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SLOT-V: Supervised Learning of Observer Models for Legible Robot
Motion Planning in Manipulation

Sebastian Wallkötter1,2 and Mohamed Chetouani3 and Ginevra Castellano2

Abstract— We present SLOT-V, a novel supervised learning
framework that learns observer models (human preferences)
from robot motion trajectories in a legibility context. Legibility
measures how easily a (human) observer can infer the robot’s
goal from a robot motion trajectory. When generating such
trajectories, existing planners often rely on an observer model
that estimates the quality of trajectory candidates. These
observer models are frequently hand-crafted or, occasionally,
learned from demonstrations. Here, we propose to learn them
in a supervised manner using the same data format that
is frequently used during the evaluation of aforementioned
approaches. We then demonstrate the generality of SLOT-
V using a Franka Emika in a simulated manipulation en-
vironment. For this, we show that it can learn to closely
predict various hand-crafted observer models, i.e., that SLOT-
V’s hypothesis space encompasses existing handcrafted models.
Next, we showcase SLOT-V’s ability to generalize by showing
that a trained model continues to perform well in environments
with unseen goal configurations and/or goal counts. Finally,
we benchmark SLOT-V’s sample efficiency (and performance)
against an existing IRL approach and show that SLOT-V learns
better observer models with less data. Combined, these results
suggest that SLOT-V can learn viable observer models. Better
observer models imply more legible trajectories, which may -
in turn - lead to better and more transparent human-robot
interaction.

I. INTRODUCTION

Transparency, a robot’s ability to communicate any hidden
internal state, is an element of artificial intelligence and
robotics that is currently gaining in importance. For example,
the European Union (EU) stated that transparency is an
important factor to achieve trustworthy AI in its 2019 ethics
guidelines [1]. The IEEE, too, has recognized the need for
transparency in autonomous systems and made a proposal
towards its standardization [2]. Further, several other ethical
standards on the topic have stated the need for transparency
[3].

At the same time, achieving transparency on a techni-
cal/implementation level is still a very active research topic.
In artificial intelligence and machine learning, one proposed
answer is to use explainable AI (XAI) techniques, and several
promising XAI approaches have been developed in recent
years [4]. Beyond XAI, robotics complements these tech-
niques with domain-specific approaches that use a robot’s
embodiment or the situatedness of human-robot interaction
scenarios [5].
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Fig. 1. Schematic overview of SLOT-V. (bottom:) SLOT-V computes
the legibility of a trajectory by calling an observer model individually for
each potential goal in the environment. (middle:) Assuming a (given) target
goal, the observer model computes a trajectory score by applying a value
function individually to each control point of a trajectory. (top:) The value
function (here: a feed-forward neural network) estimates how legible it is to
move through a given position to reach a given target goal. This is similar
to the idea of a value function in RL (hence the name); however, SLOT-V
is purely supervised.

One such approach to achieving transparency that is
unique to robots goes by the name legibility [6], [7]. Legi-
bility considers the scenario where a robot performs a goal-
oriented movement under human supervision (referred to
as the observer). In this scenario - which is typically a
manipulation scenario -, the robot ought to alter its movement
to communicate the intended goal and disambiguate it from
alternative goals so that the observer - who is uncertain
about the true goal - can quickly asses the situation. Com-
puting such a legible trajectory requires specialized motion
planning and several authors have suggested frameworks
to accomplish this [8], [9], [10]. A common trend among
these frameworks is that they construct a mathematical
model of the observer’s expectations (the observer model)
to vet candidate trajectories, which makes choosing a good
observer model crucial to the framework success.

Here, we take a closer look at the observer models used
in legibility and address a commonly faced limitation of
them, namely that they are frequently based on a researcher’s
intuition (hand-crafted). This hand-crafted nature of the
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observer model is usually described as either a limitation or
a subject for future work, but - to our knowledge - still needs
a satisfactory answer. Hence, we propose SLOT-V (fig. 1),
a novel supervised learning approach to extract the observer
model from labeled robot motion trajectories and make the
following contributions:
• We present a novel framework (SLOT-V) that takes la-

beled robot trajectories as input and learns the observer
model - a mathematical representation of the user’s
preferences regarding how the robot should move.

