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Abstract. We develop new algebraic tools to reason about concurrent behaviours modelled
as languages of Mazurkiewicz traces and asynchronous automata. These tools reflect the
distributed nature of traces and the underlying causality and concurrency between events,
and can be said to support true concurrency. They generalize the tools that have been so
efficient in understanding, classifying and reasoning about word languages. In particular,
we introduce an asynchronous version of the wreath product operation and we describe the
trace languages recognized by such products (the so-called asynchronous wreath product
principle). We then propose a decomposition result for recognizable trace languages,
analogous to the Krohn-Rhodes theorem, and we prove this decomposition result in the
special case of acyclic architectures. Finally, we introduce and analyze two distributed
automata-theoretic operations. One, the local cascade product, is a direct implementation of
the asynchronous wreath product operation. The other, global cascade sequences, although
conceptually and operationally similar to the local cascade product, translates to a more
complex asynchronous implementation which uses the gossip automaton of Mukund and
Sohoni. This leads to interesting applications to the characterization of trace languages
definable in first-order logic: they are accepted by a restricted local cascade product of the
gossip automaton and 2-state asynchronous reset automata, and also by a global cascade
sequence of 2-state asynchronous reset automata. Over distributed alphabets for which the
asynchronous Krohn-Rhodes theorem holds, a local cascade product of such automata is
sufficient and this, in turn, leads to the identification of a simple temporal logic which is
expressively complete for such alphabets.

Key words and phrases: Mazurkiewicz traces, asynchronous automata, wreath product, cascade product,
Krohn Rhodes decomposition theorem, local temporal logic over traces.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-18(2:22)2022
© B. Adsul, P. Gastin, S. Sarkar, and P. Weil
CC© Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-0292-6670
https://orcid.org/0000-0002-1313-7722
https://orcid.org/0000-0001-6989-6050
https://orcid.org/0000-0003-2039-5460
http://creativecommons.org/about/licenses


22:2 B. Adsul, P. Gastin, S. Sarkar, and P. Weil Vol. 18:2

1. Introduction

Algebraic automata theory, that is, the use of algebraic tools and notions such as monoids,
morphisms and varieties, has been very successful in classifying recognizable word languages,
from both the theoretical and the algorithmic points of view, offering structural descriptions
of, say, logically defined classes of languages and decision algorithms for membership in these
classes [Eil76, Str94, Pin19]. The purpose of this paper is to extend some of this approach to
the concurrent setting. We are particularly interested in decomposition results, in the spirit
of the Krohn-Rhodes theorem, and their applications to the study of first-order definable
trace languages.

Let us first specify our model of concurrency. Words represent sequential behaviours: a
sequence of letters models a sequence of events, occurring on a single process. In a concurrent
setting involving multiple processes, we work with the well established (Mazurkiewicz) traces
[Maz77, DR95]: a trace represents a concurrent behaviour as a labelled partial order which
captures the distribution of events across processes, as well as causality and concurrency
between them.

The notion of a recognizable trace language is also very well established: a set of traces
is recognizable if the set of all the words representing these traces is a regular language. A
key contribution, due to Zielonka, is the description of an automata-theoretic model for the
acceptance of recognizable trace languages, namely asynchronous automata [Zie87]. These
automata, with their local state sets (one for each process), are natural distributed devices,
which run on input traces in a distributed fashion, respecting the underlying causality and
concurrency between events. More precisely, when working on an event during a run on
an input trace, an asynchronous automaton updates only the local states of the processes
participating in that event; the other processes remain oblivious to the occurrence of this
event. Zielonka’s theorem states that every recognizable trace language is accepted by an
asynchronous automaton.

Early results seemed to indicate that the algebraic approach could be neatly transferred
to recognizable trace languages, with the monoid-theoretic definition of recognizability
matching the operational model of asynchronous automata (this is Zielonka’s theorem
mentioned above [Zie87]) and the characterization of star-free and first-order definable trace
languages (Guaiana et al. [GRS92], Ebinger and Muscholl [EM96]) in terms of aperiodic
monoids. Very few significant results in this direction emerged since, and especially no
strong Krohn-Rhodes like decomposition results1.

There are indeed deep, technical obstacles to this approach, which are discussed in some
detail in [Sar22, AGSW21]. Our first contribution is the introduction of better suited notions
of asynchronous transformation monoids, asynchronous morphisms and asynchronous wreath
products. Because these notions closely adhere to the distributed nature of traces, we obtain
important results, such as a so-called asynchronous wreath product principle, describing the
languages recognized by an asynchronous wreath product of asynchronous transformation
monoids. Moreover, just as (ordinary) transformation monoids model DFAs and their
wreath product models the cascade product of DFAs, our asynchronous wreath product
of asynchronous transformation monoids can be implemented as a local cascade product of
asynchronous automata. The local cascade product, in its purely automata-theoretic form,

1An exception may be Guaiana et al.’s [GMPW98], which gives a wreath product principle for traces.
This work however uses non-trace structures (structures that ignore the distributed nature of the alphabet)
to circumvent technical difficulties, thus limiting its relevance.
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appeared in Adsul and Sohoni [AS04, Ads04] in a characterization of first-order definable
trace languages in terms of asynchronous automata.

The next question is that of the possibility of a Krohn-Rhodes theorem in this setting.
The classical (sequential) Krohn-Rhodes theorem states that every morphism from the free
monoid Σ∗ to a transformation monoid is simulated (see Definition 3.1 for a formal definition
of simulation) by a morphism to the wreath product of particular simple transformation
monoids: copies of the 2-state reset transformation monoids and transformation groups
based on the simple groups dividing the given monoid of transformations. This has many
applications, in particular to the description of simple automata (cascade products of reset
automata) accepting all first-order definable languages, see [Str94].

The asynchronous analogue would state that any morphism from a trace monoid to
a transformation monoid is simulated by an asynchronous morphism to an asynchronous
wreath product of localized reset automata and transformation groups (where localization
means that all non-trivial actions take place on a single designated process). We cannot
conclude, at this stage, that every distributed alphabet has this property, which we call the
asynchronous Krohn-Rhodes property (aKR), but we identify a large class of alphabets for
which it holds, namely those where the communication graph between processes is acyclic.
The question is raised of which distributed alphabets have the aKR property.

Then we focus on first-order definable trace languages, which we know are the trace lan-
guages recognized by aperiodic transformation monoids [EM96]. Thus, over aKR distributed
alphabets (e.g., acyclic architectures), these languages are exactly those that are recognized
by an asynchronous wreath product of localized reset asynchronous transformation monoids
(or, equivalently, by a local cascade product of localized reset asynchronous automata). We
show that, over arbitrary distributed alphabets, the trace languages recognized by such
a product are exactly those which are definable in a natural local temporal logic using
‘process-based strict since’ operators as its only modalities. This logic, LocTL[Si], is closely
related to an expressively complete logic introduced by Diekert and Gastin [DG06]. Our
result implies that LocTL[Si] has the same expressive power as first-order logic over aKR
distributed alphabets.

Over arbitrary alphabets again, we show that all first-order definable languages are
accepted by a local cascade product of the gossip automaton (introduced by Mukund and
Sohoni [MS97]), followed by localized reset asynchronous automata.

We know from Adsul and Sohoni [AS04] that gossip asynchronous automata exhibit
non-aperiodic behaviour, which is contrary to what we expect when discussing first-order
definable languages. In order to avoid this situation, we introduce two new operations. One
is the restricted local cascade product with the gossip automaton, which exploits the constants
of an expressively complete logic called LocTL[Yi ≤ Yj ,Si], and strongly encapsulates the
non-aperiodic behaviour of the gossip automaton. We show that the first order definable
trace languages are exactly the trace languages accepted by a restricted cascade product of
the gossip automaton with a local cascade product of localized reset asynchronous automata,
thus adding a new characterization for this important class.

The second of these operations is the global cascade sequence of asynchronous automata.
Such a device is not properly an asynchronous automaton itself, but it composes, in a novel
way, the runs of the automata in the sequence to produce an acceptance mechanism. We
exploit another expressively complete extension of LocTL[Si] called LocTL[Yi, Si] to show that
the first order definable trace languages are exactly the trace languages accepted by global
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cascade sequences of localized reset asynchronous automata, yet another characterization of
this language class.

Independently of this characterization, we discuss how global cascade sequences can be
implemented by an asynchronous automaton, in the form of a restricted local cascade product
of the gossip automaton with the global-state detectors for the factors of the sequence.

Overview. Before we dive into the body of the paper, and for the benefit of readers already
fluent in the vocabulary of traces and asynchronous automata, it is worth discussing in a
little more detail some of the inner workings of these results, especially around the notions
of accepting vs. computing (or relabelling) devices, and of sequential or asynchronous
transducer.

The classical sequential transducer σA associated with a DFA A (or with a morphism
from a free monoid to a transformation monoid) maps each word w to a word of equal
length, obtained by replacing letter a in position i by the pair (a, q), where q is the state
reached after reading the length (i− 1) prefix of w (starting at the initial state of A). If we
see the automaton A not as an acceptor but as a computing device, outputting on every
transition the full information it has, i.e., the name of that transition (the pair composed of
the label and the source state of the transition), then σA(w) is the output of A on input
w. It is reasonable to view σA as the most general function computed by A. Moreover, the
cascade product of DFAs A and B can be described as the operation of A on an input word
w, followed by the operation of B on input σA(w). In particular, the sequential transducer
of the cascade product of A and B is the composition σB ◦ σA.

This idea of decorating each position in a word with information computed by an
automaton carries over nicely to the distributed setting: we can decorate every event in a
trace t with information computed by an asynchronous automaton A, thus viewing A as an
asynchronous computing device. However, the distinction between local and global states in
asynchronous automata leads to two distinct approaches, both discussed in this paper.

One relies on local information. More precisely, we define the asynchronous transducer
χA, which maps a trace t to a trace with the same underlying poset, where the label of an
event e, say a, is replaced with the pair (a, sa) as follows. If te is the prefix of t which consists
of all events strictly less than e (that is, the strict causal past of e), sa is the collection of
local states reached after reading te at all the processes which participate in a. Again, one
can see χA as the most general function computed by A when considering only the local
states. With this notion in hand, stating and proving the asynchronous wreath product
principle, which describes the languages recognized by an asynchronous wreath product of
asynchronous transformation monoids, while technically more demanding, proceeds along
the same lines as in the sequential case. Also, the local cascade product of asynchronous
automata A ◦` B can be viewed as the operation of A, running on trace t and outputting
trace χA(t), followed by automaton B running on χA(t). Here again, the asynchronous
transducer of the local cascade product A ◦` B is χB ◦ χA.

Global cascade sequences are defined in the same spirit, using global rather than local
state information. With the same notation as above, the global-state labelling function ζA
replaces the label a of event e with the pair (a, s) where s is the global state reached after
reading te. This is a different function that can be said to be globally computed by A, and
the definition of global cascade sequences corresponds exactly to the composition of these
global-state labelling functions.
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Both the asynchronous transducer and the global-state labelling function are asynchro-
nous computing devices but the latter carries more information. This is reflected in the
different ways these functions can be implemented. The composition of the asynchronous
transducers of (appropriately defined) asynchronous automata, as we explained, translates
directly to the local cascade product of these automata. In contrast, an additional ingredient
is required to implement a global cascade sequence by means of an asynchronous automaton,
that is, to make the global information carried by ζA known to local states. This ingredient
is the restricted cascade product with the gossip automaton.

Organization. We now briefly describe the organization of the paper. Section 2 summarizes
the necessary notions on distributed alphabets, traces, transformation monoids, recognizable
trace languages and asynchronous automata — including the statement of Zielonka’s theorem.

We begin Section 3 with a brief account of the wreath product operation on transforma-
tion monoids, the notion of simulation and the Krohn-Rhodes theorem. We introduce our
notions of asynchronous transformation monoids (Section 3.2) — directly in the spirit of
Zielonka’s asynchronous automata —, asynchronous morphisms (Section 3.3) and asynchro-
nous wreath products (Section 3.4). Asynchronous transducers are used in Section 3.5 to
state and prove the asynchronous wreath product principle (Theorem 3.24). The question of
the implementation of the asynchronous wreath product, in the form of the local cascade
product of asynchronous automata, is discussed in Section 3.6. Finally, in Section 3.7,
we formulate and briefly discuss the asynchronous Krohn-Rhodes property of distributed
alphabets.

Section 4 is entirely dedicated to the proof that the asynchronous Krohn-Rhodes property
holds for distributed alphabets over an acyclic architecture (Theorem 4.2). The next section
explores the applications of the notions of asynchronous wreath product and local cascade
product to the special case of first-order definable languages: the characterization of the
trace languages recognized by asynchronous wreath products of localized resets by LocTL[Si]
(Theorem 5.6), which therefore is expressively complete over aKR distributed alphabets
(Theorem 5.7); and the characterization of the first-order definable trace languages by means
of the restricted local cascade product of the gossip automaton with local cascade product
of localized asynchronous reset automata (Theorem 5.14). This characterization is obtained
using a new local temporal logic LocTL[Yi ≤ Yj ,Si] which is proved to be expressively
complete in Theorem 5.5.

The notions of global-state labelling function associated with an asynchronous automaton,
and of global cascade sequences as computing and accepting devices are introduced in
Section 6, where we prove the characterization of first-order definable languages in terms of
global cascade sequences of asynchronous localized reset automata (Theorem 6.12).

Section 7 completes the operational point of view on the latter results by presenting an
asynchronous implementation of global cascade sequences (Theorems 7.3 and 7.7). Finally,
Section 8 outlines an intriguing question left open by this work.

The results in this paper are an elaboration and an extension of those presented at
CONCUR 2020 [AGSW20]. Proofs of several key results e.g. Theorem 4.2, Theorem 5.6
and Theorem 6.12 are unavailable in the conference proceedings and are included here.
The complete Section 7 discussing implementation of a global cascade sequence as an
asynchronous automaton is a technical addition that is briefly alluded to in our conference
paper without details. Finally, Section 5 includes significant new technical contributions that
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originate from introducing temporal logic constants Yi ≤ Yj in the logic under consideration.
This leads to a new characterization of first-order definable trace languages in Theorem 5.14.

Acknowledgement. The collaboration between the authors was supported by IRL 2000,
ReLaX, CNRS.

2. Preliminaries

2.1. Basic notions in trace theory. Let P be a finite set of agents/processes. If P is
clear from the context, we use the simpler notation {Xi} to denote a P-indexed family
{Xi}i∈P .

A distributed alphabet over P is a family Σ̃ = {Σi}, where the Σi are non-empty finite
sets that may overlap one another. Let Σ =

⋃
i∈P Σi. The location function loc : Σ→ 2P is

defined by setting loc(a) = {i ∈P | a ∈ Σi}. Note that from Σ and loc, one can reconstruct
the distributed alphabet, and hence we also use the notation (Σ, loc) for distributed alphabet.
The corresponding trace alphabet is the pair (Σ, I), where I is the independence relation
I = {(a, b) ∈ Σ2 | loc(a) ∩ loc(b) = ∅} induced by (Σ, loc). The corresponding dependence
relation is D = Σ2 \ I.

A Σ-labelled poset is a structure t = (E,≤, λ) where E is a set, ≤ is a partial order
on E and λ : E → Σ is a labelling function. For e, e′ ∈ E, define e l e′ if and only if
e < e′ and for each e′′ with e ≤ e′′ ≤ e′ either e = e′′ or e′ = e′′. For X ⊆ E, let
↓X = {y ∈ E | y ≤ x for some x ∈ X}. For e ∈ E, we abbreviate ↓{e} by simply ↓e. We
also write ⇓e = ↓e \ {e} for the strict past of e.

A trace over (Σ, loc) is a finite Σ-labelled poset t = (E,≤, λ) such that

• If e, e′ ∈ E with el e′ then (λ(e), λ(e′)) ∈ D
• If e, e′ ∈ E with (λ(e), λ(e′)) ∈ D, then e ≤ e′ or e′ ≤ e

Let Tr(Σ, loc) denote the set of all traces over (Σ, loc); if loc is clear from the context,
we simply use the notation Tr(Σ). Henceforth a trace means a trace over (Σ, loc) unless
specified otherwise. Now we turn our attention to the important operation of concatenation
of traces. Let t = (E,≤, λ) ∈ Tr(Σ) and t′ = (E′,≤′, λ′) ∈ Tr(Σ). Without loss of generality,
we can assume E and E′ to be disjoint. We define tt′ ∈ Tr(Σ) to be the trace (E′′,≤′′, λ′′)
where

• E′′ = E ∪ E′,
• ≤′′ is the transitive closure of ≤ ∪≤′ ∪ {(e, e′) ∈ E × E′ | (λ(e), λ′(e′)) ∈ D},
• λ′′ : E′′ → Σ where λ′′(e) = λ(e) if e ∈ E; otherwise, λ′′(e) = λ′(e).

This operation, henceforth referred to as trace concatenation, gives Tr(Σ) a monoid
structure. A trace t′ is said to be a prefix of a trace t if there exists t′′ such that t = t′t′′.

Observe that, with a (resp. b) denoting the singleton trace whose only event is labelled
a (resp. b), if (a, b) ∈ I then ab = ba in Tr(Σ). A basic result in trace theory gives a
presentation of the trace monoid as a quotient of the free word monoid Σ∗ by the congruence
∼I ⊆ Σ∗ × Σ∗ generated by ab ∼I ba for (a, b) ∈ I. See [DR95] for more details.

Proposition 2.1. The canonical morphism from Σ∗ → Tr(Σ), sending a letter a ∈ Σ to
the trace a, factors through the quotient monoid Σ∗/∼I and induces an isomorphism from
Σ∗/∼I to the trace monoid Tr(Σ).
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Let t = (E,≤, λ) ∈ Tr(Σ). The elements of E are referred to as events in t and for an
event e in t, loc(e) abbreviates loc(λ(e)). Further, let i ∈ P. The set of i-events in t is
Ei = {e ∈ E | i ∈ loc(e)}. This is the set of events in which process i participates. It is clear
that Ei is totally ordered by ≤.

Note that, if we restrict the trace t to a downward-closed subset of events c = ↓c, we
get another trace (c,≤, λ) which is a prefix of t. In fact, every prefix of t arises this way,
and we often identify prefixes with downward-closed sets of events. Examples of prefixes are
defined by the empty set, E itself and, more importantly, ↓e or ⇓e, for every event e ∈ E.

