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Regular Transducer Expressions for Regular Transformations

Functional MSO transductions, deterministic two-way transducers, as well as streaming string transducers are all equivalent models for regular functions. In this paper, we show that every regular function, either on finite words or on infinite words, captured by a deterministic two-way transducer, can be described with a regular transducer expression (RTE). For infinite words, the two-way transducer uses Muller acceptance and ω-regular look-ahead. RTEs are constructed from constant functions using the combinators if-then-else (deterministic choice), Hadamard product, and unambiguous versions of the Cauchy product, the 2-chained Kleene-iteration and the 2-chained omega-iteration. Our proof works for transformations of both finite and infinite words, extending the result on finite words of Alur et al. in LICS'14.

The construction of an RTE associated with a deterministic two-way transducer is guided by a regular expression which is "good" wrt. its transition monoid. "Good" expressions are unambiguous, ensuring the functionality of the output computed. Moreover, in "good" expressions, iterations (Kleene-plus or omega) are restricted to subexpressions corresponding to idempotent elements of the transition monoid. "Good" expressions can be obtained with an unambiguous version of Imre Simon's famous forest factorization theorem.

To handle infinite words, we introduce the notion of transition monoids for deterministic two-way Muller transducers with look-ahead, where the look-ahead is captured by some backward deterministic Büchi automaton.

Introduction

One of the most fundamental results in theoretical computer science is that the class of regular languages corresponds to the class of languages recognised by finite state automata, to the class of languages definable in MSO, and to the class of languages whose syntactic monoid is finite. Regular languages are also those that can be expressed using regular expressions; this equivalence is given by Kleene's theorem. This beautiful correspondence between machines, logics and algebra in the case of regular languages paved the way to generalizations of this fundamental theory to regular transformations [START_REF] Engelfriet | MSO definable string transductions and two-way finite-state transducers[END_REF], where, it was shown that regular transformations are those which are captured by two-way transducers and by MSO transductions a la Courcelle. Much later, streaming string transducers (SSTs) were introduced [1] as a model which makes a single pass through the input string and uses a finite set of variables that range over strings from the output alphabet. In [1], the equivalence between SSTs and MSO transductions was established, thereby showing that regular transformations are those which are captured by either SSTs, two-way transducers or MSO transductions. This theory was further extended to work for infinite string transformations [START_REF] Alur | Regular transformations of infinite strings[END_REF]; the restriction from MSO transductions to first-order definable transductions, and their equivalence with aperiodic SSTs and aperiodic two-way transducers has also been established over finite and infinite strings [START_REF] Filiot | First-order Definable String Transformations[END_REF], [START_REF] Vrunda Dave | FOdefinable transformations of infinite strings[END_REF]. Other generalizations such as [2], extend this theory to trees. More recently, this equivalence between SSTs and logical transductions is also shown to hold good even when one works with the origin semantics [START_REF] Miko Laj Bojańczyk | Which classes of origin graphs are generated by transducers[END_REF].

Moving on, a natural problem pertains to the characterization of the output computed by two-way transducers or SSTs (over finite and infinite words) using regular-like expressions. For the strictly lesser expressive case of sequential one-way transducers, this regex characterization of the output is obtained as a special case of Schützenberger's famous equivalence [START_REF] Droste | Handbook of Weighted Automata[END_REF] between weighted automata and regular weighted expressions. The question is much harder when one looks at two-way transducers, due to the fact that the output is generated in a one-way fashion, while the input is read in a two-way manner. Recently, [START_REF] Alur | Regular combinators for string transformations[END_REF] proposed a set of combinators, analogous to the operators used in forming regular expressions, to form combinator expressions and proved their equivalence with SSTs.

Our Contributions. We generalize the result of [START_REF] Alur | Regular combinators for string transformations[END_REF] from finite to infinite words, and we propose a completely different proof technique based on transition monoids and on Simon's forest factorization theorem.

Over finite words, we work with two-way deterministic transducers (denoted 2DFT) while over infinite words, the model considered is deterministic twoway transducers with regular look-ahead, equipped with the Muller acceptance condition. Figure 1 gives an ω-2DMT la (la stands for look-ahead and M in the 2DMT for Muller acceptance).

In both cases of finite words and infinite words, we come up with a set of combinators which we use to form regular transducer expressions (RTE) characterizing two-way transducer (2DFT/ω-2DMT la ).

The Combinators. We describe our basic combinators that form the building blocks of RTEs. The semantics of an RTE is a partial function f : Σ ∞ → Γ ∞ whose domain is denoted dom(f ).

The constant function d ∈ Γ * maps all strings in Σ ∞ to some fixed finite output word d.

Given a string w ∈ Σ ∞ , the if-then-else combinator K ? f : g checks if w is in the regular language K or not, and produces f (w) if w ∈ K and g(w) otherwise.

The Hadamard product f g when applied to w produces f (w) • g(w), provided f (w) is finite, otherwise it is undefined.

The unambiguous Cauchy product f g when applied on w ∈ Σ ∞ produces f (u)•g(v) if w = u•v is an unambiguous decomposition of w with u ∈ dom(f )∩Σ * and v ∈ dom(g).

q 1 q 2 q 3 q 4 q 5 ⊢, Σ * #Σ ω /ε, +1 ⊢, (Σ \ {#}) ω /ε, +1 a/ε, +1 b/ε, +1 #/ε, -1 a/a, -1 b/b, -1 #/ε, +1 ⊢/ε, +1 a/a, +1 b/b, +1 #, Σ * #Σ ω /#, +1 #, (Σ \ {#}) ω /#, +1 a/a, +1 b/b, +1 Figure 1: An ω-2DMT la A with [[A ]](u 1 #u 2 # . . . #un#v) = u R 1 u 1 #u R 2 u 2 # . . . #u R
n un#v where u 1 , . . . , un ∈ (a + b) * , v ∈ (a + b) ω and u R denotes the reverse of u. The Muller acceptance set is {{q 5 }}. The look-ahead expressions Σ * #Σ ω and (Σ\{#}) ω are used to check if there is a # in the remaining suffix of the input word.

The unambiguous Kleene-plus f applied to w ∈ Σ * produces f (u 1 )

• • • f (u n ) if w = u 1 • • • u n is an unambiguous factorization of w, with each u i ∈ dom(f ).
The unambiguous 2-chained Kleene-plus [K, f ] 2 when applied to a string w ∈ Σ * produces as output f (u 1 u 2 )•f (u 2 u 3 ) • • • f (u n-1 u n ) if w can be unambiguously written as u 1 u 2 • • • u n , with each u i ∈ K, for the regular language K.

We also have the reverses f ←g, f

← - and [K, f ] ← -
2 , which parse the input from left to right as before, but produce the output from right to left. For instance, with the notation above, f

← - (w) produces f (u n ) • • • f (u 1 ).
The unambiguous ω-iteration produces f ω (w 

) = f (u 1 )f (u 2 ) • • • if w ∈ Σ ω
[[C]](u 1 #u 2 # • • • u n #v) = u R 1 u 1 #u R 2 u 2 # • • • #u R n u n #v when u i ∈ (a + b) * and v ∈ (a + b) ω . The RTE C = (a + b) ω ? C ω 2 : C corresponds to the ω-2DMT la A in Figure 1; that is, [[C ]] = [[A ]].
Our main result is that two-way deterministic transducers and regular transducer expressions are effectively equivalent, both for finite and infinite words.

Theorem 2.

(1) Given an RTE (resp. ω-RTE) we can effectively construct an equivalent 2DFT (resp. an ω-2DMT la ).

(2) Given a 2DFT (resp. an ω-2DMT la ) we can effectively construct an equivalent RTE (resp. ω-RTE).

The construction of an RTE starting from a two-way deterministic transducer

A is quite involved. It is based on the transition monoid TrM(A) of the transducer. This is a classical notion for two-way transducers over finite words, but not for two-way transducers with look-ahead on infinite words (to the best of our knowledge). So we introduce the notion of transition monoid for ω-2DMT la . We handle the look-ahead with a backward deterministic Büchi automaton (BDBA), also called complete unambiguous or strongly unambiguous Büchi automata [START_REF] Carton | Unambiguous Büchi automata[END_REF][START_REF] Wilke | Backward deterministic Büchi automata on infinite words[END_REF]. The translation of A to an RTE is crucially guided by a "good" (ω-

)regular expression induced by the transition monoid of A. The good (ω-)regular expression facilitates a uniform treatment of finite and infinite words. As a remark, it is not a priori clear how the result of [START_REF] Alur | Regular combinators for string transformations[END_REF] extends to infinite words using the techniques therein.

A regular expression F over alphabet Σ is good wrt. a morphism ϕ from Σ * to a monoid (S, ., 1 S ) if (i) it is unambiguous and (ii) for each subexpression E of F , the image of all strings in L(E) maps to a single monoid element s E .

Note that (ii) implies that for each subexpression E + of F , s E is an idempotent.

These good expressions are obtained thanks to an unambiguous version [START_REF] Gastin | Unambiguous forest factorization[END_REF] of the celebrated forest factorization theorem due to Imre Simon [START_REF] Simon | Factorization forests of finite height[END_REF]. Good rational expressions might be useful in settings beyond two-way transducers.

See [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF]Appendix A.2] for a practical example using transducers.

Related Work. We briefly discuss two recent papers which are closely related to this paper. As mentioned above, we generalized the result of [START_REF] Alur | Regular combinators for string transformations[END_REF] from finite to infinite words. Actually, [START_REF] Alur | Regular combinators for string transformations[END_REF] works with copyless cost register automata (CCRA) over finite words. CCRA are generalizations of SSTs and compute a partial function from finite words over a finite alphabet to values from a monoid (D, +, 0).

SSTs correspond to CCRAs where the output monoid is the free monoid (Γ * , •, ε)

for some finite output alphabet Γ. The combinators introduced in [START_REF] Alur | Regular combinators for string transformations[END_REF] form the basis for a declarative language DReX [3] over finite words, which can express all regular string-to-string transformations, and can also be efficiently evaluated.

The proof in [START_REF] Alur | Regular combinators for string transformations[END_REF] is rather simple in the case of commutative output monoids, and quite non-trivial in the other case. The output generated in a CCRA is stored in registers, and it is important to keep track of the flow of the content between registers on each input word. To this end, [START_REF] Alur | Regular combinators for string transformations[END_REF] uses shapes, which are bi-partite graphs over the set of registers. An edge from register X to register Y in a shape implies that register X flows into register Y after reading the input word. The expression representing [[A]] for a CCRA A is obtained by "summarizing" sets of paths having some fixed shape S, and then combining the summaries appropriately: this includes concatenation of shapes, as well as iteration. While concatenation of shapes is easy, the iteration of shapes is handled via a "normalization" which ensures that the iterated shapes are idempotent.

Very recently, [START_REF] Baudru | From two-way transducers to regular function expressions[END_REF] proposed an alternative proof for the result of [START_REF] Alur | Regular combinators for string transformations[END_REF] over finite words. The proof of [START_REF] Baudru | From two-way transducers to regular function expressions[END_REF] has some similarities with the one we proposed in our extended abstract which appeared in [START_REF] Vrunda | Regular Transducer Expressions for Regular Transformations[END_REF]. Instead of using the transition monoid of a two-way automaton which fully describes how a word w acts on states (starting on the left/right of w in state p, the run exists on the left/right of w in state q), they define a flow automaton based on Shepherdson construction [START_REF] Shepherdson | The reduction of two-way automata to one-way automata[END_REF].

q 0 q 1 q 2 q 3 q 4 q 5 q 6 ⊢/ε, +1 a/ε, +1 ⊣/ε, +1 a/ε, +1 a/a, -1 a/b, -1 a/ε, +1 b/ε, +1 b/ε, +1 b/ε, -1 b/ε, -1 b/ε, -1 b/ε, +1 b/ε, +1 a/ε, +1 Figure 2: A 2DFT A with [[A]](ba m 1 ba m 2 b . . . a m k b) = a m 2 b m 1 a m 3 b m 2 . . . a m k b m k-1 .
Then, they use the state elimination technique of Brzozowski and McCluskey to obtain flows labelled with function expressions. Their technique for handling concatenation is similar to ours. The main difference is in the way loops are handled. We use the unambiguous version of Simon's theorem so that Kleeneplus only occurs on idempotents, whereas [START_REF] Baudru | From two-way transducers to regular function expressions[END_REF] defines simple loops for which they give a direct translation, and then shows how to reduce arbitrary loops to simple ones.

Finite Words

We start with the definition of two-way automata and transducers for the case of finite words.

Two-way automata and transducers

Let Σ be a finite input alphabet and let , be two special symbols not in Σ. We assume that every input string w ∈ Σ * is presented as w , where , serve as left and right delimiters that appear nowhere else in w. We write Σ = Σ ∪ { , }. A two-way automaton A = (Q, Σ, δ, I, F ) has a finite set of states Q, subsets I, F ⊆ Q of initial and final states and a transition relation

δ ⊆ Q × Σ × Q × {-1, 1}.
The -1 represents the reading head moving to the left, while a 1 represents the reading head moving to the right. The reading head cannot move left when it is on . See Figure 2 for an example.

A configuration of A is represented by w 1 qw 2 where q ∈ Q and w 1 w 2 ∈ Σ * .

If w 2 = ε the computation has come to an end. Otherwise, the reading head of A is scanning the first symbol of w 2 = ε in state q. If w 2 = aw 2 and if (q, a, q , -1) ∈ δ (hence a = ), then there is a transition from the configuration w 1 bqaw 2 to w 1 q baw 2 . Likewise, if (q, a, q , 1) ∈ δ, we obtain a transition from w 1 qaw 2 to w 1 aq w 2 . A run of A is a sequence of transitions; it is accepting if it starts in a configuration p w with p ∈ I and ends in a configuration w q with q ∈ F . The language L(A) or domain dom(A) of A is the set of all words w ∈ Σ * which have an accepting run in A.

To extend the definition of a two-way automaton A into a two-way transducer, (Q, Σ, δ, I, F ) is extended to (Q, Σ, Γ, δ, I, F ) by adding a finite output alphabet Γ and the definition of the transition relation as a

finite subset δ ⊆ Q × Σ × Q × Γ * × {-1, 1}.
The output produced on each transition is appended to the right of the output produced so far. A defines a relation

[[A]] = {(u, w) | u ∈ L(A)
and w is the output produced on an accepting run of u}.

The transducer A is said to be functional if for each input u ∈ dom(A), at most one output w can be produced. In this case, for each u ∈ dom(A), there is

exactly one w ∈ Γ * such that (u, w) ∈ [[A]]. We also denote this by [[A]](u) = w.
We consider a special symbol ⊥ / ∈ Γ that will stand for undefined. We let

[[A]](u) = ⊥ when u / ∈ dom(A).
Thus, the semantics of a functional transducer

A is a map [[A]] : Σ * → D = Γ * ∪ {⊥} such that u ∈ dom(A) iff [[A]](u) = ⊥.
We use non-deterministic unambiguous two-way transducers (2NUFT) in some proofs 

δ : Q × Σ → Q × Γ * × {-1, 1}.
2DFTs are by definition unambiguous. It is known [START_REF] Chytil | Serial composition of 2-way finite-state transducers and simple programs on strings[END_REF] that 2DFTs are equivalent to 2NUFTs.

A 1DFT (1NUFT) represents a deterministic (non-deterministic unambiguous) transducer where the reading head only moves to the right.

Example 3. Figure 2 shows a two-way transducer A with dom(A) = (ba * ) + b,

[[A]](ba m1 b) = ε and [[A]](ba m1 ba m2 b • • • a m k b) = a m2 b m1 a m3 b m2 • • • a m k b m k-1 for k ≥ 2 and m i ∈ N for 1 ≤ i ≤ k.

Regular Transducer Expressions

Let Σ and Γ be finite input and output alphabets. Recall that ⊥ / ∈ Γ is a special symbol that stands for undefined. We define the output monoid as D = Γ * ∪ {⊥} with the usual concatenation on words, ⊥ acting as a zero:

d • ⊥ = ⊥ • d = ⊥ for all d ∈ D.
The unit is the empty word 1 D = ε.

We define Regular Transducer Expressions (RTE) from Σ * to D using some basic combinators. The syntax of RTE is defined with the following grammar: 

C ::= d | K ? C : C | C C | C C | C ← -C | C | C ← - | [K, C] 2 | [K, C]
f : Σ * → D by dom(f ) = f -1 (D \ {⊥}) = Σ * \ f -1 (⊥). Constants. For d ∈ D, we let [[d]] be the constant map defined by [[d]](w) = d for all w ∈ Σ * . We have dom([[d]]) = Σ * if d = ⊥ and dom([[⊥]]) = ∅.
Each regular combinator defined above allows to combine functions from Σ * to D. For functions f, g : Σ * → D, w ∈ Σ * and a regular language K ⊆ Σ * , we define the following combinators.

