
HAL Id: hal-03709547
https://hal.science/hal-03709547v1

Submitted on 29 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Fairness Generalization Through a
Sample-Robust Optimization Method

Ulrich Aïvodji, Julien Ferry, Sébastien Gambs, Marie-José Huguet, Mohamed
Siala

To cite this version:
Ulrich Aïvodji, Julien Ferry, Sébastien Gambs, Marie-José Huguet, Mohamed Siala. Improving Fair-
ness Generalization Through a Sample-Robust Optimization Method. Machine Learning, 2023, Spe-
cial Issue on Safe and Fair Machine Learning, 112 (6), pp.2131-2192. �10.1007/s10994-022-06191-y�.
�hal-03709547�

https://hal.science/hal-03709547v1
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Improving Fairness Generalization Through a
Sample-Robust Optimization Method

Ulrich Aı̈vodji · Julien Ferry⋆ ·
Sébastien Gambs · Marie-José Huguet ·
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Abstract Unwanted bias is a major concern in machine learning, raising in
particular significant ethical issues when machine learning models are deployed
within high-stakes decision systems. A common solution to mitigate it is to
integrate and optimize a statistical fairness metric along with accuracy dur-
ing the training phase. However, one of the main remaining challenges is that
current approaches usually generalize poorly in terms of fairness on unseen
data. We address this issue by proposing a new robustness framework for sta-
tistical fairness in machine learning. The proposed approach is inspired by the
domain of Distributionally Robust Optimization and works in ensuring fair-
ness over a variety of samplings of the training set. Our approach can be used
to quantify the robustness of fairness but also to improve it when training a
model. We empirically evaluate the proposed method and show that it effec-
tively improves fairness generalization. In addition, we propose a simple yet
powerful heuristic application of our framework that can be integrated into a
wide range of existing fair classification techniques to enhance fairness gener-
alization. Our extensive empirical study using two existing fair classification
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methods demonstrates the efficiency and scalability of the proposed heuristic
approach.

Keywords Supervised Learning · Fairness · Generalization · Distributionally
Robust Optimization

1 Introduction

The growing integration of machine learning models in high-stakes decision
systems raises several ethical, legal and philosophical issues. Among them,
fairness is often a desired property in addition to being a legal requirement.
Machine learning models extract and exploit correlations from their given
training data. However, such correlations may not be relevant because of the
data collection, processing, sampling, or historical discrimination [43,44].

To mitigate such negative biases, several fairness notions have emerged [45].
In a nutshell, individual fairness [19,25] consists in ensuring that similar in-
dividuals receive similar treatment. In contrast, statistical fairness requires
that a given metric’s value does not differ between specified subgroups of the
population. The key idea here is that individuals should not receive different
treatment based on their membership to a protected group. Finally, causal
fairness analyzes the relationships between the different attributes and the
decision to find (and possibly eliminate) correlations that can be a source of
discrimination.

Many methods were proposed in the literature to enhance the fairness of
machine learning models [9,7]. However, models that are fair with respect
to their training data may still exhibit unfairness when applied to previously
unseen data. Indeed, fairness constraint overfitting [12,13] can occur, and fair-
ness generalization has been identified as an open challenge for trustworthy
machine learning [11,12,13,24,32]. Our objective in this paper is precisely to
address this issue.

Recent work on fairness generalization targets integrating different tech-
niques for improving robustness into existing fair learning algorithms. While
such methods have been shown (theoretically and empirically) to improve fair-
ness generalization, they often induce a considerable computational overhead
(e.g., solving an additional problem to determine a worst-case unfairness [32]),
and thus have limited scalability. Some methods do not suffer from this draw-
back but instead require additional splitting of the data [12,13], hence possibly
penalizing utility, as the amount of data used to update the model is reduced.
Finally, other approaches have limited applicability, as they are designed for a
particular algorithm or hypothesis class [42,46], or require some special prop-
erty of the underlying algorithm (e.g., access to a cost-sensitive classification
oracle [32]). To tackle these issues, we propose a new framework for statistical
fairness robustness. Intuitively, our approach consists in ensuring fairness over
a variety of samplings of the training set. We show that this notion can be
quantified precisely, and leveraged to audit or train fair and robust machine
learning models in practice. We additionally design a flexible and efficient
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heuristic method for learning robust and fair models, which can easily be in-
tegrated into existing fair classification methods, formulated as constrained
optimization problems. More precisely, our contributions can be summarized
as follows.

