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Abstract: This study addresses disassembly lot-sizing that determines the ordering and
disassembly schedules of end-of-life (EOL) products and subassemblies to satisfy items demands.
A stochastic version with uncertain ordering lead time (OLT) is considered for the first time.
Here, OLT represents the time elapsed between placing an order and receiving it (only an
EOL product can be ordered). Stochastic integer programming model is developed for the
objective of minimizing the expected sum of setup, purchase, inventory and backlog costs. To
test the performance of the proposed model, computational experiments were done on various
test instances and are reported. The results show that the performance of the proposed model
depends on the size of the ordering lead times, the number of periods and components.

Keywords: Disassembly lot-sizing, random ordering lead times, two-stage stochastic
programming.

1. INTRODUCTION AND RELATED PUBLICATIONS

Sustainable development has become a philosophical con-
cept for the future of the earth in the three main pillars of
social equity, environmental protection and economic via-
bility. Among the pillars, environmental protection is very
urgent one due to significant environmental deteriorations
such as excessive consumption of natural resources, global
warming, etc. (Benaissa et al., 2018).

Treating end-of-life (EOL) products in a more economical
and ecological way is one of the emerging challenges of
sustainable development (Slama et al., 2020a). In general,
EOL products can be recovered by collection, disassem-
bly, inspection, recycling, repackaging, etc., which can be
integrated as a reverse logistics framework (Ji et al., 2016).

Among the reverse logistics activities, this study focuses on
the disassembly that separates the product into parts for
the purpose of recovering materials, separating reusable
parts/sub-assemblies, etc. (Lambert, 2007). Decision is-
sues in disassembly systems can be categorized as design
issues includes design for disassembly, disassembly line bal-
ancing, etc., and the operational problem includes process
planning, lot-sizing, scheduling, etc. Note that disassembly
is one of the key activities in reverse logistics, especially
in product/material recovery such as refurbishing and re-
cycling.

This study addresses the disassembly lot-sizing problem,
one of disassembly production planning decisions. It aims
to determine the quantities of disassembling an EOL
product and its subassemblies to satisfy the demands of
its parts (Slama et al., 2020a).

There are many variations of the disassembly lot-sizing
problem, and they depending on the disassembly system
(two or multi-level bill of materials) and on the planning
horizon (one or multi period). The majority of the litera-
ture on disassembly lot-sizing system concerns the deter-
ministic uncapacitated problem (e.g., Gupta and Lambert,
2016; Taleb et al., 1997; Kim et al., 2006a; Langella,
2007; Kim et al., 2009; Kang et al., 2016; Kim et al.,
2018; Godichaud and Amodeo, 2018; Pour-Massahian-
Tafti et al., 2019a,b, 2020), while a small number of studies
focused on the deterministic capacitated problem (e.g., Lee
et al., 2002; Kim et al., 2006b; Ji et al., 2016; Slama et al.,
2020a). For the existing surveys, readers can refer to Slama
et al. (2019a).

In industrial reality, the disassembly process is sensitive to
various sources of uncertainty, such as uncertain demand
for components, disassembly yield, disassembly lead times
(Slama et al., 2020b). Indeed, these uncertainties create
disruptions in the disassembly plan and lead to unmet
demand from customers.

Many researchers have applied stochastic algorithms to the
disassembly lot sizing problem. To position our research
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in the existing literature, we review the researches on
stochastic disassembly lot-sizing problems under uncer-
tainty of demand, yield and disassembly lead time. Table 1
summarizes the literature on the considered problem, and
indicates the resolution approach, the disassembly system,
the planning horizon and the type of uncertainty.

As discussed in Guide (2000), the disassembly process is
sensitive to the uncertainty of the ordering lead time of
EOL product. This uncertainty can interrupt the disas-
sembly process and the delivery of disassembled parts, and
it increases backlog costs. However, to our knowledge, the
uncertainty of the ordering lead time of EOL product (i.e.
the time elapsed between placing a purchase order of EOL
product and receiving it from the market) has not yet
been studied. As the ordering lead time (OLT) of EOL
product depends of the availability of the EOL product
on the market, it cannot be estimated with precision. To
fill this gap in the literature, this research studies the
disassembly lot-sizing problem under the uncertainty of
the OLT, for multi-period planning, single type of EOL
product and multi-echelon disassembly bill of materials.
The objective is to determine the ordering and disassembly
schedules of EOL products while satisfying the demand of
their components over a certain planning horizon.

