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Abstract

The large and catastrophic wildfires have been increasing across the globe in the
recent decade, highlighting the importance of simulating and forecasting fire dy-
namics in near real-time. This is extremely challenging due to the complexities of
physical models and geographical features. Running physics-based simulations for
large wildfire events in near real-time is computationally expensive, if not infeasi-
ble. In this work, we develop and test a novel data-model integration scheme for
fire progression forecasting, that combines Reduced-order modelling, recurrent neu-
ral networks (Long-Short-Term Memory), data assimilation, and error covariance
tuning. The Reduced-order modelling and the machine learning surrogate model
ensure the efficiency of the proposed approach while the data assimilation enables
the system to adjust the simulation with observations. We applied this algorithm
to simulate and forecast three recent large wildfire events in California from 2017
to 2020. The deep-learning-based surrogate model runs around 1000 times faster
than the Cellular Automata simulation which is used to generate training data-sets.
The daily fire perimeters derived from satellite observation are used as observation
data in Latent Assimilation to adjust the fire forecasting in near real-time. An error
covariance tuning algorithm is also performed in the reduced space to estimate prior
simulation and observation errors. The evolution of the averaged relative root mean
square error (R-RMSE) shows that data assimilation and covariance tuning reduce
the RMSE by about 50% and considerably improves the forecasting accuracy. As a
first attempt at a fast reduced order wildfire spread forecasting, our results highlight
the potential of data-driven machine learning models for providing guidance on fire
suppression and evacuation efforts.
Keywords: Deep learning, Reduced-order modelling, Data assimilation, Wildfire
forecasting, LSTM, Fire spread

1. Introduction

Wildland fires have been recognized as one of the most damaging natural disas-
ters affecting human, plants and animals. These wildfires, often lightning-caused,
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have substantially affected the Earth’s surface and environment for over 300 million
years [29]. According to [1], the number of acres burned annually has increased by
three times globally over the past 20 years. The recent wildfires in California in
2018 cost more than $27 billion capital loss while associated air pollution of the cor-
responding areas affects roughly 31% population of United States [76]. Operating
strategies related to firefighting resources allocation, or evacuation of at-risk areas
can benefit from numerical models that predict the fire spread in space and time.
However, forecasting wildfire dynamics is highly challenging due to the complexities
linked to the physical models and the geographical features. Nevertheless, there
has been increased attention given to the subject world-widely [55, 66]. The fac-
tors behind fire spread behaviour depend heavily on local physical, environmental
and meteorological variables [78, 71, 50], such as vegetation density distribution,
landscape slope, fuel continuity and wind dynamics. For reasons including high di-
mensionality and the lack of historical data, among others, current fire modelling sys-
tems, for instance, those based on Rothermel equation [67], NWP(numerical weather
prediction)-driven forecasting and Cellular Automation (CA)[2], remain highly em-
pirical [58]. System parameters are often obtained using calibrations of local fire
scenarios [14, 15]. Furthermore, running physics-based simulations for large-scale
wildfires can be computationally expensive, even when coupled with discrete event
modelling (e.g., Discrete EVent System [44], Cellular Automata [56]) and paralleliza-
tion computing, leading to difficulties for real-time fire progression monitoring [64].
Much effort has been devoted to improving the prediction accuracy and efficiency
via data-driven surrogate models, including the use of machine learning (ML) [49]
and data assimilation (DA) techniques [52]. The latter, initially developed for NWP,
manages to combine the information embedded in the model simulations and the
time series observation data [8], for instance, from satellite images, with an optimal
weight regarding the quantification of prior uncertainties.

In order to manage large datasets of wildfire modellings, which are often mul-
tivariate and multidimensional, reduced-order modelling (ROM) techniques have
been widely adopted in quantitative fire studies. For example, the proper orthogo-
nal decomposition technique (POD) has been used to describe fire dynamics with a
significantly reduced state space, regarding the original problem [39, 40]. Recently,
convolutional autoencoders have also been employed to identify regions with a high
likelihood of wildfires [46].

In this study, we aim to enable real-time integration of the observation data for
improving predictions provided by the data-driven surrogate model by combining
machine learning, model reduction and data assimilation techniques to enhance the
efficiency and accuracy of the fire monitoring system. Our objective is to promptly
predict the evolution of burned areas to indicate the development of wildfires. There-
fore, performing ML prediction and DA at a low cost is of prime concern. As shown
in Figure 1, we first train a Long-Short-Term-Memory (LSTM) neural network (a
type of RNN, efficient to handle long-term dependencies [13]) in the low-dimensional
latent space over a CA-based stochastic simulator [2] incorporating actual landscape
data, including canopy density/cover and landscape slope. Real-time satellite im-
ages are then used to adjust the current prediction through a DA scheme. Since
both the machine learning prediction and the DA correction are performed in the
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latent space, advanced covariance tuning approaches (e.g., [28, 26]) which are usu-
ally resource/memory intensive in the full space [75] can be applied to enhance the
DA precision with a reduced computational cost.

The specification of these error covariance matrices, which update the optimal
weighting between model simulations and instrumental observations through prior
error covariances iteratively, is crucial for the reconstruction/prediction of dynamical
systems, such as wildfire progression. By integrating DA algorithms for real-time
estimation based on time series observation data, the prediction accuracy of the
data-driven model can be significantly improved compared to the pure ML approach.

Figure 1: Flowchart of deep latent assimilation with information-based observation compression
and error covariance tuning

2. Related work and contribution

Given the sharp increase in the amount of available environmental data, the ap-
plication of ML approaches, including random forest, reinforcement learning, deep
neural networks, has been implemented in a variety of wildfire-related problems, for
instance, fire detection[83, 10], fire occurrence prediction[30], and fire susceptibil-
ity mapping [82]. As an example, both convolutional neural networks (CNN) and
support vector machines (SVM) have been adapted for wildfire detection [83, 10]
relying on satellite images of fire and smoke. [9] employs genetic algorithms (GA) for
optimal sensor placement in wildfire monitoring. [47] builds a hybrid model which
combines GA and neuro-fuzzy systems to predict wildfire probability in a spatially
explicit way. For other applications of ML methods in wildfire-related studies, in-
terested readers are referred to the review of [49]. Here, we focus on predicting
fire growth and burned surface, which is a crucial task for fire safety science. [53]
implements a range of ML classifiers based on satellite image recognition to predict
if a fire will grow rapidly. They quote a success rate to identify large fires of over
75%. Similar methodology can be found in [51, 3] for predicting the final burned
area in a wildfire. Likewise, [35] adopts the reinforcement learning method, which
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uses satellite images to define the reward function, for predicting the fire dynamics
through agent-based policies. The recent work of [84] makes use of a deep neural
network (DNN) to surrogate the energy exascale Earth system model for predicting
the area of burned surface. However, to the best of author’s knowledge, due to the
high dimensionality and a large number of local environmental variables, there have
been no purely data-driven regression approaches developed which consider land
characteristics to forecast the fire front/burned surface dynamics on a continuous
basis. On the other hand, a number of physics-based fire simulation tools, such as
FARSITE[32], SPARK[42], have been widely used to simulate the diffusion of wild-
fires incorporating geophysical features[56]. However, these simulation tools require
several layers of geophysical information, including canopy cover/density, fuel, slope
and wind speed, which are costly to build for real-world problems[56]. Building sur-
rogate models in the latent space regarding the spatial variance of physics-informed
simulations can be a viable solution to decrease the computational burden.