If then else. (K ? f : g)(w) is defined as f (w) for w ∈ K, and g(w) for w / ∈ K.

We have dom(K ?

f : g) = (dom(f ) ∩ K) ∪ (dom(g) \ K). Hadamard product. (f g)(w) = f (w) • g(w) (recall that (D, •, 1 D ) is a monoid).
We have dom(f g) = dom(f ) ∩ dom(g).

Unambiguous Cauchy product and its reverse. If w admits a unique fac-

torization w = u • v with u ∈ dom(f ) and v ∈ dom(g) then we set (f g)(w) = f (u) • g(v) and (f ← -g)(w) = g(v) • f (u). Otherwise, we set (f g)(w) = ⊥ = (f ← -g)(w).
We have dom(f g) = dom(f ←g) ⊆ dom(f ) • dom(g) and the inclusion is strict if the concatenation of dom(f ) and dom(g) is ambiguous.

Unambiguous Kleene-plus and its reverse. If w admits a unique factoriza-

tion w = u 1 • u 2 • • • u n with n ≥ 1 and u i ∈ dom(f ) for all 1 ≤ i ≤ n then we set f (w) = f (u 1 ) • f (u 2 ) • • • f (u n ) and f ← - (w) = f (u n ) • • • f (u 2 ) • f (u 1 ). Otherwise, we set f (w) = ⊥ = f ← - (w).
We have dom(f

) = dom(f ← -
) ⊆ dom(f ) + and the inclusion is strict if the Kleene iteration dom(f

) + of dom(f ) is ambiguous. Notice that dom(f ) = ∅ when ε ∈ dom(f ).
Unambiguous 2-chained Kleene-plus and its reverse. If w admits a uni-

que factorization w = u 1 • u 2 • • • u n with n ≥ 1 and u i ∈ K for all 1 ≤ i ≤ n then we set [K, f ] 2 (w) = f (u 1 u 2 ) • f (u 2 u 3 ) • • • f (u n-1 u n ) and [K, f ] ← - 2 (w) = f (u n-1 u n ) • • • f (u 2 u 3 )•f (u 1 u 2 ) (if n = 1, the empty product gives the unit of D: [K, f ] 2 (w) = 1 D = [K, f ] ← - 2 (w)). Otherwise, we set [K, f ] 2 (w) = ⊥ = [K, f ] ← - 2 (w). Again, we have dom([K, f ] 2 ) = dom([K, f ] ← -
2 ) ⊆ K + and the inclusion is strict if the Kleene iteration K + of K is ambiguous. Notice that, even if

w ∈ K + admits a unique factorization w = u 1 • u 2 • • • u n with u i ∈ K for all 1 ≤ i ≤ n, w is not necessarily in the domain of [K, f ] 2 or [K, f ] ← -
2 . For w to be in this domain, it is further required that u 1 u 2 , u 2 u 3 , . . . , u n-1 u n ∈ dom(f ). Notice that we have dom(

[K, f ] 2 ) = dom([K, f ] ← - 2 ) = K + when K + is unambiguous and K 2 ⊆ dom(f ).
Lemma 4. The domain of an RTE C is a regular language dom(C) ⊆ Σ * .

Example 5. Consider the RTEs

C 1 = ([(a + b) + #] ? ε : ⊥) ((a + b) + ? copy : ⊥) C 2 = # C 3 = ((a + b) + ? copy : ⊥) ([#(a + b) + ] ? ε : ⊥)
where copy = (a ? a : (b ? b : ⊥)) .

Then, dom([[C 2 ]]) = Σ * , dom([[copy]]) = (a + b) + and dom([[C 1 ]]) = dom([[C 3 ]]) = (a + b) + #(a + b) + . Moreover, [[C 1 C 2 C 3 ]](u#v) = v#u for all u, v ∈ (a + b) + . Example 6. Consider the RTEs C a = (b ? ε : ⊥) (a ? a : ⊥) C b = (b ? ε : ⊥) (a ? b : ⊥) We have dom([[C a ]]) = ba + = dom([[C b ]]) and [[C a ]](ba n ) = a n and [[C b ]](ba n ) = b n . We deduce that dom([[C b ← -C a ]]) = ba + ba + and [[C b ← -C a ]](ba n ba m ) = a m b n .
Consider the expression

C = [ba + , C b ← -C a ] 2 (b ? ε : ⊥) .
Then, dom([[C]]) = (ba + ) + b, and [[C]](ba m b) = ε and for k ≥ 2 we have

[[C]](ba m1 ba m2 b • • • a m k b) = a m2 b m1 a m3 b m2 • • • a m k b m k-1 .
Theorem 7. 2DFTs and RTEs define the same class of functions. More precisely, 1. given an RTE C, we can construct a 2DFT A such that

[[A]] = [[C]],
2. given a 2DFT A, we can construct an RTE C such that

[[A]] = [[C]].
The proof of (1) is given in the next section, while the proof of (2) will be given in Section 2.6 after some preliminaries in Section 2.5 on transition monoids for 2DFTs and the unambiguous forest factorization theorem.

Remark 8. Notice that the reverse Cauchy product is redundant, it can be expressed with the Hadamard product and the Cauchy product:

f ← -g = ((dom(f ) ? ε : ⊥) g) (f (dom(g) ? ε : ⊥)) .
The unambiguous Kleene-plus is also redundant, it can be expressed with the unambiguous 2-chained Kleene-plus:

f = [dom(f ), f (dom(f ) ? ε : ⊥)] 2 ((dom(f ) * ? ε : ⊥) f ) .
Remark 9. We can extend the 2-chained Kleene-plus to k-chained Kleeneplus for any k ≥ 3. It is defined as follows: If w admits a unique factorization w = u 1 u 2 . . . u n , with n ≥ 1 and u i ∈ K for all 1 ≤ i ≤ n, then

[K, f ] k (w) = f (u 1 u 2 . . . u k )f (u 2 u 3 . . . u k+1 ) . . . f (u n-k+1 u n-k+2 . . . u n ). Oth- erwise, we set [K, f ] k (w) = ⊥.
Notice that if n < k, we have an empty product which gives the unit of D: [K, f ] k (w) = 1 D . In [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF], we have shown that adding the k-plus combinator (or its reverse) does not increase the expressive power of RTEs.

Remark 10. The combinator expressions proposed in [START_REF] Alur | Regular combinators for string transformations[END_REF] are equivalent to our RTEs on finite words (see below). Our terminology and notation are all inspired from weighted automata literature. We prefer to stick to these classical notions since they are well-established and we believe they are more natural for string to string transducers.

The base function L/d in [START_REF] Alur | Regular combinators for string transformations[END_REF] maps all strings in language L to the constant d, and is undefined for strings not in L. This can be written using our if-then-else L ? d : ⊥. The conditional choice combinator f g of [START_REF] Alur | Regular combinators for string transformations[END_REF] maps an input σ to

f (σ) if it is in dom(f ),
and otherwise it maps it to g(σ). This can be written in our syntax as dom(f ) ? f : g. The split-sum combinator f ⊕ g of [START_REF] Alur | Regular combinators for string transformations[END_REF] is the classical Cauchy product f g. The iterated sum Σf of [START_REF] Alur | Regular combinators for string transformations[END_REF] is the Kleene-plus f .

The left-split-sum and left-iterated sum of [START_REF] Alur | Regular combinators for string transformations[END_REF] correspond to our reverse Cauchy product f ←g and reverse Kleene-plus f ← -

. The sum f + g of two functions in [START_REF] Alur | Regular combinators for string transformations[END_REF] is the classical Hadamard product f g. Finally, the chained sum Σ(f, L) of [START_REF] Alur | Regular combinators for string transformations[END_REF] is our two-chained Kleene-plus [L, f ] 2 .

RTE to 2DFT

In this section, we prove Theorem 7(1), i.e., we show that given an RTE C, s.t. δ(q, a) = (q, ε, +1) for all a ∈ Σ ∪ { } and δ(q, ) = (q, d, +1). Clearly,

[[A]](w) = d for all w ∈ Σ * .
The inductive steps follow directly from:

Lemma 11. Let K ⊆ Σ * be regular, and let f and g be RTEs with

[[f ]] = [[M f ]]
and

[[g]] = [[M g ]
] for 2DFTs M f and M g respectively. Then, one can construct

1. a 2DFT A such that [[K ? f : g]] = [[A]]. 2. a 2DFT A such that [[A]] = [[f g]]. 3. 2DFTs A, B such that [[A]] = [[f g]] and [[B]] = [[f ← -g]]. 4. 2DFTs A, B such that [[A]] = [[f ]] and [[B]] = [[f ← - ]]. 5. 2DFTs A, B such that [[A]] = [[[K, f ] 2 ]] and [[B]] = [[[K, f ] ← - 2 ]].
Proof.

(1) If then else. Let B be a complete DFA that accepts the regular language K. The idea of the proof is to construct a 2DFT A which first runs B on the input w until the end marker is reached in some state q of B. Then, w ∈ K iff q ∈ F is some accepting state of B. The automaton A moves left all the way to , and starts running either M f or M g depending on whether q ∈ F or not. Since B is complete, it is clear that dom(A) = dom(K ? f : g) and the (2) Hadamard product. Given an input w, the constructed 2DFT A first runs M f . Instead of executing a transition p /γ,+1

-----→ q with q a final state of -----→ q if δ g (q 0 , ) = (q , γ , +1) where δ g is the transition function of M g and q 0 is the initial state of M g . The final states of A are those of M g , and its initial state is the initial state of M f . Clearly,

M f , it executes p /γ,-1 -----→ reset
dom(A) = dom(M f ) ∩ dom(M g )
and the output of A is the concatenation of the outputs of M f and M g .

(3) Cauchy product. The domain of a 2DFT is a regular language, accepted by the 2DFA obtained by ignoring the outputs. Since 2DFAs are effectively equivalent to (1)DFAs, we can construct from M f and M g two DFAs

C f = (Q f , Σ, δ f , s f , F f ) and C g = (Q g , Σ, δ g , s g , F g ) such that L(C f ) = dom(f ) and L(C g ) = dom(g).
Now, the set K of words w having at least two factorizations w = u 1 v 1 = u 2 v 2 with u 1 , u 2 ∈ dom(f ), v 1 , v 2 ∈ dom(g) and u 1 = u 2 is also regular. This is easy since K can be written as K = p∈F f ,q∈Qg L p • M p,q • R q where

• L p is the set of words which admit a run in C f from its initial state to the final state p ∈ F f ,

• M p,q is the set of words which admit a run in C f from state p to some final state in F f , and also admit a run in C g from its initial state to state

q ∈ Q g ,
• R q is the set of words which admit a run in C g from state q to some final state in F g , and also admit a run in C g from its initial state to some final state in F g .

Therefore, we have dom

(f g) = dom(f ← -g) = (dom(f ) • dom(g)) \ K is a
regular language and we construct a complete DFA C = (Q, Σ, δ, q 0 , F ) which accepts this language. 2. We construct a 2DFT T which takes as input words of the form u#v with u, v ∈ Σ * , runs M f on u and then M g on v. To do so, u is traversed in either direction depending on M f , and the symbol # is interpreted as the right end marker . We explain how T simulates a transition of M f moving to the right of , producing some output γ and going to a state q.

∈ L(C f ) = dom(f ), v ∈ L(C g ) = dom(g) and w = u • v ∈ L(C) = dom(f g). The output produced by D is u#v. The
If q is not final, then T moves to the right of # and then all the way to the end and rejects. If q is final, then T stays on # (simulated by moving right and then back left), producing the output γ, but goes to the initial state of M g instead. T then runs M g on v, interpreting # as . When M g moves to the right of , T does the same and accepts iff M g accepts.

3. In a similar manner, we construct a 2DFT T which takes as input strings of the form u#v, first runs M g on v and then runs M f on u. Assume that M g wants to move to the right of going to state q. If q is not final then T also moves to the right of and rejects. Otherwise, T traverses back to and runs M f on u. When M f wants to move to the right of # going to some state q and producing γ, T moves also to the right of # producing γ and then all the way right producing ε. After moving to the right of , it accepts if q is a final state of M f and rejects otherwise.

We construct a 2NUFT A as the composition of D and T . The composition of a 1NUFT and a 2DFT is a 2NUFT [START_REF] Chytil | Serial composition of 2-way finite-state transducers and simple programs on strings[END_REF], hence A is a 2NUFT. Moreover,

[[A ]] = [[f g]].
Using the equivalence of 2NUFT and 2DFT, we can convert A into an equivalent 2DFT A. In a similar way, to obtain [[f ←g]], the 2NUFT B is obtained as a composition of D and T and is then converted to an equivalent 2DFT B.

(4) Kleene-plus. The proof is similar to case (3). First, we show that dom(f ) is regular. Notice that if ε ∈ dom(f ) then dom(f ) = ∅, hence we assume below that ε / ∈ dom(f ). As in case (3), the language K of words w having at least

two factorizations w = u 1 v 1 = u 2 v 2 with u 1 , u 2 ∈ dom(f ), v 1 , v 2 ∈ dom(f ) * and u 1 = u 2 is regular. Hence, K = dom(f ) * • K is regular and contains all words
in dom(f ) + having several factorizations as products of words in dom(f ). We deduce that dom(f ) = dom(f ) + \ K is regular and we can construct a complete DFA C recognizing this domain.

As in case (3), from C f and C, we construct a 1NUFT D which takes as input

w and outputs u 1 #u 2 # • • • #u n iff there is an unambiguous decomposition of w as u 1 u 2 • • • u n , with each u i ∈ dom(f ).
We then construct a 2DFT T that takes as input words of the form (5) 2-chained Kleene-plus. As in case (4), we construct the 1NUFT D which takes as input w and outputs

u 1 #u 2 # • • • #u n with each u i ∈ Σ *
u 1 #u 2 # • • • #u n iff there is an unambiguous decomposition of w as u 1 u 2 • • • u n , with each u i ∈ K.
We then construct a 2DFT

D that takes as input words of the form

u 1 #u 2 # • • • #u n with each u i ∈ Σ * and produces u 1 u 2 #u 2 u 3 # • • • #u n-1 u n .
The 2NUFT A is then obtained as the composition of D with the 2DFT T constructed for case [START_REF] Alur | Regular transformations of infinite strings[END_REF]. Finally, a 2DFT A equivalent to the 2NUFT A is constructed. The output produced by A is thus

[[M f ]](u 1 u 2 ) • [[M f ]](u 2 u 3 ) • • • [[M f ]](u n-1 u n ).
We proceed similarly for B.

Unambiguous forest factorization

In Section 2.6, we prove that, given a 2DFT A, we can obtain an RTE C For rational expressions over Σ we will use the following syntax:

F ::= ∅ | ε | a | F ∪ F | F • F | F +
where a ∈ Σ. For reasons that will be clear below, we prefer to use the Kleeneplus instead of the Kleene-star, hence we also add ε explicitly in the syntax. An expression is said to be ε-free if it does not use ε.

Let (S, •, 1 S ) be a finite monoid and ϕ : Σ * → S be a morphism. We say that a rational expression F is ϕ-good (or simply good when ϕ is clear from the context) when 1. the rational expression F is unambiguous,

2. for each subexpression E of F we have ϕ(L(E)) = {s E } is a singleton set.
Notice that ∅ cannot be used in a good expression since it does not satisfy the second condition. Also, the second condition implies that for each subexpression

E + of F we have s E • s E = s E is an idempotent.
Theorem 12 (Unambiguous Forest Factorization [START_REF] Gastin | Unambiguous forest factorization[END_REF]). For each s ∈ S, there is an ε-free good rational expression

F s such that L(F s ) = ϕ -1 (s) \ {ε} ⊆ Σ + . Therefore, G = ε ∪ s∈S F s is an unambiguous rational expression over Σ such that L(G) = Σ * .
Theorem 12 can be seen as an unambiguous version of Imre Simon's forest factorization theorem [START_REF] Simon | Factorization forests of finite height[END_REF]. Its proof, which can be found in [START_REF] Gastin | Unambiguous forest factorization[END_REF], follows the same lines of the recent proofs of Simon's theorem, see e.g. [START_REF] Colcombet | Factorization forests for infinite words and applications to countable scattered linear orderings[END_REF][START_REF] Colcombet | The factorisation forest theorem[END_REF]. For the sake of completeness, we summarize the proof idea and contributions in [START_REF] Gastin | Unambiguous forest factorization[END_REF] here. Given a semigroup morphism ϕ : Σ + → S, [START_REF] Gastin | Unambiguous forest factorization[END_REF] constructs a universal, unambiguous automaton A, which is "good" wrt ϕ in the following sense: (1)

A is unambiguous and accepts all words in Σ * ∪ Σ ω , (2) A has a unique initial state i which has no incoming transitions to it, as well as a unique final state f with no outgoing transitions from it, (3) the states of A are totally ordered as

Q \ {i, f } < f < i, where Q is the set of states of A, (4) 
for each state q, the set of words that have a run originating at q and ending at q, visiting only states lower than q in the ordering are mapped to a unique idempotent e q ∈ S. These properties of A ensure that, for any word w ∈ Σ * ∪ Σ ω , the unique accepting run of w produces a Ramsey split in the sense of [START_REF] Colcombet | The factorisation forest theorem[END_REF], with the height of the split being bounded by the number of states of A. The construction of A proceeds according to the local divisor technique, which uses a lexicographic induction on (|S|, |ϕ(Σ)|). While the base cases (i) when S is a group, and (ii) |ϕ(Σ)| = 1 are easy, the inductive cases are non trivial. The inductive cases follow by identifying an element c ∈ S for which Sc S or cS S, and the details are in [START_REF] Gastin | Unambiguous forest factorization[END_REF].