This work is organised in the following way. Section 2
describes the studied problem. Section 3 presents the
stochastic formulation for the optimisation problem con-
sidered. Section 4 deals with computational experiments.
Section 5 provides conclusions as well as future research
directions.

2. PROBLEM DESCRIPTION

A current industrial framework could be to consider a
computer manufacturer, which voluntarily takes back old
computers from end-of-life consumers. This manufacturer
also has a disassembly and refurbishment facility, and
responds to the demand for refurbished parts from its most
environmentally conscious customers. This setting can be
presented in Fig. 1.

In order to meet the demand for remanufactured parts,
old computers (represented by boxes marked 1) must
be ordered, collected and transported to the company’s
remanufacturing facility. They must then be sorted and
disassembled to obtain viable parts to use in the reman-
ufacturing effort (the parts are represented by the circles
denoted a, b, and c).

In practice, the time elapsed between placing a purchase
order of an EOL product and receiving it, is random. This
uncertainty can be mainly explained by the unavailability
of EOL products on the market. Subsequently, in this
paper, it is assumed that there is a shortage of the root
item, that is, the end-of-life products cannot be obtained
whenever they are ordered. To incorporate this uncertainty
into the decision making process, a discrete set of scenarios
is defined. The demand for parts and the time required
to disassemble the EOL products are considered certain.
Finally, the disassembly capacity is supposed unlimited.

We consider time-varying purchase costs depending on the
market situation, which means that the purchase costs
may vary according to different planning periods. When
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Fig. 1. Remanufacturing from collection to disassembly

each item is disassembled, the equipment required for that
item has to be set up. This results in a setup cost. Also,
inventory holding costs occur when items are held in order
to satisfy future demand.

The risk of an uncertainty of ordering lead times oc-
curs backlog and inventory holding costs. In fact, if the
EOL products are not delivered at the desired time, the
disassembly and refurbishing process are not starting as
expected, and then a backlog cost is incurred. In the same
manner, an inventory cost appears if the EOL product are
received before the expected delivery date.

The case of multi-echelon disassembly system is considered
in this research. As shown in Fig 2, a root item repre-
sents an EOL product to be ordered and disassembled,
an intermediate items represent a sub-assemblies to be
disassembled further (items 2-6) and a leaf items repre-
sent a components that cannot be disassembled (items a-
d). The number in parentheses represents the number of
components obtained by the disassembly operations.

As mentioned earlier, customers have a certain demand
for disassembled items for all time periods. This demand
is both external for leaf items and internal for the root and
sub-assemblies items. Finally, the demand is satisfied only
by disassembling the EOL products.
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Fig. 2. Multi-echelon disassembly lot-sizing system

This study is supposing:

(1) Once the EOL product is ordered for disassembly, it
is available after a random ordering lead time;

(2) The ordering lead time is a random discrete variable
with a known probability distribution and a bounded
over known interval OLT−

t and OLT+
t ;

The problem considered in this paper can be defined as
the problem of determining the ordering schedules of the
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Table 1. Summary of relevant literature under uncertainly

Authors Resolution Uncertainty

Y
ie
ld

D
em

a
n
d

D
L
T

O
L
T

#Periods #Levels

Inderfurth and Langella (2006) Heuristics
√

1 2
Kongar and Gupta (2006) Fuzzy goal programming

√
1 2

Kim and Xirouchakis (2010) MILP, Lagrangian heuristics
√

Multi 2
Wang and Huang (2013) 2S-MILP

√
Multi Multi

Inderfurth et al. (2015) Lagrangian heuristics
√

1 2
Fang et al. (2017) MILP, Lagrangian heuristics

√
Multi Multi

Liu and Zhang (2018) MS-MILP, Outer-approximation
√ √

Multi 2
Quezada et al. (2020) MS-MILP

√
Multi Multi

Slama et al. (2019b) S-LP
√

Multi 2
Slama et al. (2020b) Analytical model, Newsboy formulae

√
1 2

Slama et al. (2020c) SAA
√

Multi 2
Slama et al. (2021a) Analytical model, Newsboy formulae

√
1 2

Slama et al. (2021b) GA
√

Multi 2
Slama et al. (2022) Aggregate scenario

√
Multi 2

Current paper 2S-MILP
√

Multi Multi

“MILP: Mixed Integer Linear Programming,SAA: Sample average approximation, GA: Genetic algorithm, 2S-MILP: Two stage-MIL,
MS-MILP: Multi stage-MILP.”