Real-time observations, such as satellite images, are often used to adjust prior
simulation/prediction of wildfire spread. A variety of inverse modelling approaches [48,
65, 45, 63], including data assimilation techniques, have been adopted for updating
fire progression estimation and forecasting. The work of [48] employs a tangent linear
model on top of DA algorithms to enhance the simulation accuracy of building fire
modelling. [65] proposes the use of ensemble assimilation methods to adjust the fire
front forecasted via a polynomial chaos (PC) expansion in synthetically generated
wildfire scenarios. Usually, these DA corrections take place either in the full-physical
space or their sub-domains where real-time adjusting remains cumbersome due to
the large dimension of the physical fields.

A key challenge of wildfire forecasting is to develop (surrogate) models, capable
of real-time fire forecasting/nowcasting/adjusting which takes advantage of the in-
creasing volume of observation data. Therefore, learning from existing wildfire sim-
ulations in an optimal compressed state space is a promising solution that ensures
both the accuracy, and more importantly, the efficiency of the surrogate model. Sim-
ilar ideas of applying machine learning algorithms, namely recurrent neural networks
in the reduced latent space have been implemented in a wide range of applications
such as computational fluid mechanics (CFD)[68, 7], hydrology[19] and air pollu-
tion quantification[16]. The combination of DA, ROM, and ML, more specifically
deep learning, has aroused increasing research interest in recent years. The work
of [16, 7] posits learning assimilated results via an LSTM network which implies
a significant reduction of forecasting errors, evaluated in untrained datasets. The
work of [16] was recently extended in [61] which makes use of an Adversarial-Trained
LSTM when insufficient data are available for training. The recurrent Kalman net-
work in the latent space is proposed in [11] to make locally linear predictions with
factorized covariance matrices to reduce computational cost. The recent work of [4]
introduces the concept of Latent Assimilation where a convolutional autoencoder
(CAE) network is used to compress the state variables while the DA updatings also
arise in the reduced latent space. In data assimilation, prior errors, often supposed
to be Gaussian distributed, can be fully characterized by the first (mean) and the
second (covariance) statistical moment. The latter, which decides the "optimal in-
formation weight" in the loss function, is a crucial element in DA algorithms [33, 23].
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In this study, we make the following contributions:

• We propose a novel algorithm scheme, which combines ROM, RNN (LSTM),
DA and error covariance tuning for real-time wildfire forecasting/nowcasting
(coupled with satellite observations). The convergence of the error covariance
tuning approach, namely the Desroziers & Ivanov [28] tuning algorithm (DI01),
has been further investigated in this paper. We provide a mathematical expla-
nation why DI01 diverges when the background matrix and the observation
matrix have the same correlation structure in the observation space.

• The ROM (both POD and CAE) and the LSTM are trained on the basis of
multiple CA simulations. To the best of our knowledge, we are the first to
train ML surrogate models for dynamical fire spread problems with a stochastic
simulation code (such as CA). The stochastic diffusion makes the NN conver-
gence more challenging, but it contributes to improving the flexibility of the
surrogate model by considering a great number of fire scenarios. The latter is
crucial when performing real-time corrections (e.g., via DA) on the surrogate
model.

• The proposed data-driven approach also contributes to tackling one of the ma-
jor bottlenecks of real-time fire forecasting/nowcasting: it is time-consuming
and computationally expensive to implement either physics-informed simu-
lations or DA in the full physical fields. According to the experiments of
three recent large wildfire events in California (Buck 2017, Pier 2017, Bear
2020) made in this paper, the evolution of the proposed surrogate model is
thousands of times faster than either CA or CFD-based (e.g., Flammap) simu-
lations. More importantly, the novel ML-based approach makes the real-time
DA easily affordable on a laptop CPU.

• The algorithm scheme proposed in this work can be easily applied/extended
to other dynamical systems with either variational or Kalman-type DA. The
repository can be found: https://github.com/DL-WG/ML_surrogate_model_wildfires

The paper is organized as follows. In Section 3, the principle of DA is briefly
introduced with a specific attention on error covariance tuning. We then address
the computation of the latent space via either POD or CAE in Section 4, followed
by the introduction of RNN (LSTM) surrogate model in Section 5. The application
of these methods to wildfire modelling is described in Section 7 and the results are
illustrated in Section 8. We close the paper with a discussion.

3. Data assimilation and error covariance tuning

3.1. Data assimilation
Data assimilation algorithms aim to improve the estimation of state variables x

(which can be some physical fields or a set of parameters) based on a prior simula-
tion/forecast xb and real-time observations, embedded in the observation vector y.
The exact value of the current state, often out of reach in real-world applications, is
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denoted by xtrue, known as the true state. Prior background and observation errors,
respectively denoted as ϵb and ϵy are supposed to be centred Gaussian with

ϵb = xb − xtrue, ϵy = H(xtrue)− y. (1)
where B and R are the associated error covariance matrices, defined as

B = Cov(ϵb, ϵb), R = Cov(ϵy, ϵy). (2)
In this study, both xb and y, representing respectively the model prediction and the
satellite observations, are in the compressed/encoded latent space. DA algorithms
aim to find a least square estimate of xtrue through the cost function J defined as

J(x) = 1
2(x− xb)T B−1(x− xb) + 1

2(y−H(x))T R−1(y−H(x)) (3)

= 1
2 ||x− xb||2B−1 + 1

2 ||y−H(x)||2R−1 , (4)

thanks to the observation operator H. The inverse of these covariance matrices B−1

and R−1 determine the weights of xb and y in the objective function.
Equation (3), also known as the three-dimensional variational (3D-Var) formu-

lation, is a general representation of DA problems when the model error is not
considered. The minimization point of equation (3), known as the analysis state, is
denoted as xa, i.e.

xa = argmin
x

(
J(x)

)
. (5)

If the observation operator H can be approximated by some linear operator H,
the minimization problem represented by equation (5) leads to the Best Linearized
Unbiased Estimator (BLUE) formulation,

xa = xb + K(y−Hxb) (6)
A = (I−KH)B (7)

where A = Cov(xa−xtrue) is the analyzed error covariance and K = BHT (HBHT +
R)−1 is the Kalman gain matrix. From now on, we denote H as the linearized obser-
vation operator. In practice, the observation space in DA is often a subspace of the
state space (e.g. [31],[4]), resulting in a block-diagonal structure of the H matrix.
When H is highly non-linear the minimization of equation (3) often involves gra-
dient descent algorithms (such as "L-BFGS-B" [34] or adjoint-based [24] numerical
techniques).

DA algorithms can be applied to dynamical systems thanks to the transition
operator Mtk→tk+1 which links the state variables of time tk and tk+1,

xtk+1 =Mtk→tk+1(xtk). (8)
The forecasting thus depends on the knowledge of transition operatorMtk→tk+1 and
the corrected state at the current time xa,tk . Typically, the current background state
is often given by the forecasting from the previous step, i.e.

xb,tk =Mtk−1→tk(xa,tk−1). (9)
Obviously, a more accurate reanalysis xa,tk−1 leads to a more reliable forecasting
xb,tk . In this work, the forward operator M is determined by a data-driven surrogate
model.
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3.2. Error covariance tuning
Error covariance matrices modelling, which determines the importance given to

the different information sources in the loss function of equation (4), is an essential
element in DA algorithms with regards to the forecasting accuracy. The estima-
tion of these covariances often relies on empirical assumptions, including the use of
isotropic correlation kernels [36] and experimentally set error amplitudes (i.e., Tr(B)
and Tr(R)). Continuous efforts have been devoted to improving the error covariance
specification in dynamical DA models [28, 27, 57, 20]. The data assimilation in this
study takes place in the reduced unit-less latent space where the state dimension is
considerably reduced in contrast to the full physical space. As a consequence, nei-
ther multi-variate nor multi-dimensional covariance computation is required here.
Thus, we mainly focus on the ratio of Tr(B) and Tr(R), which is of greatest impor-
tance since it directly determines the impact of background and observation data.
The Desroziers & Ivanov [28] tuning algorithm (DI01), first introduced in the field of
meteorological science, adjusts the observation-error weighting parameters by apply-
ing an iterative fixed-point procedure without modifying error correlation structures.

