamma^{+}$, let $C_{\gamma} = (\Sigma ? \gamma : \bot) \square C_{\varepsilon}$. We have σ dom $(C_{\gamma}) = \Sigma^{\omega}$ and $[[C_{\gamma}]](w) = \gamma$ for all $w \in \Sigma^{\omega}$. Therefore, we can freely use ⁶⁷⁷ constants $\gamma \in \Gamma^*$ when defining ω -RTEs.

678 Remark 18. We can express the ω -iteration with the 2-chained ω -iteration as $f^{\omega} = [\textsf{dom}(f), f \boxdot (\textsf{dom}(f) \text{ ? } \varepsilon : \bot)]^{2\omega}.$

680 **Remark 19.** In a similar manner to $[K, f]^{k \boxplus}$, we can extend 2-chained ω -681 iteration as well to k-chained ω -iteration for any $k \geq 3$. It is defined as fol-⁶⁸² lows: If w admits a unique factorization $w = u_1u_2...$, with $u_i \in K$ for all $i \geq 1$, then $[K, f]^{k\omega}(w) = f(u_1u_2 \ldots u_k)f(u_2u_3 \ldots u_{k+1}) \ldots$ Otherwise, we set $\mathbb{E}[K, f]^{k\omega}(w) = \bot$. In [16], we have shown that adding k-chained ω -iteration does 685 not increase the expressive power of ω -RTEs.

Example 20. We now give the ω -RTE for the transformation given in Example 15. It was also sketched in Example 1. Let

$$
E_1 = a ? a : (b ? b : (\# ? \# : \bot))
$$

\n
$$
E_2 = a ? a : (b ? b : \bot)
$$

\n
$$
E_3 = a ? a : (b ? b : (\# ? \varepsilon : \bot)).
$$

Then dom $(E_1) =$ dom $(E_3) = (a + b + \#)$ and dom $(E_2) = (a + b)$. Let

$$
E_4 = ((a+b)^{*}\#)\,?\, (E_3^{\overleftarrow{\boxplus}} \odot E_1^{\boxplus}) : \bot \, .
$$

We have dom $(E_4) = (a+b)^* \#$ and, for $u \in (a+b)^*$, $[[E_4]](u \#) = u^R u \#$ where u^R denotes the reverse of u. Next, let

$$
C_1 = E_4^{\boxplus} \boxdot E_2^{\omega}.
$$

Then, $\text{dom}(C_1) = [(a+b)^* \#]^+(a+b)^\omega$, and

$$
[\![C_1]\!](u_1\#u_2\#\cdots u_n\#v) = u_1^Ru_1\#u_2^Ru_2\#\cdots\#u_n^Ru_n\#v
$$

when $u_i \in (a+b)^*$ and $v \in (a+b)^\omega$. Finally, let

$$
C = (a+b)^{\omega} ? E_2^{\omega} : C_1.
$$

⁶⁸⁶ We have $\textsf{dom}(C) = [(a+b)^* \#]^* (a+b)^\omega$ and $\llbracket C \rrbracket = \llbracket \mathcal{A}' \rrbracket$ where \mathcal{A}' is the transducer 687 of Figure 1.

688 The main theorem connecting ω -2DMT_{la} and ω -RTE is as follows.

689 Theorem 21. ω -2DMT_{la} and ω -RTEs define the same class of functions. More ⁶⁹⁰ precisely,

691 1. given an ω -RTE C, we can construct an ω -2DMT_{la} A such that $\llbracket \mathcal{A} \rrbracket = \llbracket C \rrbracket$.

692 2. given an ω -2DMT_{la} A, we can construct an ω -RTE C such that $\llbracket \mathcal{A} \rrbracket = \llbracket C \rrbracket$,

 ϵ_{693} The proof of (1) is given in the next section, while the proof of (2) will be 694 given in Section 3.7 after some preparatory work on backward deterministic Büchi 695 automata (Section 3.4) which are used to remove the look-ahead of ω -2DMT_{la} 696 (Section 3.5), and the notion of transition monoid for ω -2DMT_{la} (Section 3.6) ⁶⁹⁷ used in the unambiguous forest factorization theorem extended to infinite words ⁶⁹⁸ (Theorem 28).

699 3.3. ω -RTE to ω -2DMT_{Ia}

 700 In this section, we prove one direction of Theorem 21: given an ω -RTE C, we ⁷⁰¹ can construct an ω -2DMT_{la} A such that $\llbracket \mathcal{A} \rrbracket = \llbracket C \rrbracket$. The proof is by structural ⁷⁰² induction and follows immediately from

⁷⁰³ Lemma 22. Let $K \subseteq \Sigma^*$ be regular and $L \subseteq \Sigma^\omega$ be ω -regular. Let f be an RTE ⁷⁰⁴ with $[[f]] = [[M_f]]$ for some 2DFT M_f . Let g, h be ω -RTEs with $[[g]] = [[M_g]]$ and $\begin{bmatrix} \bar{h} \end{bmatrix} = \begin{bmatrix} M_h \end{bmatrix}$ for ω -2DMT_{la} M_q and M_h respectively. Then, one can construct α_0 1. an ω -2DMT_{la} A such that $[L? q : h] = [A],$

- α_7 2. an ω -2DMT_{la} A such that $\llbracket \mathcal{A} \rrbracket = \llbracket q \odot h \rrbracket$,
-
- $\begin{array}{lll} 3. & \text{an }\omega \text{-} 2\text{DM}T_{\text{la}} \mathcal{A} \text{ such that } [\mathcal{A}] = [f \boxdot g], \ 2. & \text{an }\omega \text{-} 2\text{DM}T_{\text{la}} \mathcal{A} \text{ such that } [\mathcal{A}] = [f^{\omega}], \end{array}$ $\begin{array}{ll} \textit{and} & \ \mathcal{A} \textit{. an } \omega \textit{-} \mathcal{D}MT_{\mathsf{Ia}} \mathcal{A} \textit{ such that } [\![\mathcal{A}]\!] = [\![f^\omega]\!], \end{array}$
- $\sigma_{\rm 5.5}$ an ω -2DMT_{la} A such that $\llbracket A \rrbracket = \llbracket [K, f]^{2\omega} \rrbracket$.

 T_{711} Proof. Throughout the proof, we let $M_g = (Q_g, \Sigma, \Gamma, s_g, \delta_g \mathcal{F}_g, \mathcal{R}_g)$ and $M_h =$ ⁷¹² $(Q_h, \Sigma, \Gamma, s_h, \delta_h, \mathcal{F}_h, \mathcal{R}_h)$ be the ω -2DMT_{la} such that $[M_g] = [g]$ and $[M_h] = [h]$.

 $_{713}$ (1) If then else. The set of states of A is $Q_{\mathcal{A}} = \{q_0\} \cup Q_q \cup Q_h$ with $q_0 \notin$ $Q_q \cup Q_h$. In state q_0 , we have the transitions $\delta_A(q_0, (\vdash, R \cap L)) = (q, \gamma, +1)$ if ⁷¹⁵ $\delta_g(s_g,(\vdash, R)) = (q, \gamma, +1)$ and $\delta_{\mathcal{A}}(q_0,(\vdash, R' \setminus L)) = (q', \gamma', +1)$ if $\delta_h(s_h,(\vdash, R'))$ ⁷¹⁶ $(q', \gamma', +1)$. This invokes M_g (M_h) iff the input w is in L (not in L). The Muller $_{717}$ set F is simply a union $\mathcal{F}_q \cup \mathcal{F}_h$ of the respective Muller sets of M_q and M_h . It 718 is clear that $\llbracket \mathcal{A} \rrbracket$ coincides with $\llbracket M_q \rrbracket$ iff the input string is in L, and otherwise, $_{719}$ [A] coincides with $[M_h]$.

 (2) **Hadamard product.** Recall that for a word w to be in dom($g \odot h$) we ⁷²¹ should have $w \in \text{dom}(g) \cap \text{dom}(h)$ and also $[[g]](w) \in \Gamma^*$. Hence, M_g will produce $\llbracket g \rrbracket(w)$ after reading a finite prefix of w. We create a look ahead which indicates the position where the transducer M_g can stop reading the input word w so that we can reset the head to the left most position and start M_h . The look ahead should satisfy two conditions for this purpose:

 \bullet M_q will not visit any position to the left of the current position in its 727 remaining run on w .

⁷²⁸ • The output produced by running M_q on the suffix of w should be ε .

 729 To accommodate these two conditions, we construct for each state $q \in Q_q$, a 730 transducer A_q and we define an ω -regular look ahead language as $L_q = \text{dom}(A_q)$. 731 The structure of A_q is the same as M_q except that we

- add a new initial state ι_q and the transition $\delta_q(\iota_q, \vdash, \Sigma^\omega) = (q, \varepsilon, +1),$
- ⁷³³ remove all transitions from M_q where the output is $\gamma \neq \varepsilon$,
- \bullet remove all transitions from M_g where the input symbol is \vdash .

⁷³⁵ We explain the construction of the ω -2DMT_{la} A such that $[\![g \odot h]\!] = [\![A]\!]$. The 736 set of states of A are $Q_{\mathcal{A}} = Q_q \cup Q_h \cup \{$ reset}. Backward transitions in A and ⁷³⁷ M_g are the same: $\delta_{\mathcal{A}}(q, a, R) = (q', \gamma, -1)$ iff $\delta_g(q, a, R) = (q', \gamma, -1)$. Forward τ ³⁸ transitions of M_q are divided into two depending on the look ahead. If we have ⁷³⁹ $\delta_g(q, a, R) = (q', \gamma, +1)$ in M_g for an $a \in \Sigma_{\vdash}$, then

⁷⁴⁰ $\delta_{\mathcal{A}}(q,a,R \setminus L_{q'}) = (q',\gamma,+1)$ and $\delta_{\mathcal{A}}(q,a,R \cap L_{q'}) = (\textsf{reset},\gamma,+1).$

 $_{741}$ From the reset state, we go to the left until \vdash is reached and then start running M_h . ⁷⁴² So, $\delta_{\mathcal{A}}$ (reset, a, Σ^{ω}) = (reset, ε , -1) for all $a \in \Sigma$ and $\delta_{\mathcal{A}}$ (reset, \vdash, R) = $(q'', \gamma, +1)$ ⁷⁴³ if $\delta_h(s_h, \vdash, R) = (q'', \gamma, +1)$. The accepting set is the same as the Muller accepting 744 set \mathcal{F}_h of M_h .

745 (3) Cauchy product. From the transducers M_f and M_g , we can construct a 746 DFA $\mathcal{D}_f = (Q_f, \Sigma, \delta_f, s_f, F_f)$ that accepts $\text{dom}(M_f)$ and a deterministic Muller ⁷⁴⁷ automaton (DMA) $\mathcal{D}_g = (Q_g, \Sigma, \delta_g, s_g, \mathcal{F}_g)$ that accepts $\textsf{dom}(M_g)$.

Now, the set L of words w having at least two factorizations $w = u_1v_1 = u_2v_2$ ⁷⁴⁹ with $u_1, u_2 \in \text{dom}(f), v_1, v_2 \in \text{dom}(g)$ and $u_1 \neq u_2$ is ω -regular. This is easy ⁷⁵⁰ since L can be written as $L = \bigcup_{p \in F_f, q \in Q_g} L_p \cdot M_{p,q} \cdot R_q$ where

⁷⁵¹ • $L_p \subseteq \Sigma^*$ is the regular set of words which admit a run in \mathcal{D}_f from its initial 52 state to state p ,

⁷⁵³ • $M_{p,q} \subseteq \Sigma^*$ is the regular set of words which admit a run in \mathcal{D}_f from state p_{154} p to some final state in \mathcal{D}_f , and also admit a run in \mathcal{D}_g from the initial ⁷⁵⁵ state to some state q in \mathcal{D}_q ,

⁷⁵⁶ • $R_q \subseteq \Sigma^\omega$ is the ω -regular set of words which (i) admit an *accepting* run τ_{57} from state q in \mathcal{D}_g and also (ii) admit an accepting run in \mathcal{D}_g from its $_{758}$ initial state s_q .