EOL and the disassembly schedules of all parent items in
the given disassembly system under random OLT, over a
certain planning horizon. The objective is to minimise the
sum of expected purchase, setup, inventory holding and
backlog costs.

3. LINEAR STOCHASTIC MODEL

To formulate the problem considered in this research, the
topological order is considered from left to right and from
bottom to top for all items. Let i = 1 be the index of the
root item and N the index of the last item obtained by
disassembling it. Let the following three sets: (i) I, the set
of items i with i = 1, 2, ..., il−1, il, ...N , where il denote
the index for the first leaf item, (ii) Ic, the set of items
i of the last level of product structure that can no longer
be disassembled. These items verify the following equality:
∀i ∈ Ic, ∀j ∈ I | aji = 0 and Ic = {il, ..., N}, and (iii) Ie,
the set of remaining items such as Ie = {2, ..., il−1}. The
full list of notations used throughout this paper is given in
Table 2.

In this research, we provide a scenario based stochastic
optimization formulation. A scenario represents a possible
realization of the ordering lead time for the EOL product
in each period.
Definition 3.1. Let Ω be the set of all possible scenar-
ios. Each scenario ω corresponds to a realisation of the
ordering lead times from periods 1 to t. More precisely,
if any purchase order of EOL product starts in period
t, the EOL product is available in period t + OLTω

t in
scenario ω, and the probability of scenario ω is Pω. If
the ordering lead times in each period are independent,
Pω =

∏
t∈T P (OLTt = OLTω

t ),
∑

ω∈Ω Pω = 1,∀ω ∈ Ω

and |Ω| =
∏

t∈T (OLT+ −OLT− + 1)

The studied problem can be represented by the two-
stage multi-period stochastic mixed-integer program (2S-
MILP). The first stage variables correspond to the deci-
sions made in period 0 before observing the OLT. These
decisions are the setup, and disassembly quantity for item
i ∈ Ie, and procurement quantity of EOL product, in

Table 2. Notation

Index

t Index of period t, t ∈ T
i Index of item i, i ∈ I
ω Index for scenarios ω of ordering lead times, ω ∈ Ω.

Parameters

T Set of time periods of the planning horizon
I Set of items
Ic Set of leaf items
Ie Set of sub-assembly items
Ω Set of possible scenarios of lead times
dit External demand for item i in time period t, ∀i ∈ Ic
aji Number of units of item i obtained from disassembling j
Ii0 Initial inventory for each item
OLTω

t Random ordering lead time in time period t at scenario ω
hi Per-period inventory holding cost of one unit of item i, ∀i ∈ I
si Per-period setup cost of parent item i, ∀i ∈ Ie
bi Per-period backlog cost of one unit of item i, ∀i ∈ Ic
ct Purchase cost of EOL product in time period t
ϕi Parent of item i, ∀i ∈ I\{1}
M A large number

Functions

E(.) Expected value
Pω Probability value for each scenario ω

Decision variables

Qit Quantity of parent item i to disassemble in period t
Zt Quantity of EOL product to procure in time-period t
Yit Binary indicator of disassembly for item i in period t

Variables

Iωit Inventory level of item i at the end of period t of scenario ω,
∀i ∈ I
Bω

it Stockout level of item i at the end of period t of scenario ω,
∀i ∈ Ic

period t. The second stage variables also called recourse
decisions correspond to the inventory levels of item i ∈ I
and backlog levels of item i ∈ Ic at the end of period t.
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These decisions are observed after the realization of the
OLT for each scenario ω.