The forest factorization theorem can be derived easily from the construction of A as follows : consider a morphism ϕ : Σ + → S, and define a monotone bijection h : (Q, <) → ({1, 2, . . . , |Q|}, <). For any word w = a 1 a 2 • • • ∈ Σ ∞ , consider the unique accepting run q 0 a1 → q 1 a2 → . . . of w in A. Define a split σ of w as σ(i) = h(q i ) for all positions i ≥ 0 in w. Two positions i < j are σ-equivalent iff q i = q j and q k ≤ q i for all i ≤ k ≤ j. We obtain this way, w(i, j] = a i+1 . . . a j as a word whose run originates and ends in q i , while visiting only states whose orderings are lower. Thus, ϕ(w(i, j]) = e qi is the unique idempotent associated to q i , resulting in σ being a Ramsey split. Thus, we obtain a Ramsey split using the construction of A, s.t. the height of the factorization tree is bounded by the number of states of A.

The second implication arising from the construction of A is that we obtain the good expressions used in this paper, by a state elimination of A, using the ordering on its states.

In the rest of the section, we assume Theorem 12, and use it in obtaining an RTE corresponding to A. For the purposes of this paper, we work with the transition monoid of the two-way transducer.

Transition monoid of 2NFAs

Consider a two-way possibly non-deterministic automaton (2NFA) A. Let

TrM be the transition monoid of A which is obtained by quotienting the free monoid (Σ * , •, ε) by a congruence which equates words behaving alike in the underlying automaton. Transition monoids for two way automata were defined in [START_REF] Carton | Aperiodic two-way transducers and fotransductions[END_REF] for finite words and later extended to infinite words [START_REF] Vrunda Dave | FOdefinable transformations of infinite strings[END_REF]. We recall the definition.

In a one way automaton, the canonical morphism Tr : Σ * → TrM is such that Tr(w) consists of the set of pairs (p, q) such that there is a run from state p to state q reading w. In the case of two-way automaton, we also consider the starting side (left/right) and ending side (left/right) of the reading head while going from state p to q. This is represented with a direction d amongst "left-left" ( ), "left-right" (→), "right-left"(←) and "right-right"( ). Hence, an element of TrM is a set X of tuples (p, d, q) with p, q ∈ Q states of A and d ∈ {→, , , ←}.

The canonical morphism Tr : Σ * → TrM is such that Tr(w) is the set of triples (p, d, q) which are compatible with w. For instance, (p, →, q) ∈ Tr(w) iff A has a run starting in state p on the left most symbol of w and which exits w on its right and in state q. Likewise, (p, , q) ∈ Tr(w) iff A has a run starting in state p on the right most symbol of w and which exits w on its right and in state q.

The explanation is similar for other directions. Consider the 2DFT A of Figure 2 and its underlying input 2DFA B. The run for word babbabb starting from state q 0 is shown in Figure 3. In the transition monoid of B, we have Tr(abb) = {(q 0 , , q 1 ), (q 1 , , q 5 ), (q 1 , , q 2 ), (q 2 , , q 4 ), (q 2 , ←, q 5 ), (q 3 , , q 4 ), (q 3 , ←, q 5 ), (q 4 , , q 4 ), (q 4 , , q 1 ), (q 5 , , q 5 ), (q 5 , , q 6 ), (q 6 , →, q 2 ), (q 6 , , q 1 )} . Some of these triples are highlighted in Figure 3.

It is well-known that TrM is a monoid and that Tr is a morphism, see for instance [START_REF] Birget | Concatenation of inputs in a two-way automaton[END_REF]. The left-right and right-right relations were already used by Shepherdson to prove the equivalence between two-way and one-way automata [START_REF] Shepherdson | The reduction of two-way automata to one-way automata[END_REF]. These relations define a right-congruence. We obtain a congruence by considering also the right-left and left-left relations. The quotient of the free monoid by this congruence is the transition monoid of the 2NFA.

Let (p, d, q) ∈ Tr(w). If w = a ∈ Σ, then we know that reading a in state p, A may move in direction d and enter state q. If w = w 1 • w 2 for w 1 , w 2 ∈ Σ + , then we can possibly decompose (p, d, q) into several "steps" depending on the behaviour of A on w starting in state p. As an example, see Figure 4, where we decompose (p, →, q) ∈ Tr(w). We show only those elements of Tr(w 1 ) and Tr(w 2 ) which help in the decomposition; the pictorial depiction is visually intuitive. respectively. (p, →, q 1 ), (q 2 , , q 3 ), (q 4 , , q 5 ) ∈ Tr(w 1 ) while (q 1 , , q 2 ), (q 3 , , q 4 ), (q 5 , →, q) ∈ Tr(w 2 ). The third picture shows that (p, →, q) ∈ Tr(w 1 • w 2 ): (p, →, q) consists of "steps" (p, → , q 1 ), (q 1 , , q 2 ), (q 2 , , q 3 ), (q 3 , , q 4 ), (q 4 , , q 5 ), (q 5 , →, q) alternately from Tr(w 1 ) and Tr(w 2 ).

Example 13. Let Σ = {a, b} and let A be the following 1DFT:

q 1 q 2 b b a a
Let TrM be the transition monoid of A and let Tr : Σ * → TrM be the canonical morphism. The expression F = a + (ba) + is not Tr-good: one of the reasons why F is not Tr-good is that the subexpression a + is such that Tr(a) is not an idempotent since Tr(a) = {(q 1 , q 2 ), (q 2 , q 1 )} and Tr(a 2 ) = {(q 1 , q 1 ), (q 2 , q 2 )}, thus Tr(a 2 ) = Tr(a). We have omitted the direction in the tuples as the underlying automaton is one way. Similarly, the subexpression (ba) + is also not Tr-good.

The expression F = aba ∪ aaba ∪ a(aa) + ba ∪ a(baba) + ∪ a(aa) + (baba) + is not Tr-good, even though each of the expressions aba, aaba, a(aa) + ba, a(baba) + and a(aa) + (baba) + are Tr-good. F is not Tr-good since Tr(L(F )) is not a singleton.

The expression F = aba ∪ (aa) + ∪ a(aa) + ba is Tr-good.

2DFT to RTE

In Appendix A, we give a practical example showing how to compute an RTE equivalent to the transducer A of Figure 2.

Consider a deterministic and complete two-way transducer A. Let TrM be the transition monoid of the underlying input automaton. We can apply the unambiguous factorization theorem to the morphism Tr : Σ * → TrM in order to obtain, for each s ∈ TrM, an ε-free good rational expression F s for Tr -1 (s) \ {ε}. We use the unambiguous expression G = ε ∪ s∈TrM F s as a guide when constructing RTEs corresponding to the 2DFT A. Lemma 14. Let F be an ε-free Tr-good rational expression and let Tr(F ) = s F be the corresponding element of the transition monoid TrM of A. We can construct a map C F : s F → RTE such that for each step x = (p, d, q) ∈ s F the following invariants hold:

(I 1 ) dom(C F (x)) = L(F ), (I 2 ) for each u ∈ L(F ), [[C F (x)]](u)
is the output produced by A when running step x on u (i.e., running A on u from p to q following direction d).

Proof. The proof is by structural induction on the rational expression. For each subexpression E of F we let Tr(E) = s E be the corresponding element of the transition monoid TrM of A. We start with atomic regular expressions. Since F is ε-free and ∅-free, we do not need to consider E = ε or E = ∅.

atomic Assume that E = a ∈ Σ is an atomic subexpression. Since the 2DFT

A is deterministic and complete, for each state p ∈ Q we have

• either δ(p, a) = (q, γ, 1) and we let C a ((p, →, q)) = C a ((p, , q)) = a ? γ : ⊥,

• or δ(p, a) = (q, γ, -1) and we let C a ((p, , q)) = C a ((p, ←, q)) = a ? γ :

⊥.
Clearly, invariants (I 1 ) and (I 2 ) hold for all x ∈ Tr(a) = s E .

union Assume that E = E 1 ∪ E 2 . Since the expression is good, we deduce that

s E = s E1 = s E2 . For each x ∈ s E we define C E (x) = E 1 ? C E1 (x) : C E2 (x). Since E is unambiguous we have L(E 1 ) ∩ L(E 2 ) = ∅. Using (I 1 ) for E 1 and E 2 , we deduce that dom(C E (x)) = (L(E 1 ) ∩ dom(C E1 (x))) ∪ (dom(C E2 (x)) \ L(E 1 )) = L(E 1 ) ∪ L(E 2 ) = L(E) .
Therefore, (I 1 ) holds for E. Now, for each u ∈ L(E), either u ∈ L(E 1 ) and

[[C E (x)]](u) = [[C E1 (x)]](u) or u ∈ L(E 2 ) and [[C E (x)]](u) = [[C E2 (x)]](u).
In both cases, applying (I 2 ) for

E 1 or E 2 , we deduce that [[C E (x)]](u) is
the output produced by A when running step x on u.

concatenation Assume that E = E 1 • E 2 is a concatenation. Since the expression is good, we deduce that s E = s E1 • s E2 . Let x ∈ s E .

• If x = (p, →, q) then, by definition of the product in the transition monoid TrM, there is a unique sequence of steps x 1 = (p, → , q 1 ), x 2 = (q 1 , , q 2 ), x 3 = (q 2 , , q 3 ), x 4 = (q 3 , , q 4 ), . . . , x i = (q i-1 , , q i ), x i+1 = (q i , →, q) with i ≥ 1, x 1 , x 3 , . . . , x i ∈ s E1 and x 2 , x 4 , . . . , x i+1 ∈ s E2 (see Figure 4). We define

C E (x) = (C E1 (x 1 ) C E2 (x 2 )) (C E1 (x 3 ) C E2 (x 4 )) • • • (C E1 (x i ) C E2 (x i+1 )) .
Notice that when i = 1 we simply have

C E (x) = C E1 (x 1 ) C E2 (x 2 ) with x 2 = (q 1 , →, q). The concatenation L(E) = L(E 1 ) • L(E 2 ) is unambiguous. Therefore,
for all y ∈ s E1 and z ∈ s E2 , using (I 1 ) for E 1 and E 2 , we obtain

dom(C E1 (y) C E2 (z)) = L(E). We deduce that dom(C E (x)) = L(E)
and (I 1 ) holds for E. Now, let u ∈ L(E) and let u = u 1 u 2 be its unique factorization with u 1 ∈ L(E 1 ) and u 2 ∈ L(E 2 ). The step x = (p, →, q) performed by A on u is actually the concatenation of steps x 1 on u 1 , followed by x 2 on u 2 , followed by x 3 on u 1 , followed by x 4 on u 2 , . . . , until x i+1 on u 2 . Using (I 2 ) for E 1 and E 2 , we deduce that the output produced by A while running step x on u is

[[C E1 (x 1 )]](u 1 ) • [[C E2 (x 2 )]](u 2 ) • • • [[C E1 (x i )]](u 1 ) • [[C E2 (x i+1 )]](u 2 ) = [[C E (x)]](u).
• If x = (p, , q) then, following the definition of the product in the transition monoid TrM, we distinguish two cases. 

w = w 1 • w 2 ∈ L(E) with w 1 ∈ L(E 1 ), w 2 ∈ L(E 2 ).
We have (p, →, q 1 ), (q 2 , , q 3 ), (q 4 , ←, q) ∈ Tr(w 1 ) and (q 1 , , q 2 ), (q 3 , , q 4 ) ∈ Tr(w 2 ). Then (p, , q) is composed of "steps" (p, →, q 1 ), (q 1 , , q 2 ), (q 2 , , q 3 ), (q 3 , , q 4 ), (q 4 , ←, q) alternately from Tr(w 1 ) and Tr(w 2 ).

Or there is a unique sequence of steps (see Figure 5) x 1 = (p, →, q 1 ), x 2 = (q 1 , , q 2 ), x 3 = (q 2 , , q 3 ), x 4 = (q 3 , , q 4 ), . . . , x i = (q i-1 , ←, q) with i ≥ 3, x 1 , x 3 , . . . , x i ∈ s E1 and x 2 , x 4 , . . . , x i-1 ∈ s E2 . We define

C E (x) = (C E1 (x 1 ) C E2 (x 2 )) (C E1 (x 3 ) C E2 (x 4 )) • • • (C E1 (x i ) (E 2 ? ε : ⊥)) .
As for the first item, we can prove that invariants (I 1 ) and (I 2 ) are satisfied for E.

• The cases x = (p, ←, q) or x = (p, , q) are handled symmetrically. For instance, when x = (p, ←, q), the unique sequence of steps is x 1 = (p, ←, q 1 ), x 2 = (q 1 , , q 2 ), x 3 = (q 2 , , q 3 ), x 4 = (q 3 , , q 4 ), . . . , x i = (q i-1 , , q i ), x i+1 = (q i , ←, q) with i ≥ 1, x 1 , x 3 , . . . , x i ∈ s E2 and x 2 , x 4 , . . . , x i+1 ∈ s E1 (see Figure 6). We define

C E (x) = ((E 1 ? ε : ⊥) C E2 (x 1 )) (C E1 (x 2 ) C E2 (x 3 )) • • • (C E1 (x i-1 ) C E2 (x i )) (C E1 (x i+1 ) (E 2 ? ε : ⊥)) .
Kleene-plus Assume that E = F + . Since the expression is good, we deduce that s E = s F = s is an idempotent of the transition monoid TrM. Let

x ∈ s.

• If x = (p, , q). Since F + is unambiguous, a word u ∈ L(F + ) admits

a unique factorization u = u 1 u 2 • • • u n with n ≥ 1 and u i ∈ L(F ).
Now, Tr(u 1 ) = s E and since x = (p, , q) ∈ s E the unique run ρ of A starting in state p on the left of u 1 exits on the left in state q. Therefore, the unique run of A starting in state p on the left of u = u 1 u 2 • • • u n only visits u 1 and is actually ρ itself. Therefore, we 

6: Let w = w 1 • w 2 ∈ L(E) with w 1 ∈ L(E 1 ), w 2 ∈ L(E 2 ).
We have (p, ←, q 1 ), (q 2 , , q 3 ) ∈ Tr(w 2 ) and (q 1 , , q 2 ), (q 3 , ←, q) ∈ Tr(w 1 ). Then (p, ←, q) ∈ Tr(w) is composed of "steps" (p, ←, q 1 ), (q 1 , , q 2 ), (q 2 , , q 3 ), (q 3 , ←, q) alternately from Tr(w 2 ) and Tr(w 1 ). set C E (x) = C F (x) (F * ? ε : ⊥) and we can easily check that (I 1 -I 2 ) are satisfied.

• Similarly for x = (p, , q) we set C E (x) = (F * ? ε : ⊥) C F (x).

• If x = (p, →, q). Recall that s is an idempotent, hence x ∈ s 2 . We distinguish two cases.

Assume first that y = (q, →, q) ∈ s.