2.2. Recognizable trace languages. A map from a set X to itself is called a transfor-
mation of X. The set F(X) of all such transformations forms a monoid under function
composition: fg = g ◦ f . A transformation monoid (or simply tm) is a pair T = (X,M)
where M is a submonoid of F(X). The tm (X,M) is called finite if X is finite.

Example 2.2. Let X = {1, 2} and let r1, r2 be the constant maps on X, mapping each
element to 1 and 2, respectively. Then M = {idX , r1, r2} is a monoid. We denote the tm
(X,M) by U2.

Example 2.3. Let M be a monoid. For each m ∈M , let tm be the transformation of M
defined by tm(x) = xm for all x ∈ M . The map m 7→ tm is an injective morphism from
M to F(M), allowing us to view M as a submonoid of F(M). We denote by (M,M) the
resulting tm.

Let N be a monoid and let T = (X,M) be a tm. By a morphism ϕ from N to T , we
mean a (monoid) morphism ϕ : N → M . We abuse the notation and also write this as
ϕ : N → T .

Remark 2.4. Morphisms from free word monoids to transformation monoids almost corre-
spond to deterministic and complete automata, the only difference being that an automaton
also includes an initial state and a set of final states. More precisely, let Σ be a finite alphabet,
T = (X,M) be a tm and ϕ : Σ∗ → T be a morphism. In the corresponding automaton,
X is the set of states and for each a ∈ Σ, ϕ(a) ∈ M ⊆ F(X) defines the deterministic
and complete transition function for letter a. Conversely, a deterministic and complete
automaton A over Σ, defines a tm T = (X,M) where X is the set of states of A, M is the
transition monoid of A and a surjective morphism ϕ : Σ∗ →M as follows. For each a ∈ Σ,
let ϕ(a) ∈ F(X) be the transformation on X induced by the transition function for letter a
in A. We obtain a morphism ϕ : Σ∗ → F(X) and we let M = ϕ(Σ∗) be the submonoid of
F(X) generated by {ϕ(a)}a∈Σ. For instance, the tm U2 defined in Example 2.2 corresponds
to the DFA in Figure 1 below, and the induced morphism is given by ϕ(a) = r1, ϕ(b) = r2

and ϕ(c) = idX .

1 2

b

a, c b, c

a

Figure 1. Automaton corresponding to the tm U2
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We now fix a distributed alphabet (Σ, loc). Let ϕ : Tr(Σ) → M be a morphism to a
monoid M . We note that, if (a, b) ∈ I, then ab = ba in Tr(Σ) and hence ϕ(a) and ϕ(b)
commute in M . In fact, in view of Proposition 2.1, any function ϕ : Σ→M which has the
property that ϕ(a) and ϕ(b) commute for every (a, b) ∈ I, can be uniquely extended to a
morphism from Tr(Σ) to M .

Transformation monoids can be naturally used to recognize trace languages. We say
that a trace language L ⊆ Tr(Σ) is recognized by a tm T = (X,M) if there exists a
morphism ϕ : Tr(Σ) → T , an initial element xin ∈ X and a final subset Xfin ⊆ X such
that L = {t ∈ Tr(Σ) | ϕ(t)(xin) ∈ Xfin}. A trace language is said to be recognizable if it is
recognized by a finite tm (see [DR95, Die90]).

Remark 2.5. A morphism ϕ : Tr(Σ)→ (X,M) from the trace monoid into a tm can also
be viewed, by Proposition 2.1, as a morphism from the free monoid Σ∗ with the additional
property that ϕ(a) and ϕ(b) commute for every (a, b) ∈ I. The automaton corresponding
to ϕ : Σ∗ → (X,M) (cf. Remark 2.4) thus has the property that ab and ba have the same
state transitions for all (a, b) ∈ I. An automaton with this property is called a diamond-
automaton. It is a classical sequential automata model for recognizing trace languages since
all linearizations of a trace reach the same destination state starting from any given state.
For instance, the DFA in Figure 1 is a diamond-automaton for the distributed alphabet
{Σ1 = {a, c},Σ2 = {a, b}}. Here (b, c) ∈ I and indeed, the words bc and cb have identical
state transitions in the DFA. Note however that the runs of the DFA on the two linearizations
are different, namely, 1→ 1→ 2 for cb and 1→ 2→ 2 for bc.

2.3. Asynchronous automata. Recognizability of trace languages can also be seen as an
automata-theoretic notion that is concurrent in nature. In the upcoming definition of an
asynchronous automaton, the set of states is structured as a P-indexed family of finite
non-empty sets {Si}i∈P . The elements of Si are called the local i-states, or the local states
of process i. If P is a non-empty subset of P, a P -state is a map s : P →

⋃
i∈P Si such that

s(j) ∈ Sj for every j ∈ P . We denote by SP the set of all P -states and we call S = SP the
set of global states.2

If P ′ ⊆ P and s ∈ SP then sP ′ denotes the restriction of s to P ′. We use the shorthand
−P to indicate the complement of P in P. We sometimes split a global state s ∈ S as
(sP , s−P ) ∈ SP × S−P . If a ∈ Σ, we talk about a-states to mean loc(a)-states and we write
Sa for Sloc(a). If a ∈ Σ, loc(a) ⊆ P and s is a P -state, we write sa for sloc(a).

Finally, we use the following notion of extension. If P ⊆P and f is a transformation
of SP , the extension of f to S is the transformation g ∈ F(S) such that (g(s))P = f(sP )
and (g(s))−P = s−P . In other words, if s = (sP , s−P ) ∈ S, then g((sP , s−P )) = (f(sP ), s−P ).
We observe that f is entirely determined by g and P . Extensions of transformations of SP
are called P -maps (see Section 3.2 for more details on P -maps).

Asynchronous automata were introduced by Zielonka for concurrent computation on
traces [Zie87]. An asynchronous automaton A over (Σ, loc) is a tuple ({Si}i∈P , {δa}a∈Σ, sin)
where

• Si is a finite non-empty set of local i-states for each process i;
• For a ∈ Σ, δa : Sa → Sa is a (complete) transition function on a-states;
• sin ∈ S is an initial global state.

2Note that we can naturally identify SP with
∏
i∈P Si and S with

∏
i∈P Si.
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Similar to P-indexed families, we will follow the convention of writing {Ya} to denote
the Σ-indexed family {Ya}a∈Σ.

Observe that an a-transition of A reads and updates only the local states of the agents
which participate in a. As a result, actions which involve disjoint sets of agents are processed
concurrently by A. For a ∈ Σ, let ∆a : S → S be the extension of δa : Sa → Sa. Clearly, if
(a, b) ∈ I then ∆a and ∆b commute. Hence, the (global) transition functions {∆a} induce a
trace morphism t 7→ ∆t from Tr(Σ) to F(S). We denote by A(t) the global state reached
when running A on t, A(t) = ∆t(sin).

Let L ⊆ Tr(Σ) be a trace language. We say that L is accepted by A if there exists a
subset Sfin ⊆ S of final global states such that L = {t ∈ Tr(Σ) | A(t) ∈ Sfin}.

The fundamental theorem of Zielonka [Zie87] states that a trace language is recognizable
if and only if it is accepted by some asynchronous automaton (see [Muk12] for another proof
of the theorem).

Asynchronous labelling functions. We will also use asynchronous automata to decorate
events of a trace with extra information computed by the automaton. This is similar to the
notion of locally computable functions defined in [MS97]. It extends to traces the notion of
sequential letter-to-letter word transducers. When dealing with a trace t = (E,≤, λ), we
wish to preserve the underlying poset (E,≤) and enrich the labels with extra information.

Formally, let (Σ, loc) be a distributed alphabet and Γ be a finite set. The alphabet
Σ× Γ can be equipped with a distributed structure over P by letting (Σ× Γ)i = Σi × Γ.
As a result, the location of (a, γ) ∈ Σ × Γ is simply loc(a); thus we unambiguously reuse
the notation loc for the location function of Σ × Γ, and use the notation Tr(Σ × Γ) to
denote the set of traces over this distributed alphabet. A Γ-labelling function is a map
θ : Tr(Σ) → Tr(Σ × Γ) such that, for t = (E,≤, λ) ∈ Tr(Σ), we have θ(t) = (E,≤, (λ, µ)),
i.e., the map θ adds a new label µ(e) ∈ Γ to each event e in t.

For instance, given i ∈ P, we may consider the {0, 1}-labelling function θi which
decorates each event e of a trace t with µi(e) = 1 if the strict causal past of e contains some
event on process i, i.e., if Ei ∩ ⇓e 6= ∅, and µi(e) = 0 otherwise.

An asynchronous (letter-to-letter) Γ-transducer over (Σ, loc) is a tuple Â = (A, {µa})
where A = ({Si}, {δa}, sin) is an asynchronous automaton and each µa (a ∈ Σ) is a map

µa : Sa → Γ. We associate with Â, a Γ-labelling function, also denoted by Â, Â : Tr(Σ)→
Tr(Σ × Γ) as follows: for t = (E,≤, λ) ∈ Tr(Σ), we let Â(t) = (E,≤, (λ, µ)) where for all
events e ∈ E with λ(e) = a and s = A(⇓e), we have µ(e) = µa(sa).

Given a Γ-labelling function θ, we say that Â computes (or implements) θ if for every

t ∈ Tr(Σ), Â(t) = θ(t). We also say that an asynchronous automaton A = ({Si}, {δa}, sin)

computes θ if there are maps µa : Sa → Γ such that Â = ({Si}, {δa}, sin, {µa}) computes θ.
Notice that a Γ-labelling function θ is defined on all input traces, hence an asynchronous

automaton which computes θ must be complete in the sense that it admits a run on all traces
from Tr(Σ) and it does not use an acceptance condition: when considering an asynchronous
automaton A which computes a Γ-labelling function, we always assume that all global states
of A are accepting.

For instance, the above {0, 1}-labelling function θi can be computed by an asynchronous
{0, 1}-transducer. We need two states {0, 1} for each process. Initially, all processes start in
state 0. When the first event e occurs on process i, all processes in loc(e) switch to state
1: for all a ∈ Σi, δa is the constant map sending all states in Sa to (1, . . . , 1). Then, the
information is propagated via synchronizing events: for all b ∈ Σ \ Σi, the map δb sends



22:10 B. Adsul, P. Gastin, S. Sarkar, and P. Weil Vol. 18:2

(0, . . . , 0) to itself and all other states to (1, . . . , 1). It is easy to add output functions {µa}
in order to compute θi.

There exists a canonical (most general) function computed by an asynchronous automa-
ton A = ({Si}, {δa}, sin), called the asynchronous transducer of A and denoted χA. This
function, which was already defined in [AS04], simply adds to an event e the local state
information of A before executing e. Formally, letting ΓA =

⋃
a Sa, it is implemented by

taking each output function µa to be the identity function from Sa to ΓA. Notice that, traces
in χA(Tr(Σ)) have labels from {(a, sa) | a ∈ Σ, sa ∈ Sa} ⊆ Σ × ΓA. We denote by Σ ×` S
the set {(a, sa) | a ∈ Σ, sa ∈ Sa}, and consider it a distributed alphabet as it naturally
inherits the location function of Σ×ΓA, that is, loc((a, sa)) = loc(a). Clearly, all Γ-labelling
functions computed by A are abstractions of χA.

3. Asynchronous structures and decomposition problems

This section is devoted to the development of new algebraic asynchronous structures. Our
main interest is in transferring from the algebraic theory of word languages to trace languages
the results and methods which rely on the wreath product operation: the wreath product
principle (see [Str94]) and the Krohn-Rhodes theorem (see [Eil76]). We present a new
algebraic framework for the setting of traces, and introduce an appropriate asynchronous
wreath product operation; an asynchronous wreath product principle is also established that
works in the realm of traces. This allows posing the question of a meaningful distributed
analogue of the Krohn-Rhodes theorem which we then partially resolve in the remainder of
this article.

3.1. Wreath product in sequential setting. We first recall the definitions of division,
simulation and wreath products in the context of transformation monoids, see [Eil76].

X X

Y Y

π(n)

n

f f

X X

Y Y

ϕ(a)

ψ(a)

f f

Figure 2. Conditions π(n)(f(y)) = f(n(y)) and ϕ(a)(f(y)) = f(ψ(a)(y))
in Definition 3.1

Definition 3.1. We say that a monoid M divides a monoid N (written M ≺ N) if there
exists a surjective morphism ϕ : N ′ →M , defined on a submonoid N ′ of N .

We say that a tm (X,M) divides a tm (Y,N) (written (X,M) ≺ (Y,N)) if there exists
a surjective map f : Y → X and a surjective morphism π : N ′ →M defined on a submonoid
N ′ of N , such that π(n)(f(y)) = f(n(y)) for all n ∈ N ′ and all y ∈ Y , see Figure 2 (left).

Finally, given morphisms ϕ : Σ∗ → T = (X,M) and ψ : Σ∗ → T ′ = (Y,N), we say that
ψ simulates ϕ if there exists a surjective map f : Y → X such that ϕ(a)(f(y)) = f(ψ(a)(y))
for all a ∈ Σ and all y ∈ Y , see Figure 2 (right).
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q1

qa

qb

qab

Automaton A

a

b

b

a

q′1

q′a

q′b

q′ab

q′ba

Automaton B

a

b

b

a

Figure 3. Automata A and B on alphabet Σ = {a, b}

Example 3.2. Automata A and B in Figure 3 define, respectively, morphisms ϕ : Σ∗ → T
and ψ : Σ∗ → T ′, to transformation monoids T = (X,M) and T ′ = (Y,N) (cf. Remark 2.4).
Note that to keep the pictures simple, the automata are not complete, all missing transitions
go to an implicit sink state (state s for automaton A and s′ for automaton B). In particular,
X = {q1, qa, qb, qab, s} and M is generated by the transition functions ϕ(a) and ϕ(b) defined
by A. We can check that ψ simulates ϕ using the surjective map f : Y → X defined by
q′1 7→ q1, q

′
a 7→ qa, q

′
b 7→ qb, q

′
ab, q

′
ba 7→ qab, s

′ 7→ s. The same map f , along with π : N →M as
π(ψ(w)) = ϕ(w), shows that T divides T ′.

Remark 3.3. It is an elementary verification that, if a morphism ψ : Σ∗ → T ′ = (Y,N)
simulates a morphism ϕ : Σ∗ → T = (X,M), then any language recognized by ϕ is also
recognized by ψ. Moreover, if ϕ is onto M , then (X,M) ≺ (Y,N): this can be checked using
N ′ = ψ(Σ∗) and π(ψ(w)) = ϕ(w).

Similarly, if (X,M) ≺ (Y,N) and ϕ : Σ∗ → T = (X,M) is a morphism, then there exists
a morphism ψ : Σ∗ → T ′ = (Y,N) which simulates ϕ: it suffices to choose an arbitrary
element ψ(a) in π−1(ϕ(a)) for every a ∈ Σ.

For sets U and V , we denote the set of all functions from U to V by F(U, V ).

Definition 3.4 (Wreath Product). Let T1 = (X,M) and T2 = (Y,N) be two tm’s. We
define the wreath product of T1 and T2 to be the tm T = T1 o T2 = (X × Y,M ×F(X,N))
where, for m ∈ M and f ∈ F(X,N), (m, f) represents the following transformation on
X × Y :

for (x, y) ∈ X × Y, (m, f)((x, y)) = (m(x), f(x)(y)) .

One verifies that the product of (m1, f1), (m2, f2) ∈ M × F(X,N) is (m1, f1)(m2, f2) =
(m1m2, f), where, for each x ∈ X, f(x) = f1(x)� f2(m1(x)) (here, � denotes the operation
in N).

It is well known [Eil76] that the wreath product operation is associative on transformation
monoids. The celebrated Krohn-Rhodes theorem [KR65] (see [Str94, DKS12] for different
proofs), in its division and its simulation formulations, is as follows.

Theorem 3.5 (Krohn-Rhodes Theorem). Let ϕ : Σ∗ → T = (X,M) be a morphism into a
finite tm. Then ϕ is simulated by a morphism ψ : Σ∗ → T ′, where the tm T ′ is the wreath
product of finitely many transformation monoids which are either copies of U2 or of the form
(G,G) for some non-trivial simple group G dividing M .



22:12 B. Adsul, P. Gastin, S. Sarkar, and P. Weil Vol. 18:2

In particular, every finite transformation monoid (X,M) divides a wreath product of
the form above.

Directly interpreting these results in terms of morphisms from trace monoids to ordinary
tm’s leads to major technical difficulties (see [Sar22, AGSW21]). For instance, division
of transformation monoids does not imply simulation of morphisms from trace monoid
to the tm’s due to the trace monoid not being a free monoid. Also the crucial wreath
product principle, that describes word languages recognized by a wreath product of two
transformation monoids in terms of word languages recognized by the individual tm’s, breaks
down when working with trace languages and morphisms from trace monoid; this is primarily
due to the fact that the principle uses a sequential transducer that takes into account the
runs of an automaton on words. But in a diamond automaton different linearizations of a
trace may produce different runs, albeit ending in the same final state (see Remark 2.5).

3.2. Asynchronous transformation monoids. We now introduce a new algebraic frame-
work to discuss recognizability for trace languages, which is more consistent with the
distributed nature of the alphabet (Σ, loc) and with the notion of asynchronous automata.
This point of view resolves the issues mentioned in the last subsection.

Asynchronous transformation monoids are defined as follows.

Definition 3.6. An asynchronous transformation monoid (in short, atm) T (over P) is a
pair ({Si},M) where

• {Si} is a P-indexed family of finite non-empty sets.
• M is a submonoid of F(S).

Note that an atm T = ({Si},M) naturally induces the tm (S,M), and that one can
view T as the tm (S,M), equipped with an additional structure which depends on P. We
abuse notation and write T also for this tm.

More precisely, a crucial feature of the definition of an atm is that it makes a clear
distinction between local and global states. While the underlying transformations operate
on global states, we will be interested in global transformations that are essentially “induced”
by a particular subset P of processes, that is, P -maps in the sense of Section 2.2.

It is worth pointing out at this stage, that a transformation g ∈ F(S) such that g(s) is
of the form (s′P , s−P ) for every s ∈ S, is not necessarily a P -map. This condition merely
says that the (−P )-component of a global state is not updated by g. The update of the
P -component might still depend on the (−P )-component.