The stochastic formulation of the multi-level disassembly
lot-sizing problem is based on the set Ω of all possible OLT
scenarios and the probability Pω of each scenario ω. The
main objective is to minimize the excepted objective value
and to select the appropriate ordering and disassembly
plan. Our model is a generalization of the classic work
proposed by Lee and Xirouchakis (2004) with determinis-
tic ordering lead times and it can be expressed with the
following 2S-MILP model:

E(TC) = min
∑
t∈T

( ∑
ω∈Ω

Pω

(∑
i∈I

hi.I
ω
it +

∑
i∈Ic

bi.B
ω
it

)
+

Zt.ct +
∑
i∈Ie

si.Yit

)
(1)

Iω1t =
∑
τ∈Aω

t

Zτ −
t∑

τ=1

Q1τ + I10 ∀t ∈ T ,∀ω ∈ Ω (2)

Iωit =
∑

j∈ϕ(i)

aji.Qjτ +Ii0−
t∑

τ=1

Qiτ ∀i ∈ Ie,∀t ∈ T (3)

Iωit −Bω
it =

∑
j∈ϕ(i)

aji.Qjτ + Ii0 −
t∑

τ=1

diτ ∀i ∈ Ic,∀t ∈ T

(4)

Qit ≤ YitM ∀i ∈ Ie,∀t ∈ T (5)

Qit ≥ 0 ∀i ∈ Ie,∀t ∈ T (6)

Yit ∈ {0, 1} ∀i ∈ Ie,∀t ∈ T (7)

Iωit ≥ 0 ∀i ∈ I,∀t ∈ T ,∀ω ∈ Ω (8)

Bω
it ≥ 0 ∀i ∈ Ic,∀t ∈ T ,∀ω ∈ Ω (9)

Zt ≥ 0 ∀t ∈ T (10)

The objective function (Eq.1) minimizes the sum of the
excepted inventory holding, backlog and purchase costs
as well as the setup cost over the planning horizon. Con-
straints (2), (3) and (4) define the inventory balance level
for the EOL product, each sub-assembly item and each
leaf item i at the end of each time period t for a scenario
ω, respectively where Aω

t := {τ ∈ T | τ +OLTω
τ ≤ t} is

the set of period whose disassembled parent items are
available. Constraints (5) guarantee that a setup cost is
generated in a period if any disassembly operation needs
to be performed in that period. Constraints (6-10) provide
the conditions framing the decision variables.

4. COMPUTATIONAL EXPERIMENTS

This section presents the results of experiments conducted
to study the behavior of the proposed optimization ap-

proach. The proposed model is implemented in C with
Concert Technology and solved with IBM CPLEX 12.9 on
a PC with processor Intel (R) Core ™ i7-5500 CPU @ 2.4
GHz and 8 Go RAM under Windows 10 Professional.

The numerical experiments are performed with two test
beds. The first contains small size instance to illustrate
the optimal 2S-MILP model solution (section 4.1), and
the second contains large instances to show the limits of
the proposed model (section 4.2).

4.1 Numerical example

First, in order to illustrate an optimal solution obtained
by the optimization approach, this subsection presents
a small numerical example of the 2S-MILP model. The
effectiveness of our stochastic optimization approach was
examined by solving the multi-level disassembly system
shown in Fig. 3. We considered a finite planning horizon
with 7 periods and a disassembly system with 5 items.
Disassembly operation extracts one component of type
2 and 3, two components of type 4 and one component
of type 5. The demands on components over the planing
horizon dit are listed in Table 3. The unit time inventory
holding and backlog costs are hi=10 ∀i ∈ I and bi=100
∀i ∈ Ic, respectively. The setup cost si is equal to 500, ∀t ∈
T ,∀i ∈ Ie. Finally, the purchase cost of the EOL product
in each time is as follow: ct=(10,15,70,25,36,100,50).
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Fig. 3. Example of multi-echelon disassembly system.