Let u = u 1 u 2 • • • u n be a word with u i ∈ L(F ) for 1 ≤ i ≤ n.
When reading u starting in state p on the left, the transducer will use step x on u 1 and then step y on each u i with 2 ≤ i ≤ n. Therefore, we set

C E (x) = F ? C F (x) : C F (x) (C F (y)) .
Otherwise, there exists a unique sequence of steps in s: x 1 = x, x 2 = (q, , p 2 ), x 3 = (p 2 , , p 3 ), x 4 = (p 3 , , p 4 ), . . . , x i = (p i-1 , , p i ),

x i+1 = (p i , →, q) with i ≥ 3 (see Figure 7). We define

C E (x) = C F (x) (F * ? ε : ⊥) [F, C ] 2 C = (F ? ε : ⊥) C F (x 2 ) (C F (x 3 ) C F (x 4 )) • • • (C F (x i ) C F (x i+1 ))
Since the expression is good, the Kleene-plus E = F + is unambiguous. We have dom(C F (x j )) = L(F ) for 1 ≤ j ≤ i + 1 by (I 1 ). Also dom(F * ? ε : ⊥) = L(F * ). Since F + is unambiguous, the concatenation F • F * is also unambiguous and we get dom(C F (x) (F * ? ε :

⊥)) = L(F ) • L(F * ) = L(E). Also, the product F • F is unam- biguous and we deduce that dom(C F (x j ) C F (x j+1 )) = L(F ) 2 for 1 ≤ j ≤ i and dom((F ? ε : ⊥) C F (x 2 )) = L(F ) 2 . Therefore,
dom(C ) = L(F ) 2 and using once again that F + is unambiguous,

we deduce that dom([F, C ] 2 ) = L(F + ) = L(E).
We deduce that dom(C E (x)) = L(E) and (I 1 ) holds for E.

Let now u ∈ L(F + ) = dom(C E (x)). We have to show that the output γ ∈ D produced by A when running step

x on u is [[C E (x)]](u). There is a unique factorization u = u 1 u 2 • • • u n with n ≥ 1 and u ∈ L(F ) for 1 ≤ ≤ n.
Assume first that n = 1 (see Figure 7 left). By definition, we have

[[[F, C ] 2 ]](u) = ε and [[C F (x) (F * ? ε : ⊥)]](u) = [[C F (x)]](u) which,
by induction, is the output γ produced by A running step x on u.

Therefore

, [[C E (x)]](u) = γ • ε = γ.
Assume now that n ≥ 2 (see Figure 7 middle for n = 2 and right for n = 5). For 1 ≤ ≤ n and 1 ≤ j ≤ i + 1, we denote γ j = [[C F (x j )]](u ) the output produced by A when running step x j on u . We can check (see Figure 7) that the output γ produced by A when running

x on u = u 1 u 2 • • • u n is γ = γ 1 1 (γ 2 2 γ 1 3 γ 2 4 • • • γ 1 i γ 2 i+1 )(γ 3 2 γ 2 3 γ 3 4 • • • γ 2 i γ 3 i+1 ) • • • (γ n 2 γ n-1 3 γ n 4 • • • γ n-1 i γ n i+1 ) .
We have

[[C ]](u u +1 ) = γ +1 2 γ 3 γ +1 4 • • • γ i γ +1 i+1 for 1 ≤ < n. There- fore, we obtain γ = γ 1 1 [[C ]](u 1 u 2 )[[C ]](u 2 u 3 ) • • • [[C ]](u n-1 u n ). Since [[C F (x) (F * ? ε : ⊥)]](u) = γ 1 1 we deduce that γ = [[C E (x)]](u).
• The case of x = (p, ←, q) can be handled similarly.

Lemma 14 is the main ingredient in the construction of an RTE equivalent to a 2DFT.

Proof of Theorem 7 (2). First, we let

C ε = [[A]](ε) ∈ Γ * ∪ {⊥}. Then, we will define for each s ∈ TrM, an RTE C s such that dom(C s ) = dom(A)∩(Tr -1 (s)\{ε}) and [[C s ]](u) = [[A]](u) for all u ∈ dom(C s ).
Assuming an arbitrary enumeration s 1 , s 2 , . . . , s m of TrM, we define the final RTE as

C A = ε ? C ε : (Tr -1 (s 1 ) ? C s1 : (Tr -1 (s 2 ) ? C s2 : • • • (Tr -1 (s m-1 ) ? C sm-1 : C sm ))) .
It remains to define the RTE C s for s ∈ TrM. We first define RTEs for steps in the 2DFT A on some input u with u ∈ Tr -1 (s) \ {ε}. Such a step must exit on the right since there are no transitions of A going left when reading . So either the step (q 0 , →, q) starts on the left in the initial state q 0 and exits on the right in some state q. Or the step (p, , q) starts on the right in some state p and exits on the right in some state q. See Figure 8.

Let s be the set of steps (p, →, q), (p, , q) such that there is a transition δ(p, ) = (q, γ p , +1) in A. From the initial state q 0 of A, there is a unique sequence of steps x 1 = (q 0 , →, q 1 ), x 2 = (q 1 , , q 2 ), x 3 = (q 2 , , q 3 ), x 4 = (q 3 , , q 4 ), . . . , x i = (q i-1 , , q i ), x i+1 = (q i , →, q) with i ≥ 1, x 1 , x 3 , . . . , x i ∈ s and x 2 , x 4 , . . . , x i+1 ∈ s (see Figure 8 left). We define

C Fs ((q 0 , →, q)) = γ q0 C Fs (x 2 ) γ q2 C Fs (x 4 ) • • • γ qi-1 C Fs (x i+1 ) .
Notice that when i = 1 we simply have C Fs ((q 0 , →, q)) = γ q0 C Fs ((q 1 , →, q)).

Since dom(C Fs (x i )) = L(F s ) = Tr -1 (s)\{ε} for i = 2, 4, . . . , i+1, we deduce that dom(C Fs ((q 0 , →, q))) = Tr -1 (s) \ {ε}. Moreover, for each u ∈ Tr -1 (s) \ {ε}, the output produced by A performing step (q 0 , →, q) on u is [[C Fs ((q 0 , →, q))]](u).

Figure 8: (Left) Given steps of s, a step (q 0 , →, q) of u for some u ∈ Fs, is obtained by composing the following steps alternatively from s and s: x 1 = (q 0 , →, q 1 ), x 2 = (q 1 , , q 2 ), x 3 = (q 2 , , q 3 ), x 4 = (q 3 , , q 4 ), x 5 = (q 4 , , q 5 ), x 6 = (q 5 , →, q). (Right) A step (p, , q) of u for some u ∈ Fs, is obtained by composing the following steps alternatively from s and s : x 1 = (p, ←, q 1 ), x 2 = (q 1 , , q 2 ), x 3 = (q 2 , , q 3 ), x 4 = (q 3 , , q 4 ), x 5 = (q 4 , →, q). Let p be a state of A. Either there is a step (p, , q) ∈ s and we let C Fs ((p, , q)) = C Fs ((p, , q)). Or, there is a unique sequence of steps x 1 = (p, ←, q 1 ), x 2 = (q 1 , , q 2 ), x 3 = (q 2 , , q 3 ), x 4 = (q 3 , , q 4 ), . . . , x i = (q i-1 , →, q) with i ≥ 3, x 1 , x 3 , . . . , x i ∈ s and x 2 , x 4 , . . . , x i-1 ∈ s (see Figure 8 right). We define

C Fs ((p, , q)) = C Fs (x 1 ) γ q1 C Fs (x 3 ) γ q3 • • • γ qi-2 C Fs (x i ) .
As above, we have dom(C Fs ((p, , q))) = Tr -1 (s) \ {ε}. Moreover, for each u ∈ Tr -1 (s) \ {ε}, the output produced by A performing step (p, , q) on u is [[C Fs ((p, , q))]](u).

Figure 9: On input u , a step x = (q 0 , →, q) is obtained by composing the following steps alternatively from steps of u and s : x 1 = (q 0 , →, q 1 ), x 2 = (q 1 , , q 2 ), x 3 = (q 2 , , q 3 ), x 4 = (q 3 , , q 4 ), x 5 = (q 4 , , q 5 ) and x 6 = (q 5 , →, q). Similarly, let s be the set of steps (p, , q) such that there is a transition δ(p, ) = (q, γ p , -1) in A or steps (p, →, q) such that there is a transition δ(p, ) = (q, γ p , +1) in A. From the initial state q 0 of A, there is a unique sequence of steps x 1 = (q 0 , →, q 1 ), x 2 = (q 1 , , q 2 ), x 3 = (q 2 , , q 3 ), x 4 = (q 3 , , q 4 ), . . . , x i = (q i-1 , , q i ), x i+1 = (q i , →, q) with i ≥ 1, and x 1 , x 3 , . . . , x i are steps where C Fs is defined and x 2 , x 4 , . . . , x i+1 ∈ s (see Figure 9). Notice that this sequence of steps corresponds to an accepting run iff q ∈ F is an accepting state of A. Therefore, either q / ∈ F and dom(A)∩(Tr -1 (s)\{ε}) = ∅ so we set C s = ⊥. Or, q ∈ F and Tr -1 (s) \ {ε} ⊆ dom(A) so we define

C s = C Fs (x 1 ) γ q1 C Fs (x 3 ) γ q3 • • • C Fs (x i ) γ qi .
We have dom(C s ) = Tr -1 (s) \ {ε} and for all u ∈ dom(C s ) we have

[[C s ]](u) = [[A]](u).

Infinite Words

In this section, we start looking at regular functions on infinite words. As in Section 2, we restrict our attention to two-way transducers as the model for computing regular functions. Given a finite alphabet Σ, let Σ ω denote the set of infinite words over Σ, and let Σ ∞ = Σ * ∪ Σ ω be the set of all finite or infinite words over Σ.

Two-way transducers over ω-words (ω-2DMT la )

Let Σ be a finite input alphabet and let Γ be a finite output alphabet. Let be a left end marker symbol not in Σ and let Σ = Σ ∪ { }. The input word is presented as w where w ∈ Σ ω .

Let R be a finite set of look-ahead ω-regular languages. For the ω-regular languages in R, we may use any finite descriptions such as ω-regular expressions or automata. Below, we will use complete unambiguous Büchi automata (CUBA) [START_REF] Carton | Unambiguous Büchi automata[END_REF], also called backward deterministic Büchi automata [START_REF] Wilke | Backward deterministic Büchi automata on infinite words[END_REF]). A deterministic two-way transducer (ω-2DMT la ) over ω-words is given by A = (Q, Σ, Γ, q 0 , δ, F, R), where Q is a finite set of states, q 0 ∈ Q is a unique initial state, and δ :

Q × Σ × R → Q × Γ * × {-1, +1} is the partial transition function.
We request that for every pair (q, a) ∈ Q × Σ , the subset R(q, a) of languages R ∈ R such that δ(q, a, R) is defined forms a partition of Σ ω . This ensures that A is complete and behaves deterministically. The set F ⊆ 2 Q specifies the Muller acceptance condition. As in the finite case, the reading head cannot move left while on . A configuration is represented by w qaw where w a ∈ Σ * , w ∈ Σ ω and q is the current state, scanning letter a. From configuration w qaw , let R be the unique ω-regular language in R(q, a) such that w ∈ R, the automaton outputs γ and moves to w aq w if δ(q, a, R) = (q , γ, +1) w 1 q baw if δ(q, a, R) = (q , γ, -1) and w = w 1 b .

The output γ ∈ Γ * is appended at the end of the output produced so far. A run ρ of A on w ∈ Σ ω is a sequence of transitions starting from the initial configuration q 0 w where the reading head is on :

q 0 w γ1 -→ w 1 q 1 w 1 γ2 -→ w 2 q 2 w 2 γ3 -→ w 3 q 3 w 3 γ4 -→ w 4 q 4 w 4 • • •
We say that ρ reads the whole word The notation ω-2DMT la signifies the use of the look-ahead (la) using the ωregular languages in R. It must be noted that without look-ahead, the expressive power of two-way transducers over infinite words is lesser than regular transformations over infinite words [START_REF] Alur | Regular transformations of infinite strings[END_REF]. A classical example of this is given in Example 15, where the look-ahead is necessary to obtain the required transformation.

w if sup{|w n | | n > 0} = ∞.
Example 15. Figure 1 shows an ω-2DMT la A over Σ = {a, b, #} that defines the transformation

[[A ]](u 1 #u 2 # • • • #u n #v) = u R 1 u 1 # u R 2 u 2 # • • • #u R n u n #v
where u 1 , . . . , u n ∈ (a + b) * , v ∈ (a + b) ω and u R denotes the reverse of u. The Muller acceptance set is {{q 5 }}. From state q 1 reading , or state q 4 reading #,

A uses the look ahead partition R(q 1 , ) = R(q 4 , #) = {Σ * #Σ ω , (Σ \ {#}) ω },
which indicates the presence or absence of a # in the remaining suffix of the word being read. For all other transitions, the look-ahead language is Σ ω , hence it is omitted. Also, to keep the picture light, the automaton is not complete, i.e., we have omitted the transitions going to a sink state. It can be seen that any maximal string u between two consecutive occurrences of # is replaced with u R u;

the infinite suffix over {a, b} ω is then reproduced as it is.

Remark 16. The model used here is a two-way, deterministic Muller automaton, which has for each pair (q, a) consisting of a state and symbol, a tuple of lookahead ω-regular languages which are mutually exclusive. The model (denoted 2WST la ) used in [START_REF] Alur | Regular transformations of infinite strings[END_REF] however is a two-way deterministic Muller automaton which is equipped with a look-behind automaton (a NFA) and a look-ahead automaton (a possibly non-deterministic Muller automaton). It is easy to see that the two models are equivalent, see [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF] for details.

ω-Regular Transducer Expressions (ω-RTE)

As in the case of finite words, we define regular transducer expressions for infinite words. Let Σ and Γ be finite input and output alphabets and let ⊥ stand for undefined. We define the output domain as D = Γ ∞ ∪ {⊥} , with the usual concatenation of a finite word on the left with a finite or infinite word on the right. Again, ⊥ acts as zero and the unit is the empty word 1 D = ε.

The syntax of ω-Regular Transducer Expressions (ω-RTE) from Σ ω to D is defined by:

C ::= L ? C : C | C C | E C | E ω | [K, E] 2ω
where K ⊆ Σ + ranges over regular languages of finite non-empty words, L ⊆ Σ ω ranges over ω-regular languages of infinite words and E is an RTE over finite words as defined in Section 2. Moreover, (L ? g : h)(w) is defined as g(w) for w ∈ dom(g) ∩ L, and h(w)

for w ∈ dom(h) \ L.
Hadamard product. We have dom(g h) = g -1 (Γ * ) ∩ dom(h).

Moreover, (g h)(w) = g(w)•h(w) for w ∈ dom(g)∩dom(h) with g(w) ∈ Γ * .

Unambiguous Cauchy product. If w ∈ Σ ω admits a unique factorization

w = u • v with u ∈ dom(f ) and v ∈ dom(g) then we set (f g)(w) = f (u) • g(v)
. Otherwise, we set (f g)(w) = ⊥.

Unambiguous ω-iteration. If w ∈ Σ ω admits a unique infinite factorization

w = u 1 u 2 u 3 • • • with u i ∈ dom(f ) for all i ≥ 1 then we set f ω (w) = f (u 1 )f (u 2 )f (u 3 ) • • • ∈ Γ ∞ . Otherwise, we set f ω (w) = ⊥.
Unambiguous 2-chained ω-iteration. If w ∈ Σ ω admits a unique factoriza-

tion w = u 1 u 2 u 3 • • • with u i ∈ K for all i ≥ 1 and if moreover u i u i+1 ∈ dom(f ) for all i ≥ 1 then we set [K, f ] 2ω (w) = f (u 1 u 2 )f (u 2 u 3 )f (u 3 u 4 ) • • • . Otherwise, we set [K, f ] 2ω (w) = ⊥. Remark 17. Let C ε = (Σ ? ε : ⊥) ω . We have dom(C ε ) = Σ ω and [[C ε ]](w) = ε for all w ∈ Σ ω . Now, for γ ∈ Γ + , let C γ = (Σ ? γ : ⊥) C ε . We have dom(C γ ) = Σ ω and [[C γ ]](w) = γ for all w ∈ Σ ω .
Therefore, we can freely use constants γ ∈ Γ * when defining ω-RTEs.

Remark 18. We can express the ω-iteration with the 2-chained ω-iteration as follows:

f ω = [dom(f ), f (dom(f ) ? ε : ⊥)] 2ω .
Remark 19. In a similar manner to [K, f ] k , we can extend 2-chained ωiteration as well to k-chained ω-iteration for any k ≥ 3. It is defined as follows: If w admits a unique factorization w = u 1 u 2 . . ., with

u i ∈ K for all i ≥ 1, then [K, f ] kω (w) = f (u 1 u 2 . . . u k )f (u 2 u 3 . . . u k+1 ) . . .. Otherwise, we set [K, f ] kω (w) = ⊥.
In [START_REF] Vrunda | Regular transducer expressions for regular transformations[END_REF], we have shown that adding k-chained ω-iteration does not increase the expressive power of ω-RTEs. Then dom(E 1 ) = dom(E 3 ) = (a + b + #) and dom(E 2 ) = (a + b). Let 

E 4 = ((a + b) * #) ? (E 3 ← - E 1 ) : ⊥ . We have dom(E 4 ) = (a + b) * # and, for u ∈ (a + b) * , [[E 4 ]](u#) = u R u# where u R denotes the reverse of u. Next, let C 1 = E 4 E ω 2 . Then, dom(C 1 ) = [(a + b) * #] + (a + b) ω , and [[C 1 ]](u 1 #u 2 # • • • u n #v) = u R 1 u 1 #u R 2 u 2 # • • • #u R n u n #v when u i ∈ (a + b) * and v ∈ (a + b) ω . Finally, let C = (a + b) ω ? E ω 2 : C 1 . We have dom(C) = [(a+b) * #] * (a+b)

given an ω-2DMT

la A, we can construct an ω-RTE C such that [[A]] = [[C]],
The proof of (1) is given in the next section, while the proof of (2) will be given in Section 3.7 after some preparatory work on backward deterministic Büchi automata (Section 3.4) which are used to remove the look-ahead of ω-2DMT la (Section 3.5), and the notion of transition monoid for ω-2DMT la (Section 3.6) used in the unambiguous forest factorization theorem extended to infinite words (Theorem 28).