Therefore, $\text{dom}(f \sqcup g) = (\text{dom}(f) \cdot \text{dom}(g)) \setminus L$ is ω -regular.
T₇₆₀ First we construct an ω -1DMT₁₂ D such that $\text{dom}(\mathcal{D})$

First we construct an ω -1DMT_{la} $\mathcal D$ such that $\text{dom}(\mathcal D) = \text{dom}(f \sqcup g)$ and τ_{61} on an input word $w = uv$ with $u \in \text{dom}(f)$ and $v \in \text{dom}(g)$, it produces the on an input word $w = uv$ with $u \in \text{dom}(f)$ and $v \in \text{dom}(g)$, it produces the ⁷⁶² output $u \# v$ where $\# \notin \Sigma$ is a new symbol. From its initial state while reading $763 \div$, D uses the look-ahead to check whether the input word w is in dom $(f \boxdot g)$
 764 or not. If ves, it moves right and enters the initial state of \mathcal{D}_f . If not, it goes or not. If yes, it moves right and enters the initial state of \mathcal{D}_f . If not, it goes 765 to a sink state and rejects. While running \mathcal{D}_f , \mathcal{D} copies each input letter to ⁷⁶⁶ output. Upon reaching a final state of \mathcal{D}_f , we use the look-ahead dom(g) to see 767 whether we should continue running \mathcal{D}_f or we should switch to \mathcal{D}_q . Formally, if ⁷⁶⁸ $\delta_f(q, a) = q' \in F_f$ the corresponding transitions of D are

 $\delta_{\mathcal{D}}(q,a,\mathsf{dom}(g)) = (s_g, a\#, +1) \quad \text{and} \quad \delta_{\mathcal{D}}(q,a,\Sigma^\omega \setminus \mathsf{dom}(g)) = (q',a,+1).$ 770 While running \mathcal{D}_q , \mathcal{D} copies each input letter to output. Accepting sets of \mathcal{D} are τ ⁷¹ the accepting sets of the DMA \mathcal{D}_g . Thus, $\mathcal D$ produces an output $u\#v$ for an input

 $\begin{array}{ll}\n\text{772} & \text{string } w = uv \text{ which is in } \text{dom}(f \boxdot g) \text{ such that } u \in \text{dom}(f) \text{ and } v \in \text{dom}(g). \\
\text{78} & \text{Next we construct an } \omega\text{-2DMT}_{\text{b}} \mathcal{T} \text{ which takes input words of the form } u = \text{Tr}(u \wedge u) \text{ and } u = \text{Tr}(u \wedge$

Next we construct an ω -2DMT_{la} T which takes input words of the form $u\#v$ ⁷⁷⁴ with $u \in \Sigma^*$ and $v \in \Sigma^\omega$, runs M_f on u and M_g on v. To do so, u is traversed π ⁷⁵ in either direction depending on M_f and the symbol # is interpreted as right 776 end marker \dashv for M_f . While simulating a transition of M_f moving right of \dashv , 777 producing the output γ and reaching state q, there are two possibilities. If q is 778 not a final state of M_f then $\mathcal T$ moves to the right of $\#$, goes to some sink state τ ⁷⁹ and rejects. If q is a final state of M_f , then $\mathcal T$ stays on $\#$ producing the output ⁷⁸⁰ γ and goes to the initial state of M_g . Then, $\mathcal T$ runs M_g on v interpreting $\#$ as

 τ_{31} \vdash . The Muller accepting set of $\mathcal T$ is the same as M_q .

⁷⁸² We construct an ω -2DMT_{la} A as the composition of D and T. Regular τ ⁸³ transformations are definable by ω -2DMT_{la} [4] and are closed under composition ⁷⁸⁴ [14]. Thus the composition of an ω -1DMT_{la} and an ω -2DMT_{la} is an ω -2DMT_{la}. 785 We deduce that A is an ω -2DMT_{la}. Moreover $\llbracket \mathcal{A} \rrbracket = \llbracket f \sqsupset q \rrbracket$.

 786 (4) ω-iteration. By Remark 18, this is a derived operator and hence the result ⁷⁸⁷ follows from the next case.

⁷⁸⁸ (5) **2-chained ω-iteration.** First we show that the set of words w in Σ^{ω} having ⁷⁸⁹ an unambiguous decomposition $w = u_1 u_2 \cdots$ with $u_i \in K$ for each i is ω -regular. 790 As in case (3) above, the language L of words w having at least two factorizations $w = u_1v_1 = u_2v_2$ with $u_1, u_2 \in K$, $v_1, v_2 \in K^{\omega}$ and $u_1 \neq u_2$ is ω -regular. Hence, $L' = K^* \cdot L$ is ω -regular and contains all words in Σ^{ω} having several factorizations ⁷⁹³ as products of words in K. We deduce that $\Sigma^{\omega} \setminus L'$ is ω -regular.

 794 As in case (3) above, we construct an ω -1DMT_{la} D which takes as input w and ⁷⁹⁵ outputs $u_1 \# u_2 \# \cdots$ iff there is an unambiguous decomposition of w as $u_1 u_2 \cdots$ ⁷⁹⁶ with each $u_i \in K$. We then construct an ω -2DMT \mathcal{D}' that takes as input words ⁷⁹⁷ of the form $u_1 \# u_2 \# \cdots$ with each $u_i \in \Sigma^*$ and produces $u_1 u_2 \# u_2 u_3 \# \cdots$.

 γ_{98} Next we construct an ω -2DMT $\mathcal T$ that takes as input words of the form ⁷⁹⁹ $w_1 \# w_2 \# \cdots$ with each $w_i \in \Sigma^*$ and runs M_f on each w_i from left to right. The 800 transducer $\mathcal T$ interprets $\#$ as \vdash (resp. \neg) when it is reached from the right (resp. ⁸⁰¹ from left). While simulating a transition of M_f moving right of \exists , we proceed 802 as in case (3) above, except that $\mathcal T$ goes to the initial state of M_f instead.

⁸⁰³ The ω -2DMT_{la} A is then obtained as the composition of D, \mathcal{D}' and T. The ⁸⁰⁴ output produced by A is thus $\llbracket M_f \rrbracket(u_1u_2)\llbracket M_f \rrbracket(u_2u_3)\cdots$. \Box

805 3.4. Backward deterministic Büchi automata (BDBA)

806 A Büchi automaton over the input alphabet Σ is a tuple $\mathcal{B} = (P, \Sigma, \Delta, \text{Fin})$ 807 where P is a finite set of states, Fin $\subseteq P$ is the set of final (accepting) states, ⁸⁰⁸ and $\Delta \subseteq P \times \Sigma \times P$ is the transition relation. A run of B over an infinite word ⁸⁰⁹ $w = a_1 a_2 a_3 \cdots$ is a sequence $\rho = p_0, a_1, p_1, a_2, p_2, \ldots$ such that $(p_{i-1}, a_i, p_i) \in \Delta$ 810 for all $i \geq 1$. The run is final (accepting) if $\inf(\rho) \cap \text{Fin} \neq \emptyset$ where $\inf(\rho)$ is the 811 set of states visited infinitely often by $ρ$. This is a Büchi acceptance condition. 812 The Büchi automaton β is backward deterministic (BDBA) or complete ⁸¹³ unambiguous (CUBA) if for all infinite words $w \in \Sigma^{\omega}$, there is exactly one ⁸¹⁴ run ρ of B over w which is final, this run is denoted $\mathcal{B}(w)$. The fact that we 815 request at least/most one final run on w explains why the automaton is called $\frac{1}{816}$ complete/unambiguous. Wlog, we may assume that all states of β are useful, i.e., ⁸¹⁷ for all $p \in P$ there exists some $w \in \Sigma^{\omega}$ such that $\mathcal{B}(w)$ starts from state p. In ⁸¹⁸ that case, it is easy to check that the transition relation is backward deterministic and complete: for all $(p, a) \in P \times \Sigma$ there is exactly one state p' such that α_0 (*p'*, *a*, *p*) ∈ Δ. We write $p' \stackrel{a}{\leftarrow} p$ and state *p'* is denoted $\Delta^{-1}(p, a)$. In other words, ⁸²¹ the inverse of the transition relation Δ^{-1} : $P \times \Sigma \rightarrow P$ is a total function.

For each state $p \in P$, we let $\mathcal{L}(\mathcal{B}, p)$ be the set of infinite words $w \in \Sigma^{\omega}$ such ⁸²³ that $\mathcal{B}(w)$ starts from p. Notice that, $\Sigma^{\omega} = \biguplus_{p \in P} \mathcal{L}(\mathcal{B}, p)$, i.e., words in Σ^{ω} are 824 partitioned according to the starting state of their unique final run. For every ssubset $I \subseteq P$ of initial states, the language $\mathcal{L}(\mathcal{B}, I) = \bigcup_{p \in I} \mathcal{L}(\mathcal{B}, p)$ is ω -regular. \mathbb{E} **Example 23.** For instance, the automator B below is a BDBA. Moreover, $\mathcal{L}(\mathcal{B}, \mathcal{D}) = (\Sigma \setminus \{\#\})^\omega$, $\mathcal{L}(\mathcal{B}, \mathcal{D}_4) = (\#\Sigma^*)^\omega$, and $\mathcal{L}(\mathcal{B}, \{p_1, p_3, p_4\}) =$ δ ₈₂₈ $\Sigma^* \# \Sigma^{\omega}$.

 829 Deterministic Büchi automata (DBA) are strictly weaker than non-deterministic 830 Büchi automata (NBA) but backward determinism keeps the full expressive ⁸³¹ power.

332 **Theorem 24** (Carton & Michel [10]). A language $L \subseteq \Sigma^\omega$ is ω -regular iff 833 $L = \mathcal{L}(\mathcal{B}, I)$ for some BDBA \mathcal{B} and initial set I.

 834 The proof in [10] is constructive, starting with an NBA with m states, they \cos construct an equivalent BDBA with $(3m)^m$ states.

⁸³⁶ A crucial fact on BDBA is that they are easily closed under Boolean operations. $_{837}$ In particular, the complement, which is quite difficult for NBAs, becomes trivial with BDBAs: $\mathcal{L}(\mathcal{B}, P \setminus I) = \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{B}, I)$. For intersection and union, we simply 839 use the classical cartesian product of two automata \mathcal{B}_1 and \mathcal{B}_2 . This clearly ⁸⁴⁰ preserves the backward determinism. For intersection, we use a generalized 841 Büchi acceptance condition, i.e., a conjunction of Büchi acceptance conditions. 842 For BDBAs, generalized and classical Büchi acceptance conditions are equivalent ⁸⁴³ [10]. We obtain immediately

844 Corollary 25. Let R be a finite family of ω -regular languages. There is a BDBA 845 B and a tuple of initial sets $(I_R)_{R \in \mathcal{R}}$ such that $R = \mathcal{L}(\mathcal{B}, I_R)$ for all $R \in \mathcal{R}$.

846 3.5. Replacing the look-ahead of an ω -2DMT_{la} with a BDBA

⁸⁴⁷ Let $A = (Q, \Sigma, \Gamma, q_0, \delta, \mathcal{F}, \mathcal{R})$ be an ω-2DMT_{la}. By Corollary 25 there is a 848 BDBA $\mathcal{B} = (P, \Sigma, \Delta, \text{Fin})$ and a tuple $(I_R)_{R \in \mathcal{R}}$ of initial sets for the finite family 849 R of ω -regular languages used as look-ahead by the transducer A. Recall that 850 for every pair $(q, a) \in Q \times \Sigma_{\vdash}$, the subset $\mathcal{R}(q, a)$ of languages $R \in \mathcal{R}$ such that ⁸⁵¹ $\delta(q, a, R)$ is defined forms a partition of Σ^{ω} . We deduce that $(I_R)_{R \in \mathcal{R}(q, a)}$ is a 852 partition of P .

853 We construct an ω -2DMT $\widetilde{\mathcal{A}} = (Q, \widetilde{\Sigma}, \Gamma, q_0, \widetilde{\delta}, \mathcal{F})$ without look-ahead over the extended alphabet $\widetilde{\Sigma} = \Sigma \times P$ which is equivalent to A in some sense made
species below. Intuitively, in a pair $(a, p) \in \widetilde{\Sigma_{\vdash}}$, the state p of B gives the 855 precise below. Intuitively, in a pair $(a, p) \in \Sigma_{\vdash}$, the state p of B gives the look-ahead information required by A. Formally, the deterministic transition look-ahead information required by A . Formally, the deterministic transition ⁸⁵⁷ function $\widetilde{\delta}: Q \times \Sigma_{\vdash} \to Q \times \Gamma^* \times \{-1, +1\}$ is defined as follows: for $q \in Q$ and ⁸⁵⁸ $(a, p) \in \widetilde{\Sigma}_{\vdash}$ we let $\widetilde{\delta}(q,(a, p)) = \delta(q, a, R)$ for the unique $R \in \mathcal{R}(q, a)$ such that $p \in I_R$.

860 **Example 26.** For instance, the ω -2DMT \tilde{A} constructed from the ω -2DMT_{la} of Figure 1 and the BDBA B of Example 23 is depicted below, where \bullet stands for Figure 1 and the BDBA B of Example 23 is depicted below, where \bullet stands for δ ₈₆₂ an arbitrary state of β .