• We provide empirical evidence that (1) SLOT-V can
learn a wide range of observer models, that (2) SLOT-
V can generalize to unseen environments with different
goal counts and/or configurations, and that (3) SLOT-
V is more sample efficient than an alternative inverse
reinforcement learning (IRL) approach.

II. RELATED WORK

A. Legibility

One of the first major approaches to modelling legibil-
ity has been proposed by Dragan et al. [6], [7] and has
sparked extensive follow up [10], [11], [12], [13], [14],
[15], [16]. The work assumes that humans expect robots
to move efficiently and that we can model this expectation
using a cost function over trajectories (the observer model).
Using this function, we can then not only compute the
most expected trajectory (called predictability), but can also
compute a trajectory that maximizes the cost of moving
towards alternative goals while still reaching the original
target, i.e., a trajectory that minimizes the expectation that
the robot moves to any alternative goal (called legibility).

A follow-up to this idea has been proposed in Nikolaidis
et al. [10] under the title viewpoint-based legibility. Here leg-
ibility is not computed in world space. Instead the trajectory
and any potential goals are first projected into a plane that
is aligned with the observers point of view and then Dragan
legibility is computed in the resulting space. This allows the
robot to take into account the human’s perspective and also
allows it to account for occlusion from the perspective of
the observer. Recently, this has been extended to multi-party
interactions [17]. Further, a similar line of thinking has been
used by Bodden et al. [8], where the authors project the
trajectory into a goal-space, a (manually) designed latent
space wherein it is easy to measure a trajectories expected
goal. Then the authors compute the score of a trajectory
as a sum of several terms of which one is the observer
model which takes the form of an integral over the distance
(measured in goal-space) between each point along the
trajectory and the target goal.

What is interesting about the aforementioned approaches
is that they all use an explicit observer model (a function that
rates/scores the legibility of a given trajectory) and that they
all engineer this observer model by hand (it is hand-crafted).
Considering that the focus of the aforementioned papers
is primarily on trajectory generation and motion-planning,
hand-crafting the observer model is adequate, as the goal

is to show the capabilities of the new planner. However,
a hand-crafted model of human expectations might not be
sophisticated enough to scale into complex environments, a
challenge that is also recognized in aforementioned works
as early as [7]. Our contribution addresses this gap and
suggests a new way to build such a (more sophisticated)
observer model.

Looking at recent works, Guletta et al. proposed HUMP
[18], a novel motion planner that generates human-like
upper-limb movement, He et al. [19] solved an inverse
kinematics problem to create legible motion, Gabert et al.
[20] used a sampling-based motion planner to create obstacle
avoidant yet legible trajectories, and Miura et al. extended the
idea of legibility to stochastic environments [21]. Looking at
legibility more generally, the idea has also been explored
in high-level task planning [22] and other discrete domains
[12], [23], [24], [25]. Other research explores legibility in
the domain of navigation and this is getting more and more
traction, likely due to a general rise of interest in autonomous
driving. Here, a common framework is HAMP [26], although
several other methods exist [27], [28], [29]. For more details,
we recommend one of the several excellent reviews on the
topic [30], [31], [32].

B. Machnine Learning in Legibility

Shifting our attention towards data-driven approaches to
legibility, we must first mention the system developed by
Zhao et al. [9]. The authors use learning from demonstra-
tion and inverse reinforcement learning to train a neural
network that, from a partial manipulator trajectory, predicts
the observer’s expected goal. This model is then used to
formulate a reward function that is used to create policies
for legible movement using reinforcement learning. Lamb
et al. [33], [34], [35], [36] assume that legible motion is
human-like and use motion capture combined with model-
identification to construct a controller that produces legible
motion. Busch et al. [37] use direct policy search on a novel
reward function that uses user feedback and asks the observer
to guess the goal. Zhou et al. [38] use a Bayesian model
to learn timings when a robot should launch a movement.
Zhang et al. [22] and Beetz et al. [39] independently explore
learning strategies for high-level task planning, and, finally,
Angelov et al. [40] propose the interesting idea of using a
causal model on the latent space of a deep auto-encoder to
learn the task specifications that make movements legible.