ω-RTE to ω-2DMT la

In this section, we prove one direction of Theorem 21: given an ω-RTE C, we

can construct an ω-2DMT la A such that [[A]] = [[C]].
The proof is by structural induction and follows immediately from Lemma 22. Let K ⊆ Σ * be regular and L ⊆ Σ ω be ω-regular. Let f be an RTE

with [[f ]] = [[M f ]] for some 2DFT M f . Let g, h be ω-RTEs with [[g]] = [[M g ]] and [[h]] = [[M h ]] for ω-2DMT la M g and M h respectively. Then, one can construct 1. an ω-2DMT la A such that [[L ? g : h]] = [[A]], 2. an ω-2DMT la A such that [[A]] = [[g h]], 3. an ω-2DMT la A such that [[A]] = [[f g]], 4. an ω-2DMT la A such that [[A]] = [[f ω ]],

an ω-2DMT

la A such that [[A]] = [[[K, f ] 2ω ]].
Proof. Throughout the proof, we let M g = (Q g , Σ, Γ, s g , δ g F g , R g ) and

M h = (Q h , Σ, Γ, s h , δ h , F h , R h ) be the ω-2DMT la such that [[M g ]] = [[g]] and [[M h ]] = [[h]].
(1) If then else. The set of states of A is

Q A = {q 0 } ∪ Q g ∪ Q h with q 0 / ∈ Q g ∪ Q h .
In state q 0 , we have the transitions δ A (q 0 , ( , R ∩ L)) = (q, γ, +1) if δ g (s g , ( , R)) = (q, γ, +1) and δ A (q 0 , ( , R \L)) = (q , γ , +1) if δ h (s h , ( , R )) = (q , γ , +1). This invokes M g (M h ) iff the input w is in L (not in L). The Muller set F is simply a union F g ∪ F h of the respective Muller sets of M g and M h . It

is clear that [[A]] coincides with [[M g ]]
iff the input string is in L, and otherwise,

[[A]] coincides with [[M h ]].
(2) Hadamard product. Recall that for a word w to be in dom(g h) we should have w ∈ dom(g) ∩ dom(h) and also [[g]](w) ∈ Γ * . Hence, M g will produce [[g]](w) after reading a finite prefix of w. We create a look ahead which indicates the position where the transducer M g can stop reading the input word w so that we can reset the head to the left most position and start M h . The look ahead should satisfy two conditions for this purpose:

• M g will not visit any position to the left of the current position in its remaining run on w.

• The output produced by running M g on the suffix of w should be ε.

To accommodate these two conditions, we construct for each state q ∈ Q g , a transducer A q and we define an ω-regular look ahead language as L q = dom(A q ). The structure of A q is the same as M g except that we

• add a new initial state ι q and the transition δ q (ι q , , Σ ω ) = (q, ε, +1),

• remove all transitions from M g where the output is γ = ε,

• remove all transitions from M g where the input symbol is .

We explain the construction of the ω-

2DMT la A such that [[g h]] = [[A]]. The set of states of A are Q A = Q g ∪ Q h ∪ {reset}.
Backward transitions in A and M g are the same: δ A (q, a, R) = (q , γ, -1) iff δ g (q, a, R) = (q , γ, -1). Forward transitions of M g are divided into two depending on the look ahead. If we have δ g (q, a, R) = (q , γ, +1) in M g for an a ∈ Σ , then δ A (q, a, R \ L q ) = (q , γ, +1) and δ A (q, a, R ∩ L q ) = (reset, γ, +1).

From the reset state, we go to the left until is reached and then start running M h .

So, δ A (reset, a, Σ ω ) = (reset, ε, -1) for all a ∈ Σ and δ A (reset, , R) = (q , γ, +1)

if δ h (s h , , R) = (q , γ, +1). The accepting set is the same as the Muller accepting set F h of M h .

(3) Cauchy product. From the transducers M f and M g , we can construct a

DFA D f = (Q f , Σ, δ f , s f , F f ) that accepts dom(M f ) and a deterministic Muller automaton (DMA) D g = (Q g , Σ, δ g , s g , F g ) that accepts dom(M g ).
Now, the set L of words w having at least two factorizations

w = u 1 v 1 = u 2 v 2 with u 1 , u 2 ∈ dom(f ), v 1 , v 2 ∈ dom(g) and u 1 = u 2 is ω-regular.
This is easy since L can be written as L = p∈F f ,q∈Qg L p • M p,q • R q where

• L p ⊆ Σ * is the regular set of words which admit a run in D f from its initial state to state p,

• M p,q ⊆ Σ * is the regular set of words which admit a run in D f from state p to some final state in D f , and also admit a run in D g from the initial state to some state q in D g ,

• R q ⊆ Σ ω is the ω-regular set of words which (i) admit an accepting run from state q in D g and also (ii) admit an accepting run in D g from its initial state s g .

Therefore, dom(f g) = (dom(f ) • dom(g)) \ L is ω-regular. 

δ f (q, a) = q ∈ F f the corresponding transitions of D are δ D (q, a, dom(g)) = (s g , a#, +1) and δ D (q, a, Σ ω \ dom(g)) = (q , a, +1).
While running D g , D copies each input letter to output. Accepting sets of D are the accepting sets of the DMA D g . Thus, D produces an output u#v for an input string w = uv which is in dom(f g) such that u ∈ dom(f ) and v ∈ dom(g).

Next we construct an ω-2DMT la T which takes input words of the form u#v with u ∈ Σ * and v ∈ Σ ω , runs M f on u and M g on v. To do so, u is traversed in either direction depending on M f and the symbol # is interpreted as right end marker for M f . While simulating a transition of M f moving right of , producing the output γ and reaching state q, there are two possibilities. If q is not a final state of M f then T moves to the right of #, goes to some sink state and rejects. If q is a final state of M f , then T stays on # producing the output γ and goes to the initial state of M g . Then, T runs M g on v interpreting # as . The Muller accepting set of T is the same as M g .

We construct an ω-2DMT la A as the composition of D and T . Regular transformations are definable by ω-2DMT la [START_REF] Alur | Regular transformations of infinite strings[END_REF] and are closed under composition [START_REF] Courcelle | The expression of graph properties and graph transformations in monadic second-order logic[END_REF]. Thus the composition of an ω-1DMT la and an ω-2DMT la is an ω-2DMT la .

We deduce that A is an ω-2DMT la . Moreover

[[A]] = [[f g]].
(4) ω-iteration. By Remark 18, this is a derived operator and hence the result follows from the next case.

(5) 2-chained ω-iteration. First we show that the set of words w in Σ ω having

an unambiguous decomposition w = u 1 u 2 • • • with u i ∈ K for each i is ω-regular.
As in case (3) above, the language L of words w having at least two factorizations

w = u 1 v 1 = u 2 v 2 with u 1 , u 2 ∈ K, v 1 , v 2 ∈ K ω and u 1 = u 2 is ω-regular. Hence, L = K * •L
is ω-regular and contains all words in Σ ω having several factorizations as products of words in K. We deduce that Σ ω \ L is ω-regular.

As in case (3) above, we construct an ω-1DMT la D which takes as input w and

outputs u 1 #u 2 # • • • iff there is an unambiguous decomposition of w as u 1 u 2 • • •
with each u i ∈ K. We then construct an ω-2DMT D that takes as input words of the form

u 1 #u 2 # • • • with each u i ∈ Σ * and produces u 1 u 2 #u 2 u 3 # • • • .
Next we construct an ω-2DMT T that takes as input words of the form

w 1 #w 2 # • • • with each w i ∈ Σ *
and runs M f on each w i from left to right. The transducer T interprets # as (resp. ) when it is reached from the right (resp. from left). While simulating a transition of M f moving right of , we proceed as in case (3) above, except that T goes to the initial state of M f instead.

The ω-2DMT la A is then obtained as the composition of D, D and T . The

output produced by A is thus [[M f ]](u 1 u 2 )[[M f ]](u 2 u 3 ) • • • .

Backward deterministic Büchi automata (BDBA)

A Büchi automaton over the input alphabet Σ is a tuple B = (P, Σ, ∆, Fin)

where P is a finite set of states, Fin ⊆ P is the set of final (accepting) states, and ∆ ⊆ P × Σ × P is the transition relation. A run of B over an infinite word

w = a 1 a 2 a 3 • • • is a sequence ρ = p 0 , a 1 , p 1 , a 2 , p 2 , . . . such that (p i-1 , a i , p i ) ∈ ∆
for all i ≥ 1. The run is final (accepting) if inf(ρ) ∩ Fin = ∅ where inf(ρ) is the set of states visited infinitely often by ρ. This is a Büchi acceptance condition.

The Büchi automaton B is backward deterministic (BDBA) or complete unambiguous (CUBA) if for all infinite words w ∈ Σ ω , there is exactly one run ρ of B over w which is final, this run is denoted B(w). The fact that we request at least/most one final run on w explains why the automaton is called complete/unambiguous. Wlog, we may assume that all states of B are useful, i.e., for all p ∈ P there exists some w ∈ Σ ω such that B(w) starts from state p. In that case, it is easy to check that the transition relation is backward deterministic and complete: for all (p, a) ∈ P × Σ there is exactly one state p such that (p , a, p) ∈ ∆. We write p a ← -p and state p is denoted ∆ -1 (p, a). In other words, the inverse of the transition relation ∆ -1 : P × Σ → P is a total function.

For each state p ∈ P , we let L(B, p) be the set of infinite words w ∈ Σ ω such that B(w) starts from p. Notice that, Σ ω = p∈P L(B, p), i.e., words in Σ ω are partitioned according to the starting state of their unique final run. For every subset I ⊆ P of initial states, the language L(B, I) = p∈I L(B, p) is ω-regular.

Example 23. For instance, the automaton B below is a BDBA. Moreover,

we have L(B, p 2 ) = (Σ \ {#}) ω , L(B, p 4 ) = (#Σ * ) ω , and L(B, {p 1 , p 3 , p 4 }) = Σ * #Σ ω . p 1 p 2 Σ Σ \ {#} # p 3 p 4 Σ \ {#} # Σ \ {#} #
Deterministic Büchi automata (DBA) are strictly weaker than non-deterministic Büchi automata (NBA) but backward determinism keeps the full expressive power.

Theorem 24 (Carton & Michel [10]). A language L ⊆ Σ ω is ω-regular iff L = L(B, I) for some BDBA B and initial set I.

The proof in [START_REF] Carton | Unambiguous Büchi automata[END_REF] is constructive, starting with an NBA with m states, they construct an equivalent BDBA with (3m) m states.

A crucial fact on BDBA is that they are easily closed under Boolean operations.

In particular, the complement, which is quite difficult for NBAs, becomes trivial with BDBAs: L(B, P \ I) = Σ ω \ L(B, I). For intersection and union, we simply use the classical cartesian product of two automata B 1 and B 2 . This clearly preserves the backward determinism. For intersection, we use a generalized Büchi acceptance condition, i.e., a conjunction of Büchi acceptance conditions.

For BDBAs, generalized and classical Büchi acceptance conditions are equivalent [START_REF] Carton | Unambiguous Büchi automata[END_REF]. We obtain immediately Corollary 25. Let R be a finite family of ω-regular languages. There is a BDBA B and a tuple of initial sets (I R ) R∈R such that R = L(B, I R ) for all R ∈ R.

Replacing the look-ahead of an ω-2DMT la with a BDBA

Let A = (Q, Σ, Γ, q 0 , δ, F, R) be an ω-2DMT la . By Corollary 25 there is a BDBA B = (P, Σ, ∆, Fin) and a tuple (I R ) R∈R of initial sets for the finite family R of ω-regular languages used as look-ahead by the transducer A. Recall that for every pair (q, a) ∈ Q × Σ , the subset R(q, a) of languages R ∈ R such that δ(q, a, R) is defined forms a partition of Σ ω . We deduce that (I R ) R∈R(q,a) is a partition of P .

We construct an ω-2DMT A = (Q, Σ, Γ, q 0 , δ, F) without look-ahead over the extended alphabet Σ = Σ × P which is equivalent to A in some sense made precise below. Intuitively, in a pair (a, p) ∈ Σ , the state p of B gives the look-ahead information required by A. Formally, the deterministic transition

function δ : Q × Σ → Q × Γ * × {-1, +1}
is defined as follows: for q ∈ Q and (a, p) ∈ Σ we let δ(q, (a, p)) = δ(q, a, R) for the unique R ∈ R(q, a) such that p ∈ I R .

Example 26. For instance, the ω-2DMT A constructed from the ω-2DMT la of Figure 1 and the BDBA B of Example 23 is depicted below, where • stands for an arbitrary state of B.

q 1 q 2 q 3 q 4 q 5 (⊢, p 1 )/ε, +1 (⊢, p 3 )/ε, +1 (⊢, p 4 )/ε, +1 (⊢, p 2 )/ε, +1 (a, •)/ε, +1 (b, •)/ε, +1 (#, •)/ε, -1 (a, •)/a, -1 (b, •)/b, -1 (#, •)/ε, +1 (⊢, •)/ε, +1 (a, •)/a, +1 (b, •)/b, +1 (#, p 1 )/#, +1 (#, p 3 )/#, +1 (#, p 4 )/#, +1 (#, p 2 )/#, +1 (a, •)/a, +1 (b, •)/b, +1 Let w = a 1 a 2 a 3 • • • ∈ Σ ω and let B(w) = p 0 , a 1 , p 1 , a 2 , p 2 , . . . be the unique final run of B on w. We define w = ( , p 0 )(a 1 , p 1 )(a 2 , p 2 ) • • • ∈ Σ ω .
We can easily check by induction that the unique run of A on w

q 0 w γ1 -→ w 1 q 1 w 1 γ2 -→ w 2 q 2 w 2 γ3 -→ w 3 q 3 w 3 γ4 -→ w 4 q 4 w 4 • • • corresponds to the unique run of A on w q 0 w γ1 -→ w 1 q 1 w 1 γ2 -→ w 2 q 2 w 2 γ3 -→ w 3 q 3 w 3 γ4 -→ w 4 q 4 w 4 • • •
where for all i > 0 we have w = w i w i and |w i | = | w i |. Indeed, assume that in a configuration w qaw with w = w aw the transducer A takes the transition q (a,R) ---→ (q , γ, +1) and reaches configuration w aq w . Then, w ∈ R and the corresponding configuration w q(a, p) w with w = w (a, p) w and |w | = | w | is such that p ∈ I R . Therefore, the transducer A takes the transition q (a,p) ---→ (q , γ, +1) and reaches configuration w (a, p)q w . The proof is similar for backward transitions. We have shown that A and A are equivalent in the following sense: Lemma 27. For all words w ∈ Σ ω , the ω-2DMT la A starting from w accepts iff the ω-2DMT A starting from w accepts, and in this case they compute the same output in Γ ∞ .

Transition monoid of an ω-2DMT la

We use the notations of the previous sections, in particular for the ω-2DMT la A, the BDBA B and the corresponding ω-2DMT A. As in the case of 2NFAs over finite words, we will define a congruence on Σ + such that two words u, v ∈ Σ + are equivalent iff they behave the same in the ω-2DMT la A, when placed in an arbitrary right context w ∈ Σ ω . The right context w is abstracted with the first state p of the unique final run B(w).

The ω-2DMT A does not use look-ahead, hence, we may use for A the classical notion of transition monoid. Actually, in order to handle the Muller acceptance condition of A, we need a slight extension of the transition monoid defined in Section 2.5. More precisely, the abstraction of a finite word u ∈ Σ + will be the set Tr( u) of tuples (q, d, X, q ) with q, q ∈ Q, X ⊆ Q and d ∈ {→, , , ←} such that the unique run of A on u starting in state q on the left of u if d ∈ {→, } (resp. on the right if d ∈ { , ←}) exits in state q on the left of u if d ∈ { , ←} (resp. on the right if d ∈ {→, }) and visits the set of states X while in u (i.e., including q but not q unless q is also visited before the run exits u).

