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This work focuses on the reconstruction of two and three dimensional images of the concentration of paramagnetic species from electron paramagnetic resonance (EPR) measurements. A direct operator, modeling how the measurements are related to the paramagnetic sample to be imaged, is derived in the continuous framework taking into account the physical phenomena at work during the acquisition process. Then, this direct operator is discretized to closely take into account the discrete nature of the measurements and provide an explicit link between them and the discrete image to be reconstructed. A variational inverse problem with total variation regularization is formulated and an efficient resolvant scheme is implemented. The setting of the reconstruction parameters is thoroughly studied and facilitated thanks to the introduction of appropriate normalization factors. Moreover, an a contrario algorithm is proposed to derive the optimal resolution at which the data should be acquired. Finally, an in-depth experimental study over real EPR datasets is done to illustrate the potential and limitations of the presented image reconstruction model.

Introduction

Electron Paramagnetic Resonance is a powerful method for exploring paramagnetic species. It is based on the property of single electrons to absorb the energy of electromagnetic radiation when placed in a magnetic field. This process of absorption of energy is characteristic of the observed species. The acquired spectral signatures allow therefore to discriminate between different paramagnetic species. As in Nuclear Magnetic Resonance (NMR), the EPR phenomenon can be used for imaging purposes. By adding to the homogeneous magnetic field a field gradient whose orientation evolves in a plane (2D imaging) or in space (3D imaging), a sinogram is generated. Its formation can be mathematically modeled by the convolution between the Radon transform of the concentration of the present paramagnetic species and its spectral signature. The reconstruction of the concentration image from the sinogram is an ill-posed inverse problem which is the main focus of this article.

The standard method of reconstruction is made on two steps: a Wiener-like inverse filtering followed by a back-projection. This approach, that is taken by Xepr ©2 (a commercial software distributed by Bruker ® ), has however several drawbacks, including the well known "star effect" of the back-projection when there are too few projections. Moreover, the two-step processing leads to accumulating errors and involves the tuning of many parameters. Several variational methods have been reported. As the sinogram is corrupted by an additive Gaussian white noise, they mostly consist in least squares with various regularizations such as entropy [START_REF] Johnson | Maximum entropy reconstruction methods in electron paramagnetic resonance imaging[END_REF] or Tikhonov [START_REF] Tseitlin | Regularized optimization (RO) reconstruction for oximetric EPR imaging[END_REF]. Other considered priors are built on the total variation (TV) as it allows to obtain images with sharp edges. In [START_REF] Johnson | Compressed sensing of spatial electron paramagnetic resonance imaging[END_REF], the prior is the sum of the L 1 -norm and the TV of the sought image. The minimization is done by a double-loop algorithm whose fixed point fails however to be the sought minimizer. This model is generalized in [START_REF] Ahmad | Accelerated dynamic EPR imaging using fast acquisition and compressive recovery[END_REF] where the gradient in TV is changed into a linear operator. The data fidelity is moreover expressed by a hard constraint. However, the numeral scheme is not given. In [START_REF] Qiao | 3D pulse EPR imaging from sparse-view projections via constrained total variation minimization[END_REF], a hard constraint is also used on the data fidelity, but for a noiseless model only. TV is smoothed as in [START_REF] Vogel | Iterative methods for total variation denoising[END_REF] in order to perform a Steepest Descent.

Great improvements have been made in the minimization of functions involving TV thanks to the introduction of a fully proximal primal-dual algorithm by Chambolle and Pock [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. It is applied to TVreguralized least-squares in the context of EPR imaging in [START_REF] Durand | Electron paramagnetic resonance image reconstruction with total variation and curvelets regularization[END_REF]. The inf-convolution of TV and the L 1 -norm of weighted curvelet coefficients is also used as an alternative prior in order to obtain images with fine textures and sharp edges. To avoid a recursive use of the computationally expensive Radon transform and thus further speed up the algorithm, a Toeplitz hypermatrix structure is designed for the data fidelity as is done in [START_REF] Kostov | Toeplitz structure in slant-stack inversion[END_REF] for Computed Tomography. Chambolle-Pock Algorithm is also used in [START_REF] Qiao | Optimization-based image reconstruction from fast-scanned, noisy projections in EPR imaging[END_REF][START_REF] Qiao | A balanced total-variation-Chambolle-Pock algorithm for EPR imaging[END_REF] where the data fidelity or the TV-prior is expressed under a hard constraint. This hard constraint on the data fidelity eases the choice of the parameter that controls the balance between data fidelity and regularization when the standard deviation of the noise is known. But it does not allow to make use of the Toeplitz structure alluded to above which is very useful to obtain a fast algorithm and thus efficiently process 3D images. This problem of 3D images is addressed in [START_REF] Komarov | Algebraic reconstruction of 3D spatial EPR images from high numbers of noisy projections: An improved image reconstruction technique for high resolution fast scan EPR imaging[END_REF] where an algebraic method is developed to quickly reconstruct images from a large number of projections.

This article focuses on the method developed in [START_REF] Durand | Electron paramagnetic resonance image reconstruction with total variation and curvelets regularization[END_REF]. In addition to making accessible the algorithm introduced therein, we propose several improvements. First, we give its 3D extension. As there is no curvelet transform for 3D images, only the TV-prior is considered. But an optional Huber-TV-prior is proposed to process textured images. Moreover, in order not to change the Toeplitz hypermatrix into a circulant Hypermatrix, the primal-dual algorithm of [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] is changed into its forward-backward version introduced in [START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF]. At last, an a contrario method is introduced to find the optimal step at which the sinogram must be sampled and thus speed up the acquisition process.

2 Continuous Modeling of the EPR Acquisition System

Spectroscopy by EPR

The most widespread application of EPR is spectroscopy. The aim of EPR spectroscopy is to analyze the electronic structure of the paramagnetic chemical species contained in a sample through the microwave absorption occurring when the sample is exposed to a magnetic field. By applying a socalled homogeneous magnetic field with increasing intensity t → B(t) in the cavity of the acquisition system, we excite the single electrons of the paramagnetic species present in the cavity. When the microwave energy applied to the sample equals the energy gap between the spin state energy levels of the single electrons, the latter change their levels of energies. This phenomenon is called electron resonance and comes with an absorption by the single electrons of the incident microwave energy. We denote by t → E abs (B(t)) the energy absorption profile, or also, by dropping the temporal variable,

B → E abs (B) .
The levels of energies of the single electrons, as well as the energy absorption profile E abs involved by the electron resonance phenomenon, are intrinsically linked to the electronic organization of the paramagnetic species and can be used to characterize them. In practice we are able to measure the first derivative of the energy absorption profile E abs , this function S : B → E ′ abs (B) is called a spectrum. Each paramagnetic component X has its own spectral response, denoted by h X and called the reference spectrum of X. In presence of an amount Q X of a paramagnetic component X in the cavity, the measured spectrum S is proportional to h X , and we simply have

∀B ∈ R + , S(B) = Q X • h X (B) . (1) 
In Figure 1, we display the measured spectra of two paramagnetic species, the Tetrathiatriarylmethyl (TAM) and the 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (4OH-TEMPO). By visual inspection, and potentially with the help of EPR simulation algorithms (such as [START_REF] Stoll | EasySpin, a comprehensive software package for spectral simulation and analysis in EPR[END_REF]), EPR spectroscopists are able to recognize a paramagnetic component, to estimate its amounts Q X , and sometimes to measure some features related to the paramagnetic species interactions within the whole molecular environment (such as oxygen concentration, molecule rotation speed,. . . ) [START_REF] Epel | How in vivo EPR measures and images oxygen[END_REF][START_REF] Fattibene | EPR dosimetry with tooth enamel: A review[END_REF][START_REF] Mchaourab | Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics[END_REF][START_REF] Swartz | Advances in probes and methods for clinical EPR oximetry[END_REF].

Spatialization of the EPR Measurements for Imaging Applications

The acquisition of EPR spectra like [START_REF] Abergel | Algorithm 1006: Fast and accurate evaluation of a generalized incomplete gamma function[END_REF] makes the analysis of the paramagnetic species contained in a sample possible. However, such kind of signals do not provide any information about the spatial repartition of the different species within the sample. Indeed, at any given time t of the acquisition, the intensity of the homogeneous magnetic field B(t) is the same within the whole cavity. Therefore, no spatial information is embedded within the measurement t → S(B(t)). Interestingly enough, the EPR measurements can be spatialized in a simple but yet ingenious way. Let us denote by Ω c ⊂ R 3 the cavity domain, let (θ, φ) ∈ [0, π] × [0, 2π] denote a couple of polar and azimuthal angles in the spherical coordinate system, and let e (θ,φ) = (cos θ sin φ, sin θ sin φ, cos φ) t (see Figure 2). Using magnetic coils, we can add to the homogeneous magnetic field a field gradient in the direction e (θ,φ) which is an oriented magnetic field with linearly increasing intensity. Thanks to this field gradient, the intensity of the magnetic field in the cavity at the spatial location x ∈ Ω c and time t ≥ 0 is given by B µ,θ,φ (x, t) = B(t) + ⟨µ e (θ,φ) , x⟩ ,

where ⟨•, •⟩ denotes the Euclidean inner product and µ > 0 represents the intensity of the field gradient. Therefore, in presence of a single paramagnetic specie X in the cavity, denoting by U X (x) ). We can also resolve small lines due to the coupling with carbon-13 (see arrows in (a)), those lines have small amplitude due to the small natural abundance of 13C (around 1% of natural abundance). Right (b): measured EPR spectrum of a solid sample soaked with 4OH-TEMPO. This paramagnetic component is characteristic of the nitroxide class of radicals, its reference spectrum exhibits three main lines which are due to the coupling of the nitrogen-14 (14N) nuclear spin with the electronic spin. The three lines of 4OH-TEMPO molecules in fluid sample should have the same shape (same amplitude and linewidth). In practice, they exhibit important variation of shapes according to the rotation speed of the molecule within the sample. A fluid sample, allowing fast molecule rotation (with rotation period less than the nanosecond) leads to three identical lines, while slower rotation speed in solid samples (as here, with a rotation period close to the microsecond) leads to distorted lines with different shapes.

the quantity of X at any location x ∈ Ω c and by integrating over the whole cavity domain, we obtain the measurement

∀t ≥ 0 , S θ,φ (B(t)) = Ωc U X (x) h X (B(t) + ⟨µ e (θ,φ) , x⟩) dx , (3) 
or, by dropping again the temporal variable,

∀B ∈ R + , S θ,φ (B) = Ωc U X (x) h X (B + ⟨µ e (θ,φ) , x⟩) dx . (4) 
The function B → S θ,φ (B) is called the projection in the direction (θ, φ). We remark that whatever the value of (θ, φ), in absence of field gradient (i.e. when µ = 0), the projection (4) boils down to (1) since we have Q X = Ωc U X (x) dx. In this situation, the estimation of U X is hopeless because the problem is too ill-posed. However, when µ ̸ = 0, the estimation of U X becomes possible provided that enough measurements (S θ,φ (B)) B,θ,φ are available [START_REF] Ohno | Two-dimensional ESR imaging for paramagnetic species with anisotropic parameters[END_REF]. By extending h X (over R \ R + ) and U X (over R 3 \ Ω c ) by zero and decomposing the space R 3 as the sum of the monodimensional space Span(e (θ,φ) ) and its supplementary orthogonal hyperplane H θ,φ := Span(e ⊥ (θ,φ) ), we can write (4) as ). By construction in (2), at any acquisition time t ≥ 0, the intensity of the magnetic field in the cavity is constant over any affine hyperplane orthogonal to e (θ,φ) and its value evolves linearly along the e (θ,φ) axis. We display in (b) an example of 3D sinogram acquired using our EPR imaging system.

∀B ∈ R , S θ,φ (B) = R H θ,φ U X (r e (θ,φ) + s) h X (B + µr) ds dr = R H θ,φ U X (r e (θ,φ) + s) ds h X (B + µr) dr = R R θ,φ (U X )(r) h X (B + µr) dr ,
where R θ,φ (U X ) = r → H θ,φ U X (r e (θ,φ) + s) ds is the so-called Radon transform of the signal U X in the direction (θ, φ). Then, setting h µ X (s) = h X (-µs) for all s ∈ R, we finally get

∀B ∈ R , S θ,φ (B) = h µ X * R θ,φ (U X ) (-B/µ) , (5) 
so the projection S θ,φ is modeled as the convolution between the dilated reference spectrum h µ X and the Radon transform of U X in the direction (θ, φ). The 3D signal (B, θ, φ) → S θ,φ (B) made of all the projections is called a 3D sinogram. An example of 3D sinogram is displayed in Figure 2 (b).

The 2D EPR Imaging Framework

The acquisition of a 3D sinogram like that displayed in Figure 2 (b) can be too long (several minutes per projection, i.e., per value of (θ, φ)) with respect to the targeted application. This is particularly the case for in-vivo imaging or for the study of species or chemical reactions with fast kinetic. In such situation, we may be interested in computing a 2D sinogram by keeping one angle (θ or φ) constant and letting the other vary. For sake of clarity, let us assume that we take φ = π 2 and keep θ variable. In this situation, the field gradient direction e (θ,π/2) = (cos θ, sin θ, 0) t lies in the XY-plane (see Figure 2). Therefore, the measured projections

S θ := B → S θ,π/2 (B) satisfy, for all B ∈ R and all θ ∈ [0, π] , S θ (B) = R 3 U X (x, y, z) h X (B + ⟨ µ e (θ,π/2) , (x, y, z) t ⟩) dx dy dz = R 2 V X (x, y) h X (B + ⟨ µ e θ , (x, y) t ⟩) dx dy,
denoting by e θ = (cos θ, sin θ) t the direction of the field gradient in the XY-plane and

V X (x, y) = R U X (x, y, z) dz . ( 6 
) (a) from 3D sample to 2D imaging (b) 2D sinogram S π/2 (synthetic)
Figure 3: From the 3D to the 2D setting. We represent in gray colors in (a) the 3D repartition U X of a single specie, the TAM, present in the cavity of the acquisition system at different concentrations (one concentration per ellipsoid). We also represent, in false colors, the 2D signal V X obtained by summing U X along the Z-axis (see [START_REF] Chambolle | On the ergodic convergence rates of a first-order primal-dual algorithm[END_REF]). In such situation, the acquisition of the 3D sinogram for a single azimuthal orientation of the field gradient, here φ = π/2, yields a 2D sinogram such as that displayed in (b). Each projection (or column) of this 2D sinogram is linked to the image V X through (7) and 2D EPR imaging consists in reconstructing V X from (b) by inversion. Notice that the image V X does not correspond to any particular slice of U X (due to the summation along the vertical axis). In this regard, 2D EPR imaging differs with computed tomography imaging systems that provide slice by slice image reconstruction capability.

Then, with the same methodology as in the 3D case, we show that

∀B ∈ R , ∀θ ∈ [0, π] , S θ (B) = h µ X * R θ (V X ) (-B/µ) , (7) 
denoting by R θ (V X ) = r → Span(e ⊥ θ ) V X (re θ + s) ds the Radon transform in the direction θ of the 2D signal V X . Instead of estimating the 3D signal U X , the goal of 2D EPR imaging is to estimate the 2D signal V X from the 2D sinogram (B, θ) → S θ (B), as illustrated in Figure 3.