As demonstrated in the work of [74] and [28], the following equalities should be
satisfied in a linearized 3D-VAR assimilation system with well specified B and R
matrices,

E [Jb(xa)] = 1
2E

[
(xa − xb)T B−1(xa − xb)

]
(10)

= 1
2Tr(KH),

E [Jo(xa)] = 1
2E

[
(y−Hxb)T R−1(y−Hxb)

]
(11)

= 1
2Tr(I−HK). (12)

Based on the diagnostic of equation (12), two indicators of error covariance
specification can be defined, that is,

sb,q = 2Jb(xa)
Tr(KqH) , so,q = 2Jo(xa)

Tr(I−HKq)
, (13)

where q is the current iteration. Following a Maximum Likelihood analysis [18],
the two indicators sb,q and so,q, acting as scaling coefficients, can be employed to
establish an iterative tuning algorithm, i.e.,

Bq+1 = sb,qBq, Rq+1 = so,qRq. (14)

It is worth mentioning that the analysis state xa,q and the gain matrix Kq depend
on Bq, Rq and thus on the iterative coefficients sb,q, so,q. In practice, a stopping
criteria of DI01 could be designed by choosing a minimum threshold of max(||sb,q−
1||, ||so,q − 1||). However, according to [17, 21], the convergence of sb and so can
be very fast, especially in the ideal case where the correlation patterns of B and R
are significantly different. Thus large iteration number is not required as the first
iteration could already provide a reasonably good estimation of Tr(B) and Tr(R).
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4. Reduced-order modelling

4.1. Proper orthogonal decomposition
Being widely adopted in CFD simulations and industrial applications, the proper

orthogonal decomposition (POD) [72] is a classical method of model order reduction
using snapshots of dynamical systems, widely applied in engineering problems [6,
22, 38]. Here we remind the principle and some of the most important properties of
POD for reduced-order modelling. For some dynamical physical field ut of dimension
n (i.e., dim(ut) = n,∀t), we consider an ensemble of N snapshots {uk}N

k=1 ⊂ Rn

which are numerical solutions generated by a wildfire simulation code.
The empirical covariance matrix C of {uk}N

k=1 (after being flattened to 1D vec-
tors) can be estimated by computing the vector product of each pair of snapshots,
i.e.,

Ci,j = 1
N
⟨ui, uj⟩, ∀1 ≤ i, j ≤ N, (15)

where ⟨., .⟩ stands for the vector product of two vectors. We can then compute
the POD latent space through the eigenvalues {λi}n

i=1 and the corresponding eigen-
vectors {vi}n

i=1 of the C matrix. Here, {λi}n
i=1 are listed in a decreasing order (i.e.,

λi+1 < λi, ∀i <∈ {1, ..., n−1}). More precisely, the unit vector ηj which represents
the j-th POD basis, is given by

ηj =
N∑

i=1
λiv

j
i , (16)

where vj
i denotes the i-th element of the j-th eigenvector. The value of the j-th

eigenvalue λj describes the relative importance of the j-th POD basis vector. The
ensemble of the snapshots is represented by U ∈ Rn×N which contains uk as its
columns, i.e.,

U [:, k] = uk, k ∈ [1, .., N ]. (17)
We can construct an optimal projection space of dimension γ with minimum loss of
information by simply keeping the γ first POD basis, that is,

arg min
W ∈Rn×γ

∥U −W W T U∥2
F = Qγ = [η1, .., ηγ] (18)

min
W ∈Rn×γ

∥U −W W T U∥2
F = ∥U −QγQT

γ U∥2
F =

N∑
k=γ+1

λk , (19)

where ||.||F is the Frobenius norm and γ is so-called the truncation parameter. The
columns of Qγ are also known as vectors of principale components. Among all
orthonormal bases of dimension γ (usually γ ≪ n), Qγ minimizes the least squares
error of the reconstruction of the snapshot matrix U . QγQT

γ U is also known as the
reconstruction of the optimal reduced space.

Thus the POD basis yields an orthonormal basis that provides an efficient low-
dimensional representation of the dynamical system. The data compression accuracy
Ca and compression ratio Cr are defined as:

Ca =
N∑

k=γ+1
λk

/ N∑
k=1

λk, Cr = γ/N, (20)
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both ranging from 0 to 1 by their definitions. For any snapshots ut ∈ Rn×1 con-
verted to a 1D vector, the γ-dimensional representation where the surrogate model
predictions take place in this paper, is approximated by

x = uγ
t = QT

γ ut . (21)

4.2. Deep AutoEncoder
Similar to POD, AutoEncoding [12] is a data compression algorithm based on

a feed-forward neural network, aiming for reconstructing the input vectors through
unsupervised pretraining. More precisely, an AutoEncoder (AE) first encodes the
input vector u as

ej = σAE(WAEuj + bAE
j ), (22)

where j is the index of neurons and σAE, WAE, bAE denote respectively the activation
function, the encoder weights and the encoder bias. The vector e represents the
encoded features, related to the input vector u in the latent space often with a much
lower dimension (i.e., dim(e) ≪ dim(u)). A decoder is then added to approximate
the input vector u via a reconstructed vector z, i.e.,

zj = σ̃AE(W̃AEej + b̃AE), (23)

with σ̃AE, W̃AE
, b̃AE as the activation function, the decoder weights and the decoder

bias. equation (22) (resp. equation (23)) stands for the general formulation of
one encoder (resp. decoder) layer while an in-depth AE may consist of several
encoder/decoder layers. The AE is then trained with the loss function

J
(
[WAE, bAE, W̃AE

, b̃AE]
)

=

√√√√√ 1
NAE

train

NAE
train∑

j=1
||uj − zj||2 (24)

where NAE
train denotes the size of the AE training dataset. The AE implemented in

this study is a convolutional autoencoder (CAE) which is widely applied to dimen-
sion reduction when dealing with multi-dimensional input vectors with structured
meshes/cells (e.g., the homogeneous square cells in this study) [4]. Thanks to these
convolutional layers, the CAE manages to capture 2D local patterns of fire spread
simulations. The exact CAE structures used for different fire events are introduced
in section 7 of this paper. For more details about convolutional layers and CNN,
interested readers are referred to [62].

5. RNN and LSTM

Since the reduced-order modelling of the state variables is available and the
same POD basis/autoencoder can be used for observation data, we aim to establish
a surrogate model for predictions in the low-dimensional latent space. With the
growing availability of simulation/observation data, there is increasing interest in
applying ML approaches to deal with geophysical/atmospheric flow. The recurrent
neural networks (RNNs), which address temporal sequences as directed graphs, are
of particular interest in handling complex dynamical systems thanks to their ability
to capture historical dependencies via internal feedback connections[59]. Among the
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different variations of RNNs, the long-short-term-memory (LSTM), first introduced
in [43], is adequate of solving long-term dependency problems [13] that classical (also
known as "vanilla") RNNs could not achieve. As with other RNNs variants, LSTM
has a chain-like structure being composed by repeating the same module shown in
Figure 2. In LSTM, instead of only one neural network in each module, four are
contained.

Figure 2: LSTM diagram

The key part of the LSTM network is the cell state Ct which stores long-term
memory information related to historical behaviour. Three gates, each composed
of a sigmoid layer (with activate function σ(x) = (1/(1 + e−x))) and a pointwise
multiplication operation, are employed to control/adjust the information of the cell
state.

• Forget gate decides what information is going to be thrown away from the cell
state with recurrent variable ht−1 summarising all the information about the
past behaviours and xt information about the current ones.

ft = σ(Wf · [ht−1, xt] + bf ) (25)

• Input gate determines the new information which is going to be added into
Ct−1 through a tanh layer.