Most of the above approaches have in common that they
learn a policy from data and that this policy is later exploited
to produce legible behavior. This is useful, because it allows
us to learn important aspects of legibility directly from the
observer, which is potentially more accurate than building
such a policy by hand. A downside to learning a policy
this way is that we loose the ability to easily transit to
unseen environments. This works trivially for the planning
methods introduced above, but requires retraining (and often
new data) for policy-based methods. Our method does not
suffer from this limitation (which we demonstrate), because
we only learn the observer model and not a general model of



the environment. This allows us to retain the important com-
ponents of planning methods that enable this generalization.
This is similar to what Zhao et al. [9] are doing, however,
we do not learn from (optimal) demonstrations, which can
be difficult to come by in a legibility context.

III. METHODS

A. SLOT-V

There are two insights behind SLOT-V: (1) Most legible
planners improve trajectories using a gradient-based method
on a trajectory’s score, and we can not just compute a
gradient with respect to the trajectory but also with respect
to parameters in an observer model. (2) When evaluating
planners, most authors generate sample trajectories, show
these to users, and make them guess the robot’s intended
goal [41]. The resulting frequency of guessing correctly can,
in and off itself, be understood as a trajectory score and
computing this score can be done on arbitrary trajectories and
isn’t limited to framework-optimal (result) trajectories only.
As such, we can use this rating as a target score and build a
system (SLOT-V) that can directly lean from it. Combined,
this means that we can obtain legibility ratings from human
feedback (emojis in figure 1) and can then use these to
learn an observer model’s parameters in a supervised fashion
using the same approach we’d otherwise use to optimize
a trajectory (backprop wrt. model parameters instead of
trajectory parameters).

Starting in the middle of figure 1, we take a standard
observer model O : Γ × G → R+, which computes a score
for a trajectory moving to a given goal, and allow it to have
an arbitrary (differentiable) parametrization:

O : Γ×G×Θ→ R , (γ,g, θ) 7→
∫
γ

V (r,g, θ) dt. (1)

Here γ ∈ Γ is a trajectory from the set of all trajectories,
g ∈ G is a goal from the finite set of potential goals, V : S×
G × Θ → R+ is a value function that is parameterized by
θ ∈ Θ and defined on the elements of the planning space
S (which contains the set of trajectories Γ), r is a point in
γ, and t is an infinitesimal time step. We then apply this
observer model to every element in G and stack the result
into a score vector s, which we define component-wise as

LSLOT-V : Γ×G|G| ×Θ→ R|G| , (γ,g, θ) 7→ s; (2)
si = O(γ,gi, θ). (3)

The trajectory score vector s contains logits and higher
values for si indicate higher odds that the user will think of
the robot as moving to the goal gi. From these scores we
can obtain a probability distribution by applying the softmax

P (g|γ, θ) = Softmax(LSLOT-V). (4)

We can then pair this predicted distribution for a given
trajectory γ with a target distribution for that trajectory and
learn the model parameters θ using a cross entropy loss.

There are several ways to obtain such a target distribution.
For example, we can ask users to guess the goal after having

seen a trajectory and use the frequencies at which users
pick potential goals to estimate this distribution. A technique,
that is often used when evaluating novel planners that use
hand-crafted observer models [41]. Alternatively, we can
obtain labels from existing legible planners by using them to
compute the legibility score of a trajectory for each goal in
the environment. We use the latter during our experiments
to explore the hypothesis space of SLOT-V.