Filtering of the Projections by the Acquisition System

In practice, sinograms are acquired sequentially, projection by projection. During the acquisition of a projection, a low-pass filtering inherent to the EPR measurement system is done. This low-pass filtering operation can be modeled as a convolution with a low-pass filter which is characteristic of the acquisition system and the acquisition parameters (it may model for instance time integration operation). In the following, we will assume that this low pass filter is a perfect band-cut filter with bandwidth -π ν , π ν (where ν > 0). More precisely, denoting by F the Fourier transform in

L 1 (R n ), i.e., ∀f ∈ L 1 (R n ) , ∀ξ ∈ R n , F (f )(ξ) = R n f (x) e -i⟨x,ξ⟩ dx ,
and 1 X the indicator function of the set X (that takes the value 1 over X and zero outside), we assume from now that the low-pass filter is the function g ν , denoting

∀s > 0, ∀t ∈ R , g s (t) = F -1 1 [-π s , π s ] (t) . (8)
Therefore, in the 2D setting, the acquired projection in a direction θ ∈ [0, π] is the signal S θ given by

∀B ∈ R , S θ (B) = (g ν * S θ ) (B) = g δ * h µ X * R θ (V X ) (-B/µ) , (9) 
denoting δ = ν/µ (as we shall see in the following this parameter δ plays an important role in practical experiments). Similarly, in the 3D setting, the acquired projection in a direction (θ, φ) ∈ [0, π]×[0, 2π] is the signal S θ,φ given by

∀B ∈ R , S θ,φ (B) = (g ν * S θ,φ ) (B) = g δ * h µ X * R θ,φ (U X ) (-B/µ) . (10) 
We can study further the effect of such filtering operation thanks to the Central Slice Theorem which provides, for instance in 2D (a similar formulation holds in the 3D setting), an interesting relationship between the Fourier transform of R θ (V X ) and that of V X .

Theorem 1 (Central Slice Theorem, 2D setting). For any signal V ∈ L 1 (R 2 ) and any θ ∈ R, we have

∀ξ ∈ R , F (R θ (V ))(ξ) = F (V )(ξ cos θ, ξ sin θ) . (11) 
Proof. See Appendix A.

Corollary 1. Denoting by B 2d (0, π/δ) the 2D centered ball with radius π/δ and f δ = F -1 1 B 2d (0,π/δ) , for all B ∈ R and all θ ∈ [0, π], we have

S θ (B) = h µ X * R θ ( V X ) (-B/µ) where h µ X = g δ * h µ X and V X = f δ * V X . (12) 
Proof. Let θ ∈ [0, π] and ξ ∈ R, we have F (g δ )(ξ) = F (f δ )(ξ cos θ, ξ sin θ). Therefore, from the Central Slice Theorem, we get

F (g δ * R θ (V X ))(ξ) = F (f δ * V X )(ξ cos θ, ξ sin θ) = F (R θ ( V X ))(ξ), showing that g δ * R θ (V X ) = R θ ( V X ). It follows that h µ X * R θ ( V X ) = g δ * h µ X * g δ * R θ (V X ).
Then, using g δ = g δ * g δ and the commutativity of the convolution product, we obtain the announced result.

Interestingly enough, the proof of Corollary 1 points out that filtering by g δ the Radon transform of the image V X amounts to computing the Radon transform of the filtered image V X which is bandlimited. As we shall see in the next section, this property provides a natural discretization scheme for the Radon transform operator.

Discretization of the Operators and the Measurements

During the acquisition of an EPR projection, the intensity B of the homogeneous magnetic field is discretized into a finite number of nodes. In most situations, those nodes are regularly sampled, as we shall describe now.

Measurement Sampling Grids

Let N B ∈ N and let us denote by I N B and I N B the two sets of N B consecutive integers defined by

I N B = - N B 2 , N B 2 ∩ Z and I N B = - N B 2 , N B 2 ∩ Z .
In particular, when N B is odd, say N B = 2n + 1, we have

I N B = I N B = {-n, -n + 1, . . . , n -1, n}.
We assume that the intensity of the homogeneous magnetic field B is regularly sampled over a set

B cf + -Bsw 2 , Bsw 2 using ∀m ∈ I N B , B m = B cf + m δ B where δ B = B sw N B . (13) 
The quantities B cf and B sw involved above are usually called center field and sweep width (e.g. in Bruker instruments and XEPR software [START_REF] Jiang | ELEXSYS E 500 User's Manual Basic Operations[END_REF], see also [START_REF] Grinberg | Ewing's analytical instrumentation handbook[END_REF]). From [START_REF] Ahmad | Accelerated dynamic EPR imaging using fast acquisition and compressive recovery[END_REF], for all orientation (θ, φ) of the field gradient, the intensity of the magnetic field at a given time t of any point x located in the intersection of the cavity with the affine hyperplane r e (θ,φ) + H θ,φ (with radial distance r = ⟨x, e (θ,φ) ⟩ from the cavity center) is

B µ,θ,φ (x, t) = B(t) + µ r .
Therefore, if electron resonance occurs in the cavity, by increasing by step δ B the intensity of the homogeneous magnetic field, we decrease by step δ r = δ B /µ the radial positions of the affine hyperplanes where this resonance phenomenon occurs. Thus, sampling with step δ B the homogeneous magnetic field intensity boils down to spatially sampling the cavity along the direction e (θ,φ) with radial step δ B /µ, leading to the radial sampling nodes

∀m ∈ I N B , r m = m δ r where δ r = δ B µ = B sw µ N B . (14) 
In the 2D setting, using ( 13) and ( 14) into [START_REF] Epel | How in vivo EPR measures and images oxygen[END_REF], yields the the sampled measurements

∀m ∈ I N B , S θ (B -m ) = h µ X * R θ ( V X ) (-B cf /µ + m δ r ) . (15) 
We call field of view (FOV) the ball delimiting the area covered by the radial measurements. This ball is centered on the cavity center and its diameter D fov is given by

D fov = N B δ r = B sw µ .
In practice the FOV may be smaller than the cavity itself but the setting of the sweep width B bw is done to ensure that D fov is large enough so that the totality of the paramagnetic sample present in the cavity is contained in the FOV. Once B sw is set, the setting of N B (and thus, that of the sampling steps δ B and δ r ) is guided by Shannon Sampling Theorem that we recall below in dimension n ≥ 1.

Theorem 2 (Shannon Sampling Theorem [START_REF] Shannon | Communication in the presence of noise[END_REF]). Consider a positive real number ∆ > 0 and an absolutely integrable function f : R n → R whose Fourier transform is supported in

-π ∆ , π ∆ n , i.e., ∀ξ ̸ ∈ - π ∆ , π ∆ n , F (f )(ξ) = 0 .
Then, f is continuous and uniquely determined by its values on ∆ Z n , as

∀x ∈ R n , f (x) = k∈Z n f (k∆) sinc x ∆ -k ,
where the cardinal sine function is defined in R n by

sinc(x) = n i=1 sin(πx i ) πx i ,
with the continuity preserving convention sin(0) 0 = 1.

From (9), we see that the signal r → ( h µ X * R θ ( V X ))(-B cf /µ + r) involved in [START_REF] Grinberg | Ewing's analytical instrumentation handbook[END_REF] has its Fourier transform supported in the set [-π δ , π δ ]. Therefore, the Shannon Sampling Theorem ensures that no loss of information occurs when sampling this signal on δ r Z using a radial sampling step δ r ≤ δ. From [START_REF] Frigo | The design and implementation of FFTW3[END_REF], this condition amounts to set N B ≥ M := B sw /(µ δ) and we assume that this condition is fulfilled in the following. For commodity, we will also assume that M is an integer (i.e., δ/δ r is the rational number N B /M ). To simplify the study, the reader may consider δ r = δ (and M = N B ) but this is not a requirement that we impose in our model and algorithms (the reason for this choice will be discussed in Section 6).

Discretization of the Two-dimensional Operators

Let θ ∈ [0, π]. From Theorem 1, we have ∀ξ ∈ R , F R θ ( V X ) (ξ) = F ( V X )(ξ cos θ, ξ sin θ) . (16) 
Besides, from

V X = f δ * V X with f δ = F -1 1 B 2d (0,π/δ) , we see that F ( V X ) is supported in B 2d (0, π/δ)
which is a subset of -π δ , π δ 2 . Thus, according to Theorem 2, we have

∀(x, y) ∈ R 2 , V X (x, y) = (k,ℓ)∈Z 2 V X (kδ, ℓδ) sinc x δ -k sinc y δ -ℓ . (17) 
Then, using

F (x, y) → sinc(( x δ , y δ ) -(k, ℓ)) (ξ 1 , ξ 2 ) = δ 2 e -i(kδξ 1 +ℓδξ 2 ) • 1 [-π δ , π δ ] 2 (ξ 1 , ξ 2 ), we get ∀ξ ∈ R , F ( V X )(ξ cos θ, ξ sin θ) =    δ 2 (k,ℓ)∈Z 2 V X (kδ, ℓδ) e -iξ(kδ cos θ+ℓδ sin θ) if |ξ| ≤ π δ 0 otherwise . (18) 
Equations ( 17) and ( 18) involve an infinite number of samples V X (kδ, ℓδ) that we cannot handle in practical implementations. Let Ω 2d = I M × I M and v X : Ω 2d → R denote the discrete image obtained by sampling V X with step δ in the FOV domain, i.e.,

∀(k, ℓ) ∈ Ω 2d , v X (k, ℓ) = V X (kδ, ℓδ) .
By taking ξ ∈ 2πZ/(M δ) and neglecting the terms V X (kδ, ℓδ) outside the FOV in [START_REF] Johnson | Maximum entropy reconstruction methods in electron paramagnetic resonance imaging[END_REF], we obtain

∀α ∈ Z , F ( V X ) 2πα cos θ M δ , 2πα sin θ M δ ≈    δ 2 (k,ℓ)∈Ω 2d v X (k, ℓ) e -2iπ α M (k cos θ+ℓ sin θ) if |α| ≤ M 2 0 otherwise ( 19 
)
where the sum in the right-hand side corresponds to the Nonequispaced Discrete Fourier Transform (NDFT) of the discrete image v X at the frequency α M cos θ, α M sin θ and can be efficiently evaluated using Nonequispaced Fast Fourier Transform algorithms (NFFT) such as for instance that proposed in [START_REF] Keiner | Using NFFT 3-A Software Library for Various Nonequispaced Fast Fourier Transforms[END_REF]. The Fourier transform of R θ ( V X ) being supported in [-π δr , π δr ] (since δ r ≤ δ), the same methodology yields the approximation

∀α ∈ I N B , F (R θ ( V X )) 2πα N B δr ≈ δ r m∈I N B R θ ( V X )(mδ r ) e -2iπ αm N B , (20) 
where the right-hand side sum corresponds, up to the multiplicative factor δ r , to the Discrete Fourier Transform (DFT) of the discrete signal m ∈ I N B → R θ ( V X )(mδ r ) at the (discrete) frequency α.

Since M δ = N B δ r , we have 2πα M δ = 2πα N B δr and thanks to Theorem 1, the left-hand side terms of ( 19) and [START_REF] Kak | Principles of Computerized Tomographic Imaging[END_REF] are equal for any α ∈ I N B . Then, using δ/δ r = N B /M , we get for all α

∈ I N B , DFT m → R θ ( V X )(m δ r ) (α) ≈      δ • N B M • (k,ℓ)∈Ω 2d v X (k, ℓ) e -2iπ α M (k cos θ+ℓ sin θ) if |α| ≤ M 2 0 otherwise. ( 21 
)
One can see that [START_REF] Keiner | Using NFFT 3-A Software Library for Various Nonequispaced Fast Fourier Transforms[END_REF] provides an explicit relation between the discrete image v X and the (continuous) Radon transform coefficients R θ ( V X )(mδ r ). In the particular case δ r = δ (and N B = M ), this yields the following discretization scheme for the Radon transform operator.

∀α ∈ I N B , Z r R d θ v X (α) = N B M R d θ v X (α) if α ∈ I M 0 otherwise. ( 25 
)
Now, using [START_REF] Grinberg | Ewing's analytical instrumentation handbook[END_REF] and remarking that the Fourier transforms of the signals r

→ h µ X (-B cf /µ + r) and r → ( h µ X * R θ ( V X ))(-B cf /µ + r
) are both supported in the set -π δr , π δr , we can derive with the same methodology an explicit relation between the projection samples S θ (B -m ) and the discrete image v X , we end up with

∀m ∈ I N B , S θ (B -m ) ≈ δ 2 M N B • h d X ⊛ Z r R d θ v X (m) , (26) 
where h d X : 

I N B → R denotes the discrete signal defined by ∀m ∈ I N B , h d X (m) := (g ν * h X ) (B -m ) = (when µ̸ =0) h µ X (-B cf /µ + m δ r ) , (27) 
∀(m, p) ∈ ω 2d , s 2d (m, p) ≈ A v X (m, p) := δ 2 M N B • h d X ⊛ Z r R d θp v X (m) , (28) 
where the linear operator A : R Ω 2d → R ω 2d models, up to the approximation errors we made in this section, the link between the discrete image v X and the measured 2D discrete sinogram s 2d .

For sake of completeness, we summarize in Algorithm 1 how the 2D discrete sinogram A v X can be simulated from the discrete image v X , although we are more interested in the reciprocal operation, i.e., reconstructing the image v X from the 2D discrete sinogram s 2d . The inversion of A with a regularized least-squares strategy will be addressed in the next section. For that purpose, we will need to evaluate A * , the adjoint of A. As the for direct operator A, the computation of the adjoint operator A * can be done efficiently using the NFFT library [START_REF] Keiner | Using NFFT 3-A Software Library for Various Nonequispaced Fast Fourier Transforms[END_REF], as we describe in Algorithm 2.

Algorithm 1: compute the 2D discrete sinogram Av from a 2D discrete image v.

Inputs: a 2D discrete image v : Ω 2d → R with discrete domain Ω 2d = I M × I M , the discrete spectrum h d X : I N B → R with size N B ≥ M , a sequence containing N θ polar angles (θ p ) 1≤p≤N θ . Optional input: the radial sampling step δ r = δ B µ (if not provided, set δ r = 1). Output: the 2D discrete sinogram s = Av : I N B × {1, 2, . . . , N θ } → R whose p-th column,
denoted by s p , corresponds to the discrete projection of v in the direction θ p .

Core of the module:

δ ← δ r • N B M // image sampling step (pixel size), same unit as δ r forall p ∈ {1, 2, . . . , N θ } do set r p : I M → C the discrete signal 1 defined by ∀α ∈ I M , r p (α) = (k,ℓ)∈Ω 2d v(k, ℓ) e -2iπ(k α M cos θp+ℓ α M sin θp) ; set w p : I N B → C the discrete signal defined by ∀α ∈ I N B , w p (α) = DFT(h d X )(α) • r p (α) if |α| < M/2 0 otherwise ; for all m ∈ I N B set s p (m) = δ 2 • IDFT( w p )(m)
return the 2D discrete sinogram s = Av.

1 All coefficients r p (α) can be computed efficiently at once by evaluating the NDFT of the discrete image v at the irregularly spaced frequency nodes α M cos θ p , α M sin θ p , α ∈ I M , 1 ≤ p ≤ N θ using a NFFT algorithm such as that proposed in [START_REF] Keiner | Using NFFT 3-A Software Library for Various Nonequispaced Fast Fourier Transforms[END_REF]. Thank to this remark, we can efficiently compute all coefficients w p (α) and afterward the sinogram samples {s p (m), m ∈ I N B , 1 ≤ p ≤ N θ } using the (monodimensional) FFT Algorithm [START_REF] Frigo | The design and implementation of FFTW3[END_REF].

Discretization of the Three-dimensional Operators

In the 3D setting, one can show that the measured projections S θ,φ given by ( 10) can be linked to the filtered signal U X := F -1 (1 B 3D (0,π/δ) ) * U X (denoting by B 3D (0, π/δ) the centered 3D ball with radius π/δ) through the relation

∀B ∈ R , S θ,φ (B) = h µ X * R θ,φ ( U X ) (-B/µ) . (30) 
With the same methodology as in the 2D setting, one can derive the following discretization scheme for the 3D Radon transform operator.