C̃t = tanh(WC · [ht−1, xt] + bC) (26)

it = σ(Wi · [ht−1, xt] + bi) (27)

where C̃t is multiplied by weight coefficients generated by the input gate,
allowing an update of Ct,

Ct = ft ⊙Ct−1 + it ⊙ C̃t (28)
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• Output gate decides the recurrent output ht of the module via previous recur-
rent output ht−1 and current input information xt through a sigmoid layer,
i.e.,

ot = σ(Wo[ht−1, xt] + bo) (29)

ht = ot ⊙ tanh(Ct) (30)

6. Data-driven Surrogate Model with Latent data assimilation

In this section we propose a surrogate model based on ROM and LSTM with
DA described in Algorithm 1. The reduced space is created by the function ϕ in
Step 9 of Algorithm 1 by POD following equations (15) and (17) or CAE following
equation (22) to (23). The LSTM is trained in the reduced space as shown in Fig-
ure 3. To compute the dynamical surrogate model, the trained LSTM is iteratively
applied as shown in Step 10 of Algorithm 1. Compared to the traditional many-
to-one LSTM network, the sequence-to-sequence structure conduces to accelerate
the prediction process and improve the network stability, for instance, by avoiding
the vanishing gradient problem [73]. The Assimilation part is also performed in the
reduced space as a Latent DA:

Jlatent(x) = 1
2(x− xb)T B̂−1(x− xb) + 1

2(ŷ− Ĥ(x))T R̂−1(ŷ− Ĥ(x)) (31)

where B̂ = ϕ(B) and R̂ = ϕ(R) denote the error covariance matrices in the la-
tent space, Ĥ denotes the observation operator in the latent space and where the
covariance tuning is improved by the DI01 algorithm in the latent space too.

Figure 3: Sequence-to-sequence LSTM predictions of eigenvalues (i ∈ {1, .., 20}) with latent data
assimilation when observation data are available

The simulation and the observation data are encoded into the same latent space
in this modelling, leading to a diagonal structure of the Ĥ matrix. The background
and the observation error covariances are often set to be diagonal in Latent DA ([4]).
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Algorithm 1: combination of ROM, LSTM, DA and DI01
Parameters:
1. Number of time-steps: tF
2. LSTM input length: ninput
3. LSTM output length: noutput

Inputs:
4. Initial states: ui, for i ∈ {0..tx}
5. Observation data: yi, for i ∈ Ty

6. Estimated latent covariance matrices: B̂, R̂
7. Latent observation operator: Ĥ
8. Trained LSTM function fL

Algorithm:

9. projection/encoding ϕ :
{

ui −→ xb
i , i ∈ {0..tx}

yi −→ ŷi, i ∈ Ty.
i←− tx

10. while i < tF: do
{xb

i+1, xb
i+2, ..., xb

i+noutput} = fL
(
xb

i−ninput , xb
i−ninput+1, ..., xb

i

)
for j from i + 1 to i + noutput do

if j ∈ Ty then
(B̂, R̂)←− DI01(xb

j, ŷj, B̂, R̂, Ĥ)
xa

j ←− DA(xb
j, ŷj, B̂, R̂, Ĥ)

xb
j ←− xa

j

end
end
i←− i + ninput

end
outputs: {xb

i , i ∈ {0..tF}}

As a consequence, ĤB̂ĤT and R̂ can have the same correlation structure, leading
to divergence (i.e., the fixed point of DI01 can be different from the exact error
covariances.) of DI01 algorithm as mentioned in [27, 54]. Here we explain in details
the mathematical reasons which lead to the divergence of DI01. In order to distin-
guish the notation of the exact covariances matrices (represent the true estimation
error covariances) and the estimated ones, the former is denoted as B̂E, R̂E while
B̂A, R̂A represent the assumed covariances. In addition, the covariance matrix of
the prior innovation vector d = ŷ−Ĥ(xb) is denoted by D, i.e., D = Cov(d, d). We
remind that the analysis is carried out under the assumption of a linear observation
operator Ĥ, where the explicit expression of D can be found,

D = ĤB̂ĤT + R̂. (32)

Similar to B̂A, R̂A, the assumed innovation covariance matrix DA is defined as

DA = ĤB̂AĤT + R̂A. (33)

Following the assumption of [28], the correlation patterns of these matrices are
perfectly identified a priori. In other words, for any current iteration q,
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B̂A,q = βqB̂E, R̂A,q = αqR̂E. (34)

where βq, αq are real numbers. Hence, the DI01 algorithm is equivalent to the tuning
of two scalar sequences,

βq+1 = sb
qβq, αq+1 = so

qαq. (35)

According to the analysis of [54], in the ideal case where equation (34) is satisfied,
the multiplicative coefficient updating could be expressed as:

βq+1 = βq

Tr{D−1
A,qDD−1

A,qĤB̂A,qĤT}
Tr{D−1

A,qĤB̂A,qĤT}
. (36)

αq+1 = αq

Tr{D−1
A,qDD−1

A,qR̂A,q}
Tr{D−1

A,qR̂A,q}
. (37)

When DA,q = D (i.e. ĤB̂A,qĤT + R̂A,q = ĤB̂EĤT + R̂E),

βq+1

βq

=
Tr{D−1

A,qĤB̂A,qĤT}
Tr{D−1

A,qĤB̂A,qĤT}
= 1,

αq+1

αq

=
Tr{D−1

A,qR̂A,q}
Tr{D−1

A,qR̂A,q}
= 1. (38)

Therefore both {αq} and {βq} converge numerically. If ĤB̂EĤT and R̂E are of
different structures, i.e.,

∄τ ∈ R, such that ĤB̂EĤT = τR̂E, (39)

then the convergence of (βq, αq) is equivalent to B̂A = B̂E and R̂A = R̂E since
according to equation (34),

ĤB̂A,qĤT + R̂A,q = ĤB̂EĤT + R̂E (40)
⇐⇒ (βq − 1)ĤB̂EĤT = (1− αq)R̂E (41)
⇐⇒ βq = αq = 1. (42)

On the other hand when ĤB̂AĤT and R̂A have the same correlation structure, i.e.,

∃τ ∈ R, such that ĤB̂EĤT = τR̂E, (43)

fixed-points other than true covariance matrices could be found for DI01 as long
as (βq−1)

(1−αq) = τ . Therefore, when applying Latent DA with DI01 covariance tuning,
choosing a different structure of B̂ and R̂ in the latent space is crucial as specified
in section 7 for the wildfire application.

7. Application to wildfire forecasting

7.1. A CA-based simulator
Many studies have attempted to quantify fire progress through an equation gov-

erning mathematical model with the help of critical parameters such as fire density
or rate of spread (ROS) [60, 67]. As summarized in [56], geophysical features such
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as fuel density, landscape slope, and wind speed can severely impact the behaviour
of fire progress. Taking these parameters into account, various softwares [32, 2, 42]
have been developed to monitoring spatial fire spread processes. A detailed review
and comparison of these simulation tools can be found in [56]. In this study, we focus
on an operating CA model [2], capable of imitating forest fires with mountainous
landscape and complex vegetation distribution, for generating learning data for the
LSTM network.

A two-dimensional grid which divides the forest area of study into small square
cells with coordinates i, j, as shown in Figure 5(a) is used to simulate the fire pro-
gression in all eight possible directions (i.e., {i±1, j±1}/{i, j}) following a burning
probability determined by local environmental variables. As stated in [2], the use of
regular square cells instead of complex geometry meshes accelerates the fire spread
simulation with a lower calculation cost. More precisely, four states (integer num-
bers) can be assigned to characterize a cell at a discrete time,

• state 1: The cell can not be burned due to lack of forest fuel;

• state 2: The cell has not been ignited ;

• state 3: The cell is burning;

• state 4: The cell has been burned down.