Shifting our attention to the value function V (top element
in figure 1), we can understand it as a function that computes
how legible it is to move through a given position r with
the aim of ending in a specific goal gi. This is similar
to the notion of a value function in reinforcement learning
(how good is it to be in state s?), which is why we refer
to V as value function1 and choose to model it using a
feed-forward neural network. One desirable property for this
value function is that its resulting value doesn’t change if we
change the origin of the coordinate system in which r and
g are expressed. We explicitly embed this ability into the
model by adding a custom first layer that expresses both
inputs relative to the goal g. This changes the input trajectory
position rin to rin = r−g and the input goal position gin to
gin = g−g = 0 (which we omit). For the remaining layers,
we use standard dense layers with ReLU [42] activations
which we tune using a hyperparameter search with random
rollouts as described in section III-E.

B. T-REX
To gauge the utility of SLOT-V, we wanted to compare it

against another algorithm that is capable of learning an ob-
server model. For this, we adapted the inverse reinforcement
learning algorithm called T-REX [43]. Compared to other
IRL algorithms, T-REX has the ability to learn from sub-
optimal demonstrations assuming we can define a ranking on
pairs of demonstrations that indicates which demonstration
was better. This allows us to train T-REX on the same dataset
that we use to train SLOT-V because the legibility score
implies such a ranking eliminating the confound of having
different input data.

Similar to other IRL methods, T-REX learns a parame-
terized reward function r : Γ × G × Θ → R, which - in
our context - predicts the reward a robot would obtain if
it moved through a certain position r with the intent of
reaching a target goal g. Names aside, this is the same
definition we used for SLOT-V’s value function V and, as
such, we parameterize it using the same neural network
archetype (but different hyperparameters). This eliminates
further differences between the frameworks.

Using this reward function r and parameterizing the trajec-
tory γ as a sequence of control points γk (see section III-C),
we can compute the accumulated reward for a trajectory as
the sum over estimated rewards at each control point

R : Γ×G×Θ→ R , (γ,g, θ) 7→
N∑
k=0

r(γk,g, θ). (5)

1Note, however, that we are not doing reinforcement learning framework
here.



If we now consider a pair of trajectories γ1 and γ2, then
we can use our a priori knowledge of which one was more
optimal (wlog. γ2) to define a constraint on the accumulated
reward

R(γ1,g, θ) < R(γ2,g, θ). (6)

We can understand this constraint probabilistically and
formulate a function that, given two trajectories, computes a
likelihood of which trajectory is more optimal

T-REX : Γ× Γ×G×Θ→ R , (7)

(γ1, γ2,g, θ) 7→ Softmax

(
R(γ1,g, θ)
R(γ2,g, θ)

)
. (8)

Using this function, and our a-priori ranking of demonstra-
tions, we can define a binary classification problem (using,
e.g., the second component T-REX(γ1, γ2,g, θ)2 as output)
and we can learn optimal values for the parametrization θ
using a binary crossentropy loss.

Once learned, we can use the reward function - in partic-
ular the accumulated reward R - to once again compute a
score for each potential goal in the environment

LT-REX : Γ×G|G| ×Θ→ R|G| , (γ,g, θ) 7→ s; (9)
si = R(γ,gi, θ), (10)

which we once again interpret as indicators for how likely a
goal is inferred from the trajectory γ by the observer.

C. Environment and Task

To situate the experiments and generate trajectories we use
Ignition Gazebo2, a state-of-the-art robot simulator, to create
several pick-and-place environments from an environment
template. In particular, we place a (desk-mounted) Franka
Emika3 in front of a second desk on which we randomly
place several cubes. An example of such an environment is
shown in figure 2, and to generate different environments,
we vary both the number and position of cubes.

We then task the robot with picking up one of the cubes
in a legible manner and sample trajectories using the follow-
ing steps: (1) Randomly choose a target goal. (2) Sample
Ncontrol ∈ [3, 5] control points in the robot’s workspace,
which we limit to the area above the second table into which
cubes are sampled. (3) Adding the starting position and the
position of the chosen goal to the list of control points,
create a piecewise-linear trajectory that moves through these
points. (3) Resample the trajectory and place control points
at regular intervals along it such that each trajectory has the
same number of control points (here 100).