Algorithm 2: efficient evaluation of A * s Inputs: a 2D discrete sinogram s : 

I N B × {1, 2, . . . , N θ } → R with size N B × N θ , the discrete spectrum h d X : I N B → R with size N B ,
∀α ∈ I N B , w p (α) = DFT(h d X )(α) • DFT(s p )(α) , denoting by z the complex conjugate of z ∈ C. For all (k, ℓ) ∈ Ω 2d , set 2 A * s(k, ℓ) = δ 2 N B • α∈Z, |α|<M/2 p∈{1,2,...,N θ } w p (α) e 2iπ(k α M cos θp+ℓ α M sin θp) . (29) 
return the 2D discrete signal A * s.

Definition 2 (3D discrete Radon transform). Let u : Ω 3d → R be a discrete image with discrete domain Ω 3d = I M × I M × I M , and let (θ, φ) ∈ [0, π] × [0, 2π]. We call the discrete Radon transform of u in the direction (θ, φ) the discrete signal R d θ,φ u : I M → R whose DFT, denoted by R d θ,φ u, satisfies ∀α ∈ I M , R d θ,φ u(α) = ε(α/M ) • (k,ℓ,m)∈Ω 3d u(k, ℓ, m) e -2iπ α M (k cos θ sin φ+ℓ sin θ sin φ+m cos φ) .
Let u X : Ω 3d → R be the discrete 3D image obtained by sampling U X regularly with step δ along each dimension, more precisely, the discrete signal defined by

∀(k, ℓ, m) ∈ Ω 3d , u X (k, ℓ, m) = U X (kδ, ℓδ, mδ) .
Then, one can link the discrete Radon transform of u X to the continuous Radon transform of U X through the approximation

∀m ∈ I N B , R θ,φ ( U X )(mδ r ) ≈ δ 2 • Z r R d θ,φ u X (m) , denoting by Z r R d θ,φ u X : I N B → R the discrete signal whose DFT coefficients Z r R d θ,φ u X are given by ∀α ∈ I N B , Z r R d θ,φ u X (α) = ε(α/M ) • N B M • (k,ℓ,m)∈Ω 3d u X (k, ℓ, m) e -2iπ α M (k cos θ sin φ+ℓ sin θ sin φ+m cos φ) .
Eventually, given a sequence of polar and azimuthal angles (θ p , φ q ) (for 1 ≤ p ≤ N θ , and 1 ≤ q ≤ N φ ), we can link the measured samples to the discrete image u X through the relation

∀m ∈ I N B , ∀p ∈ {1, 2, . . . , N θ } , ∀q ∈ {1, 2, . . . , N φ } s 3d (m, p, q) := S θp,φq (B -m ) ≈ B u X (m, p, q) := δ 3 M N B • h d X ⊛ Z r R d θp,φq u X (m) . ( 31 
)
The simulation of the 3D discrete sinogram B u X from the 3D discrete image u X can be done using Algorithm 3, while the adjoint operation can be computed efficiently using Algorithm 4.

Algorithm 3: compute the 3D discrete sinogram Bu from the 3D discrete image u.

Inputs: a 3D discrete image u : Ω 3d → R with discrete domain Ω 3d = I M × I M × I M , the discrete spectrum h d X : I N B → R with size N B ≥ M , a sequence containing N θ polar angles (θ p ) 1≤p≤N θ and a sequence containing N φ azimuthal angles (φ q ) 1≤q≤Nφ . Optional input: the radial sampling step δ r = δ B µ (if not provided, set δ r = 1). Output: the 3D discrete sinogram s = Bu : I N B × {1, 2, . . . , N θ } × {1, 2, . . . , N φ } → R.

Core of the module:

δ ← δ r • N B M // image sampling step (pixel size), same unit as δ r forall (p, q) ∈ {1, 2, . . . , N θ } × {1, 2, . . . , N φ } do set r p,q : I M → C the discrete signal defined by ∀α ∈ I M , r p,q (α) = (k,ℓ,m)∈Ω 3d u(k, ℓ, m) e -2iπ(k α M cos θp sin φq+ℓ α M sin θp sin φq+m α M cos φq) ; set w p,q : I N B → C the discrete signal defined by ∀α ∈ I N B , w p,q (α) = DFT(h d X )(α) • r p,q (α) if |α| < M/2 0 otherwise ; for all m ∈ I N B set s(m, p, q) = δ 3 • IDFT( w p,q )(m)
return the 3D discrete sinogram s = Bu.

A Total Variation Based Image Reconstruction Model

We derived in Section 3 some relations between the measurements ((θ, m) → S θ (B -m ) in the 2D setting, or (θ, φ, m) → S θ,φ (B -m ) in the 3D setting) and a discrete image ( v X or u X ). We can address now the problem of the reconstruction of the discrete image from those measurements. We focus first on the 2D setting.

Two-dimensional Image Reconstruction

As done in [START_REF] Durand | Electron paramagnetic resonance image reconstruction with total variation and curvelets regularization[END_REF], we address the reconstruction of v X from s 2d using a total variation (TV) regularized least-squares strategy. For λ > 0, we aim to compute an image

v λ ∈ argmin v∈R Ω 2d J 2d λ (v) := 1 2 ∥Av -s 2d ∥ 2 2 + λ TV(v) , (32) 
Algorithm 4: efficient evaluation of B * s Inputs: a 3D discrete sinogram s :

I N B × {1, 2, . . . , N θ } × ×{1, 2, . . . , N ϕ } → R with size N B × N θ × N φ , the discrete spectrum h d X : I N B → R with size N B ≥ M ,
the sequences containing the N θ polar angles (θ p ) 1≤p≤N θ and the N φ azimuthal angles (φ q ) 1≤q≤Nφ , a positive integer M ≤ N B corresponding to the width (also equal to the height and depth) of the output 3D discrete signal (with domain

Ω 3d = I M × I M × I M ).
Optional input: the radial sampling step δ r = δ B µ (if not provided, set δ r = 1). Output: the 3D discrete signal B * s : Ω 3d → R . Core of the module:

δ ← δ r • N B M
// image sampling step (pixel size), same unit as δ r For all (p, q) ∈ {1, 2, . . . , N θ } × {1, 2, . . . , N φ }, denote by s p,q : I N B → R the discrete signal defined by ∀m ∈ I N B , s p,q (m) = s(m, p, q) , and set w p,q : I N B → C the signal defined by

∀α ∈ I N B , w p,q (α) = DFT(h d X )(α) • DFT(s p,q )(α) . For all (k, ℓ, m) ∈ Ω 3d , set B * s(k, ℓ, m) = δ 3 N B • α∈Z, |α|<M/2 p∈{1,2,...,N θ } q∈{1,2,...,Nφ} w p,q (α) e 2iπ(k α M cos θp sin φq+ℓ α M sin θp sin φq+m α M cos φq) .
return the 3D discrete signal B * s.

where the TV of the discrete image v ∈ R Ω 2d is defined as

TV(v) = (k,ℓ)∈Ω 2d ∥∇ 2d v(k, ℓ)∥ 2 , (33) 
denoting by ∇ 2d : R

Ω 2d → R Ω 2d × R Ω 2d the classical forward 2D discrete finite differences scheme defined by ∇ 2d v = (∇ 2d x v, ∇ 2d y v) with, for all (k, ℓ) ∈ Ω 2d , ∇ 2d x v(k, ℓ) = v(k + 1, ℓ) -v(k, ℓ) if (k + 1, ℓ) ∈ Ω 2d 0 otherwise, ∇ 2d y v(k, ℓ) = v(k, ℓ + 1) -v(k, ℓ) if (k, ℓ + 1) ∈ Ω 2d 0 otherwise.
The parameter λ in (32) can be used to control the relative weight of the penalty term HTV α (v) with respect to the data-fidelity term 1 2 ∥Av -s 2d ∥ 2 2 in the energy J 2d λ (v). The practical tuning of λ is closely related to the EPR acquisition parameters and will be discussed in Section 6.4.

Modern convex analysis tools based on Legendre-Fenchel duality [START_REF] Ekeland | Convex Analysis and Variational Problems[END_REF][START_REF] Rockafellar | Convex analysis (Princeton mathematical series[END_REF] allowed the development of many iterative algorithms able to efficiently handle the minimization of convex but nondifferentiable energies like J 2d λ in the two last decades [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF][START_REF] Drori | A simple algorithm for a class of nonsmooth convex-concave saddle-point problems[END_REF]. Recently, a class of algorithms particularly well suited to [START_REF] Osher | An iterative regularization method for total variation-based image restoration[END_REF] was proposed in [START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF] (see also [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF]) and was further studied and generalized in [START_REF] Chambolle | On the ergodic convergence rates of a first-order primal-dual algorithm[END_REF]. Those algorithms are able to efficiently take advantage of the presence of a Lipschitz differentiable (i.e. differentiable with Lipschitz-continuous gradient) term in the energy to minimize. Indeed, the data-fidelity term

f : v → 1 2 ∥Av -s 2d ∥ 2 2 involved in (32) is differentiable over R Ω 2d with gradient ∇f given by ∀v ∈ R Ω 2d , ∇f (v) = A * Av -A * s 2d . ( 34 
)
Since ∇f is an affine operator, it is also Lipschitz-continuous with Lipschitz constant L f ≤ |||A * A||| (denoting by |||A * A||| the ℓ 2 -induced norm of the operator A * A). Then, applying to [START_REF] Osher | An iterative regularization method for total variation-based image restoration[END_REF] the Euclidean non-ergodic non-linear primal-dual algorithm proposed in [START_REF] Chambolle | On the ergodic convergence rates of a first-order primal-dual algorithm[END_REF] boils down to the following numerical scheme. Given

v 0 ∈ R Ω 2d , p 0 ∈ R Ω 2d × R Ω 2d and two positive parameters (τ, σ), set v 0 = v 0 and iterate for n ≥ 0        p n+1 = Π B 2d (p n + σλ∇ 2d v n ), v n+1 = v n -τ ∇f (v n ) -λ div 2d (p n+1 ) , v n+1 = 2 v n+1 -v n , (35a) (35b) (35c) 
where div 2d = -∇ * 2d denotes the opposite adjoint of the 2D forward finite differences operator ∇ 2d (see Appendix C) and Π B 2d denotes the orthogonal projection over the closed and convex set

B 2d := {p ∈ R Ω 2d × R Ω 2d , ∀(k, ℓ) ∈ Ω 2d , ∥p(k, ℓ)∥ 2 ≤ 1} which is more explicitly given by ∀p 0 ∈ R Ω 2d × R Ω 2d , ∀(k, ℓ) ∈ Ω 2d , Π B 2d (p 0 )(k, ℓ) = p 0 (k, ℓ) max(1, ∥p 0 (k, ℓ)∥ 2 ) . (36) 
Besides, since we have the upper bound |||∇ 2d ||| ≤ √ 8, Theorem 1 established in [START_REF] Chambolle | On the ergodic convergence rates of a first-order primal-dual algorithm[END_REF] ensures the convergence of the sequence (v n ) n∈N toward a minimizer of J 2d λ when the time-step parameters τ and

σ satisfy 1 τ -|||A * A||| 1 σ ≥ 8λ 2 . ( 37 
)
Remark (adding constraints in [START_REF] Osher | An iterative regularization method for total variation-based image restoration[END_REF]). One can restrict the minimization of J 2d λ to any convex set C ⊂ R Ω 2d simply by replacing (35b) by

v n+1 = Π C v n -τ ∇f (v n ) -λ div 2d (p n+1 ) ,
denoting by Π C : R Ω 2d → C the orthogonal projection over C. In particular, we remarked that using

C = R Ω 2d
+ in order to restrict the minimization of J 2d λ to the set of nonnegatively-valued images may increase the convergence rate of the scheme [START_REF] Qiao | 3D pulse EPR imaging from sparse-view projections via constrained total variation minimization[END_REF]. Such nonnegativity constraint makes sense because, if v X may assume some negative values, the latter are due to the oscillations involved by the filtering of V X (which is nonnegatively valued) into V X = V X * g δ (which may assume negative values), and we usually want to avoid such oscillatory patterns in the reconstruction. However, in our experiments over real EPR data, we remarked that not imposing the positivity constraint and taking the positive part of the reconstructed image at the end of the process yielded visually more satisfactory results.

We can see that the computation of ∇f (v n ) = A * Av n -A * s 2d is needed at each iteration n ≥ 0 of the scheme in (35b). The term A * s 2d never changes and can be computed once and for all using Algorithm 2. The term A * Av n could be computed by using successively Algorithm 1 and Algorithm 2, however, this computation is rather costly since NFFTs are involved in both algorithms. In fact, the terms A * Av n can be evaluated in a more efficient way thanks to Proposition 1.

Proposition 1. Let v ∈ R Ω 2d and denote by Zv and φ the two-dimensional discrete signals defined over the augmented domain

Υ 2d = I 2M × I 2M by, ∀(k, ℓ) ∈ Υ 2d , Zv(k, ℓ) = v(k, ℓ) if (k, ℓ) ∈ Ω 2d 0 otherwise, (38) 
and φ(k, ℓ) = δ 4 N B • α∈Z, |α|<M/2 p∈{1,2,...,N θ } DFT(h d X )(α) • DFT(h d X )(α) • e 2iπ(k α M cos θp+ℓ α M sin θp) . (39) 
Then, A * Av corresponds to the restriction of φ ⊛ Zv to Ω 2d , i.e., we have

∀(k, ℓ) ∈ Ω 2d , A * Av(k, ℓ) = (φ ⊛ Zv) (k, ℓ) . (40) 
Proof. See Appendix D.

In other words, the hypermatrix of A * A has a Toeplitz structure and A * Av n can be computed using two sequential FFTs. This property was first used for Computer Tomography in [START_REF] Kostov | Toeplitz structure in slant-stack inversion[END_REF] and for EPR imaging in [START_REF] Durand | Electron paramagnetic resonance image reconstruction with total variation and curvelets regularization[END_REF]. It therefore allows to quickly compute the gradient of the data fidelity u → 1 2 ∥Au -s 2d ∥ 2 2 . Notice that the proximity operator of the latter can also be computed using Proposition 1 provided we can quickly invert A * A + I (where I denotes the identity operator). For this purpose, A * A is approximated by a circulant hypermatrix in [START_REF] Durand | Electron paramagnetic resonance image reconstruction with total variation and curvelets regularization[END_REF]. In this article, we have instead chosen to carry out a forward gradient descent on the primal variable or, in other words, change the algorithm of [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] into that of [START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF][START_REF] Chambolle | On the ergodic convergence rates of a first-order primal-dual algorithm[END_REF].

Corollary 2. We have the upper bound |||A * A||| ≤ L ′ f := ∥DFT(φ)∥ ∞ . Then, setting τ = 1/(2L ′ f ) and σ = L ′ f /(8λ 2 ) ensures that (37) is fulfilled. Proof. Thanks to Proposition 1, for any v ∈ R Ω 2d , we have ∥A * Av∥ 2 2 ≤ ∥φ ⊛ Zv∥ 2 2 . Then, Parseval's identity yields ∥φ ⊛ Zv∥ 2 2 = 1 4M 2 (α,β)∈Υ 2d |DFT(φ)(α, β) • DFT(Zv)(α, β)| 2 ≤ L ′ f 2 ∥Zv∥ 2 2 = L ′ f 2 ∥v∥ 2 2
, from which the announced upper-bound |||A * A||| ≤ L ′ f follows. From the kernel φ and using Corollary 2, we are able to compute an explicit bound for |||A * A|||, which yields an explicit setting of the time-step parameters (τ, σ) that ensures the convergence of the scheme toward a minimizer of J 2d λ . The computation of the kernel φ can be done using NFFT and since this kernel does not change during the scheme iterations, it can be computed once and systematically used to evaluate A * Av n at each iteration of the scheme using [START_REF] Tseitlin | Regularized optimization (RO) reconstruction for oximetric EPR imaging[END_REF]. Finally, the whole procedure for the reconstruction of an image v λ by minimization of J 2d λ over the constraint set

C = R Ω 2d + or C = R Ω 2d is summarized in Algorithm 5.