For instance, with the automaton A of Example 26, we have (q 4 , →, {q 2 , q 3 , q 4 }, q 5 ) ∈ Tr( u) when u ∈ ((a, p 1 ) + (b, p 1 )) * (#, p 1 )((a, p 1 ) + (b, p 1 )) * (#, p 2 ).

We denote by TrM = { Tr( u) | u ∈ Σ + } ∪ {1 TrM } the transition monoid of A with unit 1 TrM . The classical product of the transition monoid of a twoway automaton [START_REF] Birget | Concatenation of inputs in a two-way automaton[END_REF] is extended by taking the union of the sets X occurring in a sequence of steps. For instance, if we have steps (q 0 , →, X 1 , q 1 ), (q 2 , , X 3 , q 3 ), . . . , (q i-1 , , X i , q i ) in Tr( u) and (q 1 , , X 2 , q 2 ), (q 3 , , X 4 , q 4 ), . . . , (q i , →, X i+1 , q i+1 ) in Tr( v) then there is a step (q 0 , →,

X 1 ∪ • • • ∪ X i+1 , q i+1 ) in Tr( u • v) = Tr( u) • Tr( v).
We denote by Tr : Σ * → TrM the canonical morphism.

Let u = a 1 • • • a n ∈ Σ + be a finite word of length n > 0 and let p ∈ P .

We define the sequence of states p 0 , p 1 , . . . , p n by p n = p and for all 0 ≤ i < n we have p i ai+1 ← ---p i+1 in B. Notice that for all infinite words w ∈ L(B, p), the unique run B(uw) starts with p 0 , a 1 , p 1 , . . . , a n , p n . We define

u p = (a 1 , p 1 )(a 2 , p 2 ) • • • (a n , p n ) ∈ Σ + .
We are now ready to define the finite abstraction Tr(u) of a finite word Therefore, Tr : Σ * → TrM is a morphism.

ω-2DMT la to ω-RTE

We prove in this section that from an ω-2DMT la A we can construct an equivalent ω-RTE. The proof follows the ideas already used for finite words in Section 2.6. We will use the following generalization to infinite words of the unambiguous forest factorization Theorem 12.

Theorem 28 (Unambiguous Forest Factorization [START_REF] Gastin | Unambiguous forest factorization[END_REF]). Let ϕ : Σ * → S be a morphism to a finite monoid (S, •, 1 S ). There is an unambiguous rational

expression G = m k=1 F k • G ω k over Σ such that L(G) = Σ ω and F k • G + k are ε-free ϕ-good rational expressions for all 1 ≤ k ≤ m.
We will apply this theorem to the morphism Tr : Σ * → TrM defined in Section 3.6. We use the unambiguous expression G = of (A, B). For each state p ∈ P , we can construct a map C p G : s p G → RTE such that for each step x = (q, d, X, q ) ∈ s p G the following invariants hold:

(J 1 ) dom(C p G (x)) = L(G), (J 2 ) for each u ∈ L(G), [[C p G (x)]](u)
is the output produced by A when running step x on u p (i.e., running A on u p from q to q following direction d).

Proof. The proof is by structural induction on the rational expression. For each subexpression E of G we let Tr(E) = σ E = (r p E , b p E , s p E ) p∈P be the corresponding element of the transition monoid TrM of (A, B). We start with atomic regular expressions. Since G is ε-free and ∅-free, we do not need to consider E = ε or E = ∅. The construction is similar to the one given in Section 2.6. The interesting cases are concatenation and Kleene-plus.

atomic Assume that E = a ∈ Σ is an atomic subexpression. Notice that a p = (a, p) for all p ∈ P . Since the ω-2DMT A is deterministic and complete, for each state q ∈ Q we have

• either δ(q, (a, p)) = (q , γ, 1) and we let C p a ((q, →, {q}, q )) = C p a ((q, , {q}, q )) = a ? γ : ⊥,

• or δ(q, (a, p)) = (q , γ, -1) and we let C p a ((q, , {q}, q )) = C p a ((q, ← , {q}, q )) = a ? γ : ⊥.

Clearly, invariants (J 1 ) and (J 2 ) hold for all x ∈ s p E .

union Assume that

E = E 1 ∪ E 2 . Since E is good, we deduce that σ E = σ E1 = σ E2 . For each p ∈ P and x ∈ s p E we define C p E (x) = E 1 ? C p E1 (x) : C p E2 (x).
Since E is unambiguous we have L(E 1 ) ∩ L(E 2 ) = ∅. As in Section 2.6 we can prove easily that invariants (J 1 ) and (J 2 ) hold for all x ∈ s p E .

concatenation Assume that E = E 1 • E 2 is a concatenation. Since E is good, we deduce that σ E = σ E1 • σ E2 . Let p ∈ P and p 1 = r p E2 . We have

s p E = s p1 E1 • s p E2 . Let x ∈ s p E .
If x = (q, →, X, q ) then, by definition of the product in the transition monoid TrM, there is a unique sequence of steps x 1 = (q, →, X 1 , q 1 ), x 2 = (q 1 , , X 2 , q 2 ), x 3 = (q 2 , , X 3 , q 3 ), x 4 = (q 3 , , X 4 , q 4 ), . . . , x i = (q i-1 , , X i , q i ), x i+1 = (q i , →, X i+1 , q ) with i ≥ 1, x 1 , x 3 , . . . , x i ∈ s p1 E1 and x 2 , x 4 , . . . , x i+1 ∈ s p E2 and X = X 1 ∪ • • • ∪ X i+1 (see Figure 10). We define

C p E (x) = (C p1 E1 (x 1 ) C p E2 (x 2 )) (C p1 E1 (x 3 ) C p E2 (x 4 )) • • • (C p1 E1 (x i ) C p E2 (x i+1 )) .
Notice that when i = 1 we have

C p E (x) = C p1 E1 (x 1 ) C p E2 (x 2 ) with x 2 = (q 1 , →, X 2 , q ).
The concatenation L(E) = L(E 1 ) • L(E 2 ) is unambiguous. Therefore, for all y ∈ s p1 E1 and z ∈ s p E2 , using (J 1 ) for E 1 and E 2 , we obtain dom(C p1 E1 (y)

C p E2 (z)) = L(E).
We deduce that dom(C E (x)) = L(E) and (J 1 ) holds for E and x = (q, →, X, q ). Now, let u ∈ L(E) and let u = u 1 u 2 be its unique factorization with u 1 ∈ L(E 1 ) and u 2 ∈ L(E 2 ). We have u 1 u 2 p = u 1 p1 • u 2 p . Hence, the step x = (q, →, X, q ) performed by A on u p is actually the concatenation of In the concatenation E = E 1 • E 2 , a step x = (q, →, X, q ) ∈ s p E on some u 1 u 2 with u 1 ∈ E 1 and u 2 ∈ E 2 , is obtained by composing the following steps alternatively from s p 1 E 1 and s p E 2 for a unique state p 1 : x 1 = (q, →, X 1 , q 1 ), x 2 = (q 1 , , X 2 , q 2 ), x 3 = (q 2 , , X 3 , q 3 ), x 4 = (q 3 , , X 4 , q 4 ), x 5 = (q 4 , , X 5 , q 5 ), x 6 = (q 5 , →, X 6 , q ) with X = X 1 ∪ • • • ∪ X 6 .

steps x 1 on u 1 p1 , followed by x 2 on u 2 p , followed by x 3 on u 1 p1 , followed by x 4 on u 2 p , . . . , until x i+1 on u 2 p . Using (J 2 ) for E 1 and E 2 , we deduce that the output produced by A while making step x on u p is

[[C p1 E1 (x 1 )]](u 1 ) • [[C p E2 (x 2 )]](u 2 ) • • • [[C p1 E1 (x i )]](u 1 ) • [[C p E2 (x i+1 )]](u 2 ) = [[C p E (x)]](u)
Therefore, (J 2 ) holds for E and step x = (q, →, X, q ). The proof is obtained mutatis mutandis for the other cases x = (q, , X, q ) or x = (q, , X, q ) or x = (q, ←, X, q ).

Kleene-plus

Assume that E = F + . Since E is good, we deduce that σ E = σ F = σ = (r p , b p , s p ) p∈P is an idempotent of the transition monoid TrM.

Notice that for all p ∈ P , since σ is an idempotent, we have r r p = r p .

We first define C p E for states p ∈ P such that p = r p . Let x ∈ s p .

• If x = (q, , X, q ). Since F + is unambiguous, a word u ∈ L(F + ) admits a unique factorization u = u 1 u 2 • • • u n with n ≥ 1 and u i ∈ L(F ). Now, Tr(u i ) = σ for all 1 ≤ i ≤ n and since p = r p we deduce that u p = u 1 p u 2 p • • • u n p . Since x = (q, , X, q ) ∈ s p , the unique run ρ of A starting in state q on the left of u 1 p exits on the left in state q . Therefore, the unique run of A starting in state q on the left of u p only visits u 1 p and is actually ρ itself. Therefore, we set

C p E (x) = C p F (x 
) (F * ? ε : ⊥) and we can easily check that (J 1 -J 2 ) are satisfied.

• Similarly for x = (q, , X, q ) we set C p E (x) = (F * ? ε : ⊥) C p F (x).

• If x = (q, →, X, q ). Since σ is an idempotent, we have x ∈ s p • s p . We distinguish two cases depending on whether the step y ∈ s p starting in state q from the left goes to the right or goes back to the left.

First, if y = (q , →, X 2 , q 2 ) ∈ s p goes to the right. Since s p is an idempotent, following x in s p • s p is the same as following x in (the first) s p and then y in (the second) s p . Therefore, we must have q 2 = q and X 2 ⊆ X. In this case, we set C p E (x) = F ? C p F (x) :

C p F (x) (C p F (y)) .
Second, if y = (q , , X 2 , q 2 ) ∈ s p goes to the left. Since s p is an idempotent, there exists a unique sequence of steps in s p : x 1 = x, x 2 = y, x 3 = (q 2 , , X 3 , q 3 ), x 4 = (q 3 , , X 4 , q 4 ), . . . , x i = (q i-1 , In the Kleene-plus E = F + , a step x = (q, →, X, q ) ∈ s p E on some u = u 1 u 2 • • • un with u ∈ L(F ) is obtained by composing the following steps in s p F : x 1 = x, x 2 = (q , , X 2 , q 2 ), x 3 = (q 2 , , X 3 , q 3 ), x 4 = (q 3 , , X 4 , q 4 ), x 5 = (q 4 , , X 5 , q 5 ), x 6 = (q 5 , →, X 6 , q ) with X

= X 1 ∪ • • • ∪ X 6 .
, X i , q i ), x i+1 = (q i , →, X i+1 , q ) with i ≥ 3 (see Figure 11). We define

C p E (x) = C p F (x) (F * ? ε : ⊥) [F, C ] 2 C = (F ? ε : ⊥) C p F (x 2 ) (C p F (x 3 ) C p F (x 4 )) • • • (C p F (x i ) C p F (x i+1 ))
The proof of correctness, i.e., that (J 1 -J 2 ) are satisfied for E, is as in Section 2.6.

• If x = (q, ←, X, q ), the proof is obtained mutatis mutandis, using the backward unambiguous (2-chained) Kleene-plus

C ← - and [K, C] ← - 2 .
Now, we consider p ∈ P with r p = p. We let p = r p . We have already noticed that since σ is idempotent we have r p = p . Consider a word u ∈ L(F + ). Since F + is unambiguous, u admits a unique factorization

u = u 1 • • • u n-1 u n with n ≥ 1 and u i ∈ L(F ). Now, Tr(u i ) = σ for all 1 ≤ i ≤ n. Using r p = p and r p = p we deduce that u p = u 1 p • • • u n-1 p u n p .
So when n > 1, the expression C p E that we need to compute is like the concatenation of C p E on the first n -1 factors with C p F on the last factor.

Since r p = p we have already seen how to compute C p E . We also know how to handle concatenation. So it should be no surprise that we can compute C p E when p = r p . We define now formally C p E (x) for x ∈ s p .

• If x = (q, , X, q ) ∈ s p . There are two cases depending on whether the step y ∈ s p starting in state q from the left goes back to the left or goes to the right.

If it goes back to the left, then y = (q, , X, q ) = x since s p = s p • s p Figure 12: (Left) Given a look-ahead p ∈ P , a step (q, →, q ) of u for some u with Tr(u) = (r p , b p , s p ) p∈P , is obtained by composing the following steps alternatively from s p and s p :

x 1 = (q, →, q 1 ), x 2 = (q 1 , , X 2 , q 2 ), x 3 = (q 2 , , q 3 ), x 4 = (q 3 , , X 4 , q 4 ), x 5 = (q 4 , , q 5 ), x 6 = (q 5 , →, X 6 , q ). (Right) Similarly, a step (q, , q ) of u is obtained by composing the following steps alternatively from s p and s p : x 1 = (q, ←, X 1 , q 1 ), x 2 = (q 1 , , q 2 ), x 3 = (q 2 , , X 3 , q 3 ), x 4 = (q 3 , , q 4 ), x 5 = (q 4 , →, X 5 , q ).

(recall that σ is idempotent) and we define

C p E (x) = F ? C p F (x) : (C p F (x) (F + ? ε : ⊥))
. If it goes to the right, then y = (q, →, X 1 , q 1 ) and there exists a unique sequence of steps: x 1 = y, x 2 = (q 1 , , X 2 , q 2 ), x 3 = (q 2 , , X 3 , q 3 ), x 4 = (q 3 , , X 4 , q 4 ), . . . ,

x i = (q i-1 , ←, X i , q ) with i ≥ 3, x 1 , x 3 , . . . , x i ∈ s p and x 2 , . . . , x i-1 ∈ s p . Notice that X = X 1 ∪ • • • ∪ X i . We define C p E (x) = F ? C p F (x) : C where C = (C p E (x 1 ) C p F (x 2 )) • • • (C p E (x i-2 ) C p F (x i-1 )) C p E (x i ) (F ? ε : ⊥) .
We can check that (J 1 -J 2 ) are satisfied for (E, p, x).

• If x = (q, ←, X, q ) ∈ s p . There are two cases depending on whether the step y ∈ s p starting in state q from the right goes to the left or goes back to the right.

If it goes to the left, then y = (q , ←, X , q ) with X ⊆ X and we define

C p E (x) = F ? C p F (x) : (C p E (y) ← -C p F (x)
) . If it goes back to the right, then y = (q , , X 2 , q 2 ) and there exists a unique sequence of steps: x 1 = x, x 2 = y, x 3 = (q 2 , , X 3 , q 3 ), x 4 = (q 3 , , X 4 , q 4 ), . . . , x i = (q i-1 , , X i , q i ) x i+1 = (q i , ←, X i+1 , q ) with i ≥ 3, x 1 , x 3 , . . . , x i ∈ s p and x 2 , . . . , x i+1 ∈ s p . Notice that

X 2 ∪ • • • ∪ X i+1 ⊆ X. We define C p E (x) = F ? C p F (x) : C where C = (C p E (x 2 ) ← -C p F (x 1 )) • • • (C p E (x i-1 ) ← -C p F (x i-2 )) (C p E (x i+1 ) ← -C p F (x i ))
. We can check that (J 1 -J 2 ) are satisfied for (E, p, x).

• The cases x = (q, →, X, q ) ∈ s p and x = (q, , X, q ) ∈ s p can be handled similarly.

We now define RTEs corresponding to the left part of the computation of the ω-2DMT la A, i.e., on some input u consisting of the left end-marker and some finite word u ∈ Σ + . As before, the look-ahead is determined by the state of the BDBA B.

Lemma 30. Let F be an ε-free Tr-good rational expression. For each state p ∈ P and q ∈ Q, there is a unique state q ∈ Q and RTEs C p F ((q, →, q )) (resp.

C p F ((q, , q ))) such that the following invariants hold:

(K 1 ) dom(C p F ((q, →, q ))) = L(F ) (resp. dom(C p F ((q, , q ))) = L(F )), (K 2 ) for each u ∈ L(F ), [[C p F ((q, →, q ))]](u) (resp. [[C p F ((q, , q ))]](u))
is the output produced by A on u p when starting on the left (resp. right) in state q until it exists on the right in state q .

Proof. Let σ = (r p , b p , s p ) p∈P = Tr(F ). We fix some state p ∈ P . For all words u ∈ L(F ), we have u p = ( , r p ) u p . Let s p be the set of steps (q, →, q ), (q, , q ) such that δ(q, ( , r p )) = (q , γ p q , +1) in A.