D. Experimental Procedure

We aim to evaluate three properties of SLOT-V:
1) We want to show that SLOT-V has the potential to

replace existing hand-crafted observer models. For this,
we aim to show that it can learn to imitate the models
used in several existing legible planners, i.e., when

2https://ignitionrobotics.org/home
3https://www.franka.de/robot-system

Fig. 2. Example Environment The render shows one of the environments
used during trajectory generation. Different environments vary both the
number and position of the cubes on the table.

trained on the output of a hand-crafted legibility model,
SLOT-V will learn to make similar predictions as that
model.

2) We want to show that SLOT-V (and our adapted imple-
mentation of T-REX) retain the ability to generalize to
new, unseen environments. For this, we create multiple
test sets (Trajectory, Position, and Goal Count) that
include previously unseen environments.

3) We want to show that SLOT-V is more data efficient
than the adapted T-REX implementation. For this,
we assess the average performance that each method
can achieve after having seen the same number of
examples.

To evaluate this, we thus proceed as follows: (1) We
create a large dataset of randomly sampled trajectories by
generating several environments and sampling trajectories
therein. (2) For each sampled trajectory, we compute the
legibility ratings of several existing legible planners, in
particular the scores used by Dragan et al. [6] (dragan
legibility), Nikolaidis et al. [10] (nikolaidis legibility), and
the two scores called EffDist and FastApp from Zhao et al.
[9] to provide target legibility ratings to learn (and hand-
crafted models to imitate). (3) We perform hypertuning using
random search (independently for SLOT-V and T-REX) to
find good training and model hyperparameters. For this
we train each model for 15 epochs (T-REX) or 5 epochs
(SLOT-V - it converges much faster) and perform a total
of 25 rollouts per framework. (4) Using the best set of
hyperparameters for each framework, we train a final model
for 25 (T-REX) and 15 (SLOT-V) epochs on each label set
computed above and evaluate its performance using three
test sets (described below). We repeat this process a total of
N = 10 times and report the mean result. (4) Finally, we
train the best configuration of each framework on Dragan
legibility for one epoch each and compute the validation
accuracy every 10 updates. We do this in order to compare
the data efficiency of both methods and we limit ourselves
to a single epoch, because - at this point - the network has
seen every example exactly once and further because the
majority of the learning happens during the first few epochs.



We repeat this process 10 times and report averaged results.

E. Implementation Details

Value/Reward Function — As mentioned above, we use
the same simple neural network architecture to represent the
value function in SLOT-V and the reward function in T-REX.
Looking at the network’s architecture, the networks input
is first fed into the custom first layer described in section
III-A. We then add 1 (80% of rollouts) or 2 (for 20% of
rollouts) dense hidden layers with N ∈ {1280, 1536, 1792}
units (depending on the rollout) and ReLU activation. We
then add another dense layer with N ∈ {256, 512, 768, 1024}
units (again rollout dependent) and ReLU activation. We then
finalize the network with a dense layer with 1 unit and linear
activation.

SLOT-V — As the training examples come from envi-
ronments with different numbers of potential goals, we pad
the set of potential goals G for environments with less than
the maximum number of goals across environments (here
8). For this, we insert dummy goals into the beginning of
the pipeline (gray cubes in figure 1), compute the legibility
score LSLOT-V for each goal including dummies and then
remove/mask-out the inserted dummy goals before comput-
ing the softmax. This allows for better randomization of
training data, because batches may now include examples
from environments with different goal counts.

T-REX — To obtain training examples in the format
required by T-REX, we first select two trajectories at random.
Then, for each trajectory, we randomly select a target goal for
which we wish to evaluate the accumulated reward and create
the target label by comparing each trajectory’s legibility
score. During evaluation, we use the same goal padding
approach we use for SLOT-V to enable efficient computation.