– We propose and study a sample-robust formulation of the fair learning
problem, based on the Jaccard distance and inspired by Distributionally
Robust Optimization [8,17,36]. The main idea of our method is that we
want to meet a given fairness constraint, even if the training set sampling
were somehow different (i.e. if some examples were not part of it).

– We show how this exact formulation can be used to quantify statistical
fairness robustness of machine learning models. Our exact method is model-
agnostic and can be applied to any type of hypothesis classes.

– We show that our exact method can be used for sample-robust fair learning
and highlight its practical computational and integrability limitations.

– We design a simple, efficient and flexible heuristic application of our pro-
posed formulation and illustrate its versatility by integrating it into two
fair learning algorithms of the literature.

– We empirically evaluate both our exact and heuristic approaches and com-
pare them on different datasets and statistical fairness metrics.

– We empirically demonstrate the effectiveness and performance of the pro-
posed heuristic approach on various datasets and metrics and compare it to
a state-of-the-art method for improving statistical fairness generalization.

The paper is organized as follows. First, in Section 2, we describe the
necessary background and review the relevant literature on statistical fairness
generalization in machine learning. Afterwards, in Section 3, we formulate
our notion of sample-robustness for fairness and study its implications and
practical limitations. We motivate and introduce a heuristic application of our
approach in Section 4 and show how to integrate it into state-of-the-art fair
learning techniques. Then, we empirically evaluate our proposed approaches
in Section 5 before concluding in Section 6.

2 Background & Related Work

In this section, we first present a high-level background on supervised machine
learning, fairness and distributionally robust optimization. Then, we review
existing methods addressing the problem of statistical fairness generalization.

2.1 Preliminaries

2.1.1 Supervised Machine Learning - Classification

Let X denote the feature space, A the sensitive attributes and Y the label
set. In addition, P will denote the true distribution over X × A × Y and
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D = (X,A, Y ) a dataset drawn from P. Given such a dataset and an hypothesis
class of modelsH, the objective of a supervised learning algorithm L is to build
a model L(D) = h ∈ H such that h minimizes a given objective function fobj .
For a specific training dataset D drawn from some distribution P, the desired
model h is the solution to the following problem, in which fobj(h,P) is the
expected objective function under distribution P:

argmin
h∈H

fobj(h,P) (1)

In practice, P is often unknown, and we only get a limited number of ob-
servations from it, contained in the dataset D. Then, the optimal solution of
Problem (1) is commonly approximated solving Problem (2).

argmin
h∈H

fobj(h,D) (2)

2.1.2 Fairness in Machine Learning

In this work, we focus on statistical metrics for fairness. Such metrics aim at
equalizing a given statistical measure (e.g., the True Positive Rate) between
several (possibly overlapping) protected groups (m being the number of pro-
tected groups), defined by the sensitive attributes. For each example ei in D,
we denote by ai ∈ A the list of sensitive attributes. Each coordinate k ∈ [1..m]
of ai indicates the membership of example ei to the protected group k. Intu-
itively, the objective is to ensure that examples (e.g., profiles of individuals)
receive similar treatment independently of the protected group they belong to.
Depending on the particular value being equalized across groups, many met-
rics have been proposed such as statistical parity [19], predictive equality [10],
equal opportunity [23] and equalized odds [23]. These notions, as well as the
statistical measure they equalize, are summarized in Table 1. In this paper, we
denote by unf(h,D) an oracle quantifying the unfairness of a classifier h over a
dataset D. The value of unf(h,D) is in [0, 1]. The lower the value of unf(h,D),
the more fair is h over D. In practice, we consider a maximum acceptable un-
fairness value ϵ ∈ [0, 1] (or, equivalently, a minimum acceptable fairness value
1− ϵ), and say that h is fair over D when unf(h,D) ≤ ϵ.