For each q ∈ Q, there is a unique sequence of steps x 1 = (q, →, q 1 ), x 2 = (q 1 , , X 2 , q 2 ), x 3 = (q 2 , , q 3 ), x 4 = (q 3 , , X 4 , q 4 ), . . . , x i = (q i-1 , , q i ), x i+1 = (q i , →, X i+1 , q ) with i ≥ 1, x 1 , x 3 , . . . , x i ∈ s p and x 2 , x 4 , . . . , x i+1 ∈ s p (see Figure 12 left). We define

C p F ((q, →, q )) = γ p q C p F (x 2 ) γ p q2 C p F (x 4 ) • • • γ p qi-1 C p F (x i+1 ) .
Using Lemma 29, we can show that L(F ) = dom(C p F ((q, →, q ))) and also that for each u ∈ L(F ), [[C p F ((q, →, q ))]](u) is the output produced by A on u p when starting on the left in state q until it exists on the right in state q .

For each q ∈ Q, there is a unique sequence of steps x 1 = (q, ←, X 1 , q 1 ), x 2 = (q 1 , , q 2 ), x 3 = (q 2 , , X 3 , q 3 ), x 4 = (q 3 , , q 4 ), . . . , x i = (q i-1 , , q i ), x i+1 = (q i , →, X i+1 , q ) with i ≥ 2, x 2 , x 4 , . . . , x i ∈ s p and x 1 , x 3 , . . . , x i+1 ∈ s p (see Figure 12 right). We define C p F ((q, , q )) = C p F (x 1 ) γ p Using Lemma 29, we can show that L(F ) = dom(C p F ((q, , q ))) and also that for each u ∈ L(F ), [[C p F ((q, , q ))]](u) is the output produced by A on u p when starting on the right in state q until it exists on the right in state q .

Lemma 31. Let F • G ω be an unambiguous rational expression such that F and the output of A when running step x on w. For instance, if E = a and x = (q 5 , ←, q 5 ) the output is b so we set C a (q 5 , ←, q 5 ) = (a ? b : ⊥). The ifthen-else ensures that the domain is a. Similarly, we get the RTE associated with all atomic expressions and steps. For instance, C b (q 1 , →, q 2 ) = (b ? ε :

G
⊥) = C b (q 3 , , q 4 ). For u, v ∈ Σ * , we introduce the macro u/v = u ? v : ⊥.

We have dom(u/v) = {u} and [[u/v]](u) = v.

We turn to the good expression a + . If we start on the right of a word w ∈ a + from state q 5 then we read the word from right to left using always the step (q 5 , ←, q 5 ). Therefore, we have C a + (q 5 , ←, q 5 ) = (C a (q 5 , ←, q 5 ))

← - = (a/b) ← -
. Similarly, C a + (q 4 , ←, q 4 ) = (a/a) ← -, C a + (q 1 , →, q 1 ) = (a/ε) = C a + (q 6 , →, q 6 ). Now if we start on the left of a word w ∈ a + from state q 2 then we first take the step (q 2 , →, q 3 ) and then we iterate the step (q 3 , →, q 3 ). Therefore, we have C a + (q 2 , →, q 3 ) = a ? C a (q 2 , →, q 3 ) :

(C a (q 2 , →, q 3 ) (C a (q 3 , →, q 3 )) ) = a ? (a/ε) : (a/ε) (a/ε) , which is equivalent to the RTE (a/ε) .

We consider now E = ba + ba + and the step x = (q 0 , →, q 3 ). We have (see C E (x) = C b (q 0 , →, q 1 ) C a + (q 1 , →, q 1 ) C b (q 1 , →, q 2 ) C a + (q 2 , →, q 3 ) = (b/ε) (a/ε) (b/ε) (a/ε) ≈ (ba + ba + ? ε : ⊥) .

More interesting is the step y = (q 4 , , q 1 ) since on a word w ∈ E, the run which starts on the right in state q 4 goes all the way to the left until it reads the first b in state q 5 and then moves to the right until it exits in with atomic expressions and steps which are going to be used in constructing C E3 (q 0 , →, q 2 ). They are C b (q 3 , , q 4 ) = C b (q 6 , →, q 1 ) = C b (q 1 , →, q 2 ) = C b (q 5 , →, q 6 ) = (b/ε) and C a + (q 2 , →, q 3 ) = C a + (q 1 , →, q 1 ) = (a/ε) , C a + (q 4 , ←, q 4 ) = (a/a) ← -, C a + (q 5 , ←, q 5 ) = (a/b) ← -

. We compute RTE C F (x) for the relevant steps x in the monoid element X = Tr(F ). F is an unambiguous catenation of E 2 = ba + ba + b with a + and from Figure A.13, it can be seen that:

(a) For y 1 = (q 0 , →, q 3 ) C F (y 1 ) = C E2 (q 0 , →, q 2 ) C a + (q 2 , →, where C E2 (q 0 , →, q 2 ) has been computed in Section 1.

For example, [[C F (y 1 )]](ba m1 ba m2 ba m3 ) = a m2 b m1 .

(b) Continuing with the computation for (ba + ) 3 as in Figure A.14, for y 2 = (q 3 , , q 4 ), we take the Cauchy product of C b (q 3 , , q 4 ) with (a + ba + ba + ? ε : ⊥).

C F (y 2 ) = C b (q 3 , , q 4 ) (a + ba + ba + ? ε : ⊥) ≈ ((ba + ) 3 ? ε : ⊥)

[[C F (y 2 )]](ba m1 ba m2 ba m3 ) = ε.

(c) For y 3 = (q 4 , , q 1 ), we have where C ba + ba + (y 3 ) is already computed in Section 1.

As an example, [[C F (y 3 )]](ba m1 ba m2 ba m3 ) = a m3 b m2 .

(d) For y 4 = (q 1 , , q 5 ), it is similar to the C E (y) computed for C E2 in Section 1. Here we have C F (y 4 ) = C ba + b (y 4 ) (a + ba + ? ε : ⊥) = (C b (q 1 , →, q 2 ) C a + (q 2 , →, q 3 ) (b/ε))

(C b (q 4 , ←, q 5 ) ← -C a + (q 4 , ←, q 4 ) ← -C b (q 3 , , q 4 )) (e) For y 5 = (q 5 , , q 6 ), in the computation of C F (y 5 ) we need C ba + (y 5 ). Thus, we compute C ba + (y 5 ) below whose computation is similar to C E (y) computed above.

C ba + (y 5 ) = ((b/ε) ← -C a + (q 5 , ←, q 5 )) (C b (q 5 , →, q 6 ) C a + (q 6 , →, q 6 )) (f) For y 6 = (q 6 , →, q 3 ), the computation of C F (y 6 ) is similar to that of C ba + ba + (q 0 , →, q 2 ) computed above. We need C ba + ba + (q 6 , →, q 3 ) and C ba + ba + b (q 6 , →, q 2 ). We see the computation of these below.

C ba + ba + (q 6 , →, q 3 ) = C b (q 6 , →, q 1 ) C a + (q 1 , →, q 1 ) C b (q 1 , →, q 2 ) C a + (q 2 , →, q 3 ) = (b/ε) (a/ε) (b/ε) (a/ε) ≈ (ba + ba + ? ε : ⊥)

C ba + ba + b (q 6 , →, q 2 ) = (C ba + ba + (q 6 , →, q 3 ) C b (q 3 , , q 4 ))

(C ba + ba + (q 4 , , q 1 ) C b (q 1 , →, q 2 )) Note that C ba + ba + (q 4 , , q 1 ) has been computed in Section 1. Now we concatenate with C a + (q 2 , →, q 3 ) needed in the computation.

≈
C F (y 6 ) = C ba + ba + b (q 6 , →, q 2 ) C a + (q 2 , →, Now we are in a position to compute RTE C F + (q 0 , →, q 3 ). As shown in figureA.14, it is a concatenation of step y 1 and then steps y 2 , y 3 , y 4 , y 5 and y 6 repetitively. Consecutive pairs of (ba + ) 3 are needed to compute the RTE and thanks to the 2-chained Kleene plus, we can define the RTE for the same. Finally, we compute RTE for y = (q 0 , →, q 2 ) for the expression E 3 = [(ba + ) 3 ] + b by concatenating b with the above RTE.

C E3 (y) = (C F + (q 0 , →, q 3 ) C b (q 3 , , q 4 )) (C F + (q 4 , , q 1 ) C b (q 1 , →, q 2 ))

  can be unambiguously decomposed asw = u 1 u 2 • • • with each u i ∈ dom(f ) ∩ Σ * .Finally, the unambiguous two-chained ω-iteration produces[K, f ] 2ω (w) = f (u 1 u 2 )f (u 2 u 3 ) • • • if w ∈ Σ ω can be unambiguously decomposed as w = u 1 u 2 • • • with u i ∈ K for all i ≥ 1, where K ⊆ Σ * is regular.Example 1. Consider the RTE C = C 4 C ω 2 with C 1 = a ? a : (b ? b : (# ? # : ⊥)) C 2 = a ? a : (b ? b : ⊥) C 3 = a ? a : (b ? b : (# ? ε : ⊥)) C 4 = ((a + b) * #) ? (C 3 ← -C 1 ) : ⊥ Then dom(C 1 ) = dom(C 3 ) = (a + b + #) and dom(C 2 ) = (a + b). Next, we see that dom(C 4 ) = (a + b) * # and, for u ∈ (a + b) * , [[C 4 ]](u#) = u R u# where u R denotes the reverse of u. This gives dom(C) = ((a + b) * #) + (a + b) ω with

← - 2

 2 where d ∈ D ranges over output values, and K ⊆ Σ * ranges over regular languages of finite words. The semantics of an RTE C is a function [[C]] : Σ * → D defined inductively following the syntax of the expression, starting from constant functions. Since ⊥ stands for undefined, we define the domain of a function

  we can construct a 2DFT A such that [[A]] = [[C]]. We do this by structural induction on RTEs, starting with constant functions, and then later showing that 2DFTs are closed under all the combinators used in RTEs. Constant functions: We start with the constant function d ∈ D for which it is easy to construct a 2DFT A such that [[d]] = [[A]]. For d = ⊥, we take A such that dom(A) = ∅ (for instance we use a single state and an empty transition function). Assume now that d ∈ Γ * . The 2DFT scans the word up to the right end marker, outputs d and stops. Formally, we let A = ({q}, Σ, Γ, δ, q, {q})

  output of A coincides with [[M f ]] iff the input is in K, and otherwise coincides with [[M g ]].

  1. From C f , C g and C we construct a 1NUFT D such that dom(D) = dom(f g) and on an input word w = u•v with u ∈ dom(f ) and v ∈ dom(g) it produces the output u#v where # / ∈ Σ is a new symbol. On an input word w ∈ Σ * , the transducer D runs a copy of C. Simultaneously, D runs a copy of C f on some prefix u of w, copying each input letter to the output. Whenever C f is in a final state after reading u, the transducer D may non-deterministically decide to stop running C f , to output #, and to start running C g on the corresponding suffix v of w (w = u • v) while copying again each input letter to the output. The transducer D accepts if C accepts w and C g accepts v. Then, we have u

  only non-deterministic choice in an accepting run of D is unambiguous since a word w ∈ L(C) = dom(f g) has a unique factorization w = u • v with u ∈ dom(f ) and v ∈ dom(g).

  and runs M f on each u i from left to right, i.e., starting with u 1 and ending with u n . The transducer T interprets # as (resp. ) when it is reached from the right (resp. left). The simulation by T reading # of a transition of M f moving to the right of is as in case (3), except that T goes to the initial state of M f . The 2NUFT A is then obtained as the composition of D with the 2DFT T . Finally, a 2DFT A equivalent to the 2NUFT A is constructed. Likewise, B is obtained using the composition of D with a 2DFT T that runs M f on each factor u i from right to left.

  such that [[A]] = [[C]]. We use the fact that any w ∈ Σ * in the domain of A can be factorized unambiguously into a good rational expression. The unambiguous factorization of words in Σ * guides the construction of the combinator expression for [[A]](w) over Γ in an inductive way.

Figure 3 :

 3 Figure 3: Illustrations of subset of Tr(abb)

Figure 4 :

 4 Figure4: The first and second pictures are illustrations of subsets of Tr(w 1 ) and Tr(w 2 ) respectively. (p, →, q 1 ), (q 2 , , q 3 ), (q 4 , , q 5 ) ∈ Tr(w 1 ) while (q 1 , , q 2 ), (q 3 , , q 4 ), (q 5 , →, q) ∈ Tr(w 2 ). The third picture shows that (p, →, q) ∈ Tr(w 1 • w 2 ): (p, →, q) consists of "steps" (p, → , q 1 ), (q 1 , , q 2 ), (q 2 , , q 3 ), (q 3 , , q 4 ), (q 4 , , q 5 ), (q 5 , →, q) alternately from Tr(w 1 ) and Tr(w 2 ).

  Either x ∈ s E1 and we let C E (x) = C E1 (x) (E 2 ? ε : ⊥). Since dom(E 2 ? ε : ⊥) = L(E 2 ), we deduce as above that dom(C E (x)) = L(E). Moreover, let u ∈ L(E) and u = u 1 u 2 be its unique factorization with u 1 ∈ L(E 1 ) and u 2 ∈ L(E 2 ). The step x = (p, , q) performed by A on u reduces to the step x on u 1 . Using (I 2 ) for E 1 , we deduce that the output produced by A while making step x on u is [[C E1 (x)]](u 1 ) = [[C E (x)]](u).

Figure 5 :

 5 Figure 5: Letw = w 1 • w 2 ∈ L(E) with w 1 ∈ L(E 1 ), w 2 ∈ L(E 2 ).We have (p, →, q 1 ), (q 2 , , q 3 ), (q 4 , ←, q) ∈ Tr(w 1 ) and (q 1 , , q 2 ), (q 3 , , q 4 ) ∈ Tr(w 2 ). Then (p, , q) is composed of "steps" (p, →, q 1 ), (q 1 , , q 2 ), (q 2 , , q 3 ), (q 3 , , q 4 ), (q 4 , ←, q) alternately from Tr(w 1 ) and Tr(w 2 ).

Figure

  Figure6: Let w = w 1 • w 2 ∈ L(E) with w 1 ∈ L(E 1 ), w 2 ∈ L(E 2 ). We have (p, ←, q 1 ), (q 2 , , q 3 ) ∈ Tr(w 2 ) and (q 1 , , q 2 ), (q 3 , ←, q) ∈ Tr(w 1 ). Then (p, ←, q) ∈ Tr(w) is composed of "steps" (p, ←, q 1 ), (q 1 , , q 2 ), (q 2 , , q 3 ), (q 3 , ←, q) alternately from Tr(w 2 ) and Tr(w 1 ).

Figure 7 :

 7 Figure 7: In the Kleene-plusE = F + , a step x = (p, →, q) ∈ s E on some u = u 1 u 2 • • • un with u ∈ L(F )is obtained by composing the following steps in s F : x 1 = x, x 2 = (q, , p 2 ), x 3 = (p 2 , , p 3 ), x 4 = (p 3 , , p 4 ), x 5 = (p 4 , , p 5 ), x 6 = (p 5 , →, q).

  The set of states visited by ρ infinitely often is denoted inf(ρ) ⊆ Q. The word w is accepted by A, i.e., w ∈ dom(A) if ρ reads the whole word w and inf(ρ) ∈ F is a Muller set. In this case, we let [[A]](w) = γ 1 γ 2 γ 3 γ 4 • • • be the output produced by ρ.

  2. The semantics [[E]] : Σ* → Γ * ∪ {⊥} of the finitary combinator expressions E ∈ RTE is unchanged (see Section 2.2). The semantics of an ω-RTE C is a function [[C]] : Σ ω → D.Given a regular language K ⊆ Σ + , an ω-regular language L ⊆ Σ ω , and functions f : Σ * → Γ * ∪ {⊥}, g, h : Σ ω → D, we define If then else. We have dom(L ? g : h) = (dom(g) ∩ L) ∪ (dom(h) \ L).

Example 20 .

 20 We now give the ω-RTE for the transformation given in Example 15. It was also sketched in Example 1. Let E 1 = a ? a : (b ? b : (# ? # : ⊥)) E 2 = a ? a : (b ? b : ⊥) E 3 = a ? a : (b ? b : (# ? ε : ⊥)) .

  ω and [[C]] = [[A ]] where A is the transducer of Figure 1. The main theorem connecting ω-2DMT la and ω-RTE is as follows. Theorem 21. ω-2DMT la and ω-RTEs define the same class of functions. More precisely, 1. given an ω-RTE C, we can construct an ω-2DMT la A such that [[A]] = [[C]].