F. Datasets

We create a trajectory dataset using the following steps: (1)
Using the environment template mentioned in section III-C,
create a set of Nenv environments with random goal positions
goal counts taken from the set G. (2) For each trajectory to
generate, first (uniformly) choose a environment to sample
in and then follow the trajectory generation steps outlined in
section III-C.

Using this method, we sampled a total of 7 dataset, one
for training, three for validation, three for testing:
• Training The training dataset contained a total of

100,000 trajectories sampled from Nenv = 250 environ-
ments using Gtrain = {2, 3, 5, 6} goals per environment.
All models were trained on this data.

• Trajectory: One validation and one test set containing
10,000 trajectories sampled from the same 250 environ-
ments used to create the training set. (Note: validation
and test set are sampled independently).

• Position: One validation and one test set containing
10,000 trajectories sampled from 10 unseen environ-
ments (each) using Gtrain. This set is used to estimate the
model’s ability to generalize across goal arrangements

[same number of goals, but their configuration was
unseen].

• Goal Count: One validation and one test set containing
10,000 trajectories sampled from 10 unseen environ-
ments (different from Position) using Gval = {7} or
Gtest = {4, 8} goals per environment. This set is used
to estimate the model’s ability to generalize over the
total number of goals in the environment.

IV. RESULTS

A. Hyperparameter Tuning

SLOT-V — Before starting the random search, we manu-
ally tuned SLOT-V until we found a choice of optimization
hyperparameters that resulted in stable training. We then
used the RMSprop optimizer with a learning rate cho-
sen uniformly from [.0004, .02], ρ uniformly chosen from
[.7, .999], and momentum chosen uniformly from [0, 1].
For each trial, we also chose the batchsize randomly from
{64, 128, 256, 512}.

After the planned 25 rollouts, we noticed that none of the
hyperparameters had a large effect on the performance with
the exception of learning rate (lower performance for larger
rates), and batchsize (less stable for larger batch sizes). We
hence decided to compute another 25 rollouts, reducing the
batch size interval to {8, 16, 32, 64}.

From the results of these 50 rollouts, we chose the fol-
lowing optimization hyperparameters: learning rate as .005,
batch size as 32, ρ as .9 and momentum at 0. Looking at
the model hyperparameters, we chose to not use the extra
hidden layer (no visible performance gain). We also chose
1536 units for the first hidden layer and 768 units for the
second hidden layer.

T-REX — Similar to SLOT-V, we started by manually
tuning optimization hyperparameters until we found a con-
figuration that resulted in stable training. For this, we had
to switch from RMSprop to the Adam optimizer. We then
optimized hyperparameters in a similar fashion, where we
chose the learning rate from the interval [1e − 5, .001],
β1 ∈ [.7, 1] and β2 ∈ [.7, 1]. Batch sizes were chosen from
the set {64, 128, 256}.

Larger learning rates achieved better results, and we chose
a final rate of .005, outside the initially tested range. β1
had no clear effect so we set it to the default of .9. Larger
values of β2 had a marginally negative effect on performance;
however, due to human error we also keept it at the default
value of .999. For the batch size, we chose 128, because
performance across levels was about equal, but variance was
lowest for 128. Looking at model parameters, we again chose
to not use the additional hidden layer (no clear improvement).
The first hidden layer benefitted from more units, so we
chose to use 1792 units for it. The second hidden layer
showed a non-linear relationship with performance, so we
used 768 units as it was the best performing level in our
search.



TABLE I
ACCURACY OF SLOT-V AND T-REX ON VARIOUS LEGIBILITY METRICS

avg. of 10 trails SLOT-V T-REX
Metric Dataset M (± SD) (± SD)

Dragan [6], [7] Training 0.94 (± 0.064) 0.795 (± 0.182)
Trajectory 0.938 (± 0.065) 0.792 (± 0.18)
Goal Pos 0.895 (± 0.083) 0.783 (± 0.17)
Goal Count 0.922 (± 0.064) 0.749 (± 0.198)