The following lemma provides a characterization of P -maps. We skip the easy proof.

Lemma 3.7. Let h : S → S. Then h is a P -map if and only if for every s in S, [h(s)]−P =
s−P and for every s, s′ in S, sP = s′P implies that [h(s)]P = [h(s′)]P .

Example 3.8. Fix a process p ∈ P. We define the atm U2[p] = ({Si},M) by letting
Sp = {1, 2} and, for each i 6= p, Si is a singleton set. Observe that S has only two global
states which are completely determined by their p-components. We therefore identify a
global state with its p-component. Then we let M = {idS , r1, r2}, where ri maps every
global state to the global state i. Note that r1 and r2 are {p}-maps.

Similarly, if T = (X,M) is a tm, we let T [p] be the atm T [p] = ({Si},M) where Sp = X
and all other Si are singletons. The extensions of the elements of M (transformations of
X = Sp) are p-maps and form a monoid in natural bijection with M , which we again write
M .
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A simple but crucial observation regarding P -maps is recorded in the following lemma.

Lemma 3.9. Let f, g ∈ F(S) and let P, P ′ ⊆ P. If f is a P -map, g is a P ′-map and
P ∩ P ′ = ∅, then fg = gf .

Proof. Suppose that f and g are the extensions of some f ′ ∈ F(SP ) and g′ ∈ F(SP ′),
respectively. Let Q = P \ (P ∪ P ′). We can denote, unambiguously, a global state s ∈ S as
s = (sP , sP ′ , sQ). We then have

fg ((sP , sP ′ , sQ)) = g ((f ′(sP ), sP ′ , sQ)) = (f ′(sP ), g′(sP ′), sQ)

gf ((sP , sP ′ , sQ)) = f ((sP , g
′(sP ′), sQ)) = (f ′(sP ), g′(sP ′), sQ).

This shows that f and g commute.

3.3. Asynchronous morphisms. We now introduce particular morphisms from the trace
monoid Tr(Σ) to asynchronous transformation monoids.

Definition 3.10. Let T = ({Si},M) be an atm. An asynchronous morphism from Tr(Σ)
to T is a (monoid) morphism ϕ : Tr(Σ)→M such that ϕ(a) is an a-map for each a ∈ Σ.

It is important to observe that not every morphism ϕ : Tr(Σ)→M defines an asynchro-
nous morphism: indeed ϕ(a) and ϕ(b) may commute (say, if (a, b) ∈ I) even if ϕ(a) (resp.
ϕ(b)) is not an a-map (resp. a b-map).

An elementary yet fundamental result about asynchronous morphisms is stated in
Lemma 3.11 below.

Lemma 3.11. Let T = ({Si},M) be an atm. Further, let ϕ : Σ→M be such that ϕ(a) is
an a-map for every a ∈ Σ. Then ϕ can be uniquely extended to an asynchronous morphism
from Tr(Σ) to T .

Proof. The map ϕ uniquely extends to a morphism from the free monoid Σ∗ to M . By
Proposition 2.1, Tr(Σ) is the quotient of Σ∗ by the relations of the form ab = ba where
(a, b) ∈ I, so we only need to show that ϕ(a) and ϕ(b) commute. Indeed, (a, b) ∈ I means
that loc(a)∩ loc(b) = ∅. As ϕ(a) and ϕ(b) are an a-map and a b-map, respectively, the result
follows from Lemma 3.9.

Example 3.12. Let (Σ, loc) over P = {p1, p2, p3} be given by Σ = {a, b, c} and loc(a) =
{p1}, loc(b) = {p1, p2}, loc(c) = {p2, p3}. Letting ϕ(a) = r1, ϕ(b) = r2 and ϕ(c) = id,
determines an asynchronous morphism from Tr(Σ) to U2[p1].

If instead we let ϕ(c) = r1, ϕ determines a morphism from Tr(Σ) to U2[p1], which is not
asynchronous.

A very important example of an asynchronous morphism is given by the transition
morphism of an asynchronous automaton. Let A = ({Si}, {δa}, sin) be an asynchronous
automaton over (Σ, loc). For each a ∈ Σ, let ∆a ∈ F(S) be the extension of the local
transition function δa, an a-map by definition. Let also MA be the submonoid of F(S)
generated by the ∆a (a ∈ Σ). By Lemma 3.11 the map a 7→ ∆a extends to an asynchronous
morphism ϕA, from Tr(Σ) to the atm TA = ({Si},MA). We say that ϕA is the transition
(asynchronous) morphism of A and TA = ({Si},MA) is the transition atm of A.

We record the following lemma, whose proof is immediate.
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Lemma 3.13. Given an asynchronous automaton A = ({Si}, {δa}, sin) over (Σ, loc), its
transition atm TA and its transition asynchronous morphism ϕA : Tr(Σ)→ TA are effectively
constructible.

If t ∈ Tr(Σ), then ϕA(t)(sin) = A(t).
A trace language is accepted by A if and only if it is recognized by TA via ϕA, with sin

as the initial state.

We also record the converse construction. Let T = ({Si},M) be an atm, let sin ∈ S be
a global state and let ϕ : Tr(Σ)→ T be an asynchronous morphism. For each a ∈ Σ, ϕ(a)
is an a-map: let δa be the (uniquely determined) transformation of Sa of which ϕ(a) is an
extension. Finally let Aϕ = ({Si}, {δa}, sin). Then Aϕ is an asynchronous automaton (over
(Σ, loc)) and the following lemma is easily verified.

Lemma 3.14. Given an atm T = ({Si},M), a global state sin ∈ S and an asynchronous
morphism ϕ : Tr(Σ) → T , the asynchronous automaton Aϕ is effectively constructible.
Moreover, ϕ is the asynchronous transition morphism of Aϕ.

A trace language L ⊆ Tr(Σ) is recognized by T via ϕ (with initial state sin) if and only
if it is accepted by Aϕ.

Thus Zielonka’s theorem can be rephrased to state that a trace language is recognizable
if and only if it is recognized by an asynchronous morphism to an atm. We will see a more
precise rephrasing in Section 3.7 below (Theorem 3.33).

3.4. Asynchronous wreath product. We adapt the definition of wreath product (see
Section 3.1) to the setting of asynchronous transformation monoids.

Definition 3.15. Let T1 = ({Si},M) and T2 = ({Qi}, N) be two asynchronous transfor-
mation monoids. Their asynchronous wreath product, written T1 oas T2, is defined to be the
atm ({Si ×Qi},M ×F(S,N)). An element (m, f) ∈M ×F(S,N) represents the following
global3 transformation on S ×Q:

for (s, q) ∈ S ×Q, (m, f)((s, q)) = (m(s), f(s)(q)) .

An important observation is that the tm associated with the atm T1 oas T2 is the
wreath product of the transformation monoids (S,M) and (Q,N) associated with T1 and
T2 respectively. In particular, the composition law on M × F(S,N) is the same as in
Definition 3.4. The associativity of the asynchronous wreath product operation follows
immediately.

Lemma 3.16. Let T1 = ({Si},M) and T2 = ({Qi}, N) be asynchronous transformation
monoids and let P ⊆P. If (m, f) ∈M ×F(S,N) is a P -map in T1 oas T2, then

• m is a P -map in T1.
• For every s ∈ S, f(s) is a P -map in T2. Further, if s, s′ ∈ S are such that sP = s′P , then
f(s) = f(s′).

Proof. Recall that by Lemma 3.7, for a P-indexed family {Xi}, a transformation h ∈ F(X)
is a P -map if and only if (a) (h(x))−P = x−P for every x ∈ X and (b) xP = x′P implies
(h(x))P = (h(x′))P for all x, x′ ∈ X.

Let s ∈ S and q ∈ Q. Since (m, f) is a P -map, we have [(m, f)((s, q))]−P = (s−P , q−P ),
that is, (m(s))−P = s−P and (f(s)(q))−P = q−P .

3a global state (resp. P -state) of T1 oT2 is canonically identified with an element of S×Q (resp. SP ×QP )
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In addition, if s′ ∈ S and q′ ∈ Q are such that s′P = sP and q′P = qP , we have
[(m, f)((s, q))]P = [(m, f)((s′, q′))]P , that is, m(s)P = m(s′)P and (f(s)(q))P = (f(s′)(q′))P .
This already establishes that m is a P -map in T1.

Moreover, if we choose s = s′, we conclude that f(s) is a P -map in T2. If instead we
choose q = q′, we get

f(s)(q) = ((f(s)(q))P , q−P ) = ((f(s′)(q))P , q−P ) = f(s′)(q),

that is, f(s) = f(s′), which concludes the proof.

3.5. Asynchronous wreath product principle. The classical wreath product principle
[Str94] is a critical result that defines the importance and utility of wreath product structures
in formal language theory. We give here analogous results which exploit the distributed
structure of asynchronous automata and asynchronous transformation monoids. In fact we
recover the classical principle as a special case when there is only one process.

Let T = ({Si},M) be an atm and ϕ : Tr(Σ)→ T be an asynchronous morphism. We
associate with T the alphabet Σ ×` S = {(a, sa) | a ∈ Σ, s ∈ S} where each letter a is
decorated with local a-state information of T . Recall that this alphabet can be viewed as
a distributed alphabet by letting (Σ ×` S)i (i ∈ P) be the set of letters (a, sa) ∈ Σ ×` S
such that a ∈ Σi. In other words, loc((a, sa)) = loc(a). The choice of an initial global state
sin ∈ S induces the following transducer over traces.

Definition 3.17. The asynchronous transducer associated with ϕ and sin is the map
χsinϕ : Tr(Σ) → Tr(Σ ×` S) defined as follows. If t = (E,≤, λ) ∈ Tr(Σ), then χsinϕ (t) is the
trace (E,≤, (λ, µ)) ∈ Tr(Σ ×` S) where the labelling function µ is defined as follows. For
each event e of t, if λ(e) = a and s = ϕ(⇓e)(sin), then µ(e) = sa.

It is immediately verified that, if A = ({Si}, {δa}, sin) is an asynchronous automaton
and ϕ is its transition morphism, then χsinϕ coincides with χA, the asynchronous transducer
of A defined in Section 2.3.

a
b

c
p3

p2

p1
1 1 2

⊥2 ⊥2 ⊥2

⊥3 ⊥3

Run of Aϕ on trace t

a
1 b

1

⊥2 c
⊥2

⊥3p3

p2

p1

Trace χ(t)

Figure 4. Asynchronous transducer output on a trace.

Example 3.18. Let ϕ be the first asynchronous morphism in Example 3.12, with Sp1 =
{1, 2}, Sp2 = {⊥2} and Sp3 = {⊥3}. Let sin = (1,⊥2,⊥3) be the global initial state and
let χ be the corresponding asynchronous transducer. Figure 4 shows (automata-style) the
computation of the asynchronous morphism ϕ on the trace t = abc ∈ Tr(Σ) (by showing
local process states before and after each event), and the resulting trace χ(t) ∈ Tr(Σ×` S).

The following lemma is a straightforward consequence of the definition of the asynchro-
nous transducer.
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Lemma 3.19. Let ϕ : Tr(Σ)→ T be an asynchronous morphism to an atm T = ({Si},M),
let sin ∈ S and let χ be the associated asynchronous transducer. Let t ∈ Tr(Σ), a ∈ Σ and
s = ϕ(t)(sin). Then the trace χ(ta) ∈ Tr(Σ×` S) factors as χ(ta) = χ(t)(a, sa).

We now define a notion of asynchronous wreath product of asynchronous morphisms
defined on trace monoids.

Definition 3.20. Let ϕ : Tr(Σ)→ T and ψ : Tr(Σ×` S)→ T ′ be asynchronous morphisms
to asynchronous transformation monoids T = ({Si},M) and T ′ = ({Qi}, N). For each
a ∈ Σ and s ∈ S, let ga(s) = ψ(a, sa). The map ϕ oas ψ is defined on Σ by letting
(ϕ oas ψ)(a) = (ϕ(a), ga).

Lemma 3.21. If ϕ and ψ are as in the above definition, then ϕoasψ induces an asynchronous
morphism to the atm T oas T ′.
Proof. For each a ∈ Σ, (ϕ oas ψ)(a) is an a-map since loc(a) = loc((a, sa)) and ϕ and ψ are
asynchronous. As a result (Lemma 3.11), ϕ oas ψ extends to an asynchronous morphism
ϕ oas ψ : Tr(Σ)→ T oas T

′.

The following technical result establishes an important connection between asynchronous
transducers and asynchronous wreath product of asynchronous morphisms. This is crucially
utilized in the proof of the asynchronous wreath product principle.

Proposition 3.22. Let ϕ : Tr(Σ) → T be an asynchronous morphism to an atm T =
({Si},M), let sin ∈ S and let χ be the associated asynchronous transducer. Let ψ : Tr(Σ×`
S)→ T ′ be an asynchronous morphism to an atm T ′ = ({Qi}, N).

For each t ∈ Tr(Σ), let π1(t) and π2(t) be the first and second component projections of
(ϕ oas ψ)(t) ∈M ×F(S,N). Then π1(t) = ϕ(t) and π2(t)(sin) = ψ(χ(t)).

Proof. Let t = (E,≤, λ) ∈ Tr(Σ). The fact that π1(t) = ϕ(t) follows directly from the
definition of wreath products. The second equality is verified by induction on the cardinality
of E. It is trivial if |E| = 0 and we now suppose t = t′a, so that

(ϕ oas ψ)(t) = (ϕ oas ψ)(t′) · (ϕ oas ψ)(a) .

As in Definition 3.4, to visually distinguish the operations in the different monoids, we write
� for the operation of N . We have (π1(t), π2(t)) = (π1(t′), π2(t′))(π1(a), π2(a)) and hence,
for x ∈ S, π2(t)(x) = π2(t′)(x)� π2(a)(π1(t′)(x)). This holds in particular for x = sin. Let
also s = π1(t′)(sin) = ϕ(t′)(sin). Then we have

π2(t)(sin) = π2(t′)(sin)� π2(a)(π1(t′)(sin))

= ψ(χ(t′))� π2(a)(s) by induction

= ψ(χ(t′))� ψ((a, sa))

= ψ(χ(t′)(a, sa))

= ψ(χ(t)) by Lemma 3.19,

and this concludes the proof.

We can now state and prove both directions of what we term the asynchronous wreath
product principle.

Theorem 3.23. Let ϕ : Tr(Σ)→ T be an asynchronous morphism to an atm T = ({Si},M)
and let sin ∈ S. Let χ : Tr(Σ)→ Tr(Σ×` S) be the associated asynchronous transducer. If
L ⊆ Tr(Σ×` S) is recognized by an atm T ′, then χ−1(L) is recognized by the atm T oas T ′.
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Proof. Let ψ : Tr(Σ×` S)→ T ′ = ({Qi}, N) be an asynchronous morphism recognizing L,
with qin ∈ Q as the initial global state, and Qfin ⊆ Q as the set of final global states. Then
a trace t ∈ Tr(Σ×` S) is in L if and only if ψ(t)(qin) ∈ Qfin.

By Proposition 3.22, for t ∈ Tr(Σ), we have (ϕoasψ)(t)(sin, qin) = (ϕ(t)(sin), ψ(χ(t))(qin)).
Therefore t ∈ χ−1(L) if and only if (ϕ oas ψ)(t)(sin, qin) ∈ S×Qfin, which concludes the proof
that ϕ oas ψ recognizes χ−1(L).

Theorem 3.24. Let T1 = ({Si},M) and T2 = ({Qi}, N) be atms and let L ⊆ Tr(Σ) be a
trace language recognized by an asynchronous morphism η : Tr(Σ)→ T1 oas T2, with initial
global state (sin, qin). For each a ∈ Σ, let η(a) = (ma, fa). Mapping each a ∈ Σ to ma defines
an asynchronous morphism ϕ : Tr(Σ) → T1. Let χ be the local asynchronous transducer
associated to ϕ and sin. Then L is a finite union of languages of the form U ∩χ−1(V ), where
U ⊆ Tr(Σ) is recognized by T1 and V ⊆ Tr(Σ×` S) is recognized by T2.

Proof. For a ∈ Σ, η(a) = (ma, fa) ∈M×F(S,N) is an a-map and, by Lemma 3.16, ma ∈M
is an a-map (of T1) and fa : S → N is such that, for each s ∈ S, fa(s) ∈ N is an a-map
(of T2) which depends only on sa. In particular, fa : S → N may be viewed as a map
fa : Sa → N . Below we will use fa in this sense.

It follows, by Lemma 3.11, that the map a 7→ ma extends to an asynchronous morphism
ϕ : Tr(Σ) → T1. Similarly, mapping (a, sa) ∈ Σ ×` S to fa(sa) defines an asynchronous
morphism ψ : Tr(Σ×` S)→ T2 and we have η = ϕ oas ψ.

By definition of recognizability, L is the union of a finite family of languages recognized
by η with initial global state (sin, qin) and a single final global state and we can, without
loss of generality, assume that L is recognized with a single final global state, say, (sfin, qfin).

Let π1(t) and π2(t) be the first and second component projections of η(t), for each
t ∈ Tr(Σ). Thus t ∈ L if and only if η(t)((sin, qin)) = (sfin, qfin), that is,

(π1(t)(sin), π2(t)(sin)(qin)) = (sfin, qfin) .

Proposition 3.22, applied to η = ϕ oas ψ, shows that this is equivalent to ϕ(t)(sin) = sfin and
ψ(χ(t))(qin) = qfin.

Let now U ⊆ Tr(Σ) be recognized by the asynchronous morphism ϕ with initial and
final states sin and sfin, and let V ⊆ Tr(Σ×` S) be recognized by ψ with initial and final
states qin and qfin. Then t ∈ L if and only if t ∈ U and χ(t) ∈ V , that is, L = U ∩ χ−1(V ),
which completes the proof.

Remark 3.25. Note that the asynchronous wreath product principle, when restricted to a
single process, corresponds exactly to the sequential wreath product principle.