In each time period, the EOL product can be delivered af-
ter a stochastic ordering lead time using a known probabil-
ity distribution between 1 and 3 in each period t (see Fig.
4). Table 3 presents the exact optimal solution provided by
the 2S-MILP model. More precisely, this table illustrates
the optimal quantity to be ordered and disassembled in
each period (first stage decisions) over the planning hori-
zon. The second stage decisions, i.e, the expected inventory
and stockout of component i at period t are also presented
in the same table. The number of all possible scenarios is
|Ω| = 37. The optimal E(TC) takes the value 23991.60 and
is obtained in 26.79 seconds

4.2 Performance analysis

To show the effectiveness of the 2S-MILP model more
generally, we solved a large test problem, and the test
results are given in this section. The large test problems
consists of 10 problems for each combination of 3 levels
of the number of components (10, 20 and 30) and 3 levels
of the number of periods (5,7 and 10). For each level of
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Fig. 4. Ordering lead time probability distribution

Table 3. Solution of the small example using
the 2S-MILP model

Period t 1 2 3 4 5 6 7

Zt 45 60 32 47 0 0 0

Q1t 0 0 0 45 60 32 47
Q2t 0 0 0 28 6 38 10
Q3t 0 0 0 45 60 32 47

E(I1,t) 0.00 11.25 48.29 52.39 35.42 34.77 0.00
E(I2,t) 0.00 0.00 0.00 17.00 71.00 65.00 101.99
E(I3,t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

d4,t 10 15 30 0 12 77 20
E(I4,t) 0.00 0.00 0.00 1.00 1.00 0.00 0.00
E(B4,t) 9.99 24.99 55.00 0.00 0.00 0.00 0.00

d5,t 20 0 0 25 60 32 47
E(I5,t) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E(B5,t) 19.99 19.99 19.99 0.00 0.00 0.00 0.00

the number of periods, 3 sizes of ordering lead time range
are considered (1, 2 and 4). Table 4 shows the generation
method for each parameter, where D ∼ U (a, b) indicates
that the parameter is randomly generated following a
discrete uniform distribution.

Computation time is an important factor in the decision
process. For this reason, we set a time limit of 3600 seconds
for CPLEX to run. The performance measures used are:

• I∗: Number of optimal (out of 10 instances) obtained
by the CPLEX solver;

• CPU: Computation times, in seconds, i.e. the time(s)
needed to obtain optimal solutions.

Table 4. Characteristics of data sets

Parameters Values

hi D ∼ U(10, 30)
ct D ∼ U(40, 60)
si D ∼ U(500, 1000)
Ii0 D ∼ U(20, 100)
bi D ∼ U(50, 100)
dit D ∼ U(50, 160)
aij D ∼ U(1, 3)

OLTit D ∼ U(OLT−
i , OLT+

i )

Table 5 shows that the performance of 2S-MILP depends
on the ordering lead times, the number of periods and the
number of items. Among these parameters, the ordering
lead-time range and the number of period have the most
significant impact on the computation time, and once the
size of the interval of uncertainty passes a certain value
(i.e., OLT+

t − OLT−
t ≥ 2), 2S-MILP cannot solve any

instance with 10 periods.

Table 5. Performances of the 2S-MILP

(a) Problem with 5 periods.

2S-MILP

#components 10 20 30

OLT+
t −OLT−

t I∗ CPU I∗ CPU I∗ CPU

1 10 0.45 10 0.93 10 1.64
2 10 4.84 10 14.35 10 12.5
4 10 96.297 10 331.672 10 723.781

(b) Problem with 7 periods.

2S-MILP

#components 10 20 30

OLT+
t −OLT−

t I∗ CPU I∗ CPU I∗ CPU

1 10 4.93 10 3.64 10 13.87
2 10 499.35 10 1243.25 10 1336.56
4 0 - 0 - 0 -

(c) Problem with 10 periods.

2S-MILP

#components 10 20 30

OLT+
t −OLT−

t I∗ CPU I∗ CPU I∗ CPU

1 10 83.37 10 381.60 10 1022.46
2 0 - 0 - 0 -
4 0 - 0 - 0 -

5. CONCLUSION

This study considered a multi-level disassembly lot-sizing
problem for one type of EOL product. The time necessary
to receive an EOL product after placing a purchase order
is considered as a stochastic variable under the interval
representation of uncertainty. The problem is to determine
the ordering and the quantities of disassembling the EOL
product and its subassemblies. An optimal two-stage multi
period stochastic mixed-integer program is suggested for
the objective of minimizing the expected total cost. This
model describes the random parameter through the set
of all possible scenarios. Then, it was illustrated with a
numerical example. Our investigations into this area are
still ongoing. First, it’s interesting to develop an heuristics
to solve the large test instances. Also, with the classic
tree representation scenario, the multi-stage model is an
interesting direction for our future research.
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