EffDist [9] Training 1.0 (± 0.0) 0.796 (± 0.032)
Trajectory 1.0 (± 0.0) 0.798 (± 0.034)
Goal Pos 1.0 (± 0.0) 0.782 (± 0.033)
Goal Count 0.996 (± 0.005) 0.772 (± 0.031)

FastApp [9] Training 0.973 (± 0.008) 0.869 (± 0.034)
Trajectory 0.972 (± 0.008) 0.866 (± 0.034)
Goal Pos 0.972 (± 0.013) 0.879 (± 0.024)
Goal Count 0.954 (± 0.017) 0.86 (± 0.006)

Nikolaidis [10] Training 0.911 (± 0.029) 0.845 (± 0.033)
Trajectory 0.91 (± 0.031) 0.844 (± 0.034)
Goal Pos 0.875 (± 0.054) 0.841 (± 0.039)
Goal Count 0.893 (± 0.041) 0.796 (± 0.04)

B. Test Set Performance

We trained and evaluated the models as described in
section III-D and aggregated the results in table I.

Looking at the table, the first noticeable result is that
SLOT-V shows excellent performance on the various test sets
(hovering around 90% accuracy). This indicates that SLOT-V
successfully learned to imitate all observer models we tested
here. Whats more is that we used the same architecture for
each metric, which suggests that SLOT-Vs hypothesis space
encompasses all these handcrafted metrics (and anything in-
between). Looking at the individual metrics, we can notice
that SLOT-V did worst when learning to imitate Nikolaidis
legibility [10]. On the other hand, it managed to almost
perfectly imitate the EffDist metric.

Focusing on each metric individually, we can see that, as
expected, test performance is highest for trajectories within
previously seen environments (Trajectory) and typically
lowest for environments that had an unseen number of
goals in them (Goal Count). This is expected, because the
environments in Goal Count are not within the sample space
of the Training dataset, and are - because of that - hard
to learn. What is interesting, however, is that both SLOT-
V and T-REX still learn to perform well in these out-of-
distribution environments, which we can see by how little
the performance decreases in the test set compared to the
training set.

Finally, we can see that SLOT-V consistently outperforms
T-REX across all tested scenarios. This should not be miss-
construed as T-REX being an inferior framework; in fact, it
still performs very well on all metrics. Instead, it indicates
that SLOT-V is better adapted to the current domain (learning
observer models for legible motion generation), which is
understandable, considering that it was designed for this very
purpose.

C. Sample Efficiency

Another aspect highlighting that SLOT-V is better adapted
than T-REX is sample efficiency. The idea behind sample

Fig. 3. Sample Efficiency of SLOT-V and T-REX. The graph shows
the average (N = 10) performance of both frameworks over the number
of examples presented (higher is better). This is limited to the first epoch,
because - at this point - the framework has seen every sample in the dataset
exactly once. The gap between SLOT-V and T-REX indicates that SLOT-V
is making more efficient usage of the data, meaning that it can learn better
models when data is limited.

efficiency comes from the RL domain and measures how
many samples are needed to obtain a desired level of perfor-
mance. In our context, we can measure this by looking at the
validation accuracy over the number of (unique) examples
given to a framework, which we visualized in figure 3.

We can see that both frameworks learn at an exponential
rate within the first 20,000 trajectories and continue to learn
at a linear, but low rate thereafter. Further, we can see that
SLOT-V - on top of learning the more performant model -
learns much faster than T-REX, suggesting that it is the more
sample efficient framework.

V. DISCUSSION

Looking at the results, the most noticeable aspect is
perhaps the ability of SLOT-V and T-REX to generalize to
unseen environments, including out-of-distribution ones. We
think that there are two reasons behind this.

The first is probably the custom layer that we introduced
in the value/reward function, which shifts the origin of the
coordinate frame into the goal’s position. Adding this layer
is, in some sense, a form of feature engineering and incor-
porates expert knowledge into the model, because it allows
the network to focus on the relative position of the robot and
the goal rather than having discover the importance of this
relationship. While this could backfire in other contexts, e.g.,
in cases where there is no natural choice for the coordinate
frame’s origin, this does not seem to be the case here and -
as the results indicate - works well.