Example 3.26. Consider the distributed alphabet Σ̃ = ({a, b}, {b, c}, {c}) over P =
{p1, p2, p3} from Example 3.12. We define an asynchronous morphism η from Tr(Σ) into
the asynchronous wreath product ({Si},M) oas ({Qi}, N) where ({Si},M) = U2[p1] and
({Qi}, N) = U2[p3]. Denoting the (isomorphic) monoids of U2[p1] and U2[p3] by U2, by
Definition 3.15, we know that η(a) = (ma, fa) ∈ U2 × F(S,U2). Further, by Lemma 3.16,
fa can be described as a function in F(Sa, U2). Let the local states of the first tm be
Sp1 = {1, 2}, Sp2 = {⊥2}, Sp3 = {⊥3}, and those of the second tm be Qp1 = {⊥′1}, Qp2 =
{⊥′2}, Qp3 = {1′, 2′}. It is clear from the description of η below that η(a) (resp. η(b) and η(c))
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is an a-map (resp. b-map and c-map). Therefore η extends to an asynchronous morphism.

η(a) = (r2, {1 7→ id, 2 7→ id})
η(b) = (id, {1⊥2 7→ id, 2⊥2 7→ id})
η(c) = (id, {⊥2⊥3 7→ r2′})

The naturally derived asynchronous morphisms ϕ : Tr(Σ) → U2[p1] and ψ : Tr(Σ×` S) →
U2[p3] to the individual atm’s, as in the proof of Theorem 3.24, are ϕ = {a 7→ r2, b 7→ id},
and ψ = {c⊥2⊥3 7→ r2′}; since U2[p1] is localized, we only need to describe ϕ on Σp1 letters
(the other letters being mapped to id), similarly for ψ. Note that since there is no letter on
which processes p1 and p3 synchronize, and the information passed by U2[p1] via re-labelling
of events is ‘local’, it cannot be utilised by U2[p3], and hence the asynchronous morphism
η to the asynchronous wreath product structure U2[p1] oas U2[p3] essentially reduces to an
asynchronous morphism into the direct product U2[p1]× U2[p3].

3.6. Local cascade product. Now we present an automata-theoretic view of the asynchro-
nous wreath product.

Definition 3.27. Let A1 = ({Si}, {δa}, sin) and A2 = ({Qi}, {δ(a,sa)}, qin) be asynchronous
automata over the distributed alphabets (Σ, loc) and (Σ ×` S, loc), respectively. The
local cascade product of A1 and A2, written A1 ◦` A2, is the asynchronous automaton
({Ri}, {∆a}, (sin, qin)) over (Σ, loc) where, for i ∈ P, Ri = Si × Qi and where, for a ∈ Σ
and (sa, qa) ∈ Ra4, ∆a((sa, qa)) = (δa(sa), δ(a,sa)(qa)).

This operation on asynchronous automata corresponds exactly to the asynchronous
wreath product defined in Section 3.4, in the sense of the following statement.

Proposition 3.28. Let ϕ : Tr(Σ) → ({Si},M) and ψ : Tr(Σ ×` S) → ({Qi}, N) be the
asynchronous transition morphisms of A1 and A2, respectively. Then the asynchronous
transition morphism of A1 ◦` A2 is ϕ oas ψ : Tr(Σ)→ ({Si},M) oas ({Qi}, N).

Proof. Let δ̄a, δ̄(a,sa) and ∆̄a denote the extensions to global states (S, Q and R, respectively)
of the maps δa ∈ F(Sa), δ(a,sa) ∈ F(Qa) and ∆a ∈ F(Ra). By definition of transition

morphisms (Section 3.3), for each a ∈ Σ and s ∈ S, we have ϕ(a) = δ̄a and ψ(a, sa) = δ̄(a,sa),

while the transition morphism of A1 ◦` A2 maps a to ∆̄a.
Let a ∈ Σ, let P = loc(a) = loc((a, sa)), and let r ∈ R, say, r = (s, q). Then

∆̄a(r) = (∆a(rP ), r−P ). Now ∆a(rP ) = (δa(sP ), δ(a,sa)(qP )), while r−P = (s−P , q−P ), so

∆̄a(r) = (δ̄a(s), δ̄(a,sa)(q)).

Now compare with Definition 3.20: the map a 7→ ∆̄a coincides with the restriction of
ϕ oas ψ to Σ, which concludes the proof.

The correspondence between the asynchronous wreath product of asynchronous trans-
formation monoids and the local cascade product of asynchronous automata established in
Proposition 3.28, induces an automata-theoretic version of the asynchronous wreath product
principle, using the asynchronous transducers of the asynchronous automata involved.

More precisely, a run of the local cascade product A1◦`A2 on a trace t can be understood
as follows. One first views A1 as an asychronous computing device, namely the asynchronous

4We identify Ra =
∏
i∈loc(a) Si ×Qi with Sa ×Qa =

((∏
i∈loc(a) Si

)
×
(∏

i∈loc(a) Qi

))
.
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transducer Â1 (see Section 2.3) which computes χA1 . Its run on t outputs the trace
χA1(t) ∈ Tr(Σ ×` S) (see Figure 4) and one then runs A2 on that trace, leading to state
q ∈ Q. Note that, due to the asynchronous nature of the computing device, as soon as A1 has
finished working on some event (of t), A2 can start working on the ‘same’ event (of χA1(t)).
Further, A1 and A2 work asynchronously and can ‘simultaneously’ process concurrent events.
Finally, the run of A1 ◦` A2 on t takes the initial state (sin, qin) to the pair (s, q), as in

A

(s, q)

t
A1

s

t
A2

q

χA1
(t)

Figure 5. Operational view of local cascade product

Figure 5. A different take on this operational point of view will be developed in Section 6.
Finally, note that the local cascade product is associative. The following local cas-

cade product principle, which relies on associativity, is the announced rephrasing of the
asynchronous wreath product principle in automata-theoretic terms.

Theorem 3.29. Let A = A1◦` . . .◦`An and B = B1◦` . . .◦`Bm be local cascade products such
that C = A◦`B is defined in the sense that the distributed alphabets of A and B (say, (Σ, loc)
and (Π, loc) respectively) match as in Definition 3.27. Further, let χA : Tr(Σ) → Tr(Π)
be the asynchronous transducer of A. Then any language L ⊆ Tr(Σ) accepted by C is a
finite union of languages of the form U ∩ χ−1

A (V ) where U ⊆ Tr(Σ) is accepted by A, and
V ⊆ Tr(Π) is accepted by B.

Example 3.30. Consider a distributed alphabet Σ̃ = ({a, b}, {b, c}, {c, d}) over processes
P = {1, 2, 3}. We define a local cascade product A ◦` B where A = A1 ◦` A2 ◦` A3 itself is
also a local cascade product. A1, A2, A3 and B are all localized asynchronous automata,
having two local states in processes 1, 2, 3, and 3 respectively, and a single local state in
each of the remaining processes. The automata are described in Figure 6; note that due
to its localized structure, A1 is completely described by transitions induced by the letters
of Σ1 on the local states of process 1. A similar statement holds for A2, A3, and B; also
for simplicity, in the extended alphabet letters for A2, A3 and B, we have only displayed
non-trivial state information.

It is not difficult to see that the asynchronous transducer Â labels process 1 events (resp.
process 2 events, and process 3 events) by p2 (resp. q2 and s2) if and only if that event has
an a-labelled event in its past. Since B detects the existence of letter (d, s2) by changing its
state, A ◦` B can recognize for instance the language “there exists a d that has an a in its
past”.

To conclude this section, we relate local cascade products with the Γ-labelling functions
introduced in Section 2.3.

Proposition 3.31. Let A = ({Si}, {δa}, sin) be an asynchronous automaton on the dis-
tributed alphabet (Σ, loc), and let θ : Tr(Σ) → Tr(Σ × Γ) be the Γ-labelling function com-

puted by an asynchronous Γ-transducer of the form Â = ({Si}, {δa}, sin, {µa}). Let B be
an asynchronous automaton on the distributed alphabet (Σ × Γ, loc) accepting a language
L ⊆ Tr(Σ× Γ). Then θ−1(L) is accepted by A ◦` B.
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p1

p2

A1

a

b

a, b

q1

q2

A2

(b, p2)

c, (b, p1)

c
(b, p1)

(b, p2)

s1

s2

A3

(c, q2)

d, (c, q1)

d

(c, q1)
(c, q2)

t1

t2

B

(d, s2)

(d, s1), (c, q1, s1), (c, q1, s2)

(c, q2, s1), (c, q2, s2)

(d, s1), (d, s2)

(c, q1, s1)
(c, q1, s2)

(c, q2, s1)

(c, q2, s2)

Figure 6. Cascade product of localized reset asynchronous automata

Proof. Let γ : Σ×` S → Σ× Γ be the map given by γ(a, sa) = (a, µa(sa)). We also denote
by γ the extension of this map to a morphism from Tr(Σ×` S) to Tr(Σ× Γ). By definition,
θ = γ ◦ χA. In particular θ−1(L) = χ−1

A (γ−1(L)).
Let B′ be the automaton on alphabet Σ ×` S obtained from B by keeping the same

state sets and global initial and accepting states, and letting the transition δ(a,sa) be equal

to the transition δ(a,µa(sa)) of B. It is clear that B′ accepts γ−1(L) and, by Theorem 3.23,

A ◦` B accepts θ−1(L) = χ−1
A (γ−1(L)).

3.7. Questions of decomposition. Most of the known characterizations of interesting
classes of recognizable trace languages (e.g., star-free languages, languages definable in
first-order logic or in a global or local temporal logic, see [GRS92, EM96, DG02, DG06])
are in terms of morphisms into ordinary transformation monoids or of syntactic monoids
(equivalently, of the transition monoids of certain canonical minimal diamond-automata). In
contrast, Zielonka’s theorem simulates a morphism into a tm by an asynchronous morphism
into an atm. We seek an asynchronous version of the Krohn-Rhodes theorem that would be
similar in spirit: starting with a morphism into a tm, we ask whether it can be simulated by
an asynchronous morphism into an asynchronous wreath product of ‘simpler’ asynchronous
transformation monoids. A positive resolution in this form would help us lift the sequential or
diamond automata-theoretic chacterizations of first-order definable trace languages mentioned
above to asynchronous automata-theoretic characterizations (cf. Theorem 5.14 below).

We would also like the statement of the proposed asynchronous version of the Krohn-
Rhodes theorem to coincide with the classical sequential Krohn-Rhodes Theorem (Theo-
rem 3.5) when the underlying distributed alphabet involves only one process.

We first extend the notion of simulation (Definition 3.1) to trace morphisms as follows.

Definition 3.32. Let ϕ : Tr(Σ)→ T = (X,M) and ψ : Tr(Σ)→ T ′ = (Y,N) be morphisms
to transformation monoids. We say that ψ simulates ϕ if there exists a surjective function
f : Y → X such that, for all a ∈ Σ and all y ∈ Y , f(ψ(a)(y)) = ϕ(a)(f(y)).

If ψ happens to be an asynchronous morphism to an atm, we say that ψ simulates ϕ if
it is the case when ψ is viewed as a morphism to the tm underlying T ′.

We note that Zielonka’s fundamental theorem [Zie87], already mentioned in Sections 2.2
and 3.3, can actually be rephrased as follows (see [Muk12]).
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Theorem 3.33 (Zielonka Theorem). Every morphism ϕ : Tr(Σ) → T to a finite tm is
simulated by an asynchronous morphism ψ : Tr(Σ)→ T ′ to an atm.5

Recall the atm U2[p] defined in Example 3.8, an asynchronous analogue at process p ∈P
of the tm U2. If G is a group, recall that (G,G) is a tm and let G[p] be its asynchronous
analogue at process p (again, see Example 3.8).

Definition 3.34. We say that a distributed alphabet (Σ, loc) has the asynchronous Krohn-
Rhodes property ((Σ, loc) is aKR, for short) if every morphism ϕ : Tr(Σ)→ T to a tm T =
(X,M) is simulated by an asynchronous morphism to an atm T ′ which is the asynchronous
wreath product of asynchronous transformation monoids of the form U2[p] or G[p], where
p ∈P and G is a simple group dividing M .

It is an interesting question to characterize which distributed alphabets are aKR, or
even whether all are. While we are not able to answer this question, we show in Section 4
that acyclic architectures are aKR. In Section 5, we show that a weaker property holds when
we restrict our attention to morphisms from Tr(Σ) to aperiodic transformation monoids.
See also the discussion in Section 8.

In view of our discussion so far, it is clear that establishing that a distributed alphabet
is aKR amounts to a simultaneous generalization, for this particular distributed alphabet, of
the Krohn-Rhodes theorem (Theorem 3.5) and of Zielonka’s theorem (Theorem 3.33).

4. The case of acyclic architectures

Definition 4.1. The communication graph of a distributed alphabet {Σi}i∈P is the undi-
rected graph G = (P, E) where E = {(i, j) ∈P ×P | i 6= j and Σi ∩ Σj 6= ∅}. An acyclic
architecture is a distributed alphabet whose communication graph is acyclic.

Observe that if (Σ, loc) is an acyclic architecture, then no action is shared by more than
two processes. We note that Zielonka’s theorem admits a simpler proof in this case [KM13].
Our objective in this section is to establish the following result.

Theorem 4.2. If (Σ, loc) is an acyclic architecture, then (Σ, loc) has the asynchronous
Krohn-Rhodes property.

To prove Theorem 4.2, we need several technical lemmas. We first define a notion of
wreath product of trace morphisms into tm’s.

Definition 4.3. Let ϕ : Tr(Σ) → (X,M) and ψ : Tr(Σ × X) → (Y,N) be morphisms to
transformation monoids. For each a ∈ Σ and x ∈ X, let fa(x) = ψ(a, x). The map ϕ o ψ is
defined on Σ by letting (ϕ o ψ)(a) = (ϕ(a), fa) for each a ∈ Σ.

In general, the above map ϕ o ψ may not extend to a morphism from the trace monoid
(see [Sar22, AGSW21] for an example). However, it does so under a technical condition.

Lemma 4.4. Let ϕ and ψ be as in Definition 4.3. If, for all independent letters a, b and
for all x ∈ X, we have ψ(b, ϕ(a)(x)) = ψ(b, x), then ϕ o ψ induces a morphism from Tr(Σ)
to the tm (X,M) o (Y,N).

5The proof in [Muk12] provides an automata-theoretic simulation of any diamond-automaton by an
asynchronous automaton. The morphism version stated here is an easy consequence of this result and
the correspondence between morphisms (resp. asynchronous morphisms) defined on trace monoids and
diamond-automata (resp. asynchronous automata).
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Proof. We verify that, if a and b are independent letters, then (ϕ oψ)(ab) = (ϕ oψ)(ba). More
precisely, let (ϕ oψ)(ab) = (η1, η2). By definition, we have η1 = ϕ(a)ϕ(b) and for each x ∈ X,
we have η2(x) = ψ(a, x)+ψ(b, ϕ(a)(x)). Using our hypothesis, we get η2(x) = ψ(a, x)+ψ(b, x).
Since ϕ and ψ are trace morphisms, we deduce that (ϕ o ψ)(ab) = (ϕ o ψ)(ba).

We now show how to simulate a morphism from a trace monoid to a tm, by the wreath
product of morphisms to transformation monoids that are simpler.

Lemma 4.5. For a process p ∈P, let us define the set Σ0 = {a ∈ Σ | loc(a) = {p}}. Let
ϕ : Tr(Σ)→ (X,M) be a morphism to a tm. There exist morphisms ϕ1 : Tr(Σ)→ (X1,M1)
and ϕ2 : Tr(Σ×X1)→ (X,M) such that

• ϕ1 ignores all non-process-p letters (that is, ϕ1 maps letters outside Σp to the identity
transformation of X1). Moreover, any group dividing M1 also divides M .
• ϕ2 ignores all letters local only to process p (that is, ϕ2 maps letters in Σ0 ×X1 to the

identity transformation of X). Also, for any a /∈ Σp, ϕ2(a, x) = ϕ(a).
• The morphism ϕ1 o ϕ2 : Tr(Σ)→ (X1,M1) o (X,M) simulates ϕ.

Proof. Observe that Σ0 ⊆ Σp. The letters in Σ0 are mutually dependent, that is, Σ∗0 is in
fact a submonoid of Tr(Σ). Let N be the submonoid of M generated by ϕ(Σ0); we can view
N as N = ϕ(Σ∗0). For each n ∈ N , let n̄ be the constant transformation of N which maps
every element to n. The set N̄ = N ∪ {n̄ | n ∈ N} is easily verified to be a submonoid of
F(N).

Let ϕ1 : Σ→ (N, N̄) be defined by letting

ϕ1(a) =


ϕ(a) if a ∈ Σ0,

id if a ∈ Σp \ Σ0,

id if a 6∈ Σp .

If a and b are independent letters, then they cannot be both in Σp, one of ϕ1(a) and ϕ1(b) at
least is the identity, and hence ϕ1(a) and ϕ1(b) commute. It follows that ϕ1 naturally extends
to a morphism ϕ1 : Tr(Σ)→ (N, N̄), which is the identity on the submonoid generated by
Σ \ Σp.

We note that if a group G divides N̄ , then it also divides N . Indeed, suppose that τ is
a morphism defined on a submonoid N ′ ⊆ N̄ onto G. Each element of the form n̄ (n ∈ N)
in N ′ is idempotent, and hence τ(n̄) is the identity 1G of G. In particular, the restriction of
τ to the submonoid N ′′ = N ′ ∩N has the same range as τ , that is, G is a quotient of N ′′

and hence G ≺ N ′′.
Observe that, if w = a1 . . . ar, i is maximal such that ai ∈ Σp \ Σ0 (i = 0 if w has no

letter in Σp \ Σ0) and w′ is the projection of ai+1 · · · ar onto Σ∗0, then ϕ1(w) = ϕ(w′). In
other words, ϕ1(w) is the evaluation under ϕ of the word read by process p since its last
joint action with a neighbour.

Now let us make Σ×N a distributed alphabet (over P) by letting loc((a, n)) = loc(a)
for each (a, n) ∈ Σ×N . Let also

ϕ2(a, n) =


id if a ∈ Σ0,

nϕ(a) if a ∈ Σp \ Σ0,

ϕ(a) if a 6∈ Σp .

If (a, n) and (b, n′) are independent letters, that is, if a and b are independent in Σ, then
ϕ(a) and ϕ(b) commute because ϕ is defined on Tr(Σ). Moreover, either a, b 6∈ Σp, or a ∈ Σp
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and b 6∈ Σp (or vice versa). In the first case, ϕ2(a, n) = ϕ(a) and ϕ2(b, n′) = ϕ(b) commute.
In the second case, ϕ(b) commutes with n since the latter is (by definition of N) the ϕ-image
of a word in Σ∗0. It follows that ϕ2(a, n) and ϕ2(b, n′) commute.