Let $w = a_1 a_2 a_3 \cdots \in \Sigma^{\omega}$ and let $\mathcal{B}(w) = p_0, a_1, p_1, a_2, p_2, \ldots$ be the unique final run of B on w. We define $\widetilde{+w} = (\vdash, p_0)(a_1, p_1)(a_2, p_2) \cdots \in \widetilde{\Sigma_{\vdash}}^{\omega}$. We can easily check by induction that the unique run of A on w

$$
q_0 \vdash w \xrightarrow{\gamma_1} w'_1 q_1 w''_1 \xrightarrow{\gamma_2} w'_2 q_2 w''_2 \xrightarrow{\gamma_3} w'_3 q_3 w''_3 \xrightarrow{\gamma_4} w'_4 q_4 w''_4 \cdots
$$

corresponds to the unique run of \widetilde{A} on \widetilde{Fw}

$$
q_0 \widetilde{\vdash w} \xrightarrow{\gamma_1} \widetilde{w'_1} q_1 \widetilde{w''_1} \xrightarrow{\gamma_2} \widetilde{w'_2} q_2 \widetilde{w''_2} \xrightarrow{\gamma_3} \widetilde{w'_3} q_3 \widetilde{w''_3} \xrightarrow{\gamma_4} \widetilde{w'_4} q_4 \widetilde{w''_4} \cdots
$$

⁸⁶³ where for all $i > 0$ we have $\begin{bmatrix} -w = w'_i w''_i \end{bmatrix}$ and $|w'_i| = |w'_i|$. Indeed, assume ⁸⁶⁴ that in a configuration $w'qaw''$ with $\vdash w = w'aw''$ the transducer A takes the ⁸⁶⁵ transition $q \xrightarrow{(a,R)} (q', \gamma, +1)$ and reaches configuration $w' a q' w''$. Then, $w'' \in R$ and the corresponding configuration $\widetilde{w'}q(a, p)\widetilde{w''}$ with $\widetilde{Fw} = \widetilde{w'}(a, p)\widetilde{w''}$ and $|w'| = |\widetilde{w'}|$ is such that $p \in I_R$. Therefore, the transducer \widetilde{A} takes the transition ⁸⁶⁷ $|w'| = |\widetilde{w'}|$ is such that $p \in I_R$. Therefore, the transducer \widetilde{A} takes the transition ⁰⁶⁸ $q \xrightarrow{(a,p)} (q', \gamma, +1)$ and reaches configuration $\widetilde{w'}(a, p)q'\widetilde{w''}$. The proof is similar ⁸⁶⁹ for backward transitions. We have shown that $\tilde{\mathcal{A}}$ and $\tilde{\mathcal{A}}$ are equivalent in the following sense: following sense:

 \mathbb{E}_{Bil} Lemma 27. For all words $w \in \Sigma^{\omega}$, the ω -2DMT_{la} A starting from $\vdash w$ accepts ⁸⁷² iff the ω -2DMT \tilde{A} starting from $\vdash w$ accepts, and in this case they compute the
⁸⁷³ same output in Γ^{∞} . same output in Γ^{∞} .

874 3.6. Transition monoid of an ω -2DMT_{la}

 875 We use the notations of the previous sections, in particular for the ω -2DMT₁. ⁸⁷⁶ A, the BDBA B and the corresponding ω -2DMT \widetilde{A} . As in the case of 2NFAs over finite words, we will define a congruence on Σ^+ such that two words $u, v \in \Sigma^+$ ⁸⁷⁷ finite words, we will define a congruence on Σ^+ such that two words $u, v \in \Sigma^+$ 878 are equivalent iff they behave the same in the ω -2DMT_{la} A, when placed in an arbitrary right context $w \in \Sigma^{\omega}$. The right context w is abstracted with the first 880 state p of the unique final run $\mathcal{B}(w)$.

⁸⁸¹ The ω -2DMT A does not use look-ahead, hence, we may use for A the classical
⁸⁸² notion of transition monoid. Actually, in order to handle the Muller acceptance notion of transition monoid. Actually, in order to handle the Muller acceptance 883 condition of A, we need a slight extension of the transition monoid defined in Section 2.5. More precisely, the abstraction of a finite word $\widetilde{u} \in \widetilde{\Sigma}^+$ will be the Section 2.5. More precisely, the abstraction of a finite word $\widetilde{u} \in \Sigma^+$ will be the set $\widetilde{\mathrm{Tr}}(\widetilde{u})$ of tuples (a, d, X, a') with $a, a' \in O$. $X \subseteq O$ and $d \in \{\rightarrow, \infty \subset \leftarrow\}$ such ss set $\widetilde{\text{Tr}}(\widetilde{u})$ of tuples (q, d, X, q') with $q, q' \in Q$, $X \subseteq Q$ and $d \in \{\rightarrow, \geq, \leq, \leftarrow\}$ such

886 that the unique run of A on \tilde{u} starting in state q on the left of \tilde{u} if $d \in \{\rightarrow, \gg\}$ ⁸⁸⁷ (resp. on the right if $d \in \{\subset, \leftarrow\}$) exits in state q' on the left of \tilde{u} if $d \in \{\ge, \leftarrow\}$
contract on the right if $d \in \{\rightarrow, \leftarrow\}$) and visits the set of states X while in \tilde{u} (i.e. 888 (resp. on the right if $d \in \{\rightarrow, \subseteq\}$) and visits the set of states X while in \tilde{u} (i.e., including q but not q' unless q' is also visited before the run exits \tilde{u}). ss including q but not q' unless q' is also visited before the run exits \tilde{u}).

For instance with the enterprison \tilde{A} of Example 26, we have (x, \ldots)

890 For instance, with the automaton A of Example 26, we have $(q_4, \rightarrow, \{q_2, q_3, q_4\},\)$ q_5) \in $\widetilde{Tr}(\widetilde{u})$ when $\widetilde{u} \in ((a, p_1) + (b, p_1))^*(\#, p_1)((a, p_1) + (b, p_1))^*(\#, p_2)$.

We denote by $\widetilde{TrM} = {\{\widetilde{Tr}(\widetilde{u}) | \widetilde{u} \in \widetilde{\Sigma}^+\} \cup {\{\mathbf{1}_{\widetilde{TrM}}\}}\}$ the transition monoid of \widetilde{A} with unit $\mathbf{1}_{\widetilde{TrM}}$. The classical product of the transition monoid of a two-893 A with unit $1_{\widetilde{TM}}$. The classical product of the transition monoid of a two-
894 way automaton [7] is extended by taking the union of the sets X occurring way automaton $\frac{1}{2}$ is extended by taking the union of the sets X occurring 895 in a sequence of steps. For instance, if we have steps $(q_0, \rightarrow, X_1, q_1)$, (q_2, \subseteq) ⁸⁹⁶, X_3, q_3 , ..., $(q_{i-1}, \zeta, X_i, q_i)$ in $\text{Tr}(\tilde{u})$ and (q_1, ζ, X_2, q_2) , (q_3, ζ, X_4, q_4) , ..., ⁸⁹⁷ $(q_i, \rightarrow, X_{i+1}, q_{i+1})$ in $\text{Tr}(\widetilde{v})$ then there is a step $(q_0, \rightarrow, X_1 \cup \cdots \cup X_{i+1}, q_{i+1})$ in
 $\widetilde{\text{Tr}}(\widetilde{v})$ $\widetilde{\text{Tr}}(\widetilde{v})$ $\widetilde{\text{Tr}}(\widetilde{v})$ We denote by $\widetilde{\text{Tr}}(\widetilde{v})$ $\widetilde{\text{Tr}}(\widetilde{v})$ $\widetilde{\text{Tr}}(\wid$ 898 $\widetilde{\text{Tr}}(\widetilde{u} \cdot \widetilde{v}) = \widetilde{\text{Tr}}(\widetilde{u}) \cdot \widetilde{\text{Tr}}(\widetilde{v})$. We denote by $\widetilde{\text{Tr}}: \widetilde{\Sigma}^* \to \widetilde{\text{Tr}}M$ the canonical morphism.

Let $u = a_1 \cdots a_n \in \Sigma^+$ be a finite word of length $n > 0$ and let $p \in P$. Let $u = a_1 \cdots a_n \in \Sigma^+$ be a finite word of length $n > 0$ and let $p \in P$. 900 We define the sequence of states p_0, p_1, \ldots, p_n by $p_n = p$ and for all $0 \leq$ ⁹⁰¹ $i < n$ we have $p_i \xleftarrow{a_{i+1}} p_{i+1}$ in B. Notice that for all infinite words $w \in$ ⁹⁰² $\mathcal{L}(\mathcal{B}, p)$, the unique run $\mathcal{B}(uw)$ starts with $p_0, a_1, p_1, \ldots, a_n, p_n$. We define $\widetilde{u}^p =$ 903 $(a_1, p_1)(a_2, p_2)\cdots(a_n, p_n) \in \Sigma^+.$

904 We are now ready to define

We are now ready to define the finite abstraction $Tr(u)$ of a finite word ⁹⁰⁵ $u \in \Sigma^+$ with respect to the pair (A, \mathcal{B}) : we let $Tr(u) = (r^p, b^p, s^p)_{p \in P}$ where ⁹⁰⁶ for each $p \in P$, $s^p = \text{Tr}(\tilde{u}^p) \in \text{Tr}M$ is the abstraction of \tilde{u}^p with respect to \tilde{A} , ⁹⁰⁷ $r^p \in P$ is the unique state of B such that $r^p \stackrel{u}{\leftarrow} p$, $b^p = 1$ if the word \tilde{u}^p contains ⁹⁰⁸ a final state of \mathcal{B} and $b^p = 0$ otherwise.

909 We define the transition monoid of (A, B) as the set $Tr M = {Tr(u) | u \in$ 910 Σ^+ \cup { $\mathbf{1}_{\mathsf{TrM}}$ } where $\mathbf{1}_{\mathsf{TrM}}$ is the unit. The product of $\sigma_1 = (r_1^p, b_1^p, s_1^p)_{p \in P}$ and 911 $\sigma = (r^p, b^p, s^p)_{p \in P}$ is defined to be $\sigma_1 \cdot \sigma = (r_1^{r^p}, b_1^{r^p} \vee b^p, s_1^{r^p} \cdot s^p)_{p \in P}$. We can check 912 that this product is associative, so that $(TrM, \cdot, 1_{TrM})$ is a monoid. Moreover, 913 let $u, v \in \Sigma^+$ be such that $Tr(u) = \sigma_1$ and $Tr(v) = \sigma$. For each $p \in P$, we can ⁹¹⁴ check that $\widetilde{uv}^p = \widetilde{u}^{r^p} \cdot \widetilde{v}^p$. We deduce easily that $Tr(uv) = \sigma_1 \cdot \sigma = Tr(u) \cdot Tr(v)$. 915 Therefore, $Tr: \Sigma^* \to Tr\mathsf{M}$ is a morphism.

916 3.7. ω -2DMT_{la} to ω -RTE

917 We prove in this section that from an ω -2DMT_{la} A we can construct an 918 equivalent ω -RTE. The proof follows the ideas already used for finite words in ⁹¹⁹ Section 2.6. We will use the following generalization to infinite words of the ⁹²⁰ unambiguous forest factorization Theorem 12.

921 **Theorem 28** (Unambiguous Forest Factorization [21]). Let $\varphi \colon \Sigma^* \to S$ be 922 a morphism to a finite monoid $(S, \cdot, 1_S)$. There is an unambiguous rational ⁹²³ expression $G = \bigcup_{k=1}^m F_k \cdot G_k^{\omega}$ over Σ such that $\mathcal{L}(G) = \Sigma^{\omega}$ and $F_k \cdot G_k^+$ are ε -free φ -good rational expressions for all $1 \leq k \leq m$.

We will apply this theorem to the morphism $\text{Tr}: \Sigma^* \to \text{TrM}$ defined in Section 3.6. We use the unambiguous expression $G = \bigcup_{k=1}^{m} F_k \cdot G_k^{\omega}$ as a guide 927 when constructing ω -RTEs corresponding to the ω -2DMT_{la} A.

⁹²⁸ The following lemma is similar to Lemma 14. It shows how to construct the 929 RTEs associated with steps of elements of the transition monoid TrM.

930 Lemma 29. Let G be an ε -free Tr-good rational expression and let $Tr(G)$ = ⁹³¹ $\sigma_G = (r_G^p, b_G^p, s_G^p)_{p \in P}$ be the corresponding element of the transition monoid TrM

- ⁹³² of (A, B) . For each state $p \in P$, we can construct a map $C_G^p : s_G^p \to \mathsf{RTE}$ such
- ⁹³³ that for each step $x = (q, d, X, q') \in s_G^p$ the following invariants hold:
- 934 (J_1) dom $(C_G^p(x)) = \mathcal{L}(G),$

⁹³⁵ (J₂) for each $u \in \mathcal{L}(G)$, $[\![C_G^p(x)]\!](\underline{u})$ is the output produced by $\widetilde{\mathcal{A}}$ when running

 s_{36} step x on \tilde{u}^p (i.e., running \tilde{A} on \tilde{u}^p from q to q' following direction d).

 937 Proof. The proof is by structural induction on the rational expression. For each ⁹³⁸ subexpression E of G we let $\textsf{Tr}(E) = \sigma_E = (r_E^p, b_E^p, s_E^p)_{p \in P}$ be the corresponding 939 element of the transition monoid TrM of (A, B) . We start with atomic regular 940 expressions. Since G is ε-free and *≬*-free, we do not need to consider $E = \varepsilon$ 941 or $E = \emptyset$. The construction is similar to the one given in Section 2.6. The ⁹⁴² interesting cases are concatenation and Kleene-plus.

943 **atomic** Assume that $E = a \in \Sigma$ is an atomic subexpression. Notice that 944 \widetilde{a} $\tilde{a}^p = (a, p)$ for all $p \in P$. Since the ω -2DMT $\tilde{\mathcal{A}}$ is deterministic and 945 complete, for each state $q \in Q$ we have \bullet either $\delta(q,(a,p)) = (q',\gamma,1)$ and we let $C_a^p((q,\rightarrow,q\},q')) = C_a^p((q,\leq$ 947 $\{q\}, q') = a ? \gamma : \bot,$

$$
\bullet \text{ or } \widetilde{\delta}(q,(a,p)) = (q',\gamma,-1) \text{ and we let } C_a^p((q,\gtrless,\{q\},q')) = C_a^p((q,\Leftarrow,\{q\},q')) = \alpha? \gamma : \bot.
$$

950 Clearly, invariants (J_1) and (J_2) hold for all $x \in s_E^p$.

951 union Assume that $E = E_1 \cup E_2$. Since E is good, we deduce that $\sigma_E = \sigma_{E_1} =$ ⁹⁵² σ_{E_2} . For each $p \in P$ and $x \in s_E^p$ we define $C_E^p(x) = E_1 ? C_{E_1}^p(x) : C_{E_2}^p(x)$. 953 Since E is unambiguous we have $\mathcal{L}(E_1) \cap \mathcal{L}(E_2) = \emptyset$. As in Section 2.6 we can prove easily that invariants (J_1) and (J_2) hold for all $x \in s_E^p$.