Three-dimensional Image Reconstruction

In the 3D setting, we adopt the same methodology. Given the observed 3D sinogram s 3d ≈ B u X and a regularity parameter λ > 0, we address the TV-regularized (constrained of unconstrained) least-squares problem

u λ ∈ argmin u∈C ′ J 3d λ (u) := 1 2 ∥Bu -s 3d ∥ 2 2 + λ TV(u) , (41) 
where

C ′ = R Ω 3d (unconstrained case) or C ′ = R Ω 3d
+ (nonnegatively constrained case), and where

∀u ∈ R Ω 3d , TV(u) = (k,ℓ,m)∈Ω 3d ∥∇ 3d u(k, ℓ, m)∥ 2 ,
denoting by ∇ 3d u = (∇ 3d x u, ∇ 3d y u, ∇ 3d z u) the 3D forward differences scheme defined by, for all (k, ℓ, m) ∈ Ω 3d ,

∇ 3d x u(k, ℓ, m) = u(k + 1, ℓ, m) -u(k, ℓ, m) if (k + 1, ℓ, m) ∈ Ω 3d 0 otherwise; Inputs: a 2D discrete sinogram s 2d : I N B × {1, 2, . . . , N θ } → R with size N B × N θ , the associated discrete spectrum h d X : I N B → R with size N B
, the associated sequence containing the N θ polar angles (θ p ) 1≤p≤N θ , a positive integer M ≤ N B corresponding to the desired width (also equal to the height) for the output image (with domain Ω 2d = I M × I M ), a regularity parameter λ > 0, and a number of iterations N ≥ 0 for the numerical scheme [START_REF] Qiao | 3D pulse EPR imaging from sparse-view projections via constrained total variation minimization[END_REF].

Optional inputs: a flag specifying whether we aim to minimize J 2d λ over the set C = R Ω 2d (unconstrained minimization) or over the set C = R Ω 2d + (nonnegativity constraint), an initial guess v 0 ∈ R Ω 2d for the looked for image (if not provided, use v 0 = 0 Ω 2d = the zero-valued image in R Ω 2d ), the radial sampling step δ r = δ B µ (if not provided, set δ r = 1). Outputs: a numerical estimate of a minimizer v λ of J 2d λ over C.

Core of the module:

// precompute A * s 2d and the kernel φ, initialize other variables Astar s ← A * s 2d // using Algorithm 2 with δ r as optional input phi ← φ // using [START_REF] Swartz | Advances in probes and methods for clinical EPR oximetry[END_REF] 

with δ = δ r • N B
M and a NFFT algorithm like [START_REF] Keiner | Using NFFT 3-A Software Library for Various Nonequispaced Fast Fourier Transforms[END_REF] dft phi ← DFT(phi) // using the FFT Algoritm [START_REF] Frigo | The design and implementation of FFTW3[END_REF] 

] L ′ f ← max (α,β)∈Υ 2d |dft phi(α, β)| τ ← 1/(2L ′ f ) σ ← L ′ f /(8λ 2 ) (v, v, v prev) ← (v 0 , v 0 , v 0 ) p ← (0 Ω 2d , 0 Ω 2d ) //
p ← Π B 2d (p + σλ∇ 2d v) // using (36) v ← v -τ • (gradf v -λ div 2d (p)) // using (68) if C = R Ω 2d + then v ← max (0 Ω 2d , v) // projection into C by taking the positive part v ← 2v -v prev v prev ← v return the 2D discrete image v // sampling step (or pixel size) is δ = δ r • N B M (same unit as δ r ) ∇ 3d y u(k, ℓ, m) = u(k, ℓ + 1, m) -u(k, ℓ, m) if (k, ℓ + 1, m) ∈ Ω 3d 0 otherwise; ∇ 3d z u(k, ℓ, m) = u(k, ℓ, m + 1) -u(k, ℓ, m) if (k, ℓ, m + 1) ∈ Ω 3d 0 otherwise.
We denote by div 3d = -∇ * 3d the opposite adjoint of ∇ 3d (see Appendix C) and

f ′ : u → 1 2 ∥Bu-s 3d ∥ 2 2
the data fidelity term involved in [START_REF] Vogel | Iterative methods for total variation denoising[END_REF]. The Euclidean non-ergodic non-linear primal-dual algorithm proposed in [START_REF] Chambolle | On the ergodic convergence rates of a first-order primal-dual algorithm[END_REF] yields the following resolvant scheme for [START_REF] Vogel | Iterative methods for total variation denoising[END_REF]. Given

u 0 ∈ R Ω 3d , p 0 ∈ R Ω 3d ×R Ω 3d ×R Ω 3d
and two positive parameters (τ, σ), set u 0 = u 0 and iterate for n ≥ 0

       p n+1 = Π B 3d (p n + σλ∇ 3d u n ) , u n+1 = Π C ′ u n -τ ∇f ′ (u n ) -λ div 3d (p n+1 ) , u n+1 = 2 u n+1 -u n , (42a) (42b) (42c) 
denoting by Π C ′ the orthogonal projection into C ′ and Π B ′ the orthogonal projection into the dual ball

B 3d := {p ∈ R Ω 3d × R Ω 3d × R Ω 3d , ∀(k, ℓ, m) ∈ Ω 3d , ∥p(k, ℓ, m)∥ 2 ≤ 1}, i.e., ∀p 0 ∈ R Ω 3d × R Ω 3d × R Ω 3d , ∀(k, ℓ, m) ∈ Ω 3d , Π B 3d (p 0 )(k, ℓ, m) = p 0 (k, ℓ, m) max (1, ∥p 0 (k, ℓ, m)∥ 2 )
.

The gradient ∇f ′ of the data-fidelity term f ′ involved in (42b) satisfies

∀u ∈ R Ω 3d , ∇f ′ (u) = B * Bu -B * s 3d . (44) 
The constant term B * s 3d can be computed once using Algorithm 4 and used along all the iterations of the scheme [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] as it keeps unchanged. The terms B * Bu n involved in (42b) through the term ∇f ′ (u n ) can be efficiently computed using a circular convolution as we can show that

∀u ∈ R Ω 3d , ∀(k, ℓ, m) ∈ Ω 3d , B * Bu(k, ℓ, m) = (ψ ⊛ Zu) (k, ℓ, m) , (45) 
where ψ and Zu are the discrete signals defined over the augmented domain Υ 3d :=

I 2M × I 2M × I 2M by ∀(k, ℓ, m) ∈ Υ 3d , Zu(k, ℓ, m) = u(k, ℓ, m) if (k, ℓ, m) ∈ Ω 3d 0 otherwise (46) and ψ(k, ℓ, m) = δ 6 N B • α∈Z |α|<M/2 p∈{1,2,...,N θ } q∈{1,2,...,Nφ} w(α) • e 2iπ(k α m cos θp sin φq+ℓ α M sin θp sin φq+m α M cos φq) . ( 47 
) denoting w(α) = DFT(h d X )(α) • DFT(h d X )(α). Last, using the upper-bounds |||∇ 3d ||| ≤ √ 12 and |||B * B||| ≤ L ′ f ′ := ∥DFT(ψ)∥ ∞ , the convergence of the scheme (42) is ensured for τ = 1/(2L ′ f ′ ) and σ = L ′ f ′ /(12λ 2 ).
Finally, the reconstruction of a 3D image u λ from the 3D sinogram s 3d can be done using Algorithm 6.

Extension to Huber Total Variation Regularization

A classical issue encountered with the minimization of TV regularized energies like J 2d λ (see [START_REF] Osher | An iterative regularization method for total variation-based image restoration[END_REF]) or J 3d λ (see [START_REF] Vogel | Iterative methods for total variation denoising[END_REF]) is the so called staircasing artifact which corresponds to the creation of piecewise constant regions with artificial boundaries in the reconstructed image. The latter is due to the excessive promotion of piecewise constant images by the TV regularity term in the minimization process. The staircasing issue has been reported and addressed in many different ways in the literature. A popular strategy consists in introducing in the energy to minimize some higher order terms [START_REF] Chambolle | Image recovery via total variation minimization and related problems[END_REF][START_REF] Bredies | Total generalized variation[END_REF], or texture promoting terms based on wavelets or curvelets [START_REF] Meyer | Wavelets and Operators[END_REF][START_REF] Durand | Electron paramagnetic resonance image reconstruction with total variation and curvelets regularization[END_REF]. A quite elegant (but computationally expensive) strategy to avoid staircasing was proposed in [START_REF] Louchet | Total variation denoising using posterior expectation[END_REF][START_REF] Louchet | Posterior expectation of the total variation model: Properties and experiments[END_REF] and is based on the computation is defined as

HTV α (v) = (k,ℓ)∈Ω 2d H 2d α (∇ 2d v(k, ℓ)) , (48) 
where α ≥ 0 is a smoothing parameter and H 2d α : R 2 → R is the two-dimensional Huber function defined by

∀z ∈ R 2 , H 2d α (z) = ∥z∥ 2 2 2α if ∥z∥ 2 < α ∥z∥ 2 -α 2 otherwise. ( 49 
)
Function H 2d α corresponds to a smooth approximation of the ℓ 2 norm in R 2 (more precisely, to the Moreau-Yoshida envelope with parameter α of the ℓ 2 norm). Notice that for α = 0, (49) yields H 0 = ∥ • ∥ 2 , and thus, HTV 0 = TV. When α > 0, we can simply handle the minimization of the Huber-TV regularized energy

J 2d λ,α : v → 1 2 ∥A(v) -s 2d ∥ 2 2 + λ HTV α (v) (50) 
using the numerical scheme [START_REF] Qiao | 3D pulse EPR imaging from sparse-view projections via constrained total variation minimization[END_REF] provided that we replace the dual update (35a) by

p n+1 = Π B 2d p n + σλ∇ 2d v n 1 + λασ . (51) 
Consequently, the minimization of J 2d λ,α can be done using Algorithm 5 provided that we replace the update

p ← Π B 2d (p + σλ∇ 2d v) by p ← Π B 2d p+σλ∇ 2d v 1+λασ
. The same extension can be done in the 3D framework by replacing the update p ← Π B 3d (p + σλ∇ 3d u) by p ← Π B 3d p+σλ∇ 3d u 1+λασ

in Algorithm 6. TV and Huber-TV image reconstruction models will be compared in Section 7.2.2.

Acquisition Process and Parameters Setting 6.1 Acquisition of the Reference Spectrum

An EPR experiment usually starts with the acquisition of the signal h d X defined in [START_REF] Louchet | Posterior expectation of the total variation model: Properties and experiments[END_REF]. This signal corresponds to the filtered and sampled reference spectrum of the specie X. It can be obtained (up to a multiplicative factor corresponding to the total amount Q X of substance X present in the cavity) by running an EPR acquisition in presence of the homogeneous magnetic field and without any field gradient (i.e., using µ = 0, as in the spectroscopy framework). The acquired signal can be renormalized afterward to get rid of the multiplicative factor Q X , but we will ignore this step as we do not focus on quantitative image reconstruction (e.g. concentration estimation) and it has no impact on the final image quality. The acquisition of the signal h d X requires from the operator to adjust the center field B cf , the sweep width B sw and the number of sampling points N B . For that purpose, the operator tunes the acquisition range B cf + -Bsw 2 , Bsw 2 so that all the signal of interest (i.e., all the rays of the reference spectrum) is captured, as displayed in Figure 4 (a). During the first acquisition attempts, the number of sampling points N B must be set large enough to capture the signal oscillations. At this step of the acquisition process, we recommend to the operator to set a voluntary too large value for N B (i.e., to perform an oversampled acquisition) as we will explain how this parameter can be tuned from h d X afterward. As mentioned earlier, during this adjustment step, care should be taken to ensure that once the field gradient is applied, the totality of the sample remains included in the FOV (recall that the FOV diameter is D fov = B sw /µ). Also, it must be noted that the acquired signal is corrupted by noise. In practice, several other parameters that we did not explicitly take into account in our model (such as, for instance, time integration parameters, We believe that offering to the user an accurate estimate of the optimal reconstruction size M from an oversampled spectrum acquisition like the one displayed in Figure 4 (a) is an important step forward regarding the optimization of the acquisition and reconstruction process. From the optimal value of M , the value of the radial sampling step δ r and the value of the field gradient intensity µ, the user is able to compute the value of the critical sampling step δ which can be roughly interpreted as the smallest detail size that we can hope to observe in the reconstructed image and which is often a crucial information for the EPR imagist. Besides, knowing the optimal value for M is also helpful to avoid spending unnecessary large computation time in the reconstruction of an image with too large dimensions.

Tuning of the Regularity Parameter

The reconstruction of a 2D image using Algorithm 5 (respectively of a 3D image using Algorithm 6) requires the setting of the regularity parameter λ involved in the energy J 2d λ defined in (32) (respectively in the energy J 3d λ defined in [START_REF] Vogel | Iterative methods for total variation denoising[END_REF]). This parameter controls the relative importance of the least-squares data-fidelity term with respect to the TV regularity term in the energy minimization process. In general, the range of appropriate values for λ (that is, leading to satisfactory image reconstructions) strongly depends on the amounts of noise corrupting the data, but also on modeling errors, on the content of the (unknown) image to reconstruct, and also on more complex factors such as some user needs regarding the reconstruction. Therefore, deriving an automatic setting for this parameter is a complex task that we will not address here. However, we believe that the tuning of λ can be drastically eased provided that we apply an appropriate rescaling of the energy to minimize.

Let us focus first on the 2D setting. We assume that the polar angle grid (θ p ) 1≤p≤N θ associated to the 2D sinogram s 2d is regularly spaced with sampling step δ θ . This assumption is not mandatory but simplifies the discussion and corresponds to the classical acquisition setting using Bruker ® instruments. Then, instead of tuning λ, we suggest to set

λ = 10 5 λ ′ δ δ B δ θ , (54) 
and let to the user the task of tuning λ ′ . The reason for this choice is that, minimizing J 2d λ with λ satisfying (54) is equivalent to minimize the normalized energy J λ ′ defined by

∀v ∈ Ω 2d , J 2d λ ′ (v) = δ B δ θ 2 • 10 5 ∥Av -s 2d ∥ 2 2 + λ ′ δ TV(v), (55) 
where the normalized least-squares term δ B δ θ 2 ∥Av -s 2d ∥ 2 2 and the normalized regularity term δ TV(v) are less dependent on the sampling steps δ, δ B and δ θ than the unnormalized least-squares term 1 2 ∥Av -s 2d ∥ 2 2 and the unnormalized regularity term TV(v). Practically speaking, this means that an appropriate tuning of the normalized regularity parameter λ ′ can be used almost unchanged for reconstructions at different sampling steps δ from the same sinogram s 2d , or from a sinogram acquisition to another with different sampling steps δ B and δ θ . Notice that the multiplicative factor 10 5 in (54) has no physical meaning and was introduced to reduce the amplitude of the appropriate settings for λ ′ over our own EPR acquisitions.

In the 3D setting, we add the assumption that the azimuth angle grid (φ q ) 1≤q≤Nφ is regularly spaced with sampling step δ φ . Then, we set

λ = 10 8 λ ′ δ 2 δ B δ θ δ φ , (56) 
so that minimizing J 3d λ with λ satisfying (56) is equivalent to minimizing the normalized energy J 3d λ ′ defined by

∀u ∈ Ω 3d , J 3d λ ′ (u) = δ B δ θ δ φ 2 • 10 8 ∥Bu -s 3d ∥ 2 2 + λ ′ δ 2 TV(u) , (57) 
and provides the same practical advantages as those presented in the 2D setting in terms of invariance of the tuning of the normalized parameter λ ′ with respect to the sampling steps δ, δ B , δ θ and δ φ .