Let η : Σ→ N̄×F(N,M) be the map η = ϕ1 oϕ2 in Definition 4.3. Assume that a, b ∈ Σ
are independent letters. Let n ∈ N . If a /∈ Σp then ϕ1(a)(n) = n and if a ∈ Σp, then b /∈ Σp

and ϕ2(b, ϕ1(a)(n)) = ϕ(b) = ϕ2(b, n). In both cases, we get ϕ2(b, ϕ1(a)(n)) = ϕ2(b, n). By
Lemma 4.4, it follows that η extends to a morphism η : Tr(Σ)→ (N, N̄) o (X,M).

Finally, for each (n, x) ∈ N ×X, let f(n, x) = n(x) ∈ X (recall that N ⊆M ⊆ F(X)).
For any a ∈ Σ, n ∈ N and x ∈ X, we note that

f(η(a)(n, x)) = f(ϕ1(a)(n), ϕ2(a, n)(x)) .

A case analysis proves that η simulates ϕ via f .

i) a ∈ Σ0. In this case, ϕ2(a, n) = id and the above becomes f(ϕ(a)(n), x) = f(nϕ(a), x) =
(nϕ(a))(x) = ϕ(a)(n(x)) = ϕ(a)(f(n, x)). The first equality is because the transforma-
tion by ϕ(a) ∈ N is the right multiplication on N .

ii) a ∈ Σp \ Σ0. In this case, ϕ1(a)(n) = id and the above becomes f(id, (nϕ(a))(x)) =
(nϕ(a))(x) = ϕ(a)(f(n, x)).

iii) a /∈ Σp. In this case,

f(n, ϕ(a)(x)) = n(ϕ(a)(x)) = (ϕ(a)n)(x) = (nϕ(a))(x) = ϕ(a)(f(n, x)) .

The penultimate equality follows from the fact that the generators of N commute with
ϕ(a) since p /∈ loc(a).

In all cases, f(η(a)(n, x)) = ϕ(a)(f(n, x)). This completes the proof.

Remark 4.6. If, in Lemma 4.5, Σ0 is empty, then M1 is the trivial monoid (so ϕ1(a) = id
for every letter a) and ϕ2(a, x) = ϕ(a).

Our next lemma shows how to combine simulations by asynchronous morphisms, under
certain technical assumptions.

Lemma 4.7. Let ϕ1 : Tr(Σ) → (X,M) and ϕ2 : Tr(Σ × X) → (Y,N) be morphisms to
transformation monoids. Suppose that ϕ1 is simulated by an asynchronous morphism
ψ1 : Tr(Σ)→ ({Si}, P ) via a map f1 : S → X. Suppose also that, for all a ∈ Σ, if s, s′ ∈ S
and sa = s′a, then ϕ2(a, f1(s)) = ϕ2(a, f1(s′)). Then

• The map ϕ1 o ϕ2 extends to a morphism from Tr(Σ) to (X,M) o (Y,N).
• The map ϕ′2, defined on Σ×` S by letting ϕ′2(a, sa) = ϕ2(a, f1(s)) for all a ∈ Σ and s ∈ S,

extends to a morphism from Tr(Σ×` S) to (Y,N).
• If ϕ′2 is simulated by an asynchronous morphism ψ2 : Tr(Σ ×` S) → ({Qi}, R), then
ϕ1 o ϕ2 : Tr(Σ) → (X,M) o (Y,N) is simulated by the asynchronous morphism ψ1 oas
ψ2 : Tr(Σ)→ ({Si}, P ) oas ({Qi}, R).

Proof. We rely on Lemma 4.4 to prove the first statement, that is, we want to show that,
if a, b ∈ Σ are independent letters and x ∈ X, then ϕ2(a, ϕ1(b)(x)) = ϕ2(a, x). Since f1 is
surjective, we can choose s ∈ S such that f1(s) = x. Then ϕ2(a, x) = ϕ2(a, f1(s)). Also,
ϕ2(a, ϕ1(b)(x)) = ϕ2(a, ϕ1(b)(f1(s))) = ϕ2(a, f1(ψ1(b)(s))). Since a and b are independent
and ψ1 is an asynchronous morphism, sa = (ψ1(b)(s))a and our assumption on f1 and ϕ2

shows that ϕ2(a, x) = ϕ2(a, ϕ1(b)(x)). This concludes the proof of the first statement.
The fact that ϕ′2 extends to a morphism defined on Tr(Σ×` S) follows directly from the

fact that ϕ2 is a morphism from the trace monoid Tr(Σ×X).
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Suppose ϕ′2 is simulated by ψ2 via the map f2 : Q→ Y . For each s ∈ S, q ∈ Q, we let
f(s, q) = (f1(s), f2(q)). For any a ∈ Σ, we have

f((ψ1 oas ψ2)(a)(s, q)) = f(ψ1(a)(s), ψ2(a, sa)(q))

= (f1(ψ1(a)(s)), f2(ψ2(a, sa)(q)))

= (ϕ1(a)(f1(s)), ϕ′2(a, sa)(f2(q)))

= (ϕ1(a)(f1(s)), ϕ2(a, f1(s))(f2(q)))

= (ϕ1 o ϕ2)(a)(f1(s), f2(q))

= (ϕ1 o ϕ2)(a)(f(s, q))

This completes the proof.

Proof (of Theorem 4.2). The proof proceeds via induction on the number of processes. The
base case, with only one process (and hence no distributed structure on the alphabet), is
the Krohn-Rhodes theorem (Theorem 3.5).

Let now P = {1, 2, . . . , k}, with k ≥ 2, and assume that the theorem holds for acyclic
architectures with less than k processes. Since the communication graph is acyclic, there
exists a ‘leaf’ process which communicates with at most one other process. Without loss of
generality, let this leaf process be 1, and its only neighbouring process be 2 (if process 1 has
no neighbour, then process 2 can be any other process). We let Σ0 be the set of letters a
such that loc(a) = {1}. By our assumptions, loc(a) = {1, 2} for every a ∈ Σ1 \ Σ0.

Let ϕ : Tr(Σ) → (X,M) be a morphism into a tm. Let ϕ1 : Tr(Σ) → (X1,M1) and
ϕ2 : Tr(Σ×X1)→ (X,M) be the morphisms into transformation monoids given by Lemma 4.5
for p = 1.

Note that no two letters of Σ1 are independent, so that the submonoid of Tr(Σ) generated
by Σ1 is freely generated by Σ1: we write it Σ∗1. Let ϕ′1 : Σ∗1 → (X1,M1) be the restriction
of ϕ1 to Σ∗1. The Krohn-Rhodes theorem shows that ϕ′1 is simulated by a morphism
ψ′1 : Σ∗1 → T , where T is a wreath product of transformation monoids of the form U2 and
(G,G), where G is a nontrivial simple group G dividing M1 — and hence, by Lemma 4.5,
dividing M .

Next, we extend ψ′1 to a morphism ψ1 : Tr(Σ) → T by letting ψ1(a) = id for each
letter a 6∈ Σ1. Consider the atm T [1] defined in Example 3.8. It is easily verified that
ψ1 : Tr(Σ)→ T [1] induces an asynchronous morphism (Lemma 3.11), which simulates ϕ1,
and that T [1] is an asynchronous wreath product of asynchronous transformation monoids
of the required form (that is, of the form U2[1] or G[1] for a group G dividing M).

Suppose S is the global state space of T [1] and ψ1 simulates ϕ1 via f1 : S → X1. Let
s, s′ ∈ S be global states such that sa = s′a. If 1 /∈ loc(a), then ϕ2(a, f1(s)) = ϕ(a) =
ϕ2(a, f1(s′)) by Lemma 4.5. If 1 ∈ loc(a), then sa = s′a implies s = s′ by the structure of
T [1]. Hence ϕ2(a, f1(s)) = ϕ2(a, f1(s′)).

Let ϕ′2 : Tr(Σ×` S)→ (X,M) be the morphism given in Lemma 4.7 (where ϕ′2(a, sa) =

ϕ2(a, f1(s))). Consider the distributed alphabet Σ̃′ over P \ {1} where Σ′i = (Σ×` S)i for
every i ∈P, i 6= 1, where the location of a letter (a, sa) is loc(a) \ {1}.

Suppose that letters (a, sa) and (b, s′b) are independent in Σ̃′. We first verify that they

are independent in Σ̃ as well. If this is not the case, then loc(a) ∩ loc(b) = {1}. However,
as we noticed before, letters whose location contains 1 and is not reduced to {1} (as is the
case for all letters a such that some (a, sa) ∈ Σ′) have location {1, 2}, and this means that
loc(a) ∩ loc(b) = {1, 2}, a contradiction.
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It follows that Tr(Σ′) is a submonoid of Tr(Σ×` S), and we now consider the restriction
ϕ′′2 of ϕ′2 to Tr(Σ′).

By induction hypothesis, ϕ′′2 is simulated by an asynchronous morphism ψ2 : Tr(Σ′)→ T ′,
where T ′ is an asynchronous wreath product of asynchronous transformation monoids of
the form U2[p] or G[p] for some simple group G dividing M , and some p ∈P \ {1}. These
asynchronous transformation monoids can again be trivially extended over P (by adding a
singleton state set for process 1). The corresponding extension of T ′, denoted T ′[↑P] is an
asynchronous wreath product of the desired form. Moreover ψ2 can also be extended over
Σ×` S by mapping any letter in (Σ×` S) \ Σ′ to the identity. It is easily verified that ψ2 is
an asynchronous morphism, which simulates ϕ′2.

We can now apply Lemma 4.7 to conclude the proof.

5. Temporal logics, first-order trace languages & local cascade products

Recall that star-free trace languages, aperiodic trace languages (those recognized by an
aperiodic monoid) and first-order definable trace languages coincide, by the combined results
of Guaiana, Restivo and Salemi [GRS92] and Ebinger and Muscholl [EM96].

A consequence of Theorem 4.2 is that any aperiodic trace language over an acyclic
architecture, and indeed over any aKR distributed alphabet, is recognized by an asynchronous
wreath product of 2-state asynchronous transformation monoids of the form U2[p] (see
Example 3.8). Proposition 3.28 then shows that it is accepted by a local cascade product of
localized two-state reset asynchronous automata. For convenience, we denote these automata
by U2[p] as well: U2[p] has state set {Si}, where Sp = {1, 2} and each Si (i 6= p) is a singleton,
and transitions as follows. The alphabet Σp contains two disjoint subsets R1 and R2 that
reset the states in Sp to 1 and 2, respectively. All remaining letters act as the identity, in
particular letters in Σp \ (R1 ∪R2). In this section, we aim at generalizing this result to any
distributed alphabet. Our route towards this utilizes yet another formalism used to classify
trace languages, that of temporal logics.

5.1. Local temporal logics. We first introduce a process-based past-oriented local tem-
poral logic over traces, called LocTL[Yi ≤ Yj ,Yi,Si]. This logic, as well as some of its
fragments, turns out be as expressive as first-order logic over traces, see Theorem 5.5 below.
Furthermore, we have chosen the logic in a way that facilitates showing correspondence with
local cascade products (see the proofs of Theorem 5.6 and Corollary 5.12). The syntax of
LocTL[Yi ≤ Yj ,Yi,Si] is as follows.

Event formula α ::= a | ¬α | α ∨ α | Yi ≤ Yj | Yi α | α Si α a ∈ Σ, i, j ∈P

Trace formula β ::= ∃iα | ¬β | β ∨ β

Turning to the semantics of LocTL[Yi ≤ Yj ,Yi,Si], each event formula is evaluated at an
event of a trace t ∈ Tr(Σ), say, t = (E,≤, λ). For any event e ∈ E and process i ∈P, we
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denote by ei the unique maximal event of ⇓e ∩ Ei, if it exists, i.e., if ⇓e ∩ Ei 6= ∅. Then

t, e |= a if λ(e) = a

t, e |= ¬α if t, e 6|= α

t, e |= α ∨ α′ if t, e |= α or t, e |= α′

t, e |= Yi ≤ Yj if ei, ej exist, and ei ≤ ej
t, e |= Yi α if ei exists, and t, ei |= α

t, e |= α Si α
′ if e ∈ Ei, there exists f ∈ Ei such that f < e and t, f |= α′

and, for all g ∈ Ei, f < g < e implies t, g |= α.

Note that, Yi is a modality expecting an argument α, whereas a and Yi ≤ Yj are basic
constant formulas. Also, the since operators Si are strict. LocTL[Yi ≤ Yj ,Yi,Si] trace
formulas are evaluated on traces by interpreting the Boolean connectives in the natural way
and by letting

t |= ∃iα if there exists a maximal i-event e in t such that t, e |= α .

We will also consider various fragments of LocTL[Yi ≤ Yj ,Yi,Si] with inherited semantics.
LocTL[Yi,Si] is the fragment where the constants Yi ≤ Yj are not allowed. Similarly,
LocTL[Yi ≤ Yj , Si] is the fragment without the modalities Yi, and LocTL[Si] is the fragment
where both Yi ≤ Yj and Yi are disallowed.

We say that a trace language L ⊆ Tr(Σ) is definable in LocTL[Yi ≤ Yj ,Yi,Si] (resp.
one of its fragments) if there is a trace formula β in LocTL[Yi ≤ Yj ,Yi,Si] (resp. in the
corresponding fragment) such that L = {t ∈ Tr(Σ) | t |= β}.

In Theorem 5.5, the three local temporal logics LocTL[Yi ≤ Yj ,Yi, Si], LocTL[Yi ≤ Yj , Si]
and LocTL[Yi,Si] are shown to have equal expressive power. We first prove in Lemma 5.4
that LocTL[Yi ≤ Yj ,Si] is at least as expressive as LocTL[Yi,Si]; we only need to show
that the modality Yi of LocTL[Yi,Si] can be expressed in LocTL[Yi ≤ Yj ,Si]. To this
end, we will use the following derived constants (Yi = Yj) = (Yi ≤ Yj) ∧ (Yj ≤ Yi) and
(Yi < Yj) = (Yi ≤ Yj) ∧ ¬(Yj ≤ Yi). Notice that (Yi = Yi) is equivalent to Yi> and simply
means that there are i events in the strict past of the current event.

For i ∈P and an event formula α, we define

Y1
i α =

∨
j

(Yi = Yj) ∧ (⊥ Sj α)

Ym+1
i α =

∨
j

(Yi < Yj) ∧ [(Yi < Yj) Sj (Ymi α)]

Remark 5.1. Notice that an event satisfying (Yi = Yj) ∧ (⊥ Sj α) or (Yi < Yj) ∧ [(Yi <
Yj) Sj (Ymi α)] must be a j-event. Hence, we may restrict the use of (Yi = Yj) and (Yi < Yj)
to be at j-events only and still get an expressively complete logic.

Lemma 5.2. Consider a trace t ∈ Tr(Σ). For any event e in the trace, any process i, and
any natural number m, if t, e |= Ymi α then t, e |= Yi α.

Proof. The proof is by induction on m. The base case is when m = 1. Suppose that
t, e |= (Yi = Yj)∧ (⊥ Sj α) for some j ∈P. Due to (Yi = Yj), we know that ei, ej exist and
ei = ej . Now, from ⊥ Sj α, we get that e ∈ Ej and t, ej |= α. We deduce that t, ei |= α and
t, e |= Yi α.
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For the inductive step, let m ≥ 1 and suppose that t, e |= (Yi < Yj)∧[(Yi < Yj)Sj (Y
m
i α)]

for some j ∈ P. Due to (Yi < Yj), we know that ei, ej exist and ei < ej . Now, from
t, e |= (Yi < Yj) Sj (Ymi α), we deduce that e ∈ Ej and there exists an event f ∈ Ej in the
strict past of e such that t, f |= Ymi α and at all j-events between e and f , the formula
(Yi < Yj) is true. By induction, we get t, f |= Yi α. Let f = fk < fk−1 < · · · < f1 < f0 = e

be the sequence of j-events between f and e. For all 0 ≤ ` < k, we have f `j = f `+1 and

t, f ` |= (Yi < Yj). We deduce by induction on ` that ei = f `i for all 0 ≤ ` ≤ k. This is clear

when ` = 0 since e = f0 and for the inductive step it follows from ei = f `i < f `j = f `+1.

Finally, ei = fi and we get t, ei |= α as desired.

Lemma 5.3. Consider a trace t ∈ Tr(Σ). For any event e in the trace, any process i, if
t, e |= Yi α then t, e |= Ymi α for some m ≤ |P|.

Proof. Assume that t, e |= Yi α, i.e., ei exists and t, ei |= α. Since ei is in the strict past of e,
there exists f such that ei l f ≤ e. It is well-known that there is m ≥ 1 and a sequence of
events f = f1 < f2 < · · · < fm = e and processes j` such that j` ∈ loc(f `−1) ∩ loc(f `) for
all 1 < ` ≤ m. Moreover, we may assume that the processes j2, . . . , jm are pairwise distinct,
and also different from i since ei l f . We get m ≤ |P|.

We show by induction on ` that ei = f `i and t, f ` |= Y`i α. For the base case ` = 1, since
eilf1 we have ei = f1

i and we find j1 ∈ loc(ei)∩loc(f1). We get t, f1 |= (Yi = Yj1)∧(⊥Sj1α).

Therefore, t, f1 |= Y1
i α and we are done. Consider now 1 ≤ ` < m and assume that ei = f `i

and t, f ` |= Y`i α. Since ei < f ` < f `+1 ≤ e, we deduce that f `+1
i = ei and all j`+1 events g

with f ` < g ≤ f `+1 satisfy (Yi < Yj`+1
). Therefore,

t, f `+1 |= (Yi < Yj`+1
) ∧ [(Yi < Yj`+1

) Sj`+1
(Y`i α)] .

We obtain t, f `+1 |= Y`+1
i α which concludes this proof.

Lemma 5.4. LocTL[Yi ≤ Yj , Si] is at least as expressive as LocTL[Yi,Si].

Proof. From Lemmas 5.2 and 5.3 we see that Yi α is equivalent to the LocTL[Yi ≤ Yj ,Si]
formula

∨
m≤|P| Y

m
i α. This concludes the proof.