955 concatenation Assume that $E = E_1 \cdot E_2$ is a concatenation. Since E is good, ⁹⁵⁶ we deduce that $\sigma_E = \sigma_{E_1} \cdot \sigma_{E_2}$. Let $p \in P$ and $p_1 = r_{E_2}^p$. We have 957 $s_E^p = s_{E_1}^{p_1} \cdot s_{E_2}^p$. Let $x \in s_E^p$.

> If $x = (q, \rightarrow, X, q')$ then, by definition of the product in the transition monoid TrM, there is a unique sequence of steps $x_1 = (q, \rightarrow, X_1, q_1)$, $x_2 = (q_1, \geq, X_2, q_2), x_3 = (q_2, \leq, X_3, q_3), x_4 = (q_3, \geq, X_4, q_4), \ldots, x_i =$ $(q_{i-1}, \zeta, X_i, q_i), x_{i+1} = (q_i, \to, X_{i+1}, q')$ with $i \geq 1, x_1, x_3, \ldots, x_i \in s_{E_1}^{p_1}$ and $x_2, x_4, \ldots, x_{i+1} \in s_{E_2}^p$ and $X = X_1 \cup \cdots \cup X_{i+1}$ (see Figure 10). We define

$$
C_E^p(x) = (C_{E_1}^{p_1}(x_1) \boxdot C_{E_2}^p(x_2)) \odot (C_{E_1}^{p_1}(x_3) \boxdot C_{E_2}^p(x_4)) \odot \cdots \odot (C_{E_1}^{p_1}(x_i) \boxdot C_{E_2}^p(x_{i+1})).
$$

ss Notice that when $i = 1$ we have $C_E^p(x) = C_{E_1}^{p_1}(x_1) \boxdot C_{E_2}^p(x_2)$ with $x_2 =$ 959 $(q_1, \rightarrow, X_2, q').$

The concatenation $\mathcal{L}(E) = \mathcal{L}(E_1) \cdot \mathcal{L}(E_2)$ is unambiguous. Therefore, for ⁹⁶¹ and $z \in s_{E_2}^p$, using (J_1) for E_1 and E_2 , we obtain dom $(C_{E_1}^{p_1}(y))$ ⁹⁶² $C_{E_2}^{p}(z) = \mathcal{L}(E)$. We deduce that $\text{dom}(C_E(x)) = \mathcal{L}(E)$ and (J_1) holds for 963 $E \text{ and } x = (q, \rightarrow, X, q').$

> Now, let $u \in \mathcal{L}(E)$ and let $u = u_1u_2$ be its unique factorization with $u_1 \in \mathcal{L}(E_1)$ and $u_2 \in \mathcal{L}(E_2)$. We have $\widetilde{u_1 u_2}^p = \widetilde{u_1}^{p_1} \cdot \widetilde{u_2}^p$. Hence, the step $x = (q, \rightarrow, X, q')$ performed by \tilde{A} on \tilde{u}^p is actually the concatenation of

Figure 10: In the concatenation $E = E_1 \cdot E_2$, a step $x = (q, \rightarrow, X, q') \in s_E^p$ on some $u_1 u_2$ with $u_1 \in E_1$ and $u_2 \in E_2$, is obtained by composing the following steps alternatively from $s_{E_1}^{p_1}$ and $s_{E_2}^p$ for a unique state $p_1: x_1 = (q, \to, X_1, q_1), x_2 = (q_1, \geq, X_2, q_2), x_3 = (q_2, \leq, X_3, q_3),$ $x_4 = (q_3, \geq, X_4, q_4), x_5 = (q_4, \leq, X_5, q_5), x_6 = (q_5, \rightarrow, X_6, q')$ with $X = X_1 \cup \cdots \cup X_6$.

steps x_1 on $\widetilde{u_1}^{p_1}$, followed by x_2 on $\widetilde{u_2}^p$, followed by x_3 on $\widetilde{u_1}^{p_1}$, followed
by x_3 on $\widetilde{u_1}^{p_1}$, followed by x_4 on $\widetilde{u_1}^{p_2}$, $\widetilde{u_2}^{p_3}$ Using (L) for E, a by x_4 on $\widetilde{u_2}^p$, ..., until x_{i+1} on $\widetilde{u_2}^p$. Using (J_2) for E_1 and E_2 , we deduce that the output produced by \widetilde{A} while making step x on \widetilde{u}^p is

$$
\begin{aligned} \llbracket C_{E_1}^{p_1}(x_1) \rrbracket(u_1) \cdot \llbracket C_{E_2}^{p_2}(x_2) \rrbracket(u_2) \cdots \llbracket C_{E_1}^{p_1}(x_i) \rrbracket(u_1) \cdot \llbracket C_{E_2}^{p}(x_{i+1}) \rrbracket(u_2) \\ &= \llbracket C_{E}^{p}(x) \rrbracket(u) \end{aligned}
$$

Therefore, (J_2) holds for E and step $x = (q, \rightarrow, X, q')$. The proof is obtained ⁹⁶⁵ mutatis mutandis for the other cases $x = (q, \geq, X, q')$ or $x = (q, \leq, X, q')$ or x = (q, ←, X, q⁰ ⁹⁶⁶). \mathcal{L}_{967} Kleene-plus Assume that $E = F^+$. Since E is good, we deduce that $\sigma_E =$ ⁹⁶⁸ $\sigma_F = \sigma = (r^p, b^p, s^p)_{p \in P}$ is an idempotent of the transition monoid TrM. Notice that for all $p \in P$, since σ is an idempotent, we have $r^{r^p} = r^p$. ⁹⁷⁰ We first define C_E^p for states $p \in P$ such that $p = r^p$. Let $x \in s^p$. \bullet If $x = (q, \geq, X, q')$. Since F^+ is unambiguous, a word $u \in \mathcal{L}(F^+)$ 972 admits a unique factorization $u = u_1 u_2 \cdots u_n$ with $n \ge 1$ and $u_i \in$ ⁹⁷³ $\mathcal{L}(F)$. Now, $Tr(u_i) = \sigma$ for all $1 \leq i \leq n$ and since $p = r^p$ we deduce ⁹⁷⁴ that $\widetilde{u}^p = \widetilde{u_1}^p \widetilde{u_2}^p \cdots \widetilde{u_n}^p$. Since $x = (q, z, X, q') \in s^p$, the unique ⁹⁷⁵ curs on the left of \widetilde{u}_1^p exits on the left in
 \widetilde{u}_2^p exits on the left in ⁹⁷⁶ state q'. Therefore, the unique run of $\widetilde{\mathcal{A}}$ starting in state q on the ⁹⁷⁷ left of \tilde{u}^p only visits \tilde{u}_1^p and is actually *ρ* itself. Therefore, we set ⁹⁷⁸
 $C_E^p(x) = C_F^p(x) \sqcup (F^* ? \varepsilon : \bot)$ and we can easily check that (J_1-J_2) ⁹⁷⁹ are satisfied. ⁹⁸⁰ Similarly for $x = (q, \zeta, X, q')$ we set $C_E^p(x) = (F^* ? \varepsilon : \bot) \boxdot C_F^p(x)$. • If $x = (q, \rightarrow, X, q')$. Since σ is an idempotent, we have $x \in s^p \cdot s^p$. We ⁹⁸² distinguish two cases depending on whether the step $y \in s^p$ starting $\frac{1}{2}$ ⁹⁸³ in state q' from the left goes to the right or goes back to the left. First, if $y = (q', \rightarrow, X_2, q_2) \in s^p$ goes to the right. Since s^p is an ⁹⁸⁵ is the same as following x in $s^p \cdot s^p$ is the same as following x in (the ⁹⁸⁶ first) s^p and then y in (the second) s^p . Therefore, we must have 987 $q_2 = q'$ and $X_2 \subseteq X$. In this case, we set $C_E^p(x) = F? C_F^p(x)$: ⁹⁸⁸ $(C_F^p(x) \sqcup (C_F^p(y))^{\boxplus}).$
Socond if $y = (c')$ Second, if $y = (q', \geq, X_2, q_2) \in s^p$ goes to the left. Since s^p is an idempotent, there exists a unique sequence of steps in s^p : $x_1 = x$, $x_2 = y, x_3 = (q_2, \zeta, X_3, q_3), x_4 = (q_3, \zeta, X_4, q_4), \ldots, x_i = (q_{i-1}, \zeta)$

Figure 11: In the Kleene-plus $E = F^+$, a step $x = (q, \rightarrow, X, q') \in s_E^p$ on some $u = u_1 u_2 \cdots u_n$ with $u_\ell \in \mathcal{L}(F)$ is obtained by composing the following steps in s_F^p : $x_1 = x, x_2 = (q', \geq, X_2, q_2)$, $x_3 = (q_2, \zeta, X_3, q_3), x_4 = (q_3, \zeta, X_4, q_4), x_5 = (q_4, \zeta, X_5, q_5), x_6 = (q_5, \rightarrow, X_6, q')$ with $X = X_1 \cup \cdots \cup X_6.$

, X_i, q_i , $x_{i+1} = (q_i, \rightarrow, X_{i+1}, q')$ with $i \geq 3$ (see Figure 11). We define

$$
C_F^p(x) = (C_F^p(x) \boxdot (F^* ? \varepsilon : \bot)) \odot [F, C']^{2\boxplus}
$$

$$
C' = ((F ? \varepsilon : \bot) \boxdot C_F^p(x_2)) \odot (C_F^p(x_3) \boxdot C_F^p(x_4)) \odot \cdots \odot
$$

$$
(C_F^p(x_i) \boxdot C_F^p(x_{i+1}))
$$

⁹⁸⁹ The proof of correctness, i.e., that (J_1-J_2) are satisfied for E, is as in ⁹⁹⁰ Section 2.6.

• If $x = (q, \leftarrow, X, q')$, the proof is obtained mutatis mutandis, using the backward unambiguous (2-chained) Kleene-plus $C^{\frac{1}{\text{m}}}$ and $[K, C]^{\frac{1}{2\text{m}}}$.

Now, we consider $p \in P$ with $r^p \neq p$. We let $p' = r^p$. We have already noticed that since σ is idempotent we have $r^{p'} = p'$. Consider a word 995 $u \in \mathcal{L}(F^+)$. Since F^+ is unambiguous, u admits a unique factorization 996 $u = u_1 \cdots u_{n-1} u_n$ with $n \ge 1$ and $u_i \in \mathcal{L}(F)$. Now, $\text{Tr}(u_i) = \sigma$ for all $1 \le$ ⁹⁹⁷ $i \leq n$. Using $r^p = p'$ and $r^{p'} = p'$ we deduce that $\widetilde{u}^p = \widetilde{u_1}^{p'} \cdots \widetilde{u_{n-1}}^{p'} \widetilde{u_n}^p$.
So when $n > 1$ the expression C^p that we peed to compute is like the S o when $n > 1$, the expression C_E^p that we need to compute is like the concatenation of $C_F^{p'}$ concatenation of $C_E^{p'}$ on the first $n-1$ factors with C_F^p on the last factor. Since $r^{p'} = p'$ we have already seen how to compute $C_E^{p'}$ ¹⁰⁰⁰ Since $r^{p'} = p'$ we have already seen how to compute C_E^p . We also know ¹⁰⁰¹ how to handle concatenation. So it should be no surprise that we can 1002 compute C_E^p when $p \neq r^p$. We define now formally $C_E^p(x)$ for $x \in s^p$.

 \bullet If $x = (q, \geq, X, q') \in s^p$. There are two cases depending on whether the step $y \in s^{p'}$ starting in state q from the left goes back to the left ¹⁰⁰⁵ or goes to the right.