First we construct an

  ω-1DMT la D such that dom(D) = dom(f g) and on an input word w = uv with u ∈ dom(f ) and v ∈ dom(g), it produces the output u#v where # / ∈ Σ is a new symbol. From its initial state while reading , D uses the look-ahead to check whether the input word w is in dom(f g) or not. If yes, it moves right and enters the initial state of D f . If not, it goes to a sink state and rejects. While running D f , D copies each input letter to output. Upon reaching a final state of D f , we use the look-ahead dom(g) to see whether we should continue running D f or we should switch to D g . Formally, if

u

  ∈ Σ + with respect to the pair (A, B): we let Tr(u) = (r p , b p , s p ) p∈P where for each p ∈ P , s p = Tr( u p ) ∈ TrM is the abstraction of u p with respect to A, r p ∈ P is the unique state of B such that r p u ← -p, b p = 1 if the word u p contains a final state of B and b p = 0 otherwise. We define the transition monoid of (A, B) as the set TrM = {Tr(u) | u ∈ Σ + } ∪ {1 TrM } where 1 TrM is the unit. The product of σ 1 = (r p 1 , b p 1 , s p 1 ) p∈P and σ = (r p , b p , s p ) p∈P is defined to be σ 1 •σ = (r r p 1 , b r p 1 ∨b p , s r p 1 •s p ) p∈P . We can check that this product is associative, so that (TrM, •, 1 TrM ) is a monoid. Moreover, let u, v ∈ Σ + be such that Tr(u) = σ 1 and Tr(v) = σ. For each p ∈ P , we can check that uv p = u r p • v p . We deduce easily that Tr(uv) = σ 1 • σ = Tr(u) • Tr(v).

m k=1 F

 k=1 k • G ω k as a guide when constructing ω-RTEs corresponding to the ω-2DMT la A. The following lemma is similar to Lemma 14. It shows how to construct the RTEs associated with steps of elements of the transition monoid TrM. Lemma 29. Let G be an ε-free Tr-good rational expression and let Tr(G) = σ G = (r p G , b p G , s p G ) p∈P be the corresponding element of the transition monoid TrM

Figure 10 :

 10 Figure 10: In the concatenationE = E 1 • E 2 , a step x = (q, →, X, q ) ∈ s pE on some u 1 u 2 with u 1 ∈ E 1 and u 2 ∈ E 2 , is obtained by composing the following steps alternatively from s p 1

Figure 11 :

 11 Figure 11: In the Kleene-plusE = F + , a step x = (q, →, X, q ) ∈ s p E on some u = u 1 u 2 • • • un with u ∈ L(F )is obtained by composing the following steps in s p F : x 1 = x, x 2 = (q , , X 2 , q 2 ), x 3 = (q 2 , , X 3 , q 3 ), x 4 = (q 3 , , X 4 , q 4 ), x 5 = (q 4 , , X 5 , q 5 ), x 6 = (q 5 , →, X 6 , q ) with X = X 1 ∪ • • • ∪ X 6 .

  are ε-free Tr-good rational expressions and Tr(G) = σ = (r p , b p , s p ) p∈P is an idempotent in the transition monoid TrM of (A, B). We can construct an ω-RTEC F G ω such that dom(C F G ω ) = L(F G ω ) ∩ dom(A) and for each w ∈ dom(C F G ω ), [[C F G ω ]](w) = [[A]](w).Proof. We first show that there exists one and only one state p ∈ P such that r p = p and b p = 1. For the existence, consider a wordw = u 1 u 2 u 3 • • • ∈ L(F G ω ) with u 1 ∈ L(F ) and u n ∈ L(G) for all n ≥ 2. By definition of BDBA there is a unique final run of B over w: p 0 , u 1 , p 1 , u 2 , p 2 , . . .. Let us show first that p n = p 1 for all n ≥ 1. Since σ is idempotent, we have Tr(u 2 • • • u n+1 ) = Tr(u n+1 ). Since p 1 u2•••un+1← ------p n+1 and p n un+1 ← ---p n+1 , we deduce that p 1 = r pn+1 = p n . This implies p 1 = r p2 = r p1 . Let p = p 1 so that p = r p and the final run of B on w is p 0 , u 1 , p, u 2 , p, . . .. Now, for all n ≥ 2 we have Tr(u n ) = σ and we deduce that p un ← --p visits a final state from Fin iff b p = 1. Since the run is accepting, we deduce that indeed b p = 1. To prove the unicity, let p ∈ P with p = r p and b p = 1. Let v ∈ L(G). We have p v ← -p and this subrun visits a final state from Fin. Therefore, p, v, p, v, p, v, p, . . . is a final run of B on v ω . Since B is BDBA, there is a unique final run of B on v ω , which proves the unicity of p. "good" regular expressions E 1 = ba + b, E 2 = ba + ba + b, E 3 = [(ba + ) 3 ] + b, E 4 = [(ba + ) 3 ] + ba + b and E 5 = [(ba + ) 3 ] + ba + ba + b.

Figure A. 13 :

 13 Figure A.13: Run of A on an input word in (ba + ) + b.

5 .

 5 We define by induction, for each "good" expression E and "step" x = (p, d, q) in the monoid element X = Tr(E) associated with E, an RTE C E (x) whose domain is E and, given a word w ∈ E, it computes [[C E (x)]](w)

Figure A. 13 )

 13 

CF

  (y 3 ) = (ba + ? ε : ⊥) ← -C ba + ba + (y 3 ) = (ba + ? ε : ⊥) ← -(b/ε) ← -(a/b) ← -← -(b/ε) ← -(a/a) ← -≈ (ba + b ? ε : ⊥) (a/b) ← -← -(b/ε) ← -(a/a)← -

  (a + ba + ? ε : ⊥) = (((b/ε) (a/ε) (b/ε)) ((b/ε) ← -(a/a) ← -← -(b/ε))) (a + ba + ? ε : ⊥) ≈ (b/ε) ← -(a/a) ← -← -(b/ε) (a + ba + ? ε : ⊥)As an example, [[C F (y 4 )]](ba m1 ba m2 ba m3 ) = a m1 .

=

  b/ε) (a/ε) ) ≈ (b/ε) ← -(a/b) ← -We can compute C F (y 5 ) asC F (y 5 ) = (ba + ba + ? ε : ⊥) C ba + (y 5 ) ≈ (ba + ba + b ? ε : ⊥) ← -(a/b) ← -As an example, [[C F (y 5 )]](ba m1 ba m2 ba m3 ) = b m3 .

  (ba + ba + b ? ε : ⊥) (((b/ε) ← -(a/b) ← -← -(b/ε) ← -(a/a)

  q 3 ) = (b/ε) ← -(a/b) ← -← -(b/ε) ← -(a/a) ← -(b/ε) (a/ε ) ≈ (b/ε) ← -(a/b) ← -← -(b/ε) ← -(a/a) ← -(ba + ? ε : ⊥)As an example, [[C F (y 6 )]](ba m1 ba m2 ba m3 ) = a m2 b m1 .

C

  F + (y 1 ) = (C F (y 1 ) (F * ? ε : ⊥)) [F, C ] 2 C = ((F ? ε : ⊥) C F (y 2 )) (C F (y 3 ) C F (y 4 )) (C F (y 5 ) C F (y 6 ))As an example, [[C F + (y 1 )]](ba m1 ba m2 ba m3 ba m4 ba m5 ba m6 ) = a m2 b m1 a m3 b m2 a m4 b m3 a m5 b m4 .

  . A two-way transducer is unambiguous if each string u ∈ Σ * has at most one accepting run. Clearly, 2NUFTs are functional. A deterministic two-way transducer (2DFT) is one having a single initial state and where, from each state, on each symbol a ∈ Σ , at most one transition is enabled. In that case, the transition relation is a partial function

  where reset is a new state. While in the reset

	state, it moves all the way back to and it starts running M g by executing
	reset	/γ ,+1

1 This work has been partially supported by IRL RELAX

We apply Lemma 30. We denote by s F the set of triples (q, d, q ) ∈ Q × {→ , } × Q such that the RTE C p F (q, d, q ) is defined.

Starting from the initial state q 0 of A, there exists a unique sequence of steps x 1 = (q 0 , →, q 1 ), x 2 = (q 1 , , X 2 , q 2 ), x 3 = (q 2 , , q 3 ), x 4 = (q 3 , , X 4 , q 4 ), . . . , x i = (q i-1 , , q i ), x i+1 = (q i , →, X i+1 , q) with i ≥ 1, x 1 , x 3 , . . . , x i ∈ s F and x 2 , x 4 , . . . , x i+1 ∈ s p . We define

We have dom(C 1 ) = F G and u 1 u 2 p = u 1 p u 2 p for all u 1 ∈ F and u 2 ∈ G.

Moreover, [[C 1 ]](u 1 u 2 ) is the output produced by A on u 1 u 2 p when starting on the left in the initial state q 0 until it exists on the right in state q. Now, C 2 is an ω-RTE with dom(C 2 ) = F G ω and for all w = u 1 u 2 u 3 . . . ∈ F G ω with u 1 ∈ F and u n ∈ G for all n > 1, we have

Now, we distinguish two cases. First, assume that there is a step x = (q, →, X, q ) ∈ s p . Since σ is idempotent, so is s p , and since x i+1 = (q i , → , X i+1 , q) ∈ s p we deduce that q = q. Therefore, the unique run of A on

Hence, the set of states visited infinitely often along this run is X and the run is accepting iff

We have dom(C F G ω ) = F G ω and for all w = u 1 u 2 u 3 . . . ∈ F G ω with u 1 ∈ F and u n ∈ G for all n > 1, we have

The second case is when the unique step x 1 = (q, , X 1 , q 1 ) in s p which starts from the left in state q exits on the left. Since s p is idempotent and x i+1 = (q i , → , X i+1 , q) ∈ s p , by definition of the product s p • s p , there is a unique sequence of steps x 2 = (q 1 , , X 2 , q 2 ), x 3 = (q 2 , , X 3 , q 3 ), . . . , x j = (q j-1 , , X j , q j ), x j+1 = (q j , →, X j+1 , q) in s p with j ≥ 2. Therefore, for all w = u 1 u 2 u 3 . . . ∈ F G ω with u 1 ∈ F and u n ∈ G for all n > 1, the unique run of

Using (J 2 ), we can check that this is the output produced by A when running

We are now ready to prove that ω-2DMT la are no more expressive than ω-RTEs.

Proof of Theorem 21 (2). We use the notations of the previous sections, in particular for the ω-2DMT la A, the BDBA B. We apply Theorem 28 to the canonical morphism Tr from Σ * to the transition monoid TrM of (A, B). We obtain an

k be the ω-RTE given by Lemma 31. We define the final ω-RTE as

From Lemma 31, we can easily check that dom(C) = dom(A) and

Conclusion

The main contribution of the paper is to give a characterisation of regular string transductions using some combinators, giving rise to regular transducer expressions (RTE). Our proof uniformly works well for finite and infinite string , where d is a direction { , , →, ←}. Given a word w ∈ Σ * , a triple (p, , q) ∈ Tr(w) iff when starting in state p on the left most symbol of w, the run of A leaves w on the left in state q. The other directions (start at the rightmost symbol of w in state p and leave w on the right in state q), ← and → are similar. In general, we have w ∈ dom(A) iff on input w , starting on in the initial state of A, the run exits on the right of in some final state of A. With the automaton A of Figure 2 we have w ∈ dom(A) iff (q 0 , →, q 2 ) ∈ Tr(w).

2. For each X ∈ TrM such that (q 0 , →, q 2 ) ∈ X, we find an RTE C X whose domain is Tr -1 (X) and such that

The RTE corresponding to [[A]] is the disjoint union of all these RTEs and is written using the if-then-else construct iterating over for all such elements X.

For instance, if the monoid elements containing (q 0 , →, q 2 ) are X 1 , X 2 , X 3

where ⊥ stands for a nowhere defined function, i.e., dom(⊥) = ∅.

3. Consider the language L = (ba + ) + b ⊆ dom(A). Notice that the regular expression (ba + ) + b is not "good". For instance, condition (ii) is violated since Tr(bab) = Tr(babab). Indeed, we can see in Figure A.13 that if we start on the right of bab in state q 3 then we exit on the left in state q 5 : (q 3 , ←, q 5 ) ∈ Tr(bab). On the other hand, if we start on the right of babab in state q 3 then we exit on the right in state q 2 : (q 3 , , q 2 ) ∈ Tr(babab).

Also, (q 5 , →, q 1 ) ∈ Tr(bab) while (q 5 , →, q 2 ) ∈ Tr(babab). It can be seen that Tr(a) 2 is an idempotent, hence Tr(a + ) = Tr(a). We deduce also (ii) of "good" rational expressions.

4. While ba + b is good since Tr(a) is an idempotent, (ba + ) + ba + b is not good, the reason being that Tr(ba + ) is not an idempotent. We can check that Tr(ba + ba + ) 5 is still not idempotent, while Tr((ba + ) i ) = Tr((ba + ) 3 ) for all i ≥ 3, (see Figure A.13: we only need to argue for (q 0 , →, q 3 ), (q 5 , → , q 3 ) and (q 6 , →, q 3 ) in Tr((ba) i ), i ≥ 3, all other entries trivially carry over). In particular, Tr((ba + ) 3 ) is an idempotent 6 . Thus, to compute the RTE for L = (ba + ) + b, we consider the RTEs corresponding to the 2 Tr(a) = {(q 1 , →, q 1 ), (q 1 , , q 1 ), (q 2 , →, q 3 ), (q 2 , , q 3 ), (q 3 , →, q 3 ), (q 3 , , q 3 ), (q 4 , ←, q 4 ), (q 4 , , q 4 ), (q 5 , ←, q 5 ), (q 5 , , q 5 ), (q 6 , →, q 6 ), (q 6 , , q 6 )} 3 Tr(ba + b) = {(q 0 , →, q 2 ), (q 0 , , q 1 ), (q 1 , , q 5 ), (q 1 , , q 2 ), (q 2 , , q 4 ), (q 2 , ←, q 5 ), (q 3 , , q 4 ), (q 3 , ←, q 5 ), (q 4 , , q 5 ), (q 4 , , q 1 ), (q 5 , →, q 1 ), (q 5 , , q 6 ), (q 6 , →, q 2 ), (q 6 , , q 1 )} 4 Tr(ba + ba + b) = {(q 0 , →, q 2 ), (q 0 , , q 1 ), (q 1 , , q 5 ), (q 1 , , q 2 ), (q 2 , , q 4 ), (q 2 , , q 2 ), (q 3 , , q 4 ), (q 3 , , q 2 ), (q 4 , , q 5 ), (q 4 , , q 1 ), (q 5 , →, q 2 ), (q 5 , , q 6 ), (q 6 , →, q 2 ), (q 6 , , q 1 )} 5 Tr(ba + ba + ) = {(q 0 , →, q 3 ), (q 1 , , q 5 ), (q 1 , , q 1 ), (q 2 , , q 4 ), (q 2 , , q 3 ), (q 3 , , q 4 ), (q 3 , , q 3 ), (q 4 , , q 5 ), (q 4 , , q 1 ), (q 5 , →, q 1 ), (q 5 , , q 6 ), (q 6 , →, q 3 ), (q 6 , , q 6 )} 6 Tr((ba + ) 3 ) = {(q 0 , →, q 3 ), (q 1 , , q 5 ), (q 1 , , q 1 ), (q 2 , , q 4 ), (q 2 , , q 3 ), (q 3 , , q 4 ), (q 3 , , q 3 ), (q 4 , , q 5 ), (q 4 , , q 1 ), (q 5 , →, q 3 ), (q 5 , , q 6 ), (q 6 , →, q 3 ), (q 6 , , q 6 )} state q 1 (see Figure A.13). Therefore, we have

The leftmost (b/ε) in the first line is used to make sure that the input word belongs to E = ba + ba + . Composing these steps on the right with b, we obtain the RTE C 2 = C E2 (q 0 , →, q 2 ) which describes the behaviour of A on the subset E 2 = ba + ba + b ⊆ dom(A):

The computation of the RTE C E3 (q 0 , →, q 2 ) for E 3 = [(ba

is shown below. This involves the use of the 2-chained Kleene-plus. We want to compute the RTE for the step (q 0 , →, q 2 ) on a word u ∈ E 3 . It can be decomposed as shown in C E3 (q 0 , →, q 2 ) = (C F + (q 0 , →, q 3 ) C b (q 3 , , q 4 )) (C F + (q 4 , , q 1 ) C b (q 1 , →, q 2 )) .

We know that C b (q 3 , , q 4 ) = (b/ε) = C b (q 1 , →, q 2 ) hence it remains to compute C F + (q 0 , →, q 3 ) and C F + (q 4 , , q 1 ). First we define RTEs associated Notice that C F + (q 4 , , q 1 ) = (F * ? ε : ⊥) C F (y 3 ).
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We have already seen that C E3 (y) computes the output produced by a successful run on a word w ∈ E 3 . Applying the RTE as above, we have, for example,