We now establish the expressive completeness of our past-oriented local temporal logics
LocTL[Yi, Si], LocTL[Yi ≤ Yj , Si] and LocTL[Yi ≤ Yj ,Yi, Si]. This crucially depends on the
expressive completeness of a process-based pure future local temporal logic proved by Diekert
and Gastin in [DG06]. It is unknown whether the fragment LocTL[Si] is as expressive as
LocTL[Yi,Si] in general, see Theorem 5.7 for a partial result.

Theorem 5.5. Let (Σ, loc) be a distributed alphabet over P. Over Tr(Σ), first-order logic,
LocTL[Yi ≤ Yj ,Yi, Si], LocTL[Yi, Si] and LocTL[Yi ≤ Yj , Si] have the same expressive power,
i.e., a language L ⊆ Tr(Σ) is definable by a first-order sentence if and only if it is definable
by a trace formula in LocTL[Yi,Si] or in LocTL[Yi ≤ Yj ,Si].

Proof. First, from the semantics of LocTL[Yi ≤ Yj ,Yi, Si], we clearly see that each language
definable in LocTL[Yi ≤ Yj ,Yi,Si] is also first-order definable.

Conversely, we first show that LocTL[Yi, Si] is expressively complete. In [DG06], Diekert
and Gastin give a process-based pure future local temporal logic which they show is
expressively equivalent to first order logic over traces with a unique minimal event. The
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event formulas of its past dual have the following syntax and semantics.

Syntax: α = > | a | ¬α | α ∨ α | Yi α | α Si α (a ∈ Σ, i ∈P)

Semantics: t, e |= α Si α′ if there exists f ∈ Ei such that f ≤ e and t, f |= α′

and, for all g ∈ Ei, f < g ≤ e implies t, g |= α.

We show that LocTL[Yi,Si] is expressive enough to define the Si operator. Consider the
LocTL[Yi, Si] event formulas γ = α′∨ (α∧αSiα′) and i =

∨
a∈Σi

a. Then αSiα′ is equivalent
to the LocTL[Yi, Si] event formula (i∧γ)∨(¬i∧Yi γ). This shows LocTL[Yi, Si] is expressively
complete over prime traces (traces with a unique maximal event). More precisely, for each
first order sentence ϕ, there is an event formula ϕ in LocTL[Yi,Si] such that for all prime
traces t we have t |= ϕ iff t,max(t) |= ϕ.

Adsul and Sohoni [AS02, Ads04] showed that any first order sentence over traces can
be equivalently expressed in a first normal form which is a boolean combination of first
order sentences evaluated only in the process views of traces. More precisely, for a trace
t = (E,≤, λ), let ti denote the trace induced by the restriction to ↓Ei. Given any first
order sentence ϕ, by [AS02] there exists a natural number n and sentences ϕi,m (i ∈ P,
1 ≤ m ≤ n) such that t |= ϕ iff for some m, for each i ∈P, we have ti |= ϕi,m. Consider the
equivalent event formulas ϕi,m in LocTL[Yi, Si]. Notice that each ti is a prime trace or is the
empty trace ε. If ε 6|= ϕi,m then we let βi,m = ∃iϕi,m, otherwise we let βi,m = ∃iϕi,m ∨¬∃i>.
We deduce that ti |= ϕi,m iff t |= βi,m. The LocTL[Yi,Si] sentence

∨
m

∧
i βi,m is equivalent

to ϕ. Therefore, LocTL[Yi,Si] is expressively complete.
By Lemma 5.4, LocTL[Yi ≤ Yj ,Si] is also expressively complete and the proof is

complete.

5.2. Cascade decomposition for LocTL[Si]. We now relate LocTL[Si] with local cascade
products of localized reset automata U2[p].

Theorem 5.6. A trace language is defined by a LocTL[Si] formula if and only if it is accepted
by a local cascade product of asynchronous reset automata of the form U2[p].

Proof. First consider a local cascade product A = U2[p] ◦` B (p ∈ P) and suppose that
the languages accepted by B are LocTL[Si]-definable. Let {Si} be the state sets of U2[p]
and let χ be the asynchronous transducer associated with U2[p] and its initial state, say 1.
By the local cascade product principle (Theorem 3.29), any language accepted by A is a
union of languages of the form L1 ∩ χ−1(L2) where L1 ⊆ Tr(Σ) is accepted by U2[p] and
L2 ⊆ Tr(Σ×` S) is accepted by B.

The languages accepted by U2[p] are defined by the LocTL[Si]-formulas

With global accepting state 2: ∃p(R2 ∨ (¬R1 ∧ ((¬R1) Sp R2))) ;

With global accepting state 1: ¬∃p(R2 ∨ (¬R1 ∧ ((¬R1) Sp R2))) .

To conclude that the languages accepted by A are LocTL[Si]-definable, we only need
to show that if L2 is LocTL[Si]-definable over alphabet Σ×` S, then χ−1(L2) is LocTL[Si]-
definable over (Σ, loc). This is done by structural induction on LocTL[Si]-formulas over
Σ×` S. For an event formula α of LocTL[Si] over Σ×` S, we provide an event formula α̂
over (Σ, loc) such that for any trace t ∈ Tr(Σ), and any event e in t, we have t, e |= α̂ if and
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only if χ(t), e |= α. The non-trivial case here is the base case of letter formula α = (a, sa).
If p /∈ loc(a), then we let α̂ = a. If instead p ∈ loc(a), we let

α̂ = a ∧ (¬R1) Sp R2 if [sa]p = 2

α̂ = a ∧ ¬((¬R1) Sp R2) if [sa]p = 1

We now establish the converse implication. For any LocTL[Si] event formula α, We
construct an asynchronous automaton Aα, which is a local cascade product of copies of U2[p],
and which is such that for any trace t and event e of t, each local state [Aα(↓e)]i (i ∈ loc(e))
completely determines whether t, e |= α. Aα is constructed by structural induction on the
LocTL[Si] event formula α.

Base case: Suppose that α = a ∈ Σ. We let Aα = ({Si}, {δa}, sin) where Si = {⊥} for all
i /∈ loc(a), and Si = {>,⊥} for all i ∈ loc(a). For any P -state s, if for all i ∈ P we have
si = ⊥ (resp. >), then we write s = ⊥ (resp. s = >). We let sin = ⊥. The local transition
δa is a reset to > and the transitions δb (b 6= a) are resets to ⊥. This construction ensures
that, for all i ∈ loc(a) we have [Aα(↓e)]i = > if and only if t, e |= α. It is also easy to see
that Aα is a local cascade product of U2[p] for p ∈ loc(a).

Inductive case: The non-trivial case is α = β Sj γ. By inductive hypothesis, we have
constructed automata Aβ and Aγ as local cascade products of copies of U2[p]. Let A =

({Si}, {δa}, sin) = U2[j] ◦` Âβ ◦` Âγ where the first U2[j] with initial state ⊥ is such that

all letters from Σj reset the state to >; and Âβ (resp. Âγ) simply lifts Aβ (resp. Aγ) to
appropriate input alphabet by ignoring the local state information provided in the local
cascade product. Hence, A is a local cascade product of copies of U2[p] which simultaneously
provides the truth values of β and γ at any event and remembers whether some j-event
already occured. Let χ be the associated local asynchronous transducer.

We construct B = ({Qi}, {δ(a,sa)}, qin) over Σ ×` S such that A ◦` B is the required
asynchronous automaton. Let Qi = {>,⊥} for all i ∈P. Again, we denote a P -state q as
⊥ (resp. >) if qi = ⊥ (resp. qi = >) for all i ∈ P . We let the initial state be qin = ⊥. For
any a /∈ Σj , we let the local transition δ(a,sa) be the reset to ⊥. By assumption, if a j-event
e of the trace χ(t) is labelled (a, sa), then [sa]j determines whether some j-event occured in
the past of e, and if this is the case, the truth values of β and γ at the previous j-event ej .
When ξ is a boolean combination of β, γ, then we write [sa]j ` Yj ξ if according to the j
state of sa, there is a previous j-event ej and ξ is true at ej . Then the transition for a ∈ Σj

is given by

δ(a,sa) = reset to ⊥ if [sa]j 6` Yj > or [sa]j ` Yj(¬β ∧ ¬γ)

δ(a,sa) = reset to > if [sa]j ` Yj γ

δ(a,sa)(qa) = > if [sa]j ` Yj(β ∧ ¬γ) and [qa]j = >
δ(a,sa)(qa) = ⊥ if [sa]j ` Yj(β ∧ ¬γ) and [qa]j = ⊥

The transitions make sense if we recall the identity βSj γ ≡ ⊥Sj (γ∨(β∧(βSj γ))). Note that
in the last two cases above, δ(a,sa) is the identity transformation on process j states. Hence,
process j update is realised by some U2[j]. The other processes of loc(a) can update their
states mimicking process j state update, once they also have the truth value of α = β Sj γ
at the previous j-event ej , which is being made available at event e by the above U2[j]’s
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state. In view of this, it is easy to verify that B is a local cascade product of U2[j] followed
by U2[p] for p 6= j.

To conclude the proof, we have to handle trace formulas of LocTL[Si], which are the
sentences defining trace languages. So consider a trace formula ∃jα where α is an event
formula in LocTL[Si]. Let Aα be the local cascade product of copies of U2[p] constructed
above. As in the inductive case above, we also use a copy of U2[j] which remembers
whether some j-event already occurred in the past. Let t = (E,≤, λ) ∈ Tr(Σ) and let
s = (U2[j] ◦` Aα)(t). The local state sj allows to determine whether Ej 6= ∅ thanks to U2[j],
and in this case whether the maximal event of Ej satisfies α thanks to Aα.

We are now ready to give new characterizations of first-order definable trace languages
over aKR distributed alphabets.

Theorem 5.7. Let (Σ, loc) be a distributed alphabet and L ⊆ Tr(Σ) be a trace language. If
(Σ, loc) is aKR ( e.g., if (Σ, loc) is an acyclic architecture), then the following statements
are equivalent.

(1) L is definable in first-order logic.
(2) L is accepted by a counter-free diamond-automaton (or, recognized by an aperiodic

monoid).
(3) L is accepted by a local cascade product of copies of U2[p] (or, recognized by an asyn-

chronous wreath product of atms of the form U2[p]).
(4) L is accepted by a counter-free asynchronous automaton (or, recognized by an aperiodic

asynchronous transformation monoid).
(5) L is definable in LocTL[Si].

Proof. By [EM96], first-order definability coincides with recognizability by an aperiodic
monoid. By Theorem 5.6, LocTL[Si]-definability coincides with acceptability by local cascade
product of asynchronous reset automata of the form U2[p], or equivalently asynchronous
wreath product of atm’s of the form U2[p].

If (Σ, loc) is aKR, recognizability by an aperiodic monoid implies recognizability by
an asynchronous wreath product of asynchronous transformation monoids of the form
U2[p]. The converse implication follows from the easy verification that a wreath product of
asynchronous transformation monoids of the form U2[p] is an aperiodic atm (that is, the
associated global tm is aperiodic). Putting these equivalences together and keeping in mind
the correspondences between (asynchronous) automata and (asynchronous) morphisms into
(asynchronous) transformation monoids, we get the desired result.

5.3. Cascade decomposition for LocTL[Yi ≤ Yj , Si]. We turn now to the logic LocTL[Yi ≤
Yj ,Si] and its relation with local cascade products. Here, we seek a decomposition result
which is valid for all distributed alphabets, and not only for those that are known to be aKR.
Unfortunately, we do not know whether all aperiodic trace languages can be accepted by
local cascade products of copies of U2[p]. It is interesting to notice first that the argument
in the proof of Theorem 5.6 cannot be lifted to the logic LocTL[Yi ≤ Yj , Si]. More precisely,
when α = Yi ≤ Yj , the automaton Aα specified in this proof cannot, in general, be obtained
as a local cascade product of copies of U2[p]. To explain this formally, we use the notion of
Γ-labelling functions computed by asynchronous automata, defined in Section 2.3.

Given an event formula α ∈ LocTL[Yi ≤ Yj ,Yi,Si], we let θα be the {0, 1}-labelling
function which decorates each event of a trace t = (E,≤, λ) ∈ Tr(Σ) with the truth value of
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α, i.e., θα(t) = (E,≤, (λ, µ)) where for all e ∈ E, we have µα(e) = 1 if t, e |= α and µα(e) = 0
otherwise.

In the proof of Theorem 5.6, we have constructed for each formula α ∈ LocTL[Si] an
asynchronous automaton Aα which computes θα, and which is a local cascade product of
copies of U2[p]. Lemma 5.8 below shows that this cannot be extended to LocTL[Yi ≤ Yj , Si].
This is a slight modification of an example from Adsul and Sohoni [AS04].

Lemma 5.8. Let P = {1, 2, 3}, Σ = {a, b, c} with the distribution Σ1 = {a, c}, Σ2 = {a, b},
Σ3 = {b, c} and let α = Y1 ≤ Y3. As no two letters of Σ are independent, Tr(Σ) is isomorphic
to the free monoid Σ∗.

Nevertheless, there is no aperiodic asynchronous automaton over (Σ, loc) which computes
θα. In particular, θα cannot be computed by a local cascade product of copies of U2[p].

Proof. Suppose, for the sake of contradiction, that there exists an aperiodic asynchronous
automaton A = ({Si}, {δa}, sin) and a {0, 1}-transducer Â = ({Si}, {δa}, sin, {µa}) which
computes θα. The output function µc : Sc → {0, 1} computes the truth value of α = Y1 ≤ Y3

at c-events.
As A is aperiodic, there exists n such that, starting at the initial global state sin, traces

(ab)n and (ab)n+1 reach the same global state, say s = (s1, s2, s3) = A((ab)n) = A((ab)n+1).
It follows that the trace ab fixes s. As the transition function of a (resp. b) does not change
the local state of process 3 (resp. process 1), it must be that the a-transition at s leads to
a global state of the form s′ = (s1, s

′
2, s3). In particular, s′ is the global state reached on

input (ab)na. Now, consider the traces t = (ab)nc and t′ = (ab)nac. The c-event in t satisfies
α = Y1 ≤ Y3 whereas the c-event in t′ does not. Since sc = (s1, s3) = s′c, this contradicts
the fact that µc computes the truth value of α at c-events.

On the other hand, the gossip automaton, one of the most important tools in the theory
of asynchronous automata, due to Mukund and Sohoni [MS97], computes all the constants of
LocTL[Yi ≤ Yj , Si]. Let Γ = {0, 1}P×P and θY be the Γ-labelling function which decorates
each event e of a trace t with the truth values of all constants Yi ≤ Yj , i.e., for all i, j ∈P,

µYi,j(e) = 1 if t, e |= Yi ≤ Yj and µYi,j(e) = 0 otherwise. Since the events referred to by {Yi}
are called primary events, we call θY the primary order labelling function.

Theorem 5.9 (Gossip Automaton [MS97]). There exists an asynchronous automaton
G = ({Υi}, {∇a}, vin), called the gossip automaton, which computes θY.

Note that, as a consequence of Lemma 5.8, the gossip automaton is not aperiodic in
general, a fact that was already established in [AS04].

In view of Theorems 5.6 and 5.9, the following lemma will help relate LocTL[Yi ≤ Yj , Si]
languages and local cascade products on arbitrary distributed alphabets.

Lemma 5.10. Let (Σ, loc) be a distributed alphabet.

(1) If L ⊆ Tr(Σ) is LocTL[Yi ≤ Yj ,Si]-definable over Σ then L′ = θY(L) is LocTL[Si]-

definable over Σ× Γ. Notice that L =
(
θY
)−1

(L′).

(2) If L′ ⊆ Tr(Σ × Γ) is LocTL[Yi ≤ Yj ,Si]-definable over Σ × Γ then L =
(
θY
)−1

(L′) is
LocTL[Yi ≤ Yj ,Si]-definable over Σ.

Proof. We simply write θ for the primary order labelling function θY.
(1) For each event formula α ∈ LocTL[Yi ≤ Yj ,Si] over Σ, we construct a formula α̃ ∈
LocTL[Si] over Σ×Γ such that, for all traces t ∈ Tr(Σ) and all events e in t, we have t, e |= α
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if and only if θ(t), e |= α̃. The construction is by structural induction on α. The constants
are the interesting cases. For a ∈ Σ, we define

ã =
∨
γ∈Γ

(a, γ) .

Now, for i, j ∈P, we let Γi,j = {γ ∈ Γ | γi,j = 1} and we define

Ỹi ≤ Yj =
∨

a∈Σ,γ∈Γi,j

(a, γ) .

The inductive cases are trivial, for instance α̃ Si β = α̃ Si β̃. We deduce that, if L is
LocTL[Yi ≤ Yj ,Si]-definable over Σ then θ(L) is LocTL[Si]-definable over Σ× Γ.

(2) Given an event formula α ∈ LocTL[Yi ≤ Yj ,Si], we construct an event formula α̂ ∈
LocTL[Yi ≤ Yj , Si] such that, for all traces t ∈ Tr(Σ) and all events e in t, we have θ(t), e |= α
if and only if t, e |= α̂. Again, the construction is by structural induction and the interesting
cases are the constants. For (a, γ) ∈ Σ× Γ, we define

(̂a, γ) = a ∧
∧

i,j∈P|γi,j=1

Yi ≤ Yj ∧
∧

i,j∈P|γi,j=0

¬Yi ≤ Yj .

The other cases are trivial, e.g., Ŷi ≤ Yj = Yi ≤ Yj and α̂ Si β = α̂ Si β̂.

Since the gossip automaton G computes θY and all LocTL[Si]-definable languages over
(Σ × Γ, loc) can be accepted by a local cascade product of copies of asynchronous reset
automata of the form U2[p] (Theorem 5.6), we deduce from Lemma 5.10 (1) and Proposi-
tion 3.31 that all LocTL[Yi ≤ Yj , Si]-definable languages over (Σ, loc) can be accepted by a
local cascade product of the gossip automaton G followed by copies of asynchronous reset
automata.

Now, as we saw, the gossip automaton exhibits a non-aperiodic behaviour in general. In
order to get a converse of the above statement, we introduce a restricted version of the local
cascade product.