If it goes back to the left, then $y = (q, \geq, X, q') = x$ since $s^p = s^{p'} \cdot s^p$

Figure 12: (Left) Given a look-ahead $p \in P$, a step (q, \rightarrow, q') of $\nvdash u$ for some u with $Tr(u)$ $(r^p, b^p, s^p)_{p \in P}$, is obtained by composing the following steps alternatively from s^p_{\vdash} and s^p . $x_1 = (q, \rightarrow, q_1), x_2 = (q_1, \rightarrow, X_2, q_2), x_3 = (q_2, \sub, q_3), x_4 = (q_3, \sub, X_4, q_4), x_5 = (q_4, \sub, q_5),$ $x_6 = (q_5, \to, X_6, q')$. (Right) Similarly, a step (q, \subsetneq, q') of $\vdash u$ is obtained by composing the following steps alternatively from s^p and s^p : $x_1 = (q, \leftarrow, X_1, q_1), x_2 = (q_1, \leftarrow, q_2), x_3 =$ $(q_2, \geq, X_3, q_3), x_4 = (q_3, \leq, q_4), x_5 = (q_4, \rightarrow, X_5, q').$

(recall that σ is idempotent) and we define

$$
C_E^p(x) = F? C_F^p(x) : (C_F^{p'}(x) \sqcup (F^+ ? \varepsilon : \bot)).
$$

If it goes to the right, then $y = (q, \rightarrow, X_1, q_1)$ and there exists a unique sequence of steps: $x_1 = y$, $x_2 = (q_1, \geq, X_2, q_2)$, $x_3 = (q_2, \subseteq, \subseteq)$ $(X_3, q_3), x_4 = (q_3, \geq, X_4, q_4), \ldots, x_i = (q_{i-1}, \leftarrow, X_i, q')$ with $i \geq 3$, $x_1, x_3, \ldots, x_i \in s^{p'}$ and $x_2, \ldots, x_{i-1} \in s^p$. Notice that $X = X_1 \cup \cdots \cup$ X_i . We define $C_E^p(x) = F ? C_F^p(x) : C'$ where

$$
C' = (C_E^{p'}(x_1) \boxdot C_F^{p}(x_2)) \odot \cdots \odot (C_E^{p'}(x_{i-2}) \boxdot C_F^{p}(x_{i-1})) \odot
$$

$$
(C_E^{p'}(x_i) \boxdot (F? \varepsilon : \bot)).
$$

¹⁰⁰⁶ We can check that (J_1-J_2) are satisfied for (E, p, x) .

 \bullet If $x = (q, \leftarrow, X, q') \in s^p$. There are two cases depending on whether ¹⁰⁰⁸ the step $y \in s^{p'}$ starting in state q' from the right goes to the left or

¹⁰⁰⁹ goes back to the right.

If it goes to the left, then $y = (q', \leftarrow, X', q')$ with $X' \subseteq X$ and we define

$$
C_E^p(x) = F? C_F^p(x) : (C_E^{p'}(y) \sqsubseteq C_F^p(x)).
$$

If it goes back to the right, then $y = (q', \zeta, X_2, q_2)$ and there exists a unique sequence of steps: $x_1 = x, x_2 = y, x_3 = (q_2, \geq, X_3, q_3)$, $x_4 = (q_3, \zeta, X_4, q_4), \ldots, x_i = (q_{i-1}, \geq, X_i, q_i) \ x_{i+1} = (q_i, \leftarrow, X_{i+1}, q')$ with $i \geq 3, x_1, x_3, \ldots, x_i \in s^p$ and $x_2, \ldots, x_{i+1} \in s^{p'}$. Notice that $X_2 \cup \cdots \cup X_{i+1} \subseteq X$. We define $C_E^p(x) = F? C_F^p(x) : C'$ where

$$
C' = (C_E^{p'}(x_2) \overleftarrow{\boxdot} C_F^p(x_1)) \odot \cdots \odot (C_E^{p'}(x_{i-1}) \overleftarrow{\boxdot} C_F^p(x_{i-2})) \odot
$$

$$
(C_E^{p'}(x_{i+1}) \overleftarrow{\boxdot} C_F^p(x_i)).
$$

¹⁰¹⁰ We can check that (J_1-J_2) are satisfied for (E, p, x) .

 \bullet The cases $x = (q, \rightarrow, X, q') \in s^p$ and $x = (q, \subsetneq, X, q') \in s^p$ can be ¹⁰¹² handled similarly. \Box

¹⁰¹³ We now define RTEs corresponding to the left part of the computation of ¹⁰¹⁴ the ω -2DMT_{la} A, i.e., on some input $\vdash u$ consisting of the left end-marker and ¹⁰¹⁵ some finite word $u \in \Sigma^{+}$. As before, the look-ahead is determined by the state $_{1016}$ of the BDBA β .

- 1017 **Lemma 30.** Let F be an ε -free Tr-good rational expression. For each state ¹⁰¹⁸ $p \in P$ and $q \in Q$, there is a unique state $q' \in Q$ and RTEs $C_{\vdash F}^p((q, \rightarrow, q'))$ (resp. $C_{\vdash F}^{p}((q,\zeta,q')))$ such that the following invariants hold:
- 1020 $(K_1) \text{ dom}(C_{\vdash F}^p((q,\to,q'))) = \mathcal{L}(F)$ (resp. dom $(C_{\vdash F}^p((q,\subsetq,q'))) = \mathcal{L}(F)$),
- $\mathcal{L}(K_2)$ for each $u \in \mathcal{L}(F)$, $\llbracket C_{\vdash F}^p((q,\rightarrow,q')) \rrbracket(u)$ (resp. $\llbracket C_{\vdash F}^p((q,\subsetq,q')) \rrbracket(u)$) is the
- 1022 output produced by \tilde{A} on $\tilde{F}u^p$ when starting on the left (resp. right) in state q until it exists on the right in state q' .
- 1024 Proof. Let $\sigma = (r^p, b^p, s^p)_{p \in P} = \text{Tr}(F)$. We fix some state $p \in P$. For all words 1025 $u \in \mathcal{L}(F)$, we have $\widetilde{u}^p = (\vdash, r^p) \widetilde{u}^p$. Let s^p_\vdash be the set of steps $(q, \rightarrow, q'), (q, \subset, q')$ 1026 such that $\widetilde{\delta}(q, (\vdash, r^p)) = (q', \gamma_q^p, +1)$ in $\widetilde{\mathcal{A}}$.

For each $q \in Q$, there is a unique sequence of steps $x_1 = (q, \rightarrow, q_1)$, $x_2 =$ $(q_1, \geq, X_2, q_2), x_3 = (q_2, \leq, q_3), x_4 = (q_3, \geq, X_4, q_4), \ldots, x_i = (q_{i-1}, \leq, q_i), x_{i+1} =$ (q_i, \to, X_{i+1}, q') with $i \geq 1, x_1, x_3, \ldots, x_i \in s_F^p$ and $x_2, x_4, \ldots, x_{i+1} \in s^p$ (see Figure 12 left). We define

$$
C_{\vdash F}^p((q,\rightarrow,q'))=\gamma_q^p\odot C_F^p(x_2)\odot\gamma_{q_2}^p\odot C_F^p(x_4)\odot\cdots\odot\gamma_{q_{i-1}}^p\odot C_F^p(x_{i+1}).
$$

¹⁰²⁷ Using Lemma 29, we can show that $\mathcal{L}(F) = \text{dom}(C_{\vdash F}^p((q, \rightarrow, q')))$ and also that for each $u \in \mathcal{L}(F)$, $\llbracket C_{\vdash F}^{p}((q, \to, q')) \rrbracket(u)$ is the output produced by $\widetilde{\mathcal{A}}$ on $\widetilde{\vdash u}^{p}$ 1028 when starting on the left in state q until it exists on the right in state q' .

For each $q \in Q$, there is a unique sequence of steps $x_1 = (q, \leftarrow, X_1, q_1)$, $x_2 = (q_1, \zeta, q_2), x_3 = (q_2, \zeta, X_3, q_3), x_4 = (q_3, \zeta, q_4), \ldots, x_i = (q_{i-1}, \zeta, q_i),$ $x_{i+1} = (q_i, \to, X_{i+1}, q')$ with $i \ge 2, x_2, x_4, \ldots, x_i \in s_{\vdash}^p$ and $x_1, x_3, \ldots, x_{i+1} \in s^p$ (see Figure 12 right). We define

$$
C_{\vdash F}^p((q,\zeta,q'))=C_F^p(x_1)\odot\gamma_{q_1}^p\odot C_F^p(x_3)\odot\gamma_{q_3}^p\odot\cdots\odot\gamma_{q_{i-1}}^p\odot C_F^p(x_{i+1}).
$$

1030 Using Lemma 29, we can show that $\mathcal{L}(F) = \text{dom}(C_{\vdash F}^p((q,\subsetq,q')))$ and also that for each $u \in \mathcal{L}(F)$, $\llbracket C_{\vdash F}^{p}((q,\zeta,q')) \rrbracket(u)$ is the output produced by $\widetilde{\mathcal{A}}$ on $\widetilde{\vdash u}$ 1031 when starting on the right in state q until it exists on the right in state q' .

1033 **Lemma 31.** Let $F \cdot G^{\omega}$ be an unambiguous rational expression such that F and 1034 G are ε -free Tr-good rational expressions and Tr(G) = $\sigma = (r^p, b^p, s^p)_{p \in P}$ is an 1035 idempotent in the transition monoid TrM of (A, B) . We can construct an ω -RTE 1036 $C_{FG^{\omega}}$ such that dom $(C_{FG^{\omega}}) = \mathcal{L}(FG^{\omega}) \cap \text{dom}(\mathcal{A})$ and for each $w \in \text{dom}(C_{FG^{\omega}})$, 1037 $\llbracket C_{FG^\omega} \rrbracket(w) = \llbracket \mathcal{A} \rrbracket(w).$

¹⁰³⁸ Proof. We first show that there exists one and only one state $p \in P$ such that ¹⁰³⁹ $r^p = p$ and $b^p = 1$. For the existence, consider a word $w = u_1 u_2 u_3 \cdots \in \mathcal{L}(FG^{\omega})$ 1040 with $u_1 \in \mathcal{L}(F)$ and $u_n \in \mathcal{L}(G)$ for all $n \geq 2$. By definition of BDBA there is a 1041 unique final run of B over w: $p_0, u_1, p_1, u_2, p_2, \ldots$ Let us show first that $p_n = p_1$ 1042 for all $n \geq 1$. Since σ is idempotent, we have $\text{Tr}(u_2 \cdots u_{n+1}) = \text{Tr}(u_{n+1})$. Since 1043 $p_1 \xleftarrow{u_2 \cdots u_{n+1}} p_{n+1}$ and $p_n \xleftarrow{u_{n+1}} p_{n+1}$, we deduce that $p_1 = r^{p_{n+1}} = p_n$. This ¹⁰⁴⁴ implies $p_1 = r^{p_2} = r^{p_1}$. Let $p = p_1$ so that $p = r^p$ and the final run of β on 1045 w is $p_0, u_1, p, u_2, p, \ldots$ Now, for all $n \geq 2$ we have $Tr(u_n) = \sigma$ and we deduce ¹⁰⁴⁶ that $p \stackrel{u_n}{\longleftarrow} p$ visits a final state from Fin iff $b^p = 1$. Since the run is accepting, ¹⁰⁴⁷ we deduce that indeed $b^p = 1$. To prove the unicity, let $p \in P$ with $p = r^p$ and ¹⁰⁴⁸ $b^p = 1$. Let $v \in \mathcal{L}(G)$. We have $p \stackrel{\cdot v}{\leftarrow} p$ and this subrun visits a final state from 1049 Fin. Therefore, $p, v, p, v, p, v, p, \ldots$ is a final run of β on v^{ω} . Since β is BDBA, there is a unique final run of $\mathcal B$ on v^ω , which proves the unicity of p.

¹⁰⁵¹ We apply Lemma 30. We denote by s'_{F} the set of triples $(q, d, q') \in Q \times \{\rightarrow\}$ ¹⁰⁵², ς \times Q such that the RTE $C_{\vdash F}^p(q, d, q')$ is defined.

Starting from the initial state q_0 of A, there exists a unique sequence of steps $x'_1 = (q_0, \rightarrow, q'_1), x'_2 = (q'_1, \rightarrow, X'_2, q'_2), x'_3 = (q'_2, \subseteq, q'_3), x'_4 = (q'_3, \rightarrow, X'_4, q'_4), \ldots,$ $x'_{i} = (q'_{i-1}, \zeta, q'_{i}), x'_{i+1} = (q'_{i}, \rightarrow, X'_{i+1}, q)$ with $i \geq 1, x'_{1}, x'_{3}, \ldots, x'_{i} \in s'_{\vdash F}$ and $x_2', x_4', \ldots, x_{i+1}' \in s^p$. We define

$$
C_1 = (C_{\vdash F}^p(x_1') \boxdot C_{G}^p(x_2')) \odot (C_{\vdash F}^p(x_3') \boxdot C_{G}^p(x_4')) \odot \cdots \odot (C_{\vdash F}^p(x_i') \boxdot C_{G}^p(x_{i+1}'))
$$

$$
C_2 = C_1 \boxdot (G^{\omega} ? \varepsilon : \bot).
$$

1053 We have $\text{dom}(C_1) = FG$ and $\widetilde{+u_1 u_2}^p = \widetilde{+u_1}^p \widetilde{u_2}^p$ for all $u_1 \in F$ and $u_2 \in G$. 1054 Moreover, $\llbracket C_1 \rrbracket (u_1u_2)$ is the output produced by $\widetilde{\mathcal{A}}$ on $\widetilde{u_1u_2}^p$ when starting on 1055 the left in the initial state q_0 until it exists on the right in state q. Now, C_2 is 1056 an ω -RTE with dom $(C_2) = FG^{\omega}$ and for all $w = u_1 u_2 u_3 ... \in FG^{\omega}$ with $u_1 \in F$ 1057 and $u_n \in G$ for all $n > 1$, we have $[[C_2]](w) = [[C_1]](u_1u_2) \in \Gamma^*$.