States 1 and 4, either not ignitable or already burned down, will remain invariant
during the simulation process. At each discrete time step, the fire propagation to
adjacent cells (i.e.,state(i, j) = 3 −→ state(i±1, j±1) = 3) follows a local temporal
probability,

Pbun = ph(1 + pveg)(1 + pden)ps (44)

where ph denotes a standard burning probability, while pveg, pden and ps depend
respectively on the local canopy density, canopy cover and landscape slope of the
receiving cell. The transformation equations, which involve, for instance, spread rate
modelling and spotting effect, can be found in detail in [2]. The actual values of these
physical fields, such as landscape slope, vegetation density, and vegetation cover, are
obtained from the Interagency Fuel Treatment Decision Support System (IFTDSS)
1 for corresponding wildfires. An example is given in Figure 5(b,c,d) for the Bear
2017 fire in California. This CA-based operational simulator managed to predict
the Spetses fire in 1990 in Greece adequately according to actual observations as
shown in [2]. In this work, we have adopted the same optimal values for operational
parameters, adjusted through operational experiments, as stated in [2].

1https://iftdss.firenet.gov/landing_page/
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Figure 4: Simple sketch illustrating the state transitions in the CA model when an adjacent cell is
burning

(a) (b) (c) (d)

Figure 5: (a): possible directions of fire propagation (b,c,d): respectively the canopy cover, the
canopy density and the landscape slope of the study zone which corresponds to the Bear fire in
California 2020

7.2. Study areas
We tested our approach over three recent massive wildfire events in California,

including Buck and Pier fires in 2017 and Bear fire in 2020, to ensure the proposed
approach is generalizible and robust. Buck fire started on September 2, 2017 and
burned 10,450 acres in the Mendocino National Forest around the Napa and Sonoma
Valley areas. Pier fire burned 36,556 acres in the Sequoia National Forest, approxi-
mately from August 29, 2017 to November 29, 2017. Bear fire is a part of the North
Complex fire in the Plumas National Forest in Northern California, started on the
morning of August 17, 2020, consisting of numerous lightning fires being managed
as one incident. These three fire scenarios are listed among the largest and deadliest
wildfires in California since 2017, resulting in an evacuation of hundreds of thou-
sands of local residents.

The issue of evacuation of residents, including transportation and sheltering,
is particularly challenging due to the speed and chaotic nature of wildfire spread.
Consequently, it also places significant stress on public resources [80]. An accurate
near real-time fire forecasting/nowcasting is, thus, crucial to guide effective evacua-
tion plans and on the ground fire suppression efforts. In this study, three different
surrogate models are developed for these three large wildfire events in California.
Daily fire perimeters derived from satellite thermal observations are used to syn-
chronically adjust the fire spread prediction through data assimilation [69]. Active
fires (or hot spots) were detected 4 times a day globally with thermal imagery at
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1km from Moderate Resolution Imaging Spectroradiometer (MODIS), aboard the
Terra (10:30 and 22:30 local overpass time) and Aqua (13:30 and 01:30 local overpass
time) polar orbiting satellites [37]. The Visible Infrared Imaging Radiometer Suite
(VIIRS), on board the Suomi National Polar-orbiting Partnership (SNPP) satellite,
launched in 2011, further enhanced fire detection capabilities, due to its finer spa-
tial resolution, higher signal-to-noise ratio, dual-gain high-saturation channels, and
notable reduction of pixel growth off-nadir [79]. VIIRS provides global coverage of
hot spot detections every 12 hours at 13:30 and 1:30 local overpass times [70]. We
here combined the level 2 VIIRS I-band active fire product (VNP14IMG) at 375 m
with the MODIS standard active fire products (MOD14 and MYD14) and used the
natural neighbour geospatial interpolation method to estimate continuous daily fire
perimeters [69]. The observational records are extracted from the polygon database
to capture daily fire progression for a total of 454 wildfires larger than 200 hectares
( 500 acres) from January 1, 2012 to December 31, 2020 in California. The MODIS
and VIIRS data are available about 2.5 hours after the satellite overpass, allowing
for a near real-time fire monitoring.

The exact study area associated with each of the three fire events where the CA
simulations take place is shown in Table 1. These square study areas are determined
regarding the final progression state observed by satellites. We illustrate the evolu-
tion of the burned ratio (i.e., the number of burned cells divided by the number of
total cells in the square space) in percentage in Figure 6 (a) for all three fire events.
A clear stagnation after 10 to 12 days of the fire start can be observed for each of the
three fire scenarios (even though the fire phenomenon may officially last for several
weeks), indicating the effects of either fire weather or fire suppression. Since we aim
to simulate the early active phase of ferocious fire spread, only the daily evolution
of the first 10 to 12 days of those three fires are used to train the LSTM surrogate
models. In each case, the observed fire front at the beginning of the fire (i.e., day
0) is considered as a set of ignition points in CA simulations.
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Figure 6: (a): Evolution of the observed burning areas in percentage of the three studied fires; (b):
Distribution of eigenvalues in the POD analysis

7.3. ROM, LSTM prediction and DA
Now that the physics-based simulation model and real-time satellite observations

are available, we apply the proposed methodology, combining ROM, LSTM and DA
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Fire latitude longitude area

North South West East
Bear 2020 39.8567 39.7780 −121.1615 −121.0171 ≈ 108km2

Buck 2017 40.2558 40.1707 −123.0791 −122.9734 ≈ 83km2

Pier 2017 36.1909 36.0543 −118.798 698 −118.616 145 ≈ 244km2

Table 1: study areas of the three wildfires

to wildfire predictions. As stated previously in section 4, the objective is to find
an optimal tradeoff between complexity and accuracy, that is, computing a lower-
dimensional latent space that loses the least possible information. To this end, the
performance of POD and CAE with a comparable dimension of the latent space
is compared in this section. More precisely, the truncation parameter of the POD
approach is fixed as q = 100 while the dimension of the latent spaces varies slightly
for different fire events. For example, the reduced image is of size 11 × 11 for the
Buck fire as shown in table 2 We first compute the reduced POD basis of the 2D
CA fire spread field, consisting of integers {1, 2, 3, 4} which represents the current
state (either burned, burning or not burned) of each cell. Since the CA simulation
employed in this study is stochastic, for each fire event 10 independently simulated
fire dynamics, each of 500 or 400 time steps regarding the fire event, are used
to compute the vectors of principal components, as described in section 4. After
inspecting the distribution of associated eigenvalues as shown in Figure 6(b), the
truncation parameter is set to be γ = 100, where the eigenvalue distributions reach
stagnation and the compression accuracy of all three study cases is above 99.8%, as
shown in Table 3.

On the other hand, the CAE, trained with the same dataset as POD (i.e., 10
independent CA simulations), consists of four encoding and four decoding layers, as
reported in Table 2 where all convolutional layers are set with "padding = same".
The number and the placement of the layers has been optimized via a grid search
where structures of 3,4,5 layers of encoding/decoding layers have been tested.