Table 1 Summary of some statistical fairness measures

Fairness notion Equalized statistical measure

Statistical parity Probability of being assigned the positive class
Predictive equality False positive rate
Equal opportunity False negative rate
Equalized odds False negative rate and False positive rate

Several fairness-enhancement algorithms have been proposed in the liter-
ature. They can be categorized into three categories, depending on the stage
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of the machine learning pipeline in which they intervene. Preprocessing tech-
niques [27] remove undesired biases from the training data before applying
regular learning algorithms on the sanitized dataset. Post-processing algo-
rithms [23] modify the predictions of a (possibly unfair) classifier to achieve
fairness. Finally, algorithmic modification (also called in-processing) techniques [49]
directly modify the learning algorithm to ensure that the model built is fair.
These in-processing approaches naturally define a bi-objective optimization
problem: minimizing error while maximizing fairness (or, equivalently, maxi-
mizing accuracy while minimizing unfairness). Several methods can then be
used to solve this problem, including optimizing directly or indirectly a mea-
sure of fairness or enforcing fairness constraints while learning an accurate
model. In this paper, we are interested in fair learning methods formulated as
constrained optimization problems, as described in Problem (3).

argmin
h∈H

fobj(h,D) (3)

s.t. unf(h,D) ≤ ϵ.

2.1.3 Distributionally Robust Optimization in Supervised Machine Learning

As stated in Section 2.1.1, an important challenge in machine learning is that
we usually do not know the true underlying distribution P. Instead, we often
have access to a limited training set D, whose distribution P ′ may differ from
P. To take into account this uncertainty, Distributionally Robust Optimiza-
tion (DRO) techniques can be leveraged. Instead of minimizing an objective
function fobj for a given distribution P ′, DRO [8,17,36] consists in minimiz-
ing fobj for a worst-case distribution, among a set of perturbed versions of
P ′ [41]. More precisely, the objective is to build a model h minimizing fobj for
a set of neighbouring distributions of P ′. Such neighbouring distributions are
contained in a perturbation set (also called ambiguity set) B(P ′). In the DRO
setting, the supervised machine learning problem becomes:

argmin
h∈H

max
Q∈B(P′)

fobj(h,Q). (4)

Distributionally Robust Optimization has been used in many domains [36],
and has been applied widely in machine learning [28].

2.2 Related Work on Improving Statistical Fairness Generalization

To improve the generalization of statistical fairness, several approaches have
been designed based on the method proposed by [1], who formulated the prob-
lem of learning an accurate classifier under fairness constraints as a two-player
zero-sum game. Considering the Lagrangian relaxation of this constrained opti-
mization problem, the first player (θ-player) optimizes the model’s parameters
for the objective function with current Lagrange multipliers, while the second
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player (λ-player) approximates the strongest Lagrangian relaxation by updat-
ing the Lagrangian multipliers. In their original contribution, [1] analyzed the
fairness generalization error of the models trained using this framework. In
order to avoid the fairness constraints overfitting, in [12,13] the λ-player up-
dates the Lagrangian multipliers based on fairness violations measured on a
separate validation set (instead of the training set itself). In [32], the λ-player
uses linear programming to compute the worst-case fairness violation among
a set of re-weightings of the training set. This approach falls into the category
of DRO techniques.

Other methods also leverage DRO approaches. For instance in [41], a model
is learnt while minimizing the maximum error over a set of protected groups
defined by the value of some biased attributes. Several approaches have been
proposed to tackle this worst-group error minimization problem. In particu-
lar, different methods do not require the full training set protected groups
knowledge. Indeed, annotating protected groups membership for each train-
ing point can be costly in real-world settings [18,34,31]. Such methods do
not reach the performances levels of the standard DRO approach with groups
knowledge but constitute interesting alternatives. For example, [34] and [31]
use two-stage approaches, in which they first train a model before leveraging
its errors to train another more robust one. [18] applies a DRO technique to
approximate and optimize for a worst-case subpopulation above a certain size,
without any group annotations.