Now, we distinguish two cases. First, assume that there is a step $x =$ $(q, \rightarrow, X, q') \in s^p$. Since σ is idempotent, so is s^p , and since $x'_{i+1} = (q'_i, \rightarrow)$ \mathcal{X}'_{i+1}, q \in s^p we deduce that $q' = q$. Therefore, the unique run of $\widetilde{\mathcal{A}}$ on $\widetilde{Fw} = \widetilde{Fu_1}^p \widetilde{u_2}^p \widetilde{u_3}^p \cdots$ follows the steps $x'_1 x'_2 \cdots x'_i x'_{i+1} x x x \cdots$. Hence, the set of states visited infinitely often along this run is X and the run is accepting iff $X \in \mathcal{F}$ is a Muller set. Therefore, if $X \notin \mathcal{F}$ we have $FG^{\omega} \cap \text{dom}(\mathcal{A}) = \emptyset$ and we set $C_{FG^{\omega}} = \bot$. Now, if $X \in \mathcal{F}$ we have $FG^{\omega} \subseteq \text{dom}(\mathcal{A})$ and we set

$$
C_{FG^{\omega}} = C_2 \odot ((FG ? \varepsilon : \bot) \boxdot C^p_G(x)^{\omega}).
$$

We have $\textsf{dom}(C_{FG^{\omega}}) = FG^{\omega}$ and for all $w = u_1 u_2 u_3 ... \in FG^{\omega}$ with $u_1 \in F$ and $u_n \in G$ for all $n > 1$, we have

$$
[[C_{FG^{\omega}}]](w) = [[C_1]](u_1u_2)][C_G^p(x)][(u_3)][C_G^p(x)]](u_4) \cdots
$$

¹⁰⁵⁸ By (J₂), we know that for all $n \geq 3$, $\llbracket C_G^p(x) \rrbracket(u_n)$ is the output produced by 1059 $\widetilde{\mathcal{A}}$ when running step $x = (q, \to, X, q)$ on $\widetilde{u_n}^p$. We deduce that $[\![C_{FG^\omega}]\!](w) =$ 1060 $\|\widetilde{\mathcal{A}}\|(\vdash w) = \|\mathcal{A}\|(w)$ as desired.

The second case is when the unique step $x_1 = (q, \geq, X_1, q_1)$ in s^p which starts from the left in state q exits on the left. Since s^p is idempotent and $x'_{i+1} = (q'_i, \rightarrow$ $(X'_{i+1}, q) \in s^p$, by definition of the product $s^p \cdot s^p$, there is a unique sequence of steps $x_2 = (q_1, \zeta, X_2, q_2), x_3 = (q_2, \zeta, X_3, q_3), \ldots, x_j = (q_{j-1}, \zeta, X_j, q_j), x_{j+1} =$ (q_j, \to, X_{j+1}, q) in s^p with $j \geq 2$. Therefore, for all $w = u_1 u_2 u_3 ... \in FG^{\omega}$ with $u_1 \in F$ and $u_n \in G$ for all $n > 1$, the unique run of \widetilde{A} on $\widetilde{w} = \widetilde{w_1}^p \widetilde{u_2}^p \widetilde{u_3}^p \cdots$ follows the steps $x'_1 x'_2 \cdots x'_i x'_{i+1} (x_1 x_2 x_3 \cdots x_j x_{j+1})^{\omega}$. Hence, the set of states visited infinitely often along this run is $X = X_1 \cup X_2 \cup \cdots \cup X_{j+1}$. We deduce that the run is accepting iff $X \in \mathcal{F}$ is a Muller set. Therefore, if $X \notin \mathcal{F}$ we have $FG^{\omega} \cap \text{dom}(\mathcal{A}) = \emptyset$ and we set $C_{FG^{\omega}} = \bot$. Now, if $X \in \mathcal{F}$ we have $FG^{\omega} \subseteq \text{dom}(\mathcal{A})$ and we set

$$
C_3 = ((G? \varepsilon : \bot) \boxdot C^p_G(x_1)) \odot (C^p_G(x_2) \boxdot C^p_G(x_3)) \odot \cdots \odot
$$

\n
$$
(C^p_G(x_j) \boxdot C^p_G(x_{j+1}))
$$

\n
$$
C_{FG^{\omega}} = C_2 \odot ((F? \varepsilon : \bot) \boxdot [G, C_3]^{2\omega}).
$$

We have $\text{dom}(C_{FG^{\omega}}) = FG^{\omega}$ and for all $w = u_1u_2u_3... \in FG^{\omega}$ with $u_1 \in F$ and $u_n \in G$ for all $n > 1$, we have

$$
[[C_{FG^{\omega}}]](w) = [[C_1]](u_1u_2)][C_3][u_2u_3)][C_3][u_3u_4)\cdots
$$

¹⁰⁶¹ Using (J₂), we can check that this is the output produced by $\tilde{\mathcal{A}}$ when running
¹⁰⁶² on $\widetilde{\Box w}$ We deduce that $\llbracket C_{ECw} \rrbracket(w) = \llbracket \widetilde{\mathcal{A}} \rrbracket(\widetilde{\Box w}) = \llbracket \mathcal{A} \rrbracket(w)$ as desired 1062 on \widetilde{Fw} . We deduce that $\llbracket C_{FG^{\omega}} \rrbracket(w) = \llbracket \widetilde{\mathcal{A}} \rrbracket(\widetilde{Fw}) = \llbracket \mathcal{A} \rrbracket(w)$ as desired.

1063 We are now ready to prove that ω -2DMT_{la} are no more expressive than 1064 ω -RTEs.

Proof of Theorem 21 (2). We use the notations of the previous sections, in particular for the ω -2DMT_{la} A, the BDBA B. We apply Theorem 28 to the canonical morphism Tr from Σ^* to the transition monoid TrM of (A, \mathcal{B}) . We obtain an unambiguous rational expression $G = \bigcup_{k=1}^m F_k \cdot G_k^{\omega}$ over Σ such that $\mathcal{L}(G) = \Sigma^{\omega}$ and for all $1 \leq k \leq m$ the expressions F_k and G_k are ε -free Tr-good rational expressions and σ_{G_k} is an idempotent, where $\text{Tr}(G_k) = {\sigma_{G_k}}$. For each $1 \leq k \leq m$, let $C_k = C_{F_k G_k^{\omega}}$ be the ω -RTE given by Lemma 31. We define the final ω -RTE as

$$
C = F_1 G_1^{\omega} ? C_1 : (F_2 G_2^{\omega} ? C_2 : \cdots (F_{m-1} G_{m-1}^{\omega} ? C_{m-1} : C_m)).
$$

1065 From Lemma 31, we can easily check that $\text{dom}(C) = \text{dom}(\mathcal{A})$ and $\mathbb{C}(\mathbb{I}(w))$ 1066 $\mathbb{Z}[\mathcal{A}](w)$ for all $w \in \text{dom}(C)$. \Box

¹⁰⁶⁷ 4. Conclusion

 The main contribution of the paper is to give a characterisation of regular string transductions using some combinators, giving rise to regular transducer expressions (RTE). Our proof uniformly works well for finite and infinite string transformations. RTE are a succinct specification mechanism for regular transfor- mations just like regular expressions are for regular languages. It is worthwhile to consider extensions of our technique to regular tree transformations, or in other settings where more involved primitives such as sorting or counting are needed. The minimality of our combinators in achieving expressive completeness, as well as computing complexity measures for the conversion between RTEs and two-way transducers are open.

- $_{1078}$ [1] Rajeev Alur and Pavol Černý. Expressiveness of streaming string transduc-¹⁰⁷⁹ ers. In Kamal Lodaya and Meena Mahajan, editors, 30th IARCS Annual ¹⁰⁸⁰ Conference on Foundations of Software Technology and Theoretical Com-¹⁰⁸¹ puter Science (FSTTCS 2010), volume 8 of Leibniz International Proceedings ¹⁰⁸² in Informatics (LIPIcs), pages 1–12. Schloss Dagstuhl–Leibniz-Zentrum fuer ¹⁰⁸³ Informatik, 2010.
- ¹⁰⁸⁴ [2] Rajeev Alur and Loris D'Antoni. Streaming tree transducers. J. ACM, ¹⁰⁸⁵ 64(5):31:1–31:55, 2017.
- ¹⁰⁸⁶ [3] Rajeev Alur, Loris D'Antoni, and Mukund Raghothaman. DReX: A declara-¹⁰⁸⁷ tive language for efficiently evaluating regular string transformations. In Sriram K. Rajamani and David Walker, editors, 42nd Annual ACM SIGPLAN-¹⁰⁸⁹ SIGACT Symposium on Principles of Programming Languages - POPL'15, ¹⁰⁹⁰ pages 125–137. ACM Press, 2015.
- [4] Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi. Regular transformations of infinite strings. In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages 65–74. IEEE Computer Society, 2012.
- [5] Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combina- tors for string transformations. In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting of the 23rd EACSL Annual Conference on Computer Science Logic (CSL) and the 29th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS '14, Vienna, Austria, July 14 - 18, 1100 2014, pages 9:1-9:10. ACM, 2014.
- [6] Nicolas Baudru and Pierre-Alain Reynier. From two-way transducers to regular function expressions. In Mizuho Hoshi and Shinnosuke Seki, editors, 22nd International Conference on Developments in Language Theory, DLT 2018, volume 11088 of Lecture Notes in Computer Science, pages 96–108. 1105 Springer, 2018.
- [7] Jean-Camille Birget. Concatenation of inputs in a two-way automaton. Theoretical Computer Science, 63(2):141–156, 1989.
- [8] Miko laj Boja´nczyk, Laure Daviaud, Bruno Guillon, and Vincent Penelle. Which classes of origin graphs are generated by transducers. In 44th Interna- tional Colloquium on Automata, Languages, and Programming (ICALP'17), volume 80 of LIPIcs, pages 114:1–114:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.
- [9] Olivier Carton and Luc Dartois. Aperiodic two-way transducers and fo- transductions. In Proceedings of the 24th EACSL Annual Conference on Computer Science Logic (CSL'15), volume 41 of LIPIcs, pages 160–174. 1116 Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.
- [10] Olivier Carton and Max Michel. Unambiguous B¨uchi automata. Theoretical Computer Science, 297(1-3):37–81, Mar 2003.
- ¹¹¹⁹ [11] Michal P. Chytil and Vojtěch Jákl. Serial composition of 2-way finite-state transducers and simple programs on strings. In Arto Salomaa and Magnus Steinby, editors, 4th International Colloquium on Automata, Languages and Programming (ICALP'77), pages 135–147. Springer Berlin Heidelberg, 1977.
- [12] Thomas Colcombet. Factorization forests for infinite words and applications to countable scattered linear orderings. Theoretical Computer Science, 411(4-5):751–764, Jan 2010.
- [13] Thomas Colcombet. The factorisation forest theorem. To appear in Hand-book "Automata: from Mathematics to Applications", 2013.
- [14] Bruno Courcelle. The expression of graph properties and graph transfor- mations in monadic second-order logic. In Grzegorz Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations, pages 313–400. World Scientific, 1997.
- [15] Vrunda Dave, Paul Gastin, and ShankaraNarayanan Krishna. Regular Transducer Expressions for Regular Transformations. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic In Computer Science (LICS'18), pages 315–324, Oxford, UK, July 2018. ACM Press.
- [16] Vrunda Dave, Paul Gastin, and ShankaraNarayanan Krishna. Regular transducer expressions for regular transformations. CoRR, abs/1802.02094, 2018.
- [17] Vrunda Dave, Shankara Narayanan Krishna, and Ashutosh Trivedi. FO- definable transformations of infinite strings. In Akash Lal, S. Akshay, Saket 1141 Saurabh, and Sandeep Sen, editors, 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016), volume 65 of Leibniz International Proceedings in Infor- matics (LIPIcs), pages 12:1–12:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.
- [18] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata. Springer Publishing Company, 1st edition, 2009.
- [19] Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string trans- ductions and two-way finite-state transducers. ACM Transactions on Com-putational Logic, 2(2):216–254, Apr 2001.
- [20] Emmanuel Filiot, Shankara Narayanan Krishna, and Ashutosh Trivedi. First-order Definable String Transformations. In Venkatesh Raman and S. P. Suresh, editors, 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014), volume 29 of Leibniz International Proceedings in Informatics (LIPIcs), pages 147–159. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014.
- [21] Paul Gastin and ShankaraNarayanan Krishna. Unambiguous forest factor-ization. CoRR, abs/1810.07285, 2018.
- [22] J. C. Shepherdson. The reduction of two-way automata to one-way automata. IBM Journal of Research and Development, 3(2):198–200, 1959.
- [23] Imre Simon. Factorization forests of finite height. Theoretical Computer 1162 Science, 72(1):65–94, Apr 1990.
- [24] Thomas Wilke. Backward deterministic B¨uchi automata on infinite words. In 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS'17), volume 93 of LIPIcs, pages 6:1–6:9. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

¹¹⁶⁷ Appendix A. 2DFT to RTE: A practical example

¹¹⁶⁸ We show in this section how one computes an RTE equivalent to the 2DFT $_{1169}$ A of Figure 2.