A combined ROM- and LSTM-based learning framework is then used to approx-
imate the fire spread dynamics in the latent space for all three fire events. The
exact LSTM structure used in all three fire scenario studies is shown in Table 4,
while the sequence-to-sequence structure is accomplished thanks to the RepeatVec-
tor layer which links the output of the previous LSTM layer to each output in the
time sequences as shown in Figure 3. The length of both the input and the out-
put time sequence in the LSTM network is set to be 20 CA time steps (equivalent
to 12 hours of fire spread time) which is the tradeoff between fast predictions and
LSTM stability. The latter is crucial for learning long-term patterns [81]. In fact,
since the CA simulations are stochastic at each time step, the LSTM network will
be ineffective at directly predicting the fire spread k steps forward when k is too
large due to the accumulated randomness. For each fire event, the LSTM training
employs 120 independent simulations to form the training and testing dataset by
shifting the simulation sequences. For example, if the previous training sample is
with {0, . . . , 19} (resp. {20, . . . , 39}) time steps as input (resp. output), the next
training sample will include time steps {1, . . . , 20} (resp. {21, . . . , 40}) as input
(resp. output) data.
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Layer (type) Output Shape Activation

Encoder
Conv(10× 10) (648, 633, 1) ReLu

MaxPooling(5× 5) (130, 127, 1)
Conv(2× 2) (130, 127, 1) ReLu

MaxPooling(3× 3) (44, 43, 1)
Conv(3× 3) (44, 43, 1) ReLu

MaxPooling(2× 2) (22, 22, 1)
Conv(3× 3) (22, 22, 1) ReLu

MaxPooling(2× 2) (11, 11, 1)

Decoder
Conv(2× 2) (11, 11, 1) ReLu

MaxPooling(2× 2) (22, 22, 1)
Conv(3× 3) (22, 22, 1) ReLu

MaxPooling(5× 5) (330, 330, 1)
Conv(2× 2) (330, 330, 1) ReLu

MaxPooling(2× 2) (660, 660, 1)
Cropping (12,27) (648, 633, 1)
Conv(10× 10) (648, 633, 1) Sigmoid

Table 2: LSTM structure for learning physics-based CA simulations

Fire Bear 2020 Buck 2017 Pier 2017
Ca 99.8% 99.9% 99.9%
Cr 0.017% 0.024% 0.014%

Table 3: Compression accuracy and rate with truncation parameter γ = 100 for different fire events

Layer (type) Output Shape Activation

LSTM (200) ReLu
RepeatVector (20, 200)

LSTM (20, 100) ReLu
Dense (20, 100) Linear
Dense (20, 100) Linear

Time distributed (20, 100) Linear

Table 4: LSTM structure for learning physics-based CA simulations
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After acquiring the LSTM model in the latent space, real-time satellite observa-
tions are used to regularize the fire prediction according to current circumstances.
The post-processed observations, indicating the current burned area, are first pro-
jected to the same latent space determined by Qγ as state variables, with the same
truncation parameter γ = 100. Since the observations are obtained on a daily basis,
the same observation is used to assimilate 20 consecutive prediction steps to ensure
a continuous prediction. This is crucial for the following LSTM forecasting. For
each assimilation window, the ratio between the background and the observation
information (i.e., Tr(B̂) and Tr(R̂)) is tuned via the DI01 approach for a fixed num-
ber of 5 iterations. The combination of ROM, LSTM, DA and covariance tuning,
as described above, is summarized in Algorithm 1.

8. Results

In this section, the results of the proposed algorithm scheme which combines
ROM, LSTM and DA are discussed for three recent fire events in California intro-
duced in section 7.

8.1. ROM: POD vs. AE
We now focus on the construction of the latent space based on POD or AE

compression strategies. The CAE has been tested for the three fire events with the
same layer structures (as shown in Table 2), except the cropping layer that adjusts
the output dimension to the same as input.

The original and reconstructed burned areas respectively from the training dataset,
the testing dataset (CA simulations not used for training/compression) and the satel-
lite observations, are shown in Figure 7 for the Buck 2017 fire as an example. The
POD latent space is of dimension 100 while the CAE latent space is of dimension
11 × 11 as reported in Table 2. Observing the first two columns of Figure 7, the
POD approach overperforms the CAE in terms of reconstruction accuracy for both
the training and test dataset (generated via CA simulations). However, the CAE
exhibits significantly better flexibility when dealing with satellite observation data
for reconstructing burned areas that haven’t been seen in the training dataset (for
example, the red square in Figure 7(c,f,i)). These findings are consistent with the
observations in Figure 8, which illustrates the evolution of the relative root mean
square error (R-RMSE) defined as:

ϵR-RMSE,(t)(ι) =

√√√√√ ι∑
j=1

1
ι

( ||uoriginal,j
t − ûj

t ||
||uoriginal,j

t ||

)2

, (45)

where û ∈ {uPOD, uCAE} is the reconstructed fire spread field and ι denotes the
ensemble size where R-RMSE is evaluated. Here, ι = 10 for the training and the
testing dataset of CA simulations while ι = 1 for satellite observations. Since the
LSTM surrogate model is trained using purely CA simulations while the satellite
observations are only used for DA corrections, we choose to proceed with the POD
approach for ROM in this study.
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(a) training: full (b) test: full (c) obs: full

(d) training: POD (e) test: POD (f) obs: POD

(g) training: AE (h) test: AE (i) obs: AE

Figure 7: Comparison of POD and CAE respectively in the training (CA simulations), testing (CA
simulations) and observation dataset
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Figure 8: R-RMSE error for POD and CAE in the training/testing/observation dataset where the
transparent zones represent the std

8.2. LSTM in the latent space
We first investigate the performance of the LSTM surrogate model, trained on

120 CA simulations for each of the three fire scenarios. For the sake of brevity, we
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illustrate and analyse the results obtained for the Bear fire in this section as the out-
come of two other fire events can be found in the appendix with similar conclusions.
The prediction results against the CA simulations (blue circles), both in the latent
space, for the testing dataset is shown in Figure 10 where we illustrate the out-
come of the first three (i.e., λ{1,2,3} which contain most representative components)
together with the 100th eigenvalues λ100 for different prediction length ∆t. What
stands out in Figure 10 is the high precision of predictions for λ{1,2,3} regardless the
prediction length, which confirms the choice of k = 20 in the sequence-to-sequence
LSTM model setup. In other words, the ML model manages to handle the diffusion
randomness of 20 CA steps and the prediction results do not deviate. As for λ100,
since the 100th eigenvalues in the POD approach contain a considerable amount of
noise, it is to be expected that the LSTM prediction is cumbersome to fit the ex-
act target values. We now represent the reconstructed prediction results in the full
physical space following equation (19). Since the fire spread fields consist of integer
numbers, an integer round-off filter is added for postprocessing. This integer filter is
only required for comparison, which is not necessary for intermediate LSTM steps.

We display in Figure 14(a) the averaged normalized difference and associated
standard deviation (std) (shown by the transparent zones) for the LSTM-CA and
CA-CA comparison, both evaluated for 10 different simulations, for the 2020 Bear
fire in the full space. More precisely, both LSTM and CA initiate with the burned
area at day 0 (determined by the satellite observation) where the LSTM observes
the first 20 diffusion steps (of the corresponding CA simulation) in the latent space
to launch the surrogate predictions. It must be emphasised that due to the random
nature of the CA approach, independent simulations can lead to different fire spread
scenarios. It can be stated that the LSTM surrogate model which is trained using
more than 100 independent simulations, exhibits similar performance to a full CA
model (consistent with the findings in Figure 10) with considerably less computa-
tional time, as illustrated in Figure 14(b). More precisely, a CA simulation costs in
average about 45 minutes using a laptop CPU, while an online evaluation of LSTM
model costs less than three seconds.
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Figure 9: (a): Averaged R-RMSE difference of CA-LSTM and CA-CA of the Bear fire; (b):
Comparison of the computational time (in seconds) of CA (left axis) and LSTM (right axis)
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Figure 10: Eigenvalues predictions in the latent space by LSTM with different prediction length
of Bear 2020 fire event

8.3. Latent DA
Once the LSTM surrogate model is trained, we make use of satellite observa-

tions to adjust the so-obtained burned area predictions. To quantify the difference
between observed and predicted/assimilated fire spread fields (respectively denoted
as uobs and û ∈ {uLSTM, uDA, uLSTM+DA}), the relative root mean square error (R-
RMSE) is defined as:

ϵR-RMSE,(t)(ι) =

√√√√√ ι∑
j=1

1
ι

( ||uobs,j
t − ûj

t ||
||uobs,j

t ||

)2

. (46)

ι denotes the size of the ensemble of trajectories where R-RMSE is estimated.
uLSTM+DA represents the current LSTM prediction in the full space which bene-
fits DA corrections from previous time steps. As described in section 7, the LSTM
model exploits a sequence-to-sequence structure with k = 20, which is equivalent
to about 12 hours in real-time. The LSTM predictions are then assimilated using
daily satellite observations through DA techniques. The background matrix, which
typifies prior error covariance in the latent space, is set to be diagonal (i.e., B̂ = I100)
because the POD principal components are uncorrelated. Considering that the DI01
approach exhibits better performance when the correlation patterns of B̂ and R̂ are
significantly different [28], the observation error covariance here is set to be isotropic,
following the second-order auto-aggressive (SOAR) function,

φR(r) =
(

1 + r

LR̂

)
exp(− r

LR̂
), (47)
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where r(i, j) = |i− j|,∀{i, j} ∈ {1, ..., 100}2 denote the distance in the latent space
of dimension γ = 100 and LR̂ is the correlation scale length, considering as an
hyperparmater in this study. According to numerical experiments, the value is fixed
as LR̂ = 15 in this study. The so defined B̂ and R̂ matrices are used as initial values
in the DI01 covariance tuning. In general, specifying error covariances in the latent
space of dynamical systems remains an open question and further research can be
considered to address this question.

The evolution of averaged R-RMSE related to 10 CA simulations for the Bear
2020, Buck 2017 and Pier 2017 wildfires are illustrated in Figure 11. In fact, for
distinct CA simulations, only the first 20 simulation steps used as initial inputs to
launch the LSTM surrogate model are different. Thus, the variance of the estimated
R-RMSE is insignificant compared to its absolute value. As shown by the red curve,
the difference between LSTM predictions and satellite observations peaks near the
end of the first week for all three fire events where the burned areas grow most
rapidly as shown in Figure 6(a). Around one-third of burned areas haven’t been
successfully predicted. This difference can be significantly reduced by performing
DA techniques in the latent space, as shown by the green curves, with an R-RMSE
comparable to the POD accuracy indicated in Table 3. More importantly, the DA
correction also improves the LSTM accuracy substantially for future predictions as
illustrated by the blue curves. The solid blue line depicts the prediction with a
day-to-day DA correction, while the dashed blue line represents the case where DA
takes place every two days. For both cases, the R-RMSE curves are considerably
lower than pure LSTM simulations (red), being relatively close to DA corrections
(green). Sub-figures (b,d,f) in figure 11 demonstrate the strength of online covariance
tuning. In all three study cases, DA and assimilated LSTM with covariance tuning
(i.e., "DA cov" and "DA+LSTM cov") result in significantly lower prediction error
compared to DA and assimilated LSTM without covariance tuning (i.e., "DA no cov"
and "DA+LSTM no cov"). Based on previous analysis, it could be concluded that
the latent DA contributes to a long-term impact of improvement in the forecasting
accuracy, which is challenging when combining lower-dimensional surrogate models
with real-time observation data.

As an example, the exact prediction and assimilation results in the full space
from day 1 to day 5 of the Buck 2017 fire are displayed in Figure 12 where the
image background consists of the distribution of the vegetation(canopy) cover. The
LSTM-observation difference can be noticed right from day 1 (c.f., Figure 12 (a)
and (b)), with an increasing tendency until day 5. On the other side, the assim-
ilated states, after being decoded to the full physical space, succeed in combining
model predictions and satellite measures as shown in the last column of Figure 12.
The model forecastings (g,k,o,s) are respectively based on previous DA corrections
(d,h,i,p). Consistent with the analysis of Figure 11, the outcome of LSTM + DA is
much closer to the observations of the next time step, in comparison with pure LSTM
predictions. The comparison between "obs" and "DA"/"DA + LSTM" columns in
Figure 11 also reveals the fact that some areas (e.g., red subdomain) can be more
difficult to regulate compared to others (e.g., blue subdomains). This fact is linked
to the limitation of ROM and CA simulations. Since the CA simulations depend
heavily on the distribution of vegetation, the zone framed by the red square has
a very low probability to be burned, resulting in zero variance associated with the
corresponding area when computing the covariance matrix in POD analysis. There-
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fore, the latent space (i.e., the principal components) contains no information of
those cells in the square, leading to an imperfect reconstruction of the satellite ob-
servations in the full space. In general, it stands for a major bottleneck for all data
compression methods when a significant difference exists between the training (CA
simulations in this study) and actual data (satellite observations in this study).

The averaged online computational time of different approaches, including CA,
LSTM and DA, is reported in Table 5 for the three fire events. Despite the of-
fline training of AE and LSTM necessitates the use of a high-performance computer
(HPC), the online computation is carried out on a laptop CPU as shown in Ta-
ble 5. More precisely, the offline training of AE and LSTM is performed in the HPC
system of Imperial College, and the computing node harnessed one NVIDIA GPU
P1000 (RAM 96GB) within 2 hours of computational time for each fire event while
the online evaluation takes only several seconds for each time step as shown in sec-
tion 5. For comparison purposes, the approximately estimated computational time
of Flammap software [32], which is commonly used for operational fire management,
on the corresponding study areas for one CA step is also shown in the last column
of Table 5. For each of the three fire events, the LSTM prediction is at least 1000
times faster in average compared to Flammap or CA simulations. In addition, the
efficiency of latent DA and DI01, which are often considered to be computationally
expensive and time-consuming in industrial applications, is also demonstrated in
Table 5. As a matter of fact, in average each latent covariance tuning process is at
least 50 times faster than a step of CA/Flammap simulation. On the other hand,
implementing DA in the full physical space with non-diagonal covariance matrices is
extremely challenging for a laptop CPU, if not infeasible. In summary, the LSTM-
based surrogate model coupled with latent DA proposed in this study, exhibits great
efficiency and high accuracy for real-time fire nowcasting/forecasting.
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(a) Bear 2020: latent LSTM and DA
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(c) Buck 2017: latent LSTM and DA
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(d) Buck 2017: effect of the covariance tuning
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(e) Pier 2017: latent LSTM and DA
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(f) Pier 2017: effect of the covariance tuning

Figure 11: Evolution of R-RMSE for different approaches where LSTM+DA represents the pre-
dictions based on the assimilated results of previous time steps

Fire simulation LSTM DA DI01 Flammap
Bear 3.85s 3.1e−3s 5.8e−3s 8.7e−2s 10 ∼ 30s
Buck 2.96s 5.26e−3s 4.26e−3s 2.12e−2s 5 ∼ 20s
Pier 8.28s 6.28e−3s 5.36e−3s 2.68e−2s 10 ∼ 30s

Table 5: Averaged computational time for one time-step using different approaches
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(a) LSTM(day 1) (b) obs(day 1) (c) LSTM+DA(day 1) (d) DA(day 1)

(e) LSTM(day 2) (f) obs(day 2) (g) LSTM+DA(day 2) (h) DA(day 2)

(i) LSTM(day 3) (j) obs(day 3) (k) LSTM+DA(day 3) (l) DA(day 3)

(m) LSTM(day 4) (n) obs(day 4) (o) LSTM+DA(day 4) (p) DA(day 4)

(q) LSTM(day 5) (r) obs(day 5) (s) LSTM+DA(day 5) (t) DA(day 5)

Figure 12: Buck fire: Comparison of (i) pure machine learning prediction (1st column); (ii) prepro-
cessed satellite observations (2nd column); (iii) machine learning prediction with DA (3rd column)
and (iv) DA reconstruction (4th column)
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9. Conclusions and future work

A major challenge for wildfire prediction models lies in the complexity of the
physics-based simulations, leading to difficulties for implementing operational real-
time fire forecasting. In this work, we propose a new algorithm scheme that combines
physical simulations, reduced order modelling, recurrent neural networks and data
assimilation in consecutive order. We first compute the latent space by capturing
the governing dynamics using a much smaller number of variables compared to the
full physical/geological space. The uses of POD and CAE have been discussed and
compared with the observed spread of realistic fire examples. The computational
cost is shown significantly reduced for both LSTM surrogate model training and
near real-time data assimilation in the latent space. In addition, the use of stochas-
tic CA simulations in ROM and LSTM in this study improves the flexibility of the
trained data-driven model, which is crucial when implementing real-time DA. Three
recent wildfires in California are investigated with historical satellite images consid-
ered as observations in latent DA. We have shown that, with error covariance tuning
algorithms, data assimilation manages to provoke long-term impact on enhancing
the model prediction accuracy in all three fire events. The online evaluation of the
surrogate model is considerably faster than running a full wildfire simulation (either
CFD or CA). The framework proposed in this paper can be applied to other spatial
temporal dynamics such as air pollution monitoring or environmental epidemiology.