Huber Smoothing Parameter

Using the Huber TV image reconstruction model described in Section 5 requires the setting of the Huber-smoothing parameter α. As the λ parameter, α is unnormalized in the sense that its influence on the visual aspect of the reconstructed image strongly depends on the value of the spatial sampling step δ used for the reconstruction. Such dependence complicates the parameter tuning when reconstructions with different sampling steps must be done. To avoid this phenomenon, we introduce the rescaling

α = α ′ δ with α ′ ≥ 0, (58) 
letting to the user the task of setting the value of the normalized parameter α ′ . Combining the rescaling operations (54) and ( 58) in (50) provides, for a given choice of (λ ′ , α ′ ), images with similar dynamic and comparable visual aspect for a large range of values for the spatial sampling δ.

7 Experiments over Real EPR Data

EPR Acquisition Systems

In Figure 5, we display the pictures the two EPR spectrometers (and imaging systems) that we used to perform the acquisition of all the datasets studied in this section. In both instruments, the resonance cavity is surrounded by two large primary coils generating the homogeneous magnetic field inside the cavity. Secondary coils are placed in between the primary coils and are used to generate the magnetic field gradient needed for EPR imaging purpose. A microwave bridge is used to apply an electromagnetic wave to the sample and detect energy absorption caused by electron resonance. The spectrometer displayed in Figure 5 (a) is operated in X-Band, meaning that a microwave with frequency of roughly 10 GHz is applied to the sample, yielding a single electron resonance magnetic field characteristic value of around 3500 G. The EPR acquisition system displayed in Figure 5 (b) is operated in L-band, with a microwave around 1 GHz, leading to a characteristic resonance magnetic field of around 350 G. Due to dielectric losses, the penetration of the microwave in sample containing water is around 1 mm at X-Band and few cm at L-band. The L-band spectrometers are used for in vivo experiments and samples with large dimensions, while X-band ones are used for in vitro experiments in flat cells and capillary tubes.

2D Image Reconstruction of an Irradiated Phalanx

In this section, we focus on 2D image reconstruction of an irradiated distal phalanx (see Figure 6 (a)).

Irradiations generate paramagnetic damages of the bone lattice microarchitecture that can be observed using EPR imaging [START_REF] Khan | Clinical applications of in vivo EPR: rationale and initial results[END_REF][START_REF] Durand | Electron paramagnetic resonance image reconstruction with total variation and curvelets regularization[END_REF]. The spectrum displayed in Figure 4 (a) corresponds to a real X-band EPR acquisition obtained from this phalanx sample and a 2D sinogram acquisition is also displayed in Figure 6 (b). A non exhaustive list and values (or range of values) of the acquisition parameters that we used in our experiments is displayed in Table 1. The exact setting for the parameters µ, N B and δ r = Bsw µN B will be precised for each experiment. As regard the reconstruction We display some pictures of the X-band (a) and L-band (b) spectrometers hosted at LCBPT. In (a), the primary coils generating the homogeneous magnetic field are indicated with green arrows. Secondary coils (two pairs packaged together are indicated with blue arrows) can be used to apply a planar magnetic field gradient with intensity up to 175 G/cm in the cavity for EPR imaging purposes. As we shall see, such large field gradient intensity allows for high resolution image reconstruction. However, the space in between the primary coils is insufficient to stand the third pair of gradient coils needed to achieve non-planar 3D field gradient orientations. Therefore the X-band device (a) is restricted to 2D imaging. The L-band spectrometer (b) is equipped with three pairs of gradient coils and can be used for 3D EPR imaging acquisitions. However, the signal intensity in L-band spectrometer is a magnitude lower than the one in X-band system because the lower homogeneous magnetic field generated by its primary coils (up to only 0.05 T = 500 G) leads to lower separation of the energy levels of the single electrons. Besides, the field gradient intensity cannot be larger than 45 G/cm on this L-band instrument. In general, EPR images reconstructed from L-band acquisition are less resolved than those obtained with X-band.

parameters, we will provide for each experiment the value of the spatial sampling step δ and the value of the normalized regularity parameter λ ′ . The effective value of the (unnormalized) parameter λ can be obtained using (54) (with δ B expressed in Gauss unit, δ θ in radian unit and δ in millimeter unit). Notice that all images displayed in this section correspond to the positive part of those returned by Algorithm 5.

Setting of the TV Regularity Parameter

As a first dataset, we consider the spectrum displayed in Figure 4 (a) and the sinogram displayed in Figure 6 (b). This dataset was acquired using N B = 2000 samples per projection, a field gradient intensity µ = 168 G/cm and a radial sampling step δ r ≈ 21.4 µm. In Figure 7, we display the images reconstructed from this dataset for various values of normalized regularity parameter λ ′ . This experiments illustrates the benefits (and limits) of TV regularization in the image reconstruction process. 1: Main acquisition parameters used with the phalanx sample (X-band). We provide here the values (or range of values) of the acquisition parameters that we used to perform spectra and 2D sinogram acquisitions presented in this section. The first height parameters (µ, N B , δ r , B cf , B sw , δ B , N θ , δ θ ) were explicitly taken into account in the mathematical models described in this work. This is not the case for the remaining parameters although they are in practice important to the EPR spectroscopists. Their accurate tuning strongly impacts the measurements quality, and thus, indirectly, the overall image reconstruction. 

Huber-TV Based Image Reconstruction

We explained in Section 5 how Algorithm 5 could be extended to handle the minimization of the Huber-TV regularized energy (50). This model involves the tuning of another (normalized) parameter α ′ (see Section 6.5), and can be viewed as a generalization of (32) since both models are identical when α ′ = 0. In Figure 8, we used the same dataset as in Figure 7 to illustrate how the Huber smoothing parameter may impact the visual aspect of the reconstruction. This experiment illustrates that, for an appropriate setting of (λ ′ , α ′ ), the Huber-TV generalization of the image reconstruction model can lead to images with more natural aspect. However the improvements in terms of texture rendering also come with two main drawbacks. First, the setting α ′ > 0 yields more blurry images than the setting α ′ = 0. Second, the tuning of α ′ is dependent from that of λ ′ (and reciprocally), so that, in practice, the joint tuning of (λ ′ , α ′ ) is a more complicated task than the tuning of the single parameter λ ′ in the case α ′ = 0. Besides, the value of the field gradient intensity (µ = 168 G/cm) used for this dataset is close to the highest value allowed by the acquisition system. Most EPR acquisitions are done with smaller values of field gradient, leading to less detailed images where micro-texture rendering is not a relevant issue (this will be illustrated in Section 7.2.5). In practice, we believe that one would probably prefer to set α ′ = 0 rather than jointly tuning (λ ′ , α ′ ) for processing most EPR acquisitions.

Setting of the Reconstruction Resolution

As in the previous section, we consider the dataset made of the spectrum displayed in Figure 4 (a) and the sinogram displayed in Figure 6 (b), acquired using N B = 2000 samples per projections, a field gradient intensity µ = 168 G/cm and a radial sampling step δ r ≈ 21.4 µm. In Figure 9, we display images reconstructed from this dataset using Algorithm 5 with various settings of the image reconstruction size M , corresponding to various settings for the spatial sampling step δ = δ r N B M . This experiment illustrates that the optimal reconstruction size for this dataset is close to M = 500 (which corresponds to a spatial sampling step δ ≈ 85.6 µm), as predicted in Figure 4 (b) using the methodology presented in Section 6.3. In particular, it must be noted that image reconstruction using In experiment, we considered the extension Algorithm 5 presented in Section 5, which addresses image reconstruction using a Huber-TV regularized model. The latter relies on an additional parameter α = α ′ δ (see Section 6.5), with α ′ ≥ 0 that must be set by the user. The TV-regularized image reconstruction model corresponds to the setting α ′ = 0 (since HTV 0 = TV), and leads to the images displayed in Figure 7.

In the first row, we display the images obtained from the same dataset for λ ′ = 10 and several values of α ′ . The staircasing effect can be observed in (a), almost no difference can be observed in (b) while we can see in (c) that the setting α ′ = 0.02 yields a slightly more textured image. However, for α ′ ≥ 0.05, the Huber TV regularizer is not able to efficiently deal with the noise (see (d)). Better handling of the noise remains possible by increasing the value of λ ′ , as illustrated in the second row. This time, the setting α ′ ∈ {0.01, 0.02} allows to get rid of the strong staircasing effect observed in (e). For α ′ = 0.05 (see (h)), the large regularization weight (λ ′ = 100) avoids the noise amplification observed in (d) and yields a somehow more natural image than (a) or (e), but also a more blurry reconstruction. Notice that this dataset was acquired using a strong field gradient (µ = 168 G/cm) to allow for high resolution reconstruction of this highly textured phalanx sample. This makes the staircasing artifacts especially visible in the reconstruction. were used for the second one. We used Algorithm 5 to reconstruct an image with size M = 500 (and spatial sampling step δ ≈ 85.6 µm) from each dataset using λ ′ = 10 and α ′ = 0. Resulting images are displayed in (a) (first dataset) and (b) (second dataset). From Section 6.2, we expected two reconstructions with indiscernible quality. In practice, we observe that (b) seems slightly less detailed than (a) and exhibits a larger amounts of residual noise than (a). Possible explanations for this phenomenon are proposed in Figure 11. Nevertheless, the quality degradation observed in (b) compared to (a) remains moderate and the reduction (by a factor 4) of the acquisition time for the second dataset can be greatly appreciated in practice.

Influence of other Acquisition Parameters

In this section, we study how several acquisition parameters, such as the number of projections N θ , the magnetic field gradient intensity µ or the integration time constant τ c may impact the quality of the reconstruction.

In Figure 12, we compare reconstructions obtained from sinograms with various numbers of projections N θ . As expected, the diminution of the number of projections deteriorates the quality of the reconstruction. Interestingly enough, we can see that the characteristic size of the thin structures becomes significantly larger than 85.6 µm as N θ decreases. This illustrates that the estimate value δ = 85.6 µm obtained from the reference spectrum (common to all reconstructions displayed in Figure 12) is a lower bound on the actual details size that we can hope to observe in the reconstructed image. This lower bound may not be attained, in particular, when N θ is not large enough.

In Figure 13, we display reconstructions obtained from acquisitions with different integration time constant parameter τ c . This parameter impacts the acquisition time as well as the level of noise in the acquired signal. Decreasing τ c yields reduced acquisition time but also smaller SNR and, consequently, degraded image reconstructions (with degraded level of details). However, the τ c parameter does not only affect the SNR of the sinogram acquisition but also that of the reference spectrum acquisition. Consequently, it impacts the value of δ computed from the reference spectrum using the methodology described in Section 6.3. We observe that δ increases as τ c decreases and provides a realistic estimation of the smallest detail size that we can observe in the reconstructed image.

In Figure 14, we study the influence of the field gradient intensity µ on the reconstruction. This We display the reference spectra h d 1 and h d 2 associated to the two datasets considered in Figure 10. The spectrum h d 1 corresponds to the same acquisition as that displayed in Figure 4 (a) and was acquired using a sampling step δ B ≈ 0.36 G which is, according to Figure 4 (b), roughly four times below the estimated critical sampling step ν ≈ 1.4 G. Subsampling h d 1 with a factor four and resampling (using zero-padding Shannon interpolation) this subsampled signal yields the blue dotted line signal that almost perfectly fits with h d 1 samples. This confirms that an acquisition with δ B = 1.4 G contains as much information as h d 1 . However, running an acquisition using δ B = 1.4 G (and keeping all other acquisition parameters unchanged) yielded the signal h d 2 which significantly misfits with h d 1 . The most likely explanation for this phenomenon is that a signal attenuation due to filtering occurred during the acquisition of h d 2 (yielding orange circle samples with incorrect positions along the Y-axis of the graph). Another explanation could be that the sampling rate is too fast for the instrument, yielding inaccurate sampling positions (i.e. orange circle samples with incorrect positions along the X-axis of the graph). As a matter of fact, the setting N B = 500 yields an acquisition with reduced SNR compared to the setting N B = 2000 which explains the image degradation observed in Figure 10.

parameter strongly impacts the resolution since it is linked to the radial and spatial sampling steps through the relations δ r = δ B µ and δ = δ B µ • N B M . The field gradient parameter µ is not involved in the acquisition of the reference spectrum (which is always done without field gradient, or equivalently, using µ = 0). However, in Figure 14, by imposing the same FOV for all sinogram acquisitions, and since the FOV diameter satisfies D fov = Bsw µ , the sweep-width parameter B sw and the homogeneous magnetic field intensity sampling step δ B = Bsw N B were set differently for each dataset acquisition, leading to different estimated values for δ. As expected, we see in Figure 14 that the image resolution increases with µ. However, we can also remark that increasing µ yields reconstructions with larger amount of residual noise (especially visible in the image background). Increasing τ c jointly with µ could be a way to keep the noise level constant. However, setting arbitrary large field gradient intensity µ is not possible due to instrumental limitations (especially heating issues). Besides, for too large values of µ, the physical modeling described in Section 2 is not valid anymore. Therefore, increasing further the image resolution would involve important instrumental and modeling improvements.

Comparing EPR and CT-Scan Reconstructions

To conclude our experiments on the phalanx sample, we investigate in Figure 15 how far the structures that we reconstructed using Algorithm 5 are reliable. For that purpose, we performed a Computed Tomography Scan (CT-Scan) of the phalanx. A CT-Scan acquisition consists in rotating a X-rays beam around the sample and measuring, for different beam orientations, the X-rays attenuation. The latter is proportional to the density of matter from which the X-rays pass through, and can be used to reconstruct a 3D density image of the sample [START_REF] Kak | Principles of Computerized Tomographic Imaging[END_REF]. Since EPR is only sensitive to paramagnetic We processed each 2D sinogram using Algorithm 5 taking as reference spectrum that displayed in Figure 4 (a), and setting M = 500 (i.e., δ ≈ 85.6 µm) and λ ′ = 10. We can see that the image quality is severely impacted by the diminution of the number of projections. In (a), the phalanx shape is barely reconstructed, then, the level of details progressively increases with N θ . Since all datasets share the same reference spectrum from which we estimated δ ≈ 85.6 µm as optimal spatial sampling step, all reconstructions were done using this recommended setting for δ. In practice, we see that details with typical size at best equal to 0.2 mm can be recovered when N θ ≤ 38 so that the estimated value 85.6 µm only corresponds to a lower bound on the actual minimal size of the details that we can hope to reconstruct. The actual optimal value for δ depends on many parameters (N θ being one of that are not involved in the spectrum acquisition species, images from and are usually different and not easily comparable. However, in the particular case of irradiated bones, paramagnetic damages caused by irradiations are more likely to occur in high density areas, making the images reconstructed with both EPR and CT-Scan modalities surprisingly similar. 

Reconstruction of 3D Images

In this section, we focus on the reconstruction of 3D EPR images using Algorithm 6. Notice that all the phalanx 2D datasets studied in Section 7.2 were acquired with the X-band 2D EPR acquisition system presented in Figure 5 (a). For 3D EPR imaging purpose, the L-band EPR imager presented in Figure 5 (b) can be used. As mentioned earlier, this L-band EPR imager is able to provide field gradient intensities up to 45 G/cm. With such setting, we cannot hope achieving as detailed reconstructions as those obtained at X-band over the phalanx sample, making the 3D study of the phalanx not so relevant anymore. In this section, we will illustrate the ability of Algorithm 6 to perform 3D EPR image reconstruction using two different samples, one made of capillary tubes filled with TAM and the second made of a fusillo pasta soaked with 4OH-TEMPO.