1170 1. We work with the morphism $\text{Tr}: \Sigma^* \to \text{Tr}M$ which maps words $w \in \Sigma^*$ to 1171 the transition monoid TrM of A. An element $X \in$ TrM is a set consisting of triples (p, d, q) , where d is a direction $\{\geq, \leq, \rightarrow, \leftarrow\}$. Given a word $w \in \Sigma^*$, 1173 a triple $(p, \geq, q) \in Tr(w)$ iff when starting in state p on the left most symbol ¹¹⁷⁴ of w, the run of A leaves w on the left in state q. The other directions \subset ¹¹⁷⁵ (start at the rightmost symbol of w in state p and leave w on the right 1176 in state q), \leftarrow and \rightarrow are similar. In general, we have $w \in \text{dom}(\mathcal{A})$ iff on 1177 input $\vdash w \dashv$, starting on \vdash in the initial state of A, the run exits on the ¹¹⁷⁸ right of \dagger in some final state of A. With the automaton A of Figure 2 we 1179 have $w \in \text{dom}(\mathcal{A})$ iff $(q_0, \rightarrow, q_2) \in \text{Tr}(w)$.

1180 2. For each $X \in \text{TrM}$ such that $(q_0, \rightarrow, q_2) \in X$, we find an RTE C_X whose α ₁₁₈₁ domain is $Tr^{-1}(X)$ and such that $\llbracket \mathcal{A} \rrbracket(w) = \llbracket C_X \rrbracket(w)$ for all $w \in Tr^{-1}(X)$. 1182 The RTE corresponding to $\llbracket \mathcal{A} \rrbracket$ is the disjoint union of all these RTEs and is 1183 written using the if-then-else construct iterating over for all such elements X. ¹¹⁸⁴ For instance, if the monoid elements containing (q_0, \rightarrow, q_2) are X_1, X_2, X_3 1185 then we set $C = \text{Tr}^{-1}(X_1) ? C_{X_1} : (\text{Tr}^{-1}(X_2) ? C_{X_2} : (\text{Tr}^{-1}(X_3) ? C_{X_3} : \bot))$ 1186 where \perp stands for a nowhere defined function, i.e., $\text{dom}(\perp) = \emptyset$.

1187 3. Consider the language $L = (ba^+)^+b \subseteq \text{dom}(\mathcal{A})$. Notice that the regular ¹¹⁸⁸ expression $(ba^+)^+b$ is not "good". For instance, condition (ii) is violated ¹¹⁸⁹ since $Tr(bab) \neq Tr(babab)$. Indeed, we can see in Figure A.13 that if we 1190 start on the right of bab in state q_3 then we exit on the left in state q_5 : 1191 $(q_3, \leftarrow, q_5) \in \text{Tr}(bab)$. On the other hand, if we start on the right of babab 1192 in state q_3 then we exit on the right in state q_2 : $(q_3, \zeta, q_2) \in \text{Tr}(babab)$. 1193 Also, $(q_5, \rightarrow, q_1) \in \text{Tr}(bab)$ while $(q_5, \rightarrow, q_2) \in \text{Tr}(babab)$. It can be seen that $Tr(a)^2$ is an idempotent, hence $Tr(a^+) = Tr(a)$. We deduce also $Tr(ba^+b) = Tr(bab)^3$. Finally, we have $Tr((ba^+)^nb) = Tr(babab)^4$ for all $n > 2$. Therefore, to obtain the RTE corresponding to L, we compute ¹¹⁹⁷ RTEs corresponding to ba^+b and $(ba^+)^+ba^+b$ satisfying conditions (i) and ¹¹⁹⁸ (ii) of "good" rational expressions.

¹¹⁹⁹ 4. While ba^+b is good since $Tr(a)$ is an idempotent, $(ba^+)^+ba^+b$ is not good, the reason being that $Tr(ba^+)$ is not an idempotent. We can check that 1201 $Tr(ba^+ba^+)^5$ is still not idempotent, while $Tr((ba^+)^i) = Tr((ba^+)^3)$ for all $i \geq 3$, (see Figure A.13: we only need to argue for (q_0, \rightarrow, q_3) , (q_5, \rightarrow, q_4) ¹²⁰³, q_3) and (q_6, \rightarrow, q_3) in $Tr((ba)^i)$, $i \geq 3$, all other entries trivially carry ¹²⁰⁴ over). In particular, $Tr((ba^+)^3)$ is an idempotent⁶. Thus, to compute the RTE for $L = (ba^+)^+b$, we consider the RTEs corresponding to the

 2 Tr(a) = {(q₁, \rightarrow , q₁), (q₁, \subset , q₁), (q₂, \rightarrow , q₃), (q₂, \subset , q₃), (q₃, \rightarrow , q₃), (q₃, \subset , q₃), $(q_4, \leftarrow, q_4), (q_4, \supseteq, q_4), (q_5, \leftarrow, q_5), (q_5, \supseteq, q_5), (q_6, \rightarrow, q_6), (q_6, \supsetneq, q_6)$ ${}^{3}\textsf{Tr}(ba^{+}b)=\{(q_{0},\rightarrow,q_{2}),(q_{0},\zeta,q_{1}),(q_{1},\gtrsim,q_{5}),(q_{1},\zeta,q_{2}),(q_{2},\gtrsim,q_{4}),(q_{2},\leftarrow,q_{5}),$ $(q_3, \gtrsim, q_4), (q_3, \leftarrow, q_5), (q_4, \gtrsim, q_5), (q_4, \zeta, q_1), (q_5, \rightarrow, q_1), (q_5, \zeta, q_6), (q_6, \rightarrow, q_2), (q_6, \zeta, q_1) \}$ ${}^{4} \mathsf{Tr}(ba^+ba^+b) = \{ (q_0, \rightarrow, q_2), (q_0, \subsetneq, q_1), (q_1, \supsetneq, q_5), (q_1, \subsetneq, q_2), (q_2, \supsetneq, q_4), (q_2, \subsetneq, q_2),$ $(q_3, \geqslant, q_4), (q_3, \leqslant, q_2), (q_4, \geqslant, q_5), (q_4, \leqslant, q_1), (q_5, \rightarrow, q_2), (q_5, \leqslant, q_6), (q_6, \rightarrow, q_2), (q_6, \leqq, q_1) \}$ 5 Tr(ba⁺ba⁺) = {(q₀, \rightarrow , q₃), (q₁, \gtrsim , q₅), (q₁, ζ , q₁), (q₂, \gtrsim , q₄), (q₂, ζ , q₃), (q₃, \gtrsim , q₄), $(q_3, \zeta, q_3), (q_4, \zeta, q_5), (q_4, \zeta, q_1), (q_5, \rightarrow, q_1), (q_5, \zeta, q_6), (q_6, \rightarrow, q_3), (q_6, \zeta, q_6)\}$ ${}^{6} \textsf{Tr}((ba^+)^3) = \{(q_0,\to,q_3), (q_1,\gtreq, q_5), (q_1,\subsetarrow,q_1), (q_2,\gtreq, q_4), (q_2,\subsetarrow,q_3), (q_3,\gtreq, q_4),$

 $(q_3, \zeta, q_3), (q_4, \zeta, q_5), (q_4, \zeta, q_1), (q_5, \rightarrow, q_3), (q_5, \zeta, q_6), (q_6, \rightarrow, q_3), (q_6, \zeta, q_6)\}$

¹²⁰⁶ "good" regular expressions $E_1 = ba^+b, E_2 = ba^+ba^+b, E_3 = [(ba^+)^3]^+b,$ 1207 $E_4 = [(ba^+)^3]^+ ba^+ b$ and $E_5 = [(ba^+)^3]^+ ba^+ ba^+ b$.

Figure A.13: Run of A on an input word in $(ba^+)^+b$.

¹²⁰⁸ 5. We define by induction, for each "good" expression E and "step" $x =$ ¹²⁰⁹ (p, d, q) in the monoid element $X = \mathsf{Tr}(E)$ associated with E, an RTE $C_E(x)$ 1210 whose domain is E and, given a word $w \in E$, it computes $[[C_E(x)]](w)$ ¹²¹¹ the output of A when running step x on w. For instance, if $E = a$ and 1212 $x = (q_5, \leftarrow, q_5)$ the output is b so we set $C_a(q_5, \leftarrow, q_5) = (a ? b : \bot)$. The if- 1213 then-else ensures that the domain is a. Similarly, we get the RTE associated 1214 with all atomic expressions and steps. For instance, $C_b(q_1, \rightarrow, q_2) = (b \, ? \, \varepsilon)$: \Box \Box = $C_b(q_3, \gtrsim, q_4)$. For $u, v \in \Sigma^*$, we introduce the macro $u/v = u$? $v : \bot$. ¹²¹⁶ We have $\text{dom}(u/v) = \{u\}$ and $\llbracket u/v \rrbracket(u) = v$.

1217 We turn to the good expression a^+ . If we start on the right of a word $w \in a^+$ 1218 from state q_5 then we read the word from right to left using always the step (q_5, \leftarrow, q_5) . Therefore, we have $C_{a^+}(q_5, \leftarrow, q_5) = (C_a(q_5, \leftarrow, q_5))$ 1219 $\text{step}(q_5, \leftarrow, q_5)$. Therefore, we have $C_{a^+}(q_5, \leftarrow, q_5) = (C_a(q_5, \leftarrow, q_5))^{\overleftarrow{\text{th}}}$ (a/b) $\stackrel{\text{def}}{=}$. Similarly, $C_{a+}(q_4, \leftarrow, q_4) = (a/a)$ ¹ $\lim_{a \to a}$ 1221 $C_{a+} (q_6, \rightarrow, q_6)$. Now if we start on the left of a word $w \in a^+$ from 1222 state q_2 then we first take the step (q_2, \rightarrow, q_3) and then we iterate the 1223 step (q_3, \rightarrow, q_3) . Therefore, we have $C_{a^+}(q_2, \rightarrow, q_3) = a$? $C_a(q_2, \rightarrow, q_3)$: 1224 $(C_a(q_2, \rightarrow, q_3) \boxdot (C_a(q_3, \rightarrow, q_3))^{\boxplus}) = a ? (a/\varepsilon) : ((a/\varepsilon) \boxdot (a/\varepsilon)^{\boxplus})$, which is ¹²²⁵ equivalent to the RTE $(a/\varepsilon)^{\boxplus}$.

We consider now $E = ba^+ba^+$ and the step $x = (q_0, \rightarrow, q_3)$. We have (see Figure A.13)

$$
C_E(x) = C_b(q_0, \to, q_1) \boxdot C_{a+}(q_1, \to, q_1) \boxdot C_b(q_1, \to, q_2) \boxdot C_{a+}(q_2, \to, q_3)
$$

= $(b/\varepsilon) \boxdot (a/\varepsilon)^{\boxplus} \boxdot (b/\varepsilon) \boxdot (a/\varepsilon)^{\boxplus} \newline \approx (ba^+ba^+ ? \varepsilon : \bot).$

More interesting is the step $y = (q_4, \zeta, q_1)$ since on a word $w \in E$, the run which starts on the right in state q_4 goes all the way to the left until it reads the first b in state q_5 and then moves to the right until it exits in state q_1 (see Figure A.13). Therefore, we have

$$
C_E(y) = ((b/\varepsilon) \overset{\leftarrow}{\Box} C_{a^+}(q_5, \leftarrow, q_5) \overset{\leftarrow}{\Box} C_b(q_4, \leftarrow, q_5) \overset{\leftarrow}{\Box} C_{a^+}(q_4, \leftarrow, q_4)) \odot
$$

\n
$$
(C_b(q_5, \rightarrow, q_6) \boxdot C_{a^+}(q_6, \rightarrow, q_6) \boxdot C_b(q_6, \rightarrow, q_1) \boxdot C_{a^+}(q_1, \rightarrow, q_1))
$$

\n
$$
= ((b/\varepsilon) \overset{\leftarrow}{\Box} (a/b) \overset{\leftarrow}{\Box} (b/\varepsilon) \overset{\leftarrow}{\Box} (a/a) \overset{\leftarrow}{\Box}) \odot
$$

\n
$$
((b/\varepsilon) \boxdot (a/\varepsilon) \overset{\leftarrow}{\Box} (b/\varepsilon) \boxdot (a/\varepsilon) \overset{\leftarrow}{\Box})
$$

\n
$$
\approx (b/\varepsilon) \overset{\leftarrow}{\Box} (a/b) \overset{\leftarrow}{\Box} (b/\varepsilon) \overset{\leftarrow}{\Box} (a/a) \overset{\leftarrow}{\Box} .
$$

The leftmost (b/ε) in the first line is used to make sure that the input word belongs to $E = ba^+ba^+$. Composing these steps on the right with b, we obtain the RTE $C_2 = C_{E_2}(q_0, \rightarrow, q_2)$ which describes the behaviour of A on the subset $E_2 = ba^+ba^+b \subseteq \text{dom}(\mathcal{A})$:

$$
C_2 = (C_E(x) \boxdot C_b(q_3, \geq 0, q_4)) \odot (C_E(y) \boxdot C_b(q_1, \rightarrow q_2))
$$

=
$$
(C_E(x) \boxdot (b/\varepsilon)) \odot (C_E(y) \boxdot (b/\varepsilon))
$$

$$
\approx ((b/\varepsilon) \boxdot (a/b)^{\frac{1}{10}} \boxdot (b/\varepsilon) \boxdot (a/a)^{\frac{1}{10}}) \boxdot (b/\varepsilon).
$$