The second reason is that we only allow the observer
model to depend on a single goal instead of all goals in the
environment making the model independent of the total num-
ber of goals present. Approaches with hand-crafted observer
models tend to follow this approach, whereas frameworks
that rely on learning a policy use all available goals to
compute a score. We think that this difference is one of the
main drivers of the strong generalization capacity of existing



hand-crafted planners, as this makes them easy to apply to
new environments. Hence, we designed SLOT-V to retain
this ability.

A second noteworthy aspect of our results is that SLOT-
V achieved high performance on Nikolaidis legibility [10].
This is interesting, because Nikolaidis legibility is based on
Dragan legibility, but - contrary to it - applies the metric in
a (perspective-)projected 2D space instead of planning in 3D
world space. As such, SLOT-V had to learn how to represent
this projection on top of learning to imitate Dragan legibility.
Despite this challenge, performance is only slightly reduced
in comparison, which we interpret as a testimony of SLOT-
Vs capabilities.

Looking at our results on sample efficiency, we can see
that SLOT-V is an improvement in this area as well. While
it, like other neural-network based approaches, remains a
rather data-hungry technique, we think that it is non-the-
less a good step in the direction of finding techniques that
bring the power of neural-networks into the human-robot
interaction domain where only limited data is available.

VI. LIMITATIONS

One limitation of this paper is that we only trained on
ratings obtained from existing legible planners instead of
training on human-labeled trajectories. This allows us to
establish the efficacy that SLOT-V can learn the observer
model - we would expect SLOT-V to be at least as good
as existing hand-crafted models -, but doesn’t explore the
full limits of its capability. The reason why we didn’t
explore human labeled data is because we wanted to first
establish this general efficacy and further gauge how much
data we would have to collect to tackle the problem of
learning a model from human data. Addressing this limitation
represents a clear next step and future work for this research.

The second limitation is, in fact, the amount of data needed
to train a good observer model, which is a limitation of
SLOT-V itself and a limitation of any machine learning
approach in general. While SLOT-V does show improved
data efficiency compared to general IRL approaches like
T-REX, it still required about 10, 000 unique examples to
achieve 80% validation accuracy. Clearly, this is still too high
a number for humans to annotate manually; however, it is
still an improvement over alternatives (T-REX requires 10x
more data), and the number might be exaggerated, because -
during actual training - we can show examples several times.
In the future, it would be interesting to see if this number
can be reduced to a more managable amount, e.g. by more
intelligently sampling trajectories.

A third, context dependent limitation may be the resulting
model’s explainability and (provable) safety. Existing hand-
crafted approaches provide a fully analytic model, which
makes them explainable by design and may allow us to
derive analytical safety guarantees. Neural network based ap-
proaches, like the one we chose here, are currently renowned
to lack explainability or the ability to prove safe control. For
such cases where safety is a concern we can however still
use SLOT-V. Instead of using a neural network as model

archetype we can use an explicit analytic model for which
we only learn certain parameter values. This would enable
us to again provide safety guarantees while also benefiting
from learning-based adaptation.

VII. CONCLUSION

Above we present SLOT-V a supervised learning frame-
work to extract observer models from trajectory data. It sets
itself apart from other learning-based legibility methods in
that it only learns the observer model, instead of learning a
policy that is specific to the environment. We show that this
allows for generalization not just across different trajectories
in the same environment but also across different envi-
ronments including completely unseen (out-of-distribution)
ones. We also demonstrate SLOT-Vs ability to imitate several
existing hand-crafted observer models, suggesting that it can
be a viable replacement of them. We then compare SLOT-
V’s sample efficiency to the sample efficiency of T-REX, a
state-of-the-art inverse reinforcement learning algorithm and
show that - in the studied domain - SLOT-V learns better
models from less data.

Combined, we think that these results show that SLOT-V
is capable of learning useful observer models and hope that
it can become a stepping stone towards more transparent and
intuitive human-robot interaction.
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