Capillary Tubes Filled with TAM

We filled some capillary tubes with an aqueous TAM solution with concentration 1 millimolaire (1 mM = 10 -3 mol.L -1 ). The tubes were sealed using wax sealed plate (Fischer scientific) and attached together using masking tape. Some pictures and 3D visualizations (obtained from CT-Scan) of the sample are displayed in Figure 16 and Figure 17.

We performed the acquisition of a dataset made of one reference spectrum and a 3D sinogram. This dataset was acquired in L-band (with a microwave around 1.10 GHz) using N B = 360 samples per projection, B sw = 45.6 G and B cf = 401.65 G, leading to δ B = Bsw N B ≈ 0.127 G for the sampling step of the homogeneous magnetic field. We used µ = 20 G/cm as field gradient intensity during the sinogram acquisition, leading to δ r = δ B µ ≈ 63 µm for the radial sampling step. The polar and 6) where badly sealed. Tube (1) was partially empty (around one third of the solution remained inside the tube thanks to the presence of an air bubble visible in Figure 16 (a)), and tube (6) was totally empty. We used Algorithm 6 to reconstruct a 3D image from the dataset displayed in Figure 18. An isosurface of the 3D reconstruction is displayed in Figure 19, where we can see the content of the tubes, in particular, the meniscus of the TAM solution in tube (3), the remaining amount of solution in tube while no paramagnetic signal is reconstructed in tube ( 6). Our reconstruction was done using MATLAB ® R2019b and a standard laptop operated under Ubuntu 19.10 and equipped with an Intel ® Core i7-7920HQ CPU (3.10 GHz × 4 cores) and 31.2 GB of RAM. The 3D image displayed in Figure 19 was reconstructed with a pixel sampling size δ = 100 µm (M = 228). Algorithm 6 was used to perform N = 1000 iterations of the scheme (42) and the latter was initialized using the zero-valued 3D image 0 Ω 3d . The reconstruction at such resolution lasted in almost one hour and involved the allocation of up to 25 GB of RAM. Note that most of the RAM usage was due to the computation of Υ 3d (which has size 2M × 2M × 2M and involves 3D NFFT computations). Once this kernel was computed, the amounts of RAM usage dropped to around 7 GB). Notice that a reconstruction with coarser scale, δ = 285 µm (M = 80), yields a less detailed but still acceptable reconstruction (with well separated tube contents) and involves less computational resources (up to 4 GB of RAM for the computation of Υ 3d and less than two minutes for a reconstruction using N = 1000 scheme iterations). to reconstruct a 3D image. An isosurface is displayed here under three different orientations. As expected, only the TAM solution present inside the tubes is reconstructed. We can observe that the solution meniscus inside tube (3) is nicely reconstructed. We can also observe that tube (1) is partially empty and tube ( 6) is totally empty. Indeed liquid leaks occurred during manipulations prior to acquisition (see details above).

Fusillo Soaked with TEMPO

A fusillo (Barilla) with helical shape was put into a 4 mM aqueous solution of 4OH-TEMPO for a night, then it was dried using paper and put inside the L-band EPR resonator. A 3D dataset was acquired, setting B sw = 132.5 G, B cf = 399. The integration time constant parameter τ c was set to 2.56 ms, leading to an acquisition time of N θ N φ N B τ c ≈ 20 minutes. The amplitude modulation was set to 0.6 G, the frequency modulation to 100 KHz, the microwave power to 20.05 mW with a power attenuation of 13 dB. A picture of the Fusillo sample as well as the reference spectrum and the 3D sinogram composing the EPR dataset are displayed in Figure 20.

In our numerical simulations, we observed that the initialization of the numerical scheme [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] by the zero-valued image 0 Ω 3d yielded very slow numerical convergence. This is probably due to the three-lines shape of the 4OH-TEMPO reference spectrum which makes the underlying deconvolution problem numerically difficult to address. In order to achieve a satisfactory 3D image reconstruction within a reasonable computational time, we adopted a multiscale reconstruction strategy to process this dataset. Algorithm 6 was run to achieve a very coarse scaled reconstruction, using M = 12 (δ ≈ 7.9 mm) and the zero-valued image as initial guess. The resulting image was upscaled (using cubic spline interpolation) to a finer scale (M = 24, δ ≈ 3.9 mm) and used as initializer to perform another reconstruction at this new scale. This process was repeated at scales M ∈ {12, 24, 50, 74, 100, 124, 150, 174, 200}, using 1000 to 5000 iterations depending on the scale, to achieve the final reconstruction displayed in Figure 21. In conclusion, the TV regularized least squares method presented in this article enables to properly reconstruct 2D and 3D EPR images. However, some avenues for improving its efficiency, as well as possible extensions, have not yet been exploited and will be the subjects of future works.

-First, the mathematical model can be refined. In particular, the filtering profile g δ of the acquisition system could be calibrated in order to fine-tune the a contrario estimate of the optimal sampling step.

-The main drawback of the TV prior is the well-known staircase effect. Huber-TV prior allows to remove it, but at the expense of a blurrier image. More sophisticated priors could be considered. However, an efficient way to remove this artifact is to estimate the posterior expectation of the TV model instead of maximizing the posterior probability. When introduced in [START_REF] Louchet | Total variation denoising using posterior expectation[END_REF], this method was implemented in a computationally expensive algorithm, but later on, a very fast algorithm was proposed for image denoising only [START_REF] Louchet | Total variation denoising using iterated conditional expectation[END_REF]. An extension of this algorithm to EPR imaging would be very useful.

-Another well-known drawback of TV-regularized least squares is a bias in grey level values of restored images. The latter becomes a concern when trying to accurately quantify the concentration of paramagnetic species. A series of methods have been proposed to correct this bias in line with [START_REF] Osher | An iterative regularization method for total variation-based image restoration[END_REF] and could be applied to EPR imaging.

-At last, a slight change in the model allows to deal with cases where several paramagnetic species are present in the cavity. Recently conducted experiments have led to encouraging results and are the purpose of a forthcoming article. (See [START_REF] Kerebel | Méthodes variationnelles pour l'imagerie en résonance paramagnétique électronique[END_REF] for preliminary results.)
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A Proof of Theorem 1

Let V ∈ L 1 (R 2 ), θ ∈ R and ξ ∈ R. ∀r ∈ R , R θ (V )(r) = R V (re θ + ρe ⊥ θ ) dρ = R V (r cos θ -ρ sin θ, r sin θ + ρ cos θ) dρ .
Thus, taking the Fourier transform of R θ (V ) at the point ξ yields

F (R θ (V ))(ξ) = R R θ (V )(r) e irξ dr = R R
V (r cos θ -ρ sin θ, r sin θ + ρ cos θ) e -irξ dρ dr . (59)

Now, let us compute the Fourier transform of V at point (ξ cos θ, ξ sin θ). We have

F (V )(ξ cos θ, ξ sin θ) = R R
V (x, y) e -i(x cos θ+y sin θ)ξ dx dy . 

Using ( 71) and ( 72) into (70), we obtain

∀(k, ℓ) ∈ Ω 2d , A * Av(k, ℓ) = (k ′ ,ℓ ′ )∈Ω 2d v(k ′ , ℓ ′ ) φ(k -k ′ , ℓ -ℓ ′ ) , ( 73 
)
where φ is the kernel defined in (39) over the augmented domain Υ 2d = I 2M × I 2M . Now, let us consider the circular convolution between φ and Zv, φ ⊛ Zv = IDFT(DFT(φ) • DFT(Zv)). We have,

∀(k, ℓ) ∈ Υ 2d , (φ ⊛ Zv) (k, ℓ) = (k ′ ,ℓ ′ )∈Υ 2d Zv(k ′ , ℓ ′ ) φ per (k -k ′ , ℓ -ℓ ′ ) ,
where we have denoted by φ per the Υ 2d -periodical extension of φ to the domain Z 2 . Since Zv is zero outside from Ω 2d , we can restrict the latter sum to (k ′ , ℓ ′ ) ∈ Ω 2d , leading to

∀(k, ℓ) ∈ Υ 2d , (φ ⊛ Zv) (k, ℓ) = (k ′ ,ℓ ′ )∈Ω 2d Zv(k ′ , ℓ ′ ) φ per (k -k ′ , ℓ -ℓ ′ ) .
Besides, when (k, ℓ) lies in Ω 2d , then, for all (k ′ , ℓ ′ ) ∈ Ω 2d , we have (k -k ′ , ℓ -ℓ ′ ) ∈ Υ 2d , and thus, φ per (k -k ′ , ℓ -ℓ ′ ) = φ(k -k ′ , ℓ -ℓ ′ ). Therefore, we have

∀(k, ℓ) ∈ Ω 2d , (φ ⊛ Zv) (k, ℓ) = (k ′ ,ℓ ′ )∈Ω 2d Zv(k ′ , ℓ ′ ) φ(k -k ′ , ℓ -ℓ ′ ) ,
which corresponds to (73), showing that the restriction of φ ⊛ Zv to Ω 2d is equal to A * Av, as announced.

E A Contrario Detection of Frequency Support

Assuming an additive Gaussian noise model for the reference spectrum acquisition, we have

∀k ∈ I N B , h d X (k) = h d X (k) + ε(k) , (74) 
where h d X represents the noise-free reference spectrum and (ε(k)) k∈I N B are independent and identically distributed realizations of a Gaussian random variable with zero mean and variance σ 2 . When the value of σ is unknown, it can be empirically estimated from the values of h d X near the boundaries of I N B . In oversampling situations, i.e., when N B > M , the DFT coefficients DFT(h d X )(α) vanish for M/2 < |α| ≤ N B /2. Due to the presence of the noise in (74), this is not the case for the DFT coefficients of the observed spectrum h d X . In order to estimate the value of M from h d X , we propose to use the a contrario methodology [START_REF] Desolneux | From Gestalt Theory to Image Analysis. A Probabilistic Approach[END_REF]. The latter is based on the Helmoltz principle for visual perception which states that perceived structures are those that are unlikely to happen by chance in a random configuration. The a contrario methodology can be viewed as a mathematical formulation of this principle and consists in the design of detectors based on a rejection principle of randomness. An a contrario detector relies on two main ingredients: (i) a random model H 0 describing pure noise data in which no structure must be found, (ii) a measurement function that highlight structures that are unlikely to happen by chance in H 0 . In the present case, pure noise measurements correspond to signals h d X obtained when h d X ≡ 0 in (74). We define the H 0 model exactly in this way.

F Using the Companion Online Demo

An online demonstrator for 2D EPR image reconstruction is provided with this article. The latter can be used to apply Algorithm 5 to several example EPR datasets containing a reference spectrum and a 2D sinogram (see Figure 22), or to custom datasets provided by the user in Bruker BES3T format (through the upload data button visible in Figure 22). The setting of the reconstruction parameters through the demonstrator interface is detailed in Figure 23. More advanced operations (such as the optimal tuning of the resolution and the number of samples to acquire) as well as computationally intensive reconstruction tasks (such as 3D EPR image reconstruction using Algorithm 6) are not covered by this demonstrator but can be achieved using the (documented) source code published with this work. where ⌈x⌉ denotes the upper integer part of x. This ensures that M is a nonzero even integer (which is a requirement for the NFFT library [START_REF] Keiner | Using NFFT 3-A Software Library for Various Nonequispaced Fast Fourier Transforms[END_REF] upon which our implementation relies on). We recall that the spatial sampling step (or pixel size) of the image to be computed is δ = δ B µ • N B M , where µ denotes the field gradient intensity and δ B denotes the sampling step of the homogeneous magnetic field used to acquire the dataset. The value of the pixel size δ is systematically printed out (see the Information section of the demonstrator interface) after the reconstruction.

(b) This slider can be used to set the value of the normalized regularity parameter λ ′ . Then, (54) is used to compute the value of the λ input of Algorithm 5. The effect of this parameter on the reconstructed image is illustrated in Section 7.2.1.

(c) We explained in Section 5 how Algorithm 5 could be extended to handle the minimization of the Huber TV regularized energy (50). This slider can be used to set the value of the normalized Huber smoothing parameter α ′ . Then, (58) is used to compute the value of the Huber smoothing parameter α involved in (50). The effect of the Huber smoothing parameter on the reconstructed image is illustrated in Section 7.2.2. Notice that, when α ′ = 0 (which is the default setting), the more classical TV regularized least-squares problem [START_REF] Osher | An iterative regularization method for total variation-based image restoration[END_REF] is addressed rather than its Huber variant.

(d) This slider can be used to set the value of the number N of iterations to perform in Algorithm 5.

(e) In some situations, the acquired reference spectrum and the projections (in the acquired sinogram) can be corrupted by an affine offset leading to non-horizontal baseline. This affine baseline usually causes undesirable low frequency artifacts in the reconstruction. When this checkbox is enabled, affine regression is used to estimate the slope and the offset of the affine baseline from the reference spectrum (see Figure 24). Then, the estimated affine baseline is subtracted to h d The blue curve (a) represents a spectrum acquisition with shifted baseline. Affine least-squares regression was applied to the first and last 10% of the spectrum samples to estimate the baseline, leading to the orange curve (c). Subtracting the estimated baseline to the measured spectrum yields the corrected spectrum, displayed using a purple curve on the right-hand side of this figure.

(Figure 1 :

 1 Figure1: EPR spectra of TAM and 4OH-TEMPO. Left (a): measured EPR spectrum of a sample containing an aqueous solution of TAM. This paramagnetic component is dominated by carbon-12. Its spectrum is mainly made of one line (the central peak in (a)) with very short linewidth (0.2 G, as indicated in red in (a)). We can also resolve small lines due to the coupling with carbon-13 (see arrows in (a)), those lines have small amplitude due to the small natural abundance of 13C (around 1% of natural abundance). Right (b): measured EPR spectrum of a solid sample soaked with 4OH-TEMPO. This paramagnetic component is characteristic of the nitroxide class of radicals, its reference spectrum exhibits three main lines which are due to the coupling of the nitrogen-14 (14N) nuclear spin with the electronic spin. The three lines of 4OH-TEMPO molecules in fluid sample should have the same shape (same amplitude and linewidth). In practice, they exhibit important variation of shapes according to the rotation speed of the molecule within the sample. A fluid sample, allowing fast molecule rotation (with rotation period less than the nanosecond) leads to three identical lines, while slower rotation speed in solid samples (as here, with a rotation period close to the microsecond) leads to distorted lines with different shapes.