Let A be an asynchronous automaton over (Σ× Γ, loc). The θY-restricted local cascade
product G ◦r` A is an asynchronous automaton which runs G on an input trace t ∈ Tr(Σ),

and runs A over θY(t). Formally, if Ĝ = ({Υi}, {∇a}, vin, {µa}) computes θY and A =
({Si}, {δ(a,γ)}, sin) then G◦r`A is the asynchronous automaton G◦r`A = ({Ri}, {∆a}, (vin, sin))
over (Σ, loc), where Ri = Υi×Si for i ∈P and, for a ∈ Σ and (υa, sa) ∈ Ra, ∆a((υa, sa)) =
(∇a(υa), δ(a,µa(υa))(sa)). Notice that, in the definition of the transition relation of this
restricted cascade product, the a-state υa of G has been abstracted to µa(υa) ∈ Γ. Notice
that languages accepted by G ◦r` A are also accepted by G ◦` A′ where A′ is the extension of
A to the suitable alphabet Σ×` S.

Lemma 5.11. A trace language L ⊆ Tr(Σ) is accepted by G ◦r` A (with all global states of

the gossip automaton accepting) if and only if L =
(
θY
)−1

(L′), where L′ is a trace language
over (Σ× Γ, loc) accepted by A.

Proof. The first component of G ◦r` A runs G on the input trace t ∈ Tr(Σ) and accepts since

all global states of G are accepting. Now, the second components runs A on θY(t). Therefore,
t is accepted by G ◦r` A if and only if θY(t) is accepted by A.
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Corollary 5.12. Let (Σ, loc) be a distributed alphabet and let L ⊆ Tr(Σ) be a trace language.
Then L is LocTL[Yi ≤ Yj ,Si]-definable if and only if L is accepted by a θY-restricted local
cascade product G ◦r` A, where G is the gossip automaton and A is a local cascade product of
asynchronous reset automata of the form U2[p].

Proof. If L is LocTL[Yi ≤ Yj ,Si]-definable then L′ = θY(L) is LocTL[Si]-definable by
Lemma 5.10 (1). By Theorem 5.6, L′ is accepted by an asynchronous automaton A
which is a local cascade product of asynchronous reset automata of the form U2[p]. Since

L =
(
θY
)−1

(L′), the left-to-right implication follows from Lemma 5.11.
Conversely, assume that L is accepted by G ◦r` A where A is a local cascade product of

asynchronous reset automata of the form U2[p]. By Lemma 5.11, we have L =
(
θY
)−1

(L′)
where L′ is a trace language over (Σ×Γ, loc) accepted by A. By Theorem 5.6, L′ is LocTL[Si]-
definable over (Σ × Γ, loc). Finally, Lemma 5.10 (2) implies that L is LocTL[Yi ≤ Yj ,Si]-
definable.

Remark 5.13. In Lemma 5.11 and Corollary 5.12, as well as in Theorem 5.14 below, we
may replace the gossip automaton G by any asynchronous automaton computing the primary
order labelling function θY.

We close this section with the following theorem, summarizing our characterization of
first-order definable trace languages using local cascade products.

Theorem 5.14. Let (Σ, loc) be a distributed alphabet and let L ⊆ Tr(Σ) be a trace language.
The following are equivalent:

(1) L is recognized by an aperiodic monoid.
(2) L is star-free.
(3) L is definable in first-order logic.
(4) L is definable in LocTL[Yi,Si] or in LocTL[Yi ≤ Yj ,Si] or in LocTL[Yi ≤ Yj ,Yi, Si].
(5) L is accepted by a θY-restricted local cascade product G ◦r` A where G is the gossip

automaton and A is a local cascade product of copies of asynchronous reset automata of
the form U2[p].

(6) L is accepted by a θY-restricted local cascade product G ◦r` A where G is the gossip
automaton and A is an aperiodic asynchronous automaton.

Proof. As mentioned before, Guaiana, Restivo and Salemi [GRS92] established the equiv-
alence of (1) and (2), and Ebinger and Muscholl [EM96] proved that these are equivalent
to (3). The equivalence between (3) and (4) is Theorem 5.5 and Corollary 5.12 gives the
equivalence with (5).

The equivalence with (6) was first proved by Adsul and Sohoni [AS04]. We can
obtain it as follows. First, (5) implies (6) since a local cascade product of aperiodic
asynchronous automata is again aperiodic. Next, we show that (6) implies (4) as in the
proof of Corollary 5.12. Assume that L is accepted by G ◦r` A where A is an aperiodic

asynchronous automaton. By Lemma 5.11, we have L =
(
θY
)−1

(L′) where L′ is a trace
language over (Σ× Γ, loc) accepted by A. Since (1) implies (4), the language L′ accepted by
A is LocTL[Yi ≤ Yj , Si]-definable over (Σ× Γ, loc). Finally, Lemma 5.10 (2) implies that L
is LocTL[Yi ≤ Yj , Si]-definable over (Σ, loc).
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6. Global cascade sequences, the related principle and temporal logics

We have established a direct correspondence between asynchronous wreath products of
asynchronous transformation monoids and local cascade products of asynchronous automata
(Proposition 3.28 and Theorem 3.29). In particular, over aKR distributed alphabets, any
asynchronous automaton is simulated by a local cascade product of our proposed localised
two-state reset and localised permutation asynchronous automata. This yields the same
benefits as in the theory of word languages (see Section 5, in particular Theorem 5.7, for a
concrete example). However, we do not know which distributed alphabets with non-acyclic
architecture are aKR. Despite this, we have been able to get decomposition results (see
Theorem 5.14) for first order definable trace languages over general architectures. This has
been possible thanks to the expressive completeness of LocTL[Yi ≤ Yj ,Si] (Theorem 5.5)

and the primary order labelling function θY which allows to reason about LocTL[Yi ≤ Yj , Si]-
definability over (Σ, loc) in terms of LocTL[Si]-definability over (Σ×Γ, loc) (see Lemma 5.10).
We have also ruled out, in Lemma 5.8, the possibility of an aperiodic asynchronous automaton
that computes θY. This finally leads to a restricted version of the local cascade product
characterization in Theorem 5.14, which circumvents the non-aperiodic behaviour of the
gossip automaton which computes θY.

In this section, we propose global cascade sequences as a new model for accepting trace
languages. This model is built using asynchronous automata and lets us pose automata-
theoretic and language-theoretic decomposition questions in the same spirit as with the local
cascade product. Its definition and acceptance condition are inspired by the operational
point of view of the local cascade product, and are natural from an automata-theoretic
viewpoint. Further, it supports a global cascade principle in the same vein as the local
cascade principle supported by local cascade products.

Later in the section, we show that global cascade sequences of localised two-state reset
asynchronous automata accept exactly the first order definable trace languages. In fact, we
establish that LocTL[Yi, Si]-definability matches acceptability by a global cascade sequence
of copies of U2[p] and use the expressive completeness of LocTL[Yi,Si] from Theorem 5.5.
This allows a characterization of first order logic purely in terms of an asynchronous cascade
of copies of U2[p] albeit using global cascade sequences. The new characterization remains in
the realm of aperiodic asynchronous devices and can be considered intrinsic in the spirit
of the ‘first-order = aperiodic’ slogan. Of course, all this comes at a cost! What we lose,
bringing in global cascade sequences instead of local cascade products in decomposition
results, is the nice correspondence to an algebraic operation. In Section 7, we show how to
construct an asynchronous automaton that realizes a global cascade sequence, making use,
again, of the gossip automaton.

Let A = ({Si}, {δa}, sin) be an asynchronous automaton over (Σ, loc) and χA be the
asynchronous transducer computed by A. Recall that χA(t) preserves the underlying poset of
events of t and, at each event, records the previous local states of the processes participating
in that event. We now introduce a natural variant of χA called the global-state labelling
function, where we record at each event e the best global state that causally precedes e. This
is the best global state that the processes participating in the current event are (collectively)
aware of.

To be more precise, we first set additional notation. Recall that the alphabet Σ× S can
be equipped with a distributed structure (over P) by letting loc((a, s)) = loc(a), that is,
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(Σ × S)i = Σi × S. We refer to (Σ, loc) as the input alphabet of A and (Σ × S, loc) as its
output alphabet.

Definition 6.1 (Global-state Labelling Function). Let A = ({Si}, {δa}, sin) be an asynchro-
nous automaton over (Σ, loc). The global-state labelling function of A is the S-labelling
function ζA : Tr(Σ)→ Tr(Σ×S) defined for t = (E,≤, λ) ∈ Tr(Σ) by ζA(t) = (E,≤, (λ, µ)) ∈
Tr(Σ× S) with the labelling µ : E → S given by µ(e) = s where s = A(⇓e)
Remark 6.2. The global-state labelling function and asynchronous transducer associated
with an automaton coincide in the sequential (single process) setting.

Remark 6.3. Letting f((a, s)) = (a, sa) for each (a, s) ∈ Σ × S defines a morphism
f : Tr(Σ× S)→ Tr(Σ×` S). We then have χA(t) = f(ζA(t)) for each t ∈ Tr(Σ).

Example 6.4. Figure 7 shows the image by the global-state labelling function ζ, for the same
asynchronous automaton A (or asynchronous morphism ϕ) and trace t as in Example 3.18.
Note the difference from Figure 4. For example, here the p3-event has process p1 state 2 in
its label (which is the best process p1 state in its causal past) even though process p1 and
process p3 never interact directly.

a
b

c
p3

p2

p1
1 1 2

⊥2 ⊥2 ⊥2

⊥3 ⊥3

Run of Aϕ on trace t

a
1
⊥2⊥3

b
1

⊥2

⊥3

c
2

⊥2

⊥3
p3

p2

p1

Trace ζ(t)

Figure 7. Global-state labelling function output on a trace

As ζA(t) carries more information than χA(t) (Remark 6.3), one can view ζA as an
information-theoretic generalization of χA. However, unlike χA, it is not clear a priori
whether it can be computed by an asychronous automaton. We will return to this important
issue in Section 7. At the moment, we simply extend the operational point of view of local
cascade products (see Figure 5) using global-state labelling functions instead of asynchronous
transducers.

Definition 6.5. A global cascade sequence (in short, gcs) Aseq is a sequence (A1, A2, . . . , An)
of asynchronous automata such that, for 1 ≤ i < n, the input alphabet of Ai+1 is the output
alphabet of Ai. The input alphabet of A1 is called the input alphabet of Aseq and the output
alphabet of An is called the output alphabet of Aseq.

We associate a global-state labelling function ζAseq from traces over the input alphabet
of Aseq to traces over the output alphabet of Aseq, namely the composition

ζAseq = ζA1ζA2 · · · ζAn
of the global-state labelling functions of the Ai. For instance, if Aseq = (A1, A2) then
ζAseq(t) = ζA2(ζA1(t)).

It is important to observe that a gcs Aseq is not an asychronous automaton. A gcs is
simply a cascade of a sequence of compatible automata which are connected via global-state
labelling mechanisms. The following lemmas are immediate.
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A1

s = A1(t)

t
A2

q = A2(ζA1
(t))

ζA1
(t)

A3

r = A3((ζA1
ζA2

)(t))

(ζA1
ζA2

)(t)

Figure 8. Global cascade product

Lemma 6.6. Let Aseq = (A1, A2, . . . , An) and Bseq = (B1, B2, . . . , Bm) be two global cascade
sequences such that the input alphabet of Bseq is the output alphabet of Aseq. Then Cseq =
(A1, . . . , An, B1, . . . , Bm) is a valid global cascade sequence. Moreover, ζCseq = ζAseqζBseq.

The concatenation of global cascade sequences, as in Lemma 6.6, is denoted by Cseq =
Aseq ·Bseq. This is an associative operation, as verified in the following lemma.

Lemma 6.7. Let Aseq, Bseq, Cseq be global cascade sequences such that the input alphabet
of Bseq is the output alphabet of Aseq, and the input alphabet of Cseq is the output alphabet
of Bseq. Then (Aseq ·Bseq) · Cseq = Aseq · (Bseq · Cseq) and ζ(Aseq·Bseq)ζCseq = ζAseqζ(Bseq·Cseq).

We now show that, one can view a gcs as an acceptor of trace languages in a natural
way. We begin with some notation.

For an automaton A, the set of global states of A is denoted by gs(A). Given a global
cascade sequence Aseq = (A1, . . . , An), we refer to the set gs(A1) × . . . × gs(An) as the
global states of Aseq and denote it as gs(Aseq). Similarly the set of P -states of Aseq is the
cartesian product of the sets of P -states of its constituent asynchronous automata. Given a
P -state s = (s1, . . . , sn) of Aseq, and P ′ ⊆ P , we let sP ′ = ((s1)P ′ , . . . , (sn)P ′) be the natural
restriction of s to P ′.

Definition 6.8 (Language accepted by a global cascade sequence). Let Aseq = (A1, . . . , An)
be a global cascade sequence with input alphabet (Σ, loc). Given a trace t ∈ Tr(Σ), we let
Aseq(t) ∈ gs(Aseq) be the global state of Aseq reached after reading t:

Aseq(t) =
(
A1(t), A2(ζA1(t)), . . . , An([ζA1 · · · ζAn−1 ](t))

)
.

Given F ⊆ gs(Aseq), we define the language L(Aseq, F ), a language accepted by Aseq, by

L(Aseq, F ) = {t ∈ Tr(Σ) | Aseq(t) ∈ F} .
A language L ⊆ Tr(Σ) is said to be accepted by Aseq if there exists a subset F ⊆ gs(Aseq)
such that L = L(Aseq, F ). See the Figure 8.

The following global cascade sequence principle is an easy consequence of the definitions.

Theorem 6.9. Let Aseq and Bseq be global cascade sequences, let (Σ, loc) be the input
alphabet of Aseq, and suppose that the output alphabet of Aseq is the input alphabet of Bseq,
say (Π, loc). Let Cseq = Aseq · Bseq. Then any language L ⊆ Tr(Σ) accepted by Cseq is a

finite union of languages of the form U ∩ ζ−1
Aseq

(V ) where U ⊆ Tr(Σ) is accepted by Aseq, and

V ⊆ Tr(Π) is accepted by Bseq.

Building on the simple observation in Remark 6.3 that global-state labelling functions
are information-theoretic generalizations of local asynchronous transducers, we now show
that a local cascade product can be realized by an appropriate global cascade sequence.

An asynchronous automaton B over (Σ×` S, loc) naturally gives rise to another asyn-

chronous automaton B̂ (with the same state sets, etc.) operating over (Σ×S, loc) by defining
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the transition of B̂ on letter (a, s) ∈ Σ× S to be the transition of B on letter (a, sa). We

abuse the notation slightly in the following lemma and denote B̂ also by B.

Lemma 6.10. The action of a local cascade product A = A1 ◦` . . . ◦` An can be simulated
by the gcs Aseq = (A1, . . . , An) in the following sense: for any trace t, and any process i,
[A(t)]i = [Aseq(t)]i.

Proof. To be completely rigorous, the gcs in question is Aseq = (A1, Â2, . . . , Ân). We prove
the lemma by induction on n. If n = 1, the statement is trivially true.

For the inductive step, we assume that the lemma holds for A′ = A1 ◦` . . . ◦` An−1,

and A′seq = (A1, Â2, . . . , Ân−1). Fix a trace t. For any event e in the trace and any
process i, by induction hypothesis, [A′(⇓e)]i = [A′seq(⇓e)]i. Hence if the label of the event
e in ζA′seq(t) is (a, s) (for some s ∈ gs(A′seq)), then the label of the same event in χA′(t)

corresponds to (a, sa) (see Remark 6.3). By construction, transition on (a, sa) in the local
cascade product component An is same as that by (a, s) in the corresponding global cascade

sequence component Ân. Hence there is a natural correspondence between the run of An
(in A) over χA′(t) and the run of Ân (in Aseq) over ζA′seq(t), and we can conclude that

[A(t)]i = [Aseq(t)]i.

An important language-theoretic consequence of Lemma 6.10 is that every language
accepted by A = A1 ◦` . . . ◦` An is also accepted by the gcs Aseq = (A1, . . . , An).

We now come to the main result of this section, that relates the logic LocTL[Yi, Si] with
global cascade sequences of localized reset automata U2[p]. Recall that Theorem 5.7 gives
an exact correspondence between first order definable trace languages and local cascade
products of U2[p] asynchronous automata for aKR distributed alphabets. We generalize this
language-theoretic decomposition result to any distributed alphabet, using a global cascade
sequence of the same distributed resets instead of local cascade product.

Theorem 6.11. A trace language is defined by a LocTL[Yi,Si] formula if and only if it is
accepted by a global cascade sequence of asynchronous reset automata of the form U2[p].

The proof of Theorem 6.11 follows the same structure and re-uses elements of the proof
of Theorem 5.6.

Proof. First consider a global cascade sequence A = U2[p] ·B where B is a global cascade
sequence. Recall that U2[p] has two global states, say S = {1, 2}, identified with the two
local states of its p-component. The input alphabet of the gcs B is (Σ× S, loc). Suppose
that the languages accepted by B are LocTL[Yi,Si]-definable over (Σ× S, loc).

Let ζ : Tr(Σ)→ Tr(Σ× S) be the global-state labelling function associated with U2[p]
and its initial state, say, 1. By the global cascade principle (Theorem 6.9), any language
recognized by A is a union of languages of the form L1 ∩ ζ−1(L2) where L1 ⊆ Tr(Σ) is
recognized by U2[p], and L2 ⊆ Tr(Σ× S) is recognized by B. We have seen in the proof of
Theorem 5.6 that L1 is LocTL[Si] definable over alphabet (Σ, loc).

By assumption, we know that L2 is LocTL[Yi,Si] definable over alphabet (Σ× S, loc)
and we need to prove that ζ−1(L2) is LocTL[Yi,Si] definable over (Σ, loc). This is done
by structural induction on the LocTL[Yi,Si]-formula over (Σ × S, loc) defining L2. For a
LocTL[Yi, Si] event formula α over (Σ× S, loc), we construct a LocTL[Yi, Si] event formula
α̂ over (Σ, loc) such that for any trace t ∈ Tr(Σ) and any event e in t, we have t, e |= α̂ if
and only if ζ(t), e |= α. The non-trivial case here is the base case of a letter formula from
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(Σ× S, loc). We let

(̂a, 2) = a ∧ Yp(R2 ∨ (¬R1 ∧ ((¬R1) Sp R2)))

(̂a, 1) = a ∧ ¬Yp(R2 ∨ (¬R1 ∧ ((¬R1) Sp R2))) .

The inductive cases are trivial, for instance Ŷi α = Yi α̂.