This study is a first attempt to improve the efficiency of fire forecasting while
maintaining sufficient accuracy, by using deep learning to reduce the order of com-
plex process-based models and using DA to constrain and adjust near real-time
prediction. As a proof of concept, we used simulations from a simpler version of
fire spread module (CA) as one example of process-based models. The CA model
does not take into account quite a few complex processes of fire behaviours such
as fire-generated weather, surface-to-crown fire transition [77], fire spotting. One
application is to predict the efficacy of the on the ground fire suppression strate-
gies such as placing fuel breaks and dropping fire retardants. This can be done
by modifying the existing fuel maps to represent the impact of suppression on fu-
els. A full investigation calls for additional work and a larger project, which is
beyond the scope of this initial attempt. For example, we can build the surrogate
model from some other fire behavior models such as FARSITE, FLAMMAP [32],
SPARK [41], and BehavePlus [5] to simulate at various complexity. Future work
will benefit from learning from these simulations, augmented with historical fire ob-
servations, to add probability of surface-to-crown transition and spotting spread in
our framework. From previous works in air pollution [61], we have seen that when
more realistic models with more physical modellings involved are available, it can
also significantly improve the performance of the ML approach

Further study is also needed to test the machine learning from more complex
and realistic wildfire simulations, that consider the probability of surface-to-crown
transition and spotting spread in our framework [77, 25]. Also note that in this pilot
study, individual ROMs and LSTM surrogate models are trained for different fire
events, which can be computationally expensive for offline simulation and training.
An important next step is to develop ecoregion specific surrogate models by learning
from a group of diverse wildfires. This will reduce the computational cost for training
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and improve generalizability for operational real world forecasting.
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BLUE best linear unbiased estimator
DI01 Desroziers & Ivanov tuning method
3D-Var 3D Variational
ML machine learning
DL deep learning
DA data assimilation
NN neural network
RNN recurrent neural network
CNN convolutional neural network
SVM support vector machine
LSTM long short-term memory
POD proper orthogonal decomposition
CA cellular automata
GA genetic algorithms
NWP numerical weather prediction
CFD computational fluid mechanics
ROM reduced-order modelling
1D one-dimensional
2D two-dimensional
R-RMSE relative root mean square error
AE AutoEncoder
CAE Convolutional AutoEncoder
HPC high-performance computer
std standard deviation
VIIRS Visible Infrared Imaging Radiometer Suite
MODIS Moderate Resolution Imaging Spectroradiometer
SNPP Suomi National Polar-orbiting Partnership
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Appendix

CA-based LSTM surrogate model
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Figure 13: (a): Averaged R-RMSE difference of CA-LSTM and CA-CA of the Buck fire; (b):
Comparison of the computational time (in seconds) of CA (left axis) and LSTM (right axis)
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Figure 14: (a): Averaged R-RMSE difference of CA-LSTM and CA-CA of the Pier fire; (b):
Comparison of the computational time (in seconds) of CA (left axis) and LSTM (right axis)

Maximum Likelihood property of DI01
In this section, we prove that each iteration of DI01 is equivalent to a Maxi-

mum Likelihood tuning of the error amplitudes (i.e., Tr(B) and Tr(R)). In fact,
as stated by [17], DI01 is equivalent to tune a Maximum Likelihood algorithm to
the innovation covariances matrix D(s = {sb, so}) (as defined in equation (32)) pa-
rameterized by the multiplicative coefficients. The proof is synthesised based on the
work of [54], [17] and [28] with some simplifications.

At each DI01 iteration,

Dq+1(sb
q, so

q) = Hsb
qBqHT + so

qRq. (48)

For the sake of simplicity, set D = Dq+1, d = dq+1, B = Bq, R = Rq, sb = sb
q, so =

so
q in this section. The conditional probability density function of the innovation

quantity d could be written as:

29



f(d|s) = 1√
(2π)pdet(D(s))

exp
(
− 1

2dT D(s)−1d
)

(49)

where p denotes the dimension of d. We then deduce the log-likelihood function,

L(s) = −log(f(d|s)) = p

2log(2π) + 1
2log[det(D(s))] + 1

2dT D(s)−1d. (50)

The minimum of this function should satisfy

For all component s of s,
∂log[det(D(s))]

∂s
+ dT D(s)−1

∂s
d = 0. (51)

Using the following algebraic properties,

log[det(D(s))] = Tr[logD(s)], (52)
∂Tr[log(D(s))]

∂s
= Tr

[
D(s)−1 ∂D(s)

∂s

]
, (53)

D(s)−1

∂s
= −D(s)−1 D(s)

∂s
D(s)−1, (54)

equation (51) could be simplified. For the first term on the left side, according
to equation (52) and (53),

∂log[det(D(s))]
∂s

= Tr[∂logD(s)]
∂s

= Tr
[
D(s)−1 ∂D(s)

∂s

]
= Tr

[
∂D(s)

∂s
D(s)−1

]
. (55)

In the case of DI01, s = {sb, so} therefore

∂D(s)
∂sb

= HBHT ,
∂D(s)

∂so
= R. (56)

As for the second term of equation (51), according to equation (54),

dT D(s)−1

∂sb
d = −dT D(s)−1 D(s)

∂sb
D(s)−1d = −dT D−1HBHT D−1d (57)

dT D(s)−1

∂so
d = −dT D(s)−1 D(s)

∂so
D(s)−1d = −dT D−1RD−1d (58)

equation(51) is then equivalent to the following two marginal formulas,

Tr[HBHT D−1]− dT D−1HBHT D−1d = 0 (59)
Tr[RD−1]− dT D−1RD−1d = 0. (60)

On the other hand, from equation (13), one can deduce

2Jb(xa) = sbTr[KH] (61)
||K(y−Hxb)||B−1 = sbTr[BHT D−1H] (62)
(Kd)T (sbB)−1Kd = sbTr[HBHT D−1] (63)

dT D−1H(sbB)T (sbB)−1(sbB)HT D−1d = sbTr[HBHT D−1] (64)
dT D−1HBT B−1BHT D−1d = Tr[HBHT D−1]. (65)
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Meanwhile,

2Jo(xa) = soTr[I−KH] (66)
((I−HK)d)T R−1((I−HK)d) = soTr[I−BHT (HBHT + R)−1H] (67)

dT (soRD−1)T (soR)−1(soRD−1)d = so
(

p− Tr[HBHT (HBHT + R)−1]
)

(68)

sodT D−1RD−1d = soTr[R(HBHT + R)−1] (69)
dT D−1RD−1d = Tr[RD−1]. (70)

Therefore, the DI01 method is equivalent to a Maximum Likelihood estimation
of B and R parameterized by sb, so.
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