  (a) polar and azimuthal angles θ and φ (b) example of EPR sinogram

Figure 2 :

 2 Figure 2: Spherical coordinate system and example of EPR sinogram.We represent in (a) the polar and azimuthal angle (θ, φ) that we use to define the orientation of the field gradient (this orientation is represented by the blue unit vector e (θ,φ) ). By construction in (2), at any acquisition time t ≥ 0, the intensity of the magnetic field in the cavity is constant over any affine hyperplane orthogonal to e (θ,φ) and its value evolves linearly along the e (θ,φ) axis. We display in (b) an example of 3D sinogram acquired using our EPR imaging system.

  and u ⊛ v := IDFT (DFT(u) • DFT(v)) denotes the circular convolution between the two discrete signals u : I N B → R and v : I N B → R. Details about the approximation (26) are given in Appendix B. Given a sequence (θ p ) 1≤p≤N θ made of N θ polar angles in [0, π] and denoting ω 2d = I N B × {1, 2, . . . , N θ }, let us consider the 2D discrete sinogram s 2d : (m, p) ∈ ω 2d → S θp (B -m ). Thanks to (26) we have

  the sequence containing the N θ polar angles (θ p ) 1≤p≤N θ , and a positive integer M ≤ N B corresponding to the width (also equal to the height) of the output 2D discrete signal (with domain Ω 2d = I M × I M ). Optional input: the radial sampling step δ r = δ B µ (if not provided, set δ r = 1). Output: the 2D discrete signal A * s : Ω 2d → R . Core of the module: δ ← δ r • N B M // image sampling step (pixel size), same unit as δ r For all p ∈ {1, 2, . . . , N θ }, denote by s p the p-th column of s, i.e., the discrete signal defined by ∀m ∈ I N B , s p (m) = s(m, p) , and set w p : I N B → C the signal defined by

  main loop (iterations of the scheme (35)) for 1 ≤ n ≤ N do // compute ∇f (v) = A * Av -A * s 2d dft Zv ← DFT(Zv) // where Zv is obtained from v using (38) dft w ← dft phi • dft Zv // we have dft w = DFT(φ ⊛ Zv) AstarA v ← the restriction of IDFT(dft w) to Ω 2d gradf v ← AstarA v -Astar s // perform one scheme iteration

  (a) X-band EPR 2D imaging system (b) L-band EPR 2D and 3D imaging system

Figure 5 :

 5 Figure5: EPR spectrometers and imaging systems installed at Université Paris Cité. We display some pictures of the X-band (a) and L-band (b) spectrometers hosted at LCBPT. In (a), the primary coils generating the homogeneous magnetic field are indicated with green arrows. Secondary coils (two pairs packaged together are indicated with blue arrows) can be used to apply a planar magnetic field gradient with intensity up to 175 G/cm in the cavity for EPR imaging purposes. As we shall see, such large field gradient intensity allows for high resolution image reconstruction. However, the space in between the primary coils is insufficient to stand the third pair of gradient coils needed to achieve non-planar 3D field gradient orientations. Therefore the X-band device (a) is restricted to 2D imaging. The L-band spectrometer (b) is equipped with three pairs of gradient coils and can be used for 3D EPR imaging acquisitions. However, the signal intensity in L-band spectrometer is a magnitude lower than the one in X-band system because the lower homogeneous magnetic field generated by its primary coils (up to only 0.05 T = 500 G) leads to lower separation of the energy levels of the single electrons. Besides, the field gradient intensity cannot be larger than 45 G/cm on this L-band instrument. In general, EPR images reconstructed from L-band acquisition are less resolved than those obtained with X-band.

  (a) irradiated distal phalanx (b) example of measured 2D sinogram

Figure 6 :

 6 Figure 6: Irradiated phalanx and a 2D sinogram acquisition. We display (a) a picture of the distal phalanx and (b) a 2D sinogram acquisition obtained using N B = 2000 samples per projections, a field gradient intensity µ = 168 G/cm and a radial sampling step δ r = Bsw µN B ≈ 21.4 µm. A filtered and sampled reference spectrum (linewidth=3.8 G) associated to this 2D sinogram acquisition is displayed in Figure 4 (a).

Figure 7 :

 7 Figure 7: Setting of the regularity parameter. We used Algorithm 5 to process the spectrum and the sinogram displayed in Figure 4 (a) and Figure 6 (b) for various values of λ ′ . All reconstructions were made using M = 500 (which corresponds to a spatial sampling step δ = δ r N B M ≈ 85.6 µm and is the recommended setting for this dataset according to Section 6.3). One can see that the setting λ ′ = 1 (see (a)) yields an image with important residual noise due to a lack of regularization. Increasing λ ′ yields images with increasing regularity (see (b), (c), and (d)) but also involves a loss of details for too large values of λ . In the present experiment, setting λ ′ = 10 (see (b)) seems to achieve a correct tradeoff between image regularity and detail preservation.

Figure 8 :

 8 Figure 8: Huber-TV based image reconstruction.In experiment, we considered the extension Algorithm 5 presented in Section 5, which addresses image reconstruction using a Huber-TV regularized model. The latter relies on an additional parameter α = α ′ δ (see Section 6.5), with α ′ ≥ 0 that must be set by the user. The TV-regularized image reconstruction model corresponds to the setting α ′ = 0 (since HTV 0 = TV), and leads to the images displayed in Figure7.In the first row, we display the images obtained from the same dataset for λ ′ = 10 and several values of α ′ . The staircasing effect can be observed in (a), almost no difference can be observed in (b) while we can see in (c) that the setting α ′ = 0.02 yields a slightly more textured image. However, for α ′ ≥ 0.05, the Huber TV regularizer is not able to efficiently deal with the noise (see (d)). Better handling of the noise remains possible by increasing the value of λ ′ , as illustrated in the second row. This time, the setting α ′ ∈ {0.01, 0.02} allows to get rid of the strong staircasing effect observed in (e). For α ′ = 0.05 (see (h)), the large regularization weight (λ ′ = 100) avoids the noise amplification observed in (d) and yields a somehow more natural image than (a) or (e), but also a more blurry reconstruction. Notice that this dataset was acquired using a strong field gradient (µ = 168 G/cm) to allow for high resolution reconstruction of this highly textured phalanx sample. This makes the staircasing artifacts especially visible in the reconstruction.

Figure 10 :

 10 Figure 10: Optimization of the number of samples per projection. We considered two datasets, both acquired using µ = 168 G/cm and B sw = 719.44 G. The first dataset was acquired using N B = 2000 samples per projection (leading to δ r = Bsw µN B ≈ 21.4 µm) while N B = 500 samples per projection (δ r ≈ 85.6 µm) were used for the second one. We used Algorithm 5 to reconstruct an image with size M = 500 (and spatial sampling step δ ≈ 85.6 µm) from each dataset using λ ′ = 10 and α ′ = 0. Resulting images are displayed in (a) (first dataset) and (b) (second dataset). From Section 6.2, we expected two reconstructions with indiscernible quality. In practice, we observe that (b) seems slightly less detailed than (a) and exhibits a larger amounts of residual noise than (a). Possible explanations for this phenomenon are proposed in Figure 11. Nevertheless, the quality degradation observed in (b) compared to (a) remains moderate and the reduction (by a factor 4) of the acquisition time for the second dataset can be greatly appreciated in practice.

Figure 11 :

 11 Figure 11: Reference spectrum acquisitions with different sampling steps. We display the reference spectra h d 1 and h d 2 associated to the two datasets considered in Figure10. The spectrum h d 1 corresponds to the same acquisition as that displayed in Figure4(a) and was acquired using a sampling step δ B ≈ 0.36 G which is, according to Figure4 (b), roughly four times below the estimated critical sampling step ν ≈ 1.4 G. Subsampling h d 1 with a factor four and resampling (using zero-padding Shannon interpolation) this subsampled signal yields the blue dotted line signal that almost perfectly fits with h d 1 samples. This confirms that an acquisition with δ B = 1.4 G contains as much information as h d 1 . However, running an acquisition using δ B = 1.4 G (and keeping all other acquisition parameters unchanged) yielded the signal h d 2 which significantly misfits with h d 1 . The most likely explanation for this phenomenon is that a signal attenuation due to filtering occurred during the acquisition of h d 2 (yielding orange circle samples with incorrect positions along the Y-axis of the graph). Another explanation could be that the sampling rate is too fast for the instrument, yielding inaccurate sampling positions (i.e. orange circle samples with incorrect positions along the X-axis of the graph). As a matter of fact, the setting N B = 500 yields an acquisition with reduced SNR compared to the setting N B = 2000 which explains the image degradation observed in Figure10.

Figure 12 :

 12 Figure 12: Influence of the number of projections. In this experiment, we used the sinogram s 2d made of N θ = 113 projections displayed in Figure 6 (b). By removing one out of k columns (for k ∈ {1, 2, 3, 4, 5, 6, 9, 12}) from s 2d , we generate sinogram acquisitions with lower number of projections (and associated angular sampling step δ θ ≈ 1.6 k degrees).We processed each 2D sinogram using Algorithm 5 taking as reference spectrum that displayed in Figure4 (a), and setting M = 500 (i.e., δ ≈ 85.6 µm) and λ ′ = 10. We can see that the image quality is severely impacted by the diminution of the number of projections. In (a), the phalanx shape is barely reconstructed, then, the level of details progressively increases with N θ . Since all datasets share the same reference spectrum from which we estimated δ ≈ 85.6 µm as optimal spatial sampling step, all reconstructions were done using this recommended setting for δ. In practice, we see that details with typical size at best equal to 0.2 mm can be recovered when N θ ≤ 38 so that the estimated value 85.6 µm only corresponds to a lower bound on the actual minimal size of the details that we can hope to reconstruct. The actual optimal value for δ depends on many parameters (N θ being one of that are not involved in the spectrum acquisition

  (a) TV (λ ′ = 10) (b) Huber-TV (c) CT-Scan (λ ′ = 100, α ′ = 0.05)

Figure 15 :

 15 Figure 15: EPR and CT-Scan image reconstructions of the phalanx. We display in (a) and (b) two EPR reconstructions of the phalanx obtained using Algorithm 5. We also performed a micro-CT imaging of the phalanx sample using a Skyscan 1178 tomograph. The raw micro-CT images were processed using the Skyscan software suite (Nrecon, CTAn) to compute a 3D image with spatial sampling step δ ct = 59 µm. Rotating appropriately this 3D image and summing along the third axis yields the 2D image (c) that can be compared to the 2D EPR images (see the link between 3D and 2D in Section 2.3) displayed in (a) and (b). We can see that most of the structures present in (a) and (b) are also visible in (c). The absence of staircasing in (b) is also highly appreciable due to the large amount of texture in the phalanx sample, making the aspect of image (b) surprisingly close to that of the micro-CT image (c).

  (a) capillaries filled with TAM (b) 3D visualization (from CT-Scan)

Figure 16 :

 16 Figure16: Capillary tubes filled with TAM. We filled six tubes with a solution of TAM with concentration 1 mM. The tubes, numbered from one to six, and their internal diameters (d i ) 1≤i≤6 , are visible in (a) (left). The tubes were wrapped together using masking tape, as displayed in (a) (right). We performed a CT-Scan acquisition of the sample, leading to the reconstruction of a 3D image of the wrapped tubes. An isosurface of the 3D image is displayed in (b) under two different orientations, showing the tubes organization inside the masking tape (the latter being transparent to X-rays). Some slices of the 3D image are also displayed in Figure17, where we can visualize the TAM solution contained inside the tubes.

Figure 17 :

 17 Figure 17: Several slices extracted from the CT-Scan 3D image. We display three slices of the 3D image reconstructed from the CT-Scan acquisition (see also Figure 16 (b)). In those slice images, large pixel values are represented in dark and low pixel values are represented in white. Darkest areas corresponds to the walls of the tubes (that are the areas with highest matter density in the sample). The gray area inside the tubes corresponds to the TAM solution. Note that we can see the meniscus of the TAM solution inside tube (3) in the XZ (middle) and YZ (right) slices.

  (a) concatenation of 2D sinograms (b) close-up view of (a) (c) reference spectrum

Figure 18 :

 18 Figure 18: Reference spectrum and 3D sinogram of the capillary tubes filled with TAM. The 3D sinogram acquisition consisted in the acquisition of N φ = 94 2D sinograms, each containing N θ = 94 projections. We display in (a) the concatenation of all N θ N φ = 8836 projections, and a close-up view of a single 2D sinogram is displayed in (b). The reference spectrum acquired together with the 3D sinogram is displayed in (c). The whole acquisition process lasted in around 18 hours.

Figure 19 :

 19 Figure19: Reconstruction of 3D capillary tubes filled with TAM. Algorithm 6 was used with λ ′ = 2 (the value of the unnormalized parameter λ was computed using[START_REF] Johnson | Maximum entropy reconstruction methods in electron paramagnetic resonance imaging[END_REF]) and M = 228 (leading to the spatial sampling step δ = 100 µm) to reconstruct a 3D image. An isosurface is displayed here under three different orientations. As expected, only the TAM solution present inside the tubes is reconstructed. We can observe that the solution meniscus inside tube (3) is nicely reconstructed. We can also observe that tube (1) is partially empty and tube (6) is totally empty. Indeed liquid leaks occurred during manipulations prior to acquisition (see details above).

  7 G and N B = 500, leading to δ B = Bsw N B ≈ 0.265 G. The sinogram acquisition was done using µ = 14 G/cm, leading to the radial sampling step δ r = δ B µ ≈ 189 µm. The polar and azimuthal angles were discretized into N θ = N φ = 31 values regularly spaced in [0 • , 180 • ], leading to δ θ = δ φ = 5.806 • and a total of N θ × N φ = 961 acquired projections.

  (a) picture of the fusillo (b) acquired reference spectrum (c) concatenation of 2D sinograms

Figure 20 :

 20 Figure 20: Fusillo soaked with 4OH-TEMPO. We display in (a) a picture of the fusillo sample. The latter was soaked with a solution of 4OH-TEMPO with concentration 4 mM. The EPR dataset acquired over this sample is made of the reference spectrum displayed in (b) and the 3D sinogram displayed in (c) as a concatenation of 2D sinograms separated by the yellow dotted lines. The whole acquisition process lasted in around 20 minutes, which is rather fast for a 3D dataset. However, one can see that the acquired projections are corrupted with a large amount of noise.

Figure 21 :

 21 Figure 21: Reconstruction of 3D fusillo soaked with 4OH-TEMPO. We display an isosurface (from three different viewpoints) of the 3D image obtained using Algorihtm 6 over the fusillo dataset displayed in Figure 20. The reconstruction was done using λ ′ = 250 and M = 200 (leading to δ = 473.2 µm). Despite the noise corrupting the sinogram, we achieve the reconstruction of regular 3D image, where we can recognize the helical shape of the fusillo.

( 60 )

 60 Using the variable change r = x cos θ + y sin θ ρ = -x sin θ + y cos θ ⇔ x = r cos θ -ρ sin θ y = r sin θ + ρ cos θ and from[START_REF] Kerebel | Méthodes variationnelles pour l'imagerie en résonance paramagnétique électronique[END_REF] we haveDFT(R d θp v)(α) = (k ′ ,ℓ ′ )∈Ω 2d v(k ′ , ℓ ′ ) e -2iπ(k ′ α M cos θp+ℓ ′ α M sin θp) .

Figure 22 :

 22 Figure 22: Input datasets. Several example datasets are provided in the demonstrator. Those datasets are made of a reference spectrum h d X and a 2D sinogram s 2d . Custom datasets in Bruker BES3T format can also be considered using the Upload data button.

Figure 23 :

 23 Figure 23: Parameters setting. The Parameters section of the demonstrator interface contains sliders that can be used to (directly or indirectly) tune the values of the parameters of Algorithm 5. The effect of each slider is detailed below.

  (a) This slider can be used to set the reconstruction size M (in pixels) of the image to reconstruct as a percentage of the number of samples per projection (N B ) of the input sinogram s 2d . Denoting by p the entered slider value, we set M ′ = p 100 N B and M = max (2, M ′ -(M ′ mod 2))

X

  as well as to each projection of the sinogram s 2d before running the image reconstruction using Algorithm 5. (f) This slider is visible only when the checkbox (e) is enabled. It can be used to set the percentage of samples of the reference spectrum to be used to estimate the slope and the offset of the affine pattern. Denoting by p the value of the slider, we set n = max (1, ⌊p • N B ⌉) (denoting by ⌊x⌉ the rounded integer part of x) and select the n first samples and the n last samples observed in h d X to estimate the affine baseline.

Figure 24 :

 24 Figure24: Affine baseline correction. The blue curve (a) represents a spectrum acquisition with shifted baseline. Affine least-squares regression was applied to the first and last 10% of the spectrum samples to estimate the baseline, leading to the orange curve (c). Subtracting the estimated baseline to the measured spectrum yields the corrected spectrum, displayed using a purple curve on the right-hand side of this figure.

Table

  

	name	description	value (or range)	unit
	µ	field gradient intensity	42 ∼ 168	G/cm
	N B	number of samples per projection	500 ∼ 2000	-
	δ r	radial sampling step	21.4 ∼ 85.6	µm
	B cf	center field	3428.20	G
	B sw	sweep width	µ N B δ r • 10 -4	G
	δ B	homogeneous magnetic field intensity sampling step	Bsw N B	G
	N θ	number of projections	113	-
	δ θ	angular sampling step	1.6	degree
	τ c	time constant	163	ms
	-	conversion time	same as τ c	ms
	-	microwave frequency	9.56	GHz
	-	microwave power	9.99	mW
	-	power attenuation	33	dB
	-	amplitude modulation	3	G
	-	frequency modulation	100	kHz

Bruker, Xepr version 2.6b.36, 2009, https://www.bruker.com/de/products-and-solutions/mr/ epr-instruments/epr-research-instruments/xepr-software.html.

All coefficients A * s(k, ℓ) can be computed at once by evaluating the adjoint NDFT of the discrete signal (α, p) → w p (α) for {α ∈ Z , |α| < M/2 , 1 ≤ p ≤ N θ }, associating each sample w p (α) to the frequency node α M cos θ p , α M sin θ p . Such computation can be done efficiently using an adjoint NFFT algorithm such as that proposed in[START_REF] Keiner | Using NFFT 3-A Software Library for Various Nonequispaced Fast Fourier Transforms[END_REF].

instructions are included in the README.org file of the archive.

Algorithm 6: 3D discrete image reconstruction from a 3D discrete sinogram.

Inputs: a 3D discrete sinogram s 3d : I N B × {1, 2, . . . , N θ } × {1, 2, . . . , N φ } → R with size N B × N θ × N φ , the associated discrete spectrum h d X : I N B → R with size N B , the associated sequences containing the N θ polar angles (θ p ) 1≤p≤N θ and the N φ azimuthal angles (φ q ) 1≤q≤Nφ , a positive integer M ≤ N B corresponding to the desired width (also equal to the height and depth) for the output image (with domain Ω 3d = I M × I M × I M ), a regularity parameter λ > 0, and a number of iterations N ≥ 0 for the numerical scheme.

Optional inputs: a flag specifying whether we aim to minimize J 3d λ over the set C ′ = R Ω 3d (unconstrained minimization) or over the set C ′ = R Ω 3d + (nonnegativity constraint), an initial guess u 0 ∈ R Ω 3d for the looked for image (if not provided, use u 0 = 0 Ω 3d = the zero-valued image in R Ω 3d ), the radial sampling step δ r = δ B µ (if not provided, use δ r = 1). Outputs: a numerical estimate of a minimizer u λ of J 3d λ over C ′ . Core of the module: // precompute B * s 3d and the kernel ψ, initialize other variables Bstar s ← B * s 3d // using Algorithm 4 with δ r as optional input psi ← ψ // using (47) with δ = δ r • N B M and a NFFT algorithm like [START_REF] Keiner | Using NFFT 3-A Software Library for Various Nonequispaced Fast Fourier Transforms[END_REF] dft psi ← DFT(psi) // using the 3D FFT Algoritm [START_REF] Frigo | The design and implementation of FFTW3[END_REF] L ′ fprime ← max (α,β,γ)∈Υ 3d |dft psi(α, β, γ)| τ ← 1/(2L ′ fprime ) σ ← L ′ fprime /(12λ 2 ) (u, u, u prev) ← (u 0 , u 0 , u 0 ) p ← (0 Ω 3d , 0 Ω 3d , 0 Ω 3d ) // main loop (iterations of the scheme (42))

for 1 ≤ n ≤ N do // compute ∇f ′ (u) = B * Bv -B * s 3d dft Zu ← DFT(Zu) // where Zv is obtained from v using (46) dft w ← dft psi • dft Zu // we have dft w = DFT(ψ ⊛ Zu) BstarB u ← the restriction of IDFT(dft w) to Ω 3d gradfprime u ← BstarB u -Bstar s // perform one scheme iteration p ← Π B 3d (p + σλ∇ 3d u) // using (43) u ← u -τ • (gradfprime u -λ div 3d (p)) // using (69

of the posterior mean of a TV-based distribution. A very interesting and computationally efficient variant of this latter approach was also proposed in [START_REF] Louchet | Total variation denoising using iterated conditional expectation[END_REF] but remains, to this date, restricted to image denoising. In this section, we would like to briefly focus on a very simple variant of TV, called the Huber TV, which can be used to avoid staircasing and generate more natural images than those obtained with the classical TV [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. In the 2D framework, the Huber TV of a discrete image v ∈ R Ω 2d We can see that the amplitude of the DFT coefficients of h d X rapidly drop below the noise level so that we can consider that they vanish outside from the estimated DFT support delimited by the red dashed lines. The size of the estimated DFT support is M = 500 which represents a proportion of

4 of the total number of samples. This means that the signal h d X was oversampled with a factor four and that another acquisition of this signal with four times less samples (i.e., using δ B = Bsw M ≈ 1.44 G) should theoretically not cause any loss of relevant information compared to the oversampled acquisition (a).

amplitude and frequency modulation parameters, etc.) may strongly influence the signal to noise ratio (SNR) of the acquired signal h d X .

Optimal Number of Samples and Sinogram Acquisition

At this time of the acquisition process, we performed the acquisition of h d X with a voluntary too large number of samples N B . Although, in general, the acquisition of the spectrum h d X can be done in a reasonably short time despite the too large setting of N B , this is usually not the case for the upcoming sinogram acquisition. Indeed, with N B (and all other acquisition parameters) kept unchanged, the sinogram acquisition time roughly corresponds to the time necessary to acquire h d X multiplied by the number of projections (typically several tens to several hundred). As the acquisition time is often a limiting factor for EPR imaging applications, the setting of N B must be optimized before starting the sinogram acquisition. On the one hand, the number of sampling points N B must be set large enough to ensure that the sampling step δ B = B sw /N B is small enough to perform a correct sampling of the signal (more precisely δ B must be below the critical sampling step ν imposed by the acquisition system cut-band filtering g ν described in Section 2.4). On the other hand, N B must also be kept small enough to avoid too long acquisition time for the sinogram. Besides, too large values for N B yield a subcritical sampling step δ B < ν and correspond to oversampling situations where the acquired signal h d X does not contain more information than the signal acquired using δ B = ν (see Theorem (2)). Therefore, a somehow optimal setting for N B corresponds to the situation where δ B = ν, i.e.,

since δ = ν/µ (see Section 2.4). Finally we see that the optimal value for N B is simply equal to M (which is not surprising since M = N B corresponds to the critical sampling situation). However, with our EPR acquisition system, the actual value of ν used during the acquisition is unknown (we believe this is also the case for other EPR setups), so that we cannot directly compute the actual value of M . Thankfully, it can be estimated from the signal h d X (acquired with N B > M ). Indeed, thanks to [START_REF] Louchet | Posterior expectation of the total variation model: Properties and experiments[END_REF], in the Fourier domain, we have

we can estimate M (and thus ν) by finding the boundaries of the support of DFT(h d X ). In practice, due to the presence of noise corrupting the signal h d X , its DFT coefficients do not vanish. Therefore, we suggest to consider that the support of DFT(h d X ) corresponds to the positions α ∈ I N B such as DFT(h d X )(α) is significantly above the noise level, as illustrated in Figure 4 (b). This can be done by visual inspection of the signal |DFT(h d X )|, but we also provide an automatic frequency support detection algorithm for that purpose. The latter is based on the a contrario methodology [START_REF] Desolneux | From Gestalt Theory to Image Analysis. A Probabilistic Approach[END_REF] and is described in Appendix E. Once M is known, we can set N B = M and run the sinogram acquisition. Notice that since the estimated value of M is dependent from the noise level, it is important to keep the same noise level as for h d X during the sinogram acquisition (i.e., except for the number of samples, all the acquisition parameters must be kept unchanged). Regarding the filtered reference spectrum h d X , it can be acquired again with N B = M , or computed from the oversampled acquisition by means of a frequency cutoff.

Optimal Resolution for the Image Reconstruction

The value of M corresponds to the number of pixels along each direction of the discrete images v X (in the 2D setting) and u X (in the 3D setting) obtained by sampling the bandlimited V X and U X over the FOV domain using the critical sampling step δ. The value of the critical sampling step δ can be easily derived from M using (52), or equivalently, using

as we already mentioned before. As we will check experimentally, there is no valuable reason for computing an image with spatial sampling step δ ′ < δ since such image cannot contain more details than the critically sampled one. On the contrary, computing an image with spatial sampling step δ ′ > δ yields in general a less detailed image than the critically sampled one. In practice, in Algorithm 5 and Algorithm 6, we let to the user the ability to select the image reconstruction size M ′ (and thus the image sampling step δ ′ = δ r N B M ′ ) for the following reasons: (i) Most of our EPR acquisitions were done in oversampled situations (with oversampling factor up to 4, as in Figure 4), leaving door for the setting of a reconstruction size M ′ > M . We want to be able to deal with such oversampled acquisitions and check that the reconstruction of an image with sampling step δ ′ < δ does not yield a better level of details compared to the image obtained using M ′ = M (and sampling step δ ′ = δ).

(ii) On the contrary, setting an image reconstruction size M ′ < M amounts to select a sub-optimal sampling step δ ′ > δ which may lead to a degraded level of details for the computed image. However, such situation also yields a faster reconstruction, leaving door for efficient multiscale image reconstruction schemes. In practice, the fast reconstruction of a coarse scaled image is helpful to tune the regularity parameter λ before refining the processing at finer scales.

(iii) The actual optimal level of details that we can obtain in the reconstructed image actually depends on other acquisition parameters (such as the number of projections) that are not taken into account here. Thus, the reconstruction size M corresponds in practice to an upper bound of the actual optimal reconstruction size.

M > 500 is computationally expensive and does not lead to a more detailed reconstruction at the end of the process. Note also that the reconstructions with different sizes and sampling steps displayed in Figure 9 were obtained using the common setting λ ′ = 10 for the normalized regularity parameter leading to images with very similar dynamics and SNR. In practice, and as announced in Section 6.4, this means that the user can tune the value of λ ′ at a coarse resolution scale (taking benefit from fast computations) before performing the reconstruction of an image with resolution keeping λ ′ unchanged. 

Tuning of the Number of Samples for the Sinogram Acquisition

In Section 6.2, we claimed that the value of M estimated from the oversampled spectrum acquisition also corresponds to the optimal value for N B (the number of samples per projection). Typically, the acquisition of the sinogram with N B = 2000 samples per projection displayed in Figure 6 (b) lasted in around 11 hours. Running the acquisition with N B = 500 instead of N B = 2000 and keeping all the other acquisition parameters unchanged yields a four time faster acquisition (≈ 2.75 hours). In Figure 10, we put this claim to the test and show that, although we did not expect a sinogram acquisition made with N B > 500 samples per projection to contain more relevant information than a fast acquisition done using N B = M = 500 samples per projection, in practice, a slight degradation is observed in the reconstruction obtained from the fast acquisition. Possible explanations for this phenomenon are proposed in Figure 11. Fortunately enough, the image degradation observed in the image reconstructed from the fast sinogram acquisition seems quite moderate and we believe that the fast acquisition remains competitive regarding the reduction of the acquisition time (by a factor 4) that it offers. We see that, as µ increases, the estimated value of δ decreases and the level of details increases in the reconstructed image. However, increasing µ (and keeping the integration time τ c unchanged) also yields more noise during the acquisition.

with unitary Jacobian determinant, (60) becomes

V (r cos θ -ρ sin θ, r sin θ + ρ cos θ) e -irξ dρ dr , which is equal to (59). 12), we have

B Details about Approximation (26)

and so as the Fourier transform of h (since for all ξ ∈ R, we have

) and that of s θ (thanks to (61)). Therefore, Theorem 2 yields

δr ] (ξ), taking the Fourier transform of s θ in (62) yields

Denoting s d θ : m ∈ I N B → s θ (mδ r ), by taking ξ ∈ 2πI N B /(N B δ r ) and neglecting the terms s θ (mδ r ) for m ̸ ∈ I N B in (63), we obtain the approximation

Proceeding similarly for h, and remarking that (27) yields h(mδ r ) = h d X (m) for all m ∈ I N B , we get

Besides, combining (20) with ( 24) and using δ r /δ = M/N B yields

Then, using the approximations (64), ( 65) and (66) in (61) yields

Eventually, taking the IDFT of (67) and remarking that s d θ (m) = S θ (B -m ) for all m ∈ I N B leads exactly to [START_REF] Louchet | Total variation denoising using posterior expectation[END_REF].

C Discrete Divergence Operator

In the 2D setting, the discrete divergence operator div 2d = -∇ * 2d satisfies

where, for all (k, ℓ)

denoting by ⌊x⌋ the lower integer part of x. Similarly, in the 3D setting, the discrete divergence

where, for all (k, ℓ, m)

D Proof of Proposition 1

Let v ∈ R Ω 2d . For all p ∈ {1, 2, . . . , N θ }, let us denote by A p v :

Then, from [START_REF] Mchaourab | Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics[END_REF], for all (k, ℓ) ∈ Ω 2d , we have

Besides, for any α ∈ Z such as |α| < M/2, we have

Definition 3 (H 0 model). We say that h d X : I N B → R follows H 0 , and we note h d X ∼ H 0 , if and only if {h d X (k)} k∈I N B is a family of independent random variables following a Gaussian distribution with zero-mean and variance σ 2 .

Now, let us design a measurement function able to highlight signals h d

X with frequency coefficients with significantly higher intensity than expected when h d X ∼ H 0 . Proposition 2 (measurement function and its distribution in H 0 ). Let h d X :

Then, when h d X ∼ H 0 , we have

where

denote respectively the complete and (upper) incomplete Gamma integrals.

Proof. Let h d X ∼ H 0 , and let

is made of independent Gaussian random variables with zero mean and satisfying

2 , and we have E (X α ) = σ 2 N B and E (Y 2 α ) = 0 when α ∈ 0, N B

2

). Therefore, the random variables 

and we say that the grouping made of the m first DFT coefficients of h d X is ε-meaningful when NFA(m) ≤ ε. Thanks to [16, Proposition 2], the NFA (78) satisfies the so-called NFA-property,

denoting by # the cardinality of the set in (79). The NFA property ensures that, when h d X ∼ H 0 , in average, we find less than ε groupings that are ε-meaningful. This means that, detecting ε-meaningful groupings by thresholding the NFA with threshold ε yields (in average) less than ε false detections when h d X is a pure noise following H 0 . This gives a tangible sense to the detection threshold ε which corresponds to the maximal number of (false) detections allowed in pure noise data. In particular, a common setting for this threshold parameter is ε = 1 so that, in average, at most one false detection is allowed in H 0 . In practice, we are interested in the detection of the most meaningful grouping (i.e., of the grouping with smallest NFA), m = argmin . Notice that the NFFT implementation [START_REF] Keiner | Using NFFT 3-A Software Library for Various Nonequispaced Fast Fourier Transforms[END_REF] is limited to signals with even dimensions, so that in practice, we set

denoting by ⌊•⌋ the lower integer part. Note also that some particular care must be taken to avoid underflow when evaluating NFA(m) using (78). Numerical underflow typically occurs when Z(m) is large and leads to NFA(m) = 0 in standard double precision. This may happen for many values of m and this is problematic to compute m using (80). Numerical underflow can be avoided using an appropriate normalization for the upper incomplete Gamma function [START_REF] Abergel | Algorithm 1006: Fast and accurate evaluation of a generalized incomplete gamma function[END_REF] (see also the scale optional parameter of the gammainc function in Matlab language) allowing its evaluation in logarithmic scale. Finally, the estimation of M is summarized in Algorithm 7.