Towards establishing the converse implication, we construct, for any LocTL[Yi, Si] event
formula α, a gcs Aα from reset asynchronous automata of the form U2[p], which is such
that for any trace t, event e of t and process i ∈ loc(e), the local state [Aα(↓e)]i determines
whether t, e |= α. Again, this is done by structural induction on the LocTL[Yi,Si] event
formula α. The case of LocTL[Si]-formulas, in view of Lemma 6.10, is already handled in
(the proof of) Theorem 5.6 and we only need to deal with the inductive case where α is of
the form α = Yj β.

By induction, a gcs of reset automata Aβ has been constructed, which provides the truth
value of β at any event. We construct an asynchronous automaton B = ({Qi}, {δ(a,sa)}, qin)
over (Σ × S, loc) such that Aα = Aβ · U2[j] · B as follows. The middle U2[j] remembers
whether some j-event already occured. Concerning B, we let Qi = {>,⊥} for all i ∈ P
and, again, we denote a P -state q as ⊥ (resp. >) if qi = ⊥ (resp. qi = >) for all i ∈ P . We
let the initial state be qin = ⊥. Let ζ be the global-state labelling function associated with
Aβ · U2[j]. Let t ∈ Tr(Σ) be a trace, e be an event in t, and (a, s) be the label of e in ζ(t).
Write ej the last j-event in ⇓e if it exists, i.e., if ⇓e ∩Ej 6= ∅. The local state sj determines
whether ej exists, written sj ` Yj >, and in this case whether it satisfies β, written sj ` Yj β.
The transition functions of B are:

δ(a,s) = reset to > if sj ` Yj β

δ(a,s) = reset to ⊥ if sj 6` Yj β .

It is easy to see that B is a gcs of copies of U2[p], one for each process p ∈P. These reset
automata work independently of each other, each U2[p] depends only on the global state
information from Aβ · U2[j] provided by ζ. Hence, B is also a local cascade product of these
U2[p]. This completes the proof.

Our subsequent result crucially uses the expressive completeness of LocTL[Yi,Si] and
its proof is immediate from Theorems 5.5 and 6.11. It is best seen as an addition to the
several characterizations of first-order definable trace languages presented in Theorem 5.14.

Theorem 6.12. Let (Σ, loc) be a distributed alphabet and let L ⊆ Tr(Σ) be a trace language.
Then L is definable in first-order logic if and only if L is accepted by a global cascade sequence
of asynchronous reset automata of the form U2[p].

7. Asynchronous implementation of a global cascade sequence

We have already noted in Section 6 that the global-state labelling function ζA associated
with an asynchronous automaton A is not an abstraction of the asynchronous transducer of
A, that is, it cannot be directly computed by A. However, we will show how to construct an
asynchronous automaton AG which computes ζA using the gossip automaton.

Recall that the gossip automaton G = ({Υi}, {∇a}, vin) keeps track of the truth values
all the constants of LocTL[Yi ≤ Yj ,Si]: it computes the primary order labelling function
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θY : Tr(Σ) → Tr(Σ × Γ) which decorates each event e of a trace t with the truth values
γ ∈ Γ = {0, 1}P×P of all constants Yi ≤ Yj , i.e., for all i, j ∈P, γi,j = 1 if t, e |= Yi ≤ Yj
and γi,j = 0 otherwise.

Construction of AG. Roughly speaking, in the automaton AG , each process keeps track of
its local gossip state in the gossip automaton and the best global state of A that it is aware
of. In fact, AG is realised as a θY-restricted local cascade product of the gossip automaton
and an asynchronous automaton Ag – the global-state detector – derived from A where each
process in Ag keeps track of the best global state of A that it is aware of. When processes
synchronize in Ag, they use the Γ-labelling information to correctly update the best global
state that they are aware of at the synchronizing event.

So AG = G◦r`Ag where Ag is an asynchronous automaton over (Σ×Γ, loc) derived from A.
Therefore, for the construction, we only need to describe Ag. Recall that A = ({Si}, {δa}, sin).
Then Ag = ({Qi}, {δ(a,γ)}, qin) where Qi = S for all i ∈P, and qin = (sin, . . . , sin). Before
defining the transitions, we define for (a, γ) ∈ Σ× Γ the function globalstate(a,γ) : Qa → S

as follows: globalstate(a,γ)(qa) = s ∈ S where, for each i ∈P,

s(i) =

{
qa(j)(i) if there exists j ∈ loc(a) such that γi,j = 1

sin(i) otherwise.

Note that, when γi,j = 1 at some event e of a trace θY(t), then t, e |= Yi ≤ Yj and process j
has the latest information about process i. Hence, the function globalstate(a,γ) determines

the best global-state that processes in loc(a) are collectively aware of. We define the local
transition functions of Ag by δ(a,γ)(qa) = q′a where for all i ∈ loc(a) we set

q′a(i) = ∆a(globalstate(a,γ)(qa)) .

Recall that ∆a is the extension of the local transition function δa of A to global states in S.
In order to prove the correctness of the construction, we first introduce some notation.

Let t = (E,≤, λ) ∈ Tr(Σ), and i ∈ P. Then ↓i(t) is the i-view of t and it is defined by
↓i(t) = ↓Ei. It is easy to see that if ↓i(t) 6= ∅, then there exists e ∈ Ei such that ↓i(t) = ↓e.
We note that ↓i(t) is a trace prefix of t and it represents knowledge of the agent i about t.

The next lemma shows that in AG , each process keeps track of the best global state of
A that it is aware of.

Lemma 7.1. Let t ∈ Tr(Σ) with AG(t) = (υ, q). Then for every i ∈P, qi = A(↓i(t)).

Proof. Note that as AG = G ◦r` Ag, AG(t) = (υ, q) implies that G(t) = v and Ag(θY(t)) = q.
We prove the lemma by induction on the size of t = (E,≤, λ), that is, on |E|. The base case
of the empty trace is easy and skipped.

Consider t′ = ta, θY(t′) = θY(t)(a, γ) and let (υ, q) = AG(t) and (υ′, q′) = AG(t′). Clearly
Ag(θY(t)) = q, Ag(θY(t′)) = q′ and δ(a,γ)(qa) = q′a. By definition of the (a, γ)-transition
function of Ag, we have q′i = ∆a(globalstate(a,γ)(qa)) for each i ∈ loc(a). Observe that, by

the local nature of a-transition functions of asynchronous automata, we have q′i = qi for
i 6∈ loc(a).

By induction, for every i ∈ P, qi = A(↓i(t)). If i 6∈ loc(a), ↓i(t′) = ↓i(t). As, in this
case, we also have q′i = qi, we are done by the induction hypothesis. Now we let i ∈ loc(a).
Let e correspond to the last occurrence of a in t′. Then process i participates in e. As a
result, ↓i(t′) = ↓e.
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We first study the global state s = A(⇓e) ∈ S. For i ∈ P, let ei be the maximal
i-event in ⇓e if it exists, i.e., if ⇓e ∩ Ei 6= ∅. Fix a process i ∈ P. If ei does not
exist, then s(i) = sin(i). Otherwise there exists j ∈ loc(a) such that ei ≤ ej . Therefore

s(i) = [A(⇓e)]i = [A(↓j(t))]i = qj(i) where the last equality is obtained using the induction

hypothesis, qj = A(↓j(t)). From Theorem 5.9, we have γi,j = 1 (as θY(t′) = θY(t)(a, γ)) and,
using the definition of the function globalstate(a,γ), it follows that s = globalstate(a,γ)(qa).

Now, with s′ = A(↓e), we see that s′ = ∆a(s) = ∆a(globalstate(a,γ)(qa)). As already

observed, q′i = ∆a(globalstate(a,γ)(qa)), for i ∈ loc(a). The proof of the inductive step is now

complete, as for i ∈ loc(a), q′i = s′ = A(↓e) = A(↓i(t′)).

We now show that the asynchronous automaton AG simulates A. More precisely, we
define a simulation map f : Υ×Q→ S by f(υ, q) = s where, for i ∈P, s(i) = qi(i).

Lemma 7.2. The action of A can be simulated by AG as, for t ∈ Tr(Σ), A(t) = f(AG(t)).

Proof. Let t ∈ Tr(Σ), A(t) = s and AG(t) = (υ, q). By Lemma 7.1, for each i ∈P, we have
qi = A(↓i(t)) and hence, qi(i) = [A(↓i(t))]i = s(i). This shows that A(t) = s = f(AG(t)).

An important consequence of Lemma 7.2 is that any language accepted by A is also
accepted by AG : if L is accepted by A via F ⊆ S then it is accepted by AG via f−1(F ). Note
that, as f−1(F ) = Υ× F ′ where F ′ ⊂ gs(Ag), the accepting set f−1(F ) is solely determined
by F ′ and does not depend on the state reached by the gossip automaton.

Finally, we establish that AG computes the global-state labelling function ζA. For this

we fix the Γ-transducer Ĝ = ({Υi}, {∇a}, vin, {νYa : Υa → Γ}) which computes θY. Now we

are ready to extend AG to a S-transducer ÂG = (AG , {ξa}). We define ξa : Υa ×Qa → S as
follows: ξa(υa, qa) = globalstate(a,νYa (υa))(qa).

Theorem 7.3. The transducer ÂG computes the global-state labelling function ζA.

Proof. Let t = (E,≤, λ) ∈ Tr(Σ) and t′ = θY(t) = (E,≤, (λ, µ)) ∈ TR((Σ × Γ, loc)). Fix
an event e ∈ E with λ(e) = a and µ(e) = γ. Note that, ζA decorates the event e with the
additional information s = A(⇓e). On the other hand, with AG(t) = (υ, q), the transducer

ÂG decorates the event e with the additional information ξa(υa, qa) = globalstate(a,νYa (υa))(qa).

By Theorem 5.9, Ĝ computes θY and we have νYa (υa) = γ. Therefore it remains to show
that s = globalstate(a,γ)(qa) to complete the proof. But we have already seen in the proof of

Lemma 7.1 (inductive step applied with t = ⇓e and t′ = ↓e) that s = globalstate(a,γ)(qa).

Now we are ready to realize a global cascade sequence as an asychronous automaton.
We associate with a gcs Aseq = (A1, . . . , An) an asychronous automaton AGseq and an

asynchronous transducer ÂGseq, whose constructions extend the constructions of AG and ÂG

from A in a natural fashion. In particular, AGseq is a local cascade product G◦r` (Ag1◦` . . .◦`A
g
n).

The first component in this product is the gossip automaton which computes θY and the first
cascade product is θY-restricted. In the subsequent components, each process keeps track of
the best global state it is aware of for the corresponding automaton in Aseq. In other words,
we use the earlier construction for each component automaton but keep a single copy of the
gossip automaton.

Let (Σ, loc) be the input (distributed) alphabet of A1 (or that of Aseq) with total
alphabet Σ. Note that the input alphabet for Aj is the output alphabet of Aj−1. We
abuse the notation and use the total alphabet instead of the distributed alphabet. The
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distribution is anyway induced from the alphabet (Σ, loc). The input alphabet for Aj is
Σ× gs(A1)× · · · × gs(Aj−1).

Remark 7.4. It is important to keep in mind the special case Aseq = (A). Our constructions

of AGseq and ÂGseq in this case are exactly identical to those of AG and ÂG . The general case

of a gcs is only notationally more involved. It merely follows the constructions of AG and
ÂG in spirit and extends them naturally.

In order to describe the complete construction, we need to define Ag1, . . . , A
g
n. For brevity,

we simply define Ag1 and Ag2 here and skip the remaining details.
Let A1 = ({Si}, {δa}, sin) and A2 = ({S′i}, {δ′(a,s)}, s

′
in). The definition of Ag1 is verbatim

to that of Ag defined earlier. In particular, Ag1 is defined over (Σ × Γ, loc) and Ag1 =
({Qi}, {δ(a,γ)}, qin) where Qi = S for all i ∈ P, and qin = (sin, . . . , sin). Further, we have
defined the function globalstate(a,γ) : Qa → S there which is used to construct the local

transition functions of Ag1 by δ(a,γ)(qa) = q′a where for all i ∈ loc(a) we have q′a(i) =
∆a(globalstate(a,γ)(qa)).

Now we set Ag2 = ({Q′i}, {δ′(a,γ,qa)}, q
′
in) where, for all i ∈ P, Q′i = S′ is the set

of global states of A2 and q′in = (s′in, . . . , s
′
in). As expected, we use the ‘same’ function

globalstate′(a,γ) : Q′a → S′ defined by globalstate′(a,γ)(q
′
a) = s′ ∈ S′ where, for each i ∈P,

s′(i) =

{
q′a(j)(i) if ∃j ∈ loc(a) such that γi,j = 1

s′in(i) otherwise.

Now we define the local transitions of Ag2 by δ(a,γ,qa)(q
′
a) = q′′a where for all i ∈ loc(a) we

have

q′′a(i) = ∆′(a,globalstate(a,γ)(qa))(globalstate
′
(a,γ)(q

′
a)) .

Recall that ∆′(a,s=globalstate(a,γ)(qa)) is the extension of the local transition function δ′(a,s) of

A2 to global states in S′.
In general, in Agp – the global-state detector of Ap, the local state-set of each process is

simply the set gs(Ap) of global states of Ap and each process starts in the initial global-state
of Ap. As mentioned earlier, each process in Agp simply records the best global state of Ap
that it is aware of. At a synchronizing event, the participating processes simply use the
Γ-labelling information γ to correctly compute, using the globalstate(a,γ) function, the best
collective global-state of Ap that they are aware of just prior to the synchronization. These
participating processes from the earlier components Agq for q < p can also similarly compute
best collective global-state of Aq prior to the current synchronization that they are aware of
and make it available to Agp via the local-cascade mechanism. This allows Agp to correctly
simulate the operational global-cascade mechanism used by the component Ap in Aseq.

Now we simply describe the final form of AGseq = G◦r` (Ag1◦` . . .◦`A
g
n). It is easy to see that,

gs(AGseq) = ΥP×gs(Ag1)×. . .×gs(Agn) = ΥP×gs(A1)P×. . .×gs(An)P . As a result, we write

a global state of AGseq as (υ, q1, . . . , qn) where υ ∈ ΥP and qj ∈ gs(Aj)
P =

∏
i∈P gs(Aj).

We next exhibit a simulation of the global cascade sequence Aseq by the asynchronous
automaton AGseq. We define fseq : gs(AGseq)→ gs(Aseq) as follows: fseq((υ, q1, q2, . . . , qn)) =
(s1, s2, . . . , sn) where sp(i) = qp(i)(i) for each 1 ≤ p ≤ n and each i ∈P.

Finally, we enrich AGseq to get the asynchronous gs(Aseq)-transducer ÂGseq = (AGseq, {ξa})
over (Σ, loc) which computes the global-state labelling function ζAseq . For each a ∈ Σ, we
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define ξa from a-states of AGseq as follows: with γ = νYa (υa),

ξa(υa, q
a
1 , . . . , q

a
n) = (globalstate(a,γ)(q

a
1), . . . , globalstate(a,γ)(q

a
n))

In view of Remark 7.4, our next set of results regarding the correctness of AGseq and

ÂGseq is hardly surprising. Their proofs are almost verbatim duplicates of the proofs of the

corresponding results about AG and ÂG , differing only in the bookkeeping notation needed
to talk about a sequence.

Lemma 7.5. Let t ∈ Tr(Σ) with AGseq(t) = (υ, q1, . . . , qn). Then, for every i ∈ P,

Aseq(↓i(t)) = (q1(i), . . . , qn(i)).

Lemma 7.6. The action of Aseq = (A1, . . . , An) is simulated by AGseq in the following sense:

for t ∈ Tr(Σ), Aseq(t) = fseq(AGseq(t)).

Lemma 7.6 implies that every language accepted by Aseq is also accepted by AGseq.

Theorem 7.7. The transducer ÂGseq computes the global-state labelling function ζAseq.

8. In lieu of a conclusion

An intriguing question, first asked by Adsul and Sohoni [AS04] and revived by the results
in this paper, is the following. Zielonka’s theorem [Zie87] states that every trace language
that is accepted by a (diamond) automaton, is accepted by an asynchronous automaton.
Equivalently, every trace language that is recognized by a morphism to a tm, is recognized
by an asynchronous morphism to an atm. Ebinger and Muscholl’s theorem [EM96] also
states that first-order definable trace languages are exactly those that are recognized by an
aperiodic tm. In view of the importance of first-order definability — and of the vast literature
concerning that class of languages, it would be interesting to know whether an aperiodic
Zielonka theorem holds, or for which distributed alphabets it does. Such a theorem would
state that the first-order definable trace languages are exactly those that are recognized by
an asynchronous morphism to an aperiodic atm.

The asynchronous Krohn-Rhodes property introduced in Section 3.7 is stronger: over
aKR distributed alphabets, a trace language L recognized by a tm (X,M) is also recognized
by a local cascade product of localized reset automata and localized permutation automata
of the form G[p], where G is a simple group dividing M . If L is first-order definable, the
tm can be chosen such that M is aperiodic, so L is accepted by a local cascade product of
localized reset automata, and hence recognized by an aperiodic atm. It is conceivable that
certain distributed alphabets would have the aperiodic Zielonka property without being aKR.
It is also conceivable that certain distributed alphabets would fail to be aKR, yet would
have that property when restricted to first-order definable languages, that is, to languages
recognized by an aperiodic tm (a property that we term aperiodic aKR).

We showed in Section 4 that acyclic architectures have the stronger aKR property. Apart
from that, we do not know which distributed alphabets have the aperiodic Zielonka or the
asynchronous Krohn-Rhodes property, nor even whether all distributed alphabets have these
properties. However, the results in Section 5 have the following consequence. For a fixed
distributed alphabet (Σ, loc), recall (from Section 5) that θY is the primary order labelling
function which decorates every event of a trace t with the truth values of the constants
Yi ≤ Yj . It follows from Remark 5.13 and Theorem 5.14 that if, for some distributed alphabet
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(Σ, loc), the function θY can be computed by an aperiodic asynchronous automaton (resp.
by an asynchronous wreath product of asynchronous transformation monoids of the form
U2[p]), then (Σ, loc) has the aperiodic Zielonka (resp. aperiodic aKR) property. Notice that
such an aperiodic asynchronous automaton is easily constructed for acyclic architectures,
thus providing an alternate proof of Theorem 4.2 in the aperiodic case.
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