In [42], distributionally robust and fair logistic regression models are trained
by optimizing the fairness-regularized objective function for a worst-case dis-
tribution. This most adversarial distribution is considered within an ambigu-
ity set characterized as a Wasserstein distance-based ball around the original
training distribution. [37] also leverages the principles of DRO to optimize a
robust logarithmic loss under fairness constraints. Their approach uses a min-
imax formulation, in which a fair predictor minimizes the training loss while
a worst-case approximator of the population distribution (subject to statistic-
matching constraints) maximizes it. In a similar line of work, [46] proposes a
distributionally robust measure of unfairness for the Equality of Opportunity
metric. Robustness is achieved by computing the worst-case unfairness over
a set of neighbouring distributions, within a type-∞ Wasserstein ambiguity
set. Taking into account this measure enables the training of distributionally
robust fair Support Vector Machines (SVM).

[16] proposes two algorithms for fair and robust learning under sample se-
lection bias. These two methods aim at estimating the sample selection proba-
bilities, by leveraging (or not) the availability of unlabeled unbiased data. The
key point is that knowledge of these biased sample selection probabilities can
be used to re-weight the training dataset to make it representative of the true
distribution. As an approximation error exists, a minimax approach is used to
optimize the objective function for the worst-case sample selection probabil-
ities in a given radius around the estimated ones. The proposed method can
only handle the statistical parity metric, which is approximated using deci-
sion boundary fairness and included as a regularization term to the objective
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function. One consequence is that robustness is enforced jointly for error and
fairness. Nonetheless, the fairness constraints may not be strictly satisfied.

Measuring prediction stability on the training set, [24] proposes the ad-
dition of a regularisation term to the objective function of a fair learning
algorithm. This regularisation term aims at ensuring that the predictions of
the built model do not vary too much when the training dataset is perturbed.
In addition, this method theoretically bounds the generalization error. This
work is closely related to ours, as we seek to improve fairness robustness on
samplings of the training set (which can be viewed as a form of training fairness
stability).

More recently, [11] proposed a data augmentation strategy improving the
generalization of fair classifiers. This method leverages existing data augmen-
tation strategies to generate interpolated distributions between two given sen-
sitive groups. During training, a regularisation term penalizes changes in the
model’s predictions between the different interpolated distributions. The goal
here is to ensure that the model has a smooth behavior along the “path”
formed by the interpolated distributions between the two sensitive groups.
This approach theoretically and empirically improves the fairness generaliza-
tion of the models built.

Furthermore, fairness robustness has also been studied in other settings,
such as multi-source learning [26], or for other notions of fairness such as
individual fairness [48]. Both are out of the scope of this paper and thus we
do not further detail these approaches.

Finally, the approach that is the more closely related to ours is that of [32],
which is based on a similar intuition, namely ensuring fairness on a set of
neighbouring distributions of the training set, called re-weightings versions, can
improve its generalization. However, we consider different definitions for such
neighbouring distributions and in addition we propose a heuristic approach
variant exhibiting practical advantages compared to the exact one.

3 Sample-Based Robustness for Statistical Fairness

In this section, we present our sample-based approach of robustness for sta-
tistical fairness. In a nutshell, it aims at improving fairness generalization by
enforcing the fairness constraints over particular samplings of the training
set. More precisely, we first introduce a dataset sampling technique based on
the Jaccard distance, which is used to define our perturbation sets, before
characterizing the structure of such perturbation sets. Second, we define the
sample-robust fair learning problem on a given perturbation set and show
how unfairness metrics increase through neighbouring subsets. Then, we dis-
cuss conditions for ensuring perfect fairness sample-robustness and their im-
plications over the resulting models. Afterwards, we introduce an approach to
quantify this notion based on the resolution of an integer optimization prob-
lem. Finally, we show how to integrate this robustness formulation into existing
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learning algorithms solving Problem (3) and discuss the practical limitations
of the approach.

3.1 Jaccard Distance-based Perturbation Sets

Following the principles of DRO, it has been shown [32,41,42,46] that enforc-
ing fairness over a set of distributions that are neighbours to the training one
is an efficient way to improve its generalization. While DRO