1226 Therefore, $[[C_2]](ba^{m_1}ba^{m_2}b) = a^{m_2}b^{m_1} = [[A]](ba^{m_1}ba^{m_2}b).$

1227 The computation of the RTE $C_{E_3}(q_0, \to, q_2)$ for $E_3 = [(ba^+)^3]^+ b \subseteq \text{dom}(\mathcal{A})$

Figure A.14: run of a word in $E_3 = [(ba^+)^3]^+b$

We want to compute the RTE for the step (q_0, \rightarrow, q_2) on a word $u \in E_3$. It can be decomposed as shown in Figure A.14. Unlike the case of E_2 , we have to use the 2-chained Kleene plus. Let $F = (ba^+)^3$ so that $E_3 = F^+b$. We have (see Figure A.14),

$$
C_{E_3}(q_0, \rightarrow, q_2) = (C_{F^+}(q_0, \rightarrow, q_3) \boxdot C_b(q_3, \geq, q_4)) \odot
$$

$$
(C_{F^+}(q_4, \leq, q_1) \boxdot C_b(q_1, \rightarrow, q_2)).
$$

1229 We know that $C_b(q_3, \geqslant, q_4) = (b/\varepsilon) = C_b(q_1, \rightarrow, q_2)$ hence it remains to com-1230 pute $C_{F+}(q_0, \to, q_3)$ and $C_{F+}(q_4, \subset, q_1)$. First we define RTEs associated

¹²³¹ with atomic expressions and steps which are going to be used in constructing 1232 $C_{E_3}(q_0, \to, q_2)$. They are $C_b(q_3, \gt, q_4) = C_b(q_6, \to, q_1) = C_b(q_1, \to, q_2)$ 1233 $C_b(q_5,\to,q_6) = (b/\varepsilon)$ and $C_{a^+}(q_2,\to,q_3) = C_{a^+}(q_1,\to,q_1) = (a/\varepsilon)^{\boxplus}$ $C_{a+} (q_4, \leftarrow, q_4) = (a/a)$ $\stackrel{\leftarrow}{\oplus}$, $C_{a+}(q_5,\leftarrow,q_5) = (a/b)$ ¹²³⁴ $C_a + (q_4, \leftarrow, q_4) = (a/a)^{\frac{1}{10}}$, $C_a + (q_5, \leftarrow, q_5) = (a/b)^{\frac{1}{10}}$. We compute RTE ¹²³⁵ $C_F(x)$ for the relevant steps x in the monoid element $X = Tr(F)$. F is an unambiguous catenation of $E_2 = ba^+ba^+b$ with a^+ and from Figure A.13, ¹²³⁷ it can be seen that:

(a) For $y_1 = (q_0, \rightarrow, q_3)$

$$
C_F(y_1) = C_{E_2}(q_0, \to, q_2) \boxdot C_{a^+}(q_2, \to, q_3)
$$

=
$$
((b/\varepsilon) \boxdot (a/b)^{\stackrel{\leftarrow}{\boxdot}} \boxdot (b/\varepsilon) \boxdot (a/a)^{\stackrel{\leftarrow}{\boxdot}} (a/a)^{\stackrel{\leftarrow}{\boxdot}})
$$

$$
\boxdot (b/\varepsilon) \boxdot (a/\varepsilon)^{\boxplus}
$$

¹²³⁸ where $C_{E_2}(q_0, \rightarrow, q_2)$ has been computed in Section 1. 1239 For example, $[C_F(y_1)] (ba^{m_1}ba^{m_2}ba^{m_3}) = a^{m_2}b^{m_1}$.

> (b) Continuing with the computation for $(ba^+)^3$ as in Figure A.14, for $y_2 = (q_3, \geqslant, q_4)$, we take the Cauchy product of $C_b(q_3, \geqslant, q_4)$ with $(a^+ba^+ba^+$? ε : \perp).

$$
C_F(y_2) = C_b(q_3, \geqslant, q_4) \boxdot (a^+ba^+ba^+ ? \varepsilon : \bot) \approx ((ba^+)^3 ? \varepsilon : \bot)
$$

1240 $\llbracket C_F(y_2) \rrbracket (ba^{m_1}ba^{m_2}ba^{m_3}) = \varepsilon.$

(c) For
$$
y_3 = (q_4, \zeta, q_1)
$$
, we have

$$
C_F(y_3) = (ba^+ ? \varepsilon : \bot) \stackrel{\leftarrow}{\boxdot} C_{ba^+ba^+}(y_3)
$$

= $(ba^+ ? \varepsilon : \bot) \stackrel{\leftarrow}{\boxdot} ((b/\varepsilon) \stackrel{\leftarrow}{\boxdot} (a/b) \stackrel{\leftarrow}{\boxdot} (b/\varepsilon) \stackrel{\leftarrow}{\boxdot} (a/a) \stackrel{\leftarrow}{\boxdot})$
 $\approx (ba^+ b ? \varepsilon : \bot) \boxdot ((a/b) \stackrel{\leftarrow}{\boxdot} (b/\varepsilon) \stackrel{\leftarrow}{\boxdot} (a/a) \stackrel{\leftarrow}{\boxdot})$

- ¹²⁴¹ where $C_{ba^+ba^+}(y_3)$ is already computed in Section 1. 1242 As an example, $[\![C_F(y_3)]\!] (ba^{m_1}ba^{m_2}ba^{m_3}) = a^{m_3}b^{m_2}.$
	- (d) For $y_4 = (q_1, \geq, q_5)$, it is similar to the $C_E(y)$ computed for C_{E_2} in Section 1. Here we have

$$
C_F(y_4) = C_{ba+b}(y_4) \boxdot (a^+ba^+ ? \varepsilon : \bot)
$$

= ((C_b(q₁, \to, q₂) \boxdot C<sub>a+(q₂, \to, q₃) \boxdot (b/\varepsilon)) \odot
(C_b(q₄, \leftarrow, q₅) \overleftrightarrow{G} C<sub>a+(q₄, \leftarrow, q₄) \overleftrightarrow{G} C_b(q₃, \gtrdot q₄))) \boxdot
(a^+ba^+ ? \varepsilon : \bot)
= (((b/\varepsilon) \boxdot (a/\varepsilon) \boxdot (b/\varepsilon)) \odot ((b/\varepsilon) \overleftrightarrow{G} (a/a) \overleftrightarrow{B} \overleftrightarrow{G} (b/\varepsilon))) \boxdot
(a^+ba^+ ? \varepsilon : \bot)

$$
\approx ((b/\varepsilon) \overleftrightarrow{G} (a/a) \overleftrightarrow{B} \overleftrightarrow{G} (b/\varepsilon)) \boxdot (a^+ba^+ ? \varepsilon : \bot)
$$</sub></sub>

- 1243 As an example, $[C_F(y_4)] \left(b a^{m_1} b a^{m_2} b a^{m_3} \right) = a^{m_1}$.
	- (e) For $y_5 = (q_5, \zeta, q_6)$, in the computation of $C_F(y_5)$ we need $C_{ba^+}(y_5)$. Thus, we compute C_{ba} + (y₅) below whose computation is similar to

 $C_E(y)$ computed above.

$$
C_{ba+}(y_5) = ((b/\varepsilon) \overset{\leftarrow}{\boxdot} C_{a+}(q_5,\leftarrow,q_5)) \odot (C_b(q_5,\rightarrow,q_6) \boxdot C_{a+}(q_6,\rightarrow,q_6))
$$

$$
= ((b/\varepsilon) \overset{\leftarrow}{\boxdot} (a/b)^\overset{\leftarrow}{\boxplus}) \odot ((b/\varepsilon) \boxdot (a/\varepsilon)^\boxplus) \approx (b/\varepsilon) \overset{\leftarrow}{\boxdot} (a/b)^\overset{\leftarrow}{\boxplus}
$$

We can compute $C_F(y_5)$ as

$$
C_F(y_5) = (ba^+ba^+? \varepsilon : \bot) \boxdot C_{ba^+}(y_5) \approx (ba^+ba^+b? \varepsilon : \bot) \stackrel{\leftarrow}{\boxdot} (a/b) \stackrel{\leftarrow}{\boxplus}
$$

1244 As an example, $[[C_F(y_5)]](ba^{m_1}ba^{m_2}ba^{m_3}) = b^{m_3}$.

(f) For $y_6 = (q_6, \rightarrow, q_3)$, the computation of $C_F(y_6)$ is similar to that of $C_{ba+ba+}(q_0, \to, q_2)$ computed above. We need $C_{ba+ba+}(q_6, \to, q_3)$ and $C_{ba+ba+b}(q_6, \rightarrow, q_2)$. We see the computation of these below.

$$
C_{ba+ba+}(q_6, \rightarrow, q_3) = C_b(q_6, \rightarrow, q_1) \boxdot C_{a+}(q_1, \rightarrow, q_1) \boxdot C
$$

\n
$$
C_b(q_1, \rightarrow, q_2) \boxdot C_{a+}(q_2, \rightarrow, q_3)
$$

\n
$$
= (b/\varepsilon) \boxdot (a/\varepsilon)^{\boxplus} \boxdot (b/\varepsilon) \boxdot (a/\varepsilon)^{\boxplus}
$$

\n
$$
\approx (ba^+ba^+ ? \varepsilon : \bot)
$$

\n
$$
C_{ba+ba+b}(q_6, \rightarrow, q_2) = (C_{ba+ba+}(q_6, \rightarrow, q_3) \boxdot C_b(q_3, \gtrsim, q_4)) \odot
$$

\n
$$
(C_{ba+ba+}(q_4, \zeta, q_1) \boxdot C_b(q_1, \rightarrow, q_2))
$$

\n
$$
\approx (ba^+ba^+ b ? \varepsilon : \bot) \odot
$$

\n
$$
(((b/\varepsilon) \boxdot (a/b)^{\boxdot (a/b)} \boxdot (b/\varepsilon) \boxdot (a/a)^{\boxdot (b/b)}) \boxdot (b/\varepsilon))
$$

\n
$$
\approx ((b/\varepsilon) \boxdot (a/b)^{\boxdot (a/b)} \boxdot (b/\varepsilon) \boxdot (a/a)^{\boxdot (b/b)}) \boxdot (b/\varepsilon)
$$

Note that $C_{ba+ba+}(q_4,\zeta,q_1)$ has been computed in Section 1. Now we concatenate with $C_{a+} (q_2, \rightarrow, q_3)$ needed in the computation.

$$
C_F(y_6) = C_{ba+ba+b}(q_6, \rightarrow, q_2) \boxdot C_{a^+}(q_2, \rightarrow, q_3)
$$

=
$$
((b/\varepsilon) \stackrel{\leftarrow}{\boxdot} (a/b) \stackrel{\overleftarrow{B}}{\sqsubset} (b/\varepsilon) \stackrel{\leftarrow}{\boxdot} (a/a) \stackrel{\overleftarrow{B}}{\sqcap}) \boxdot (b/\varepsilon) \boxdot (a/\varepsilon) \boxdot (a/\varepsilon) \boxdot (a/\varepsilon) \boxdot (a/\varepsilon) \boxdot (b/\varepsilon) \boxdot (b/\varepsilon) \boxdot (b/\varepsilon) \boxdot (c/\varepsilon) \end{array}
$$

1245 As an example, $[C_F(y_6)] (ba^{m_1}ba^{m_2}ba^{m_3}) = a^{m_2}b^{m_1}$.

Now we are in a position to compute RTE $C_{F+}(q_0, \to, q_3)$. As shown in figureA.14, it is a concatenation of step y_1 and then steps y_2 , y_3 , y_4 , y_5 and y_6 repetitively. Consecutive pairs of $(ba^+)^3$ are needed to compute the RTE and thanks to the 2-chained Kleene plus, we can define the RTE for the same.

$$
C_{F^+}(y_1) = (C_F(y_1) \boxdot (F^* ? \varepsilon : \bot)) \odot [F, C']^{2\boxplus}
$$

$$
C' = ((F ? \varepsilon : \bot) \boxdot C_F(y_2)) \odot (C_F(y_3) \boxdot C_F(y_4)) \odot (C_F(y_5) \boxdot C_F(y_6))
$$

¹²⁴⁶ As an example,

 $[C_F + (y_1)] [(ba^{m_1}ba^{m_2}ba^{m_3}ba^{m_4}ba^{m_5}ba^{m_6}) = a^{m_2}b^{m_1}a^{m_3}b^{m_2}a^{m_4}b^{m_3}a^{m_5}b^{m_4}.$ Finally, we compute RTE for $y = (q_0, \rightarrow, q_2)$ for the expression $E_3 =$ $[(ba^+)^3]^+b$ by concatenating b with the above RTE.

$$
C_{E_3}(y) = (C_{F^+}(q_0, \rightarrow, q_3) \boxdot C_b(q_3, \geq, q_4)) \odot (C_{F^+}(q_4, \leq, q_1) \boxdot C_b(q_1, \rightarrow, q_2))
$$

Notice that $C_{F^+}(q_4, \zeta, q_1) = (F^* ? \varepsilon : \bot) \square C_F(y_3)$.
We have already seen that $C_{E_3}(y)$ computes the output produced by a successful run on a word $w \in E_3$. Applying the RTE as above, we have, for example,

> $[[C_{E_3}(y)](ba^{m_1}ba^{m_2}ba^{m_3}ba^{m_4}ba^{m_5}ba^{m_6}b)$ $=a^{m_2}b^{m_1}a^{m_3}b^{m_2}a^{m_4}b^{m_3}a^{m_5}b^{m_4}a^{m_6}b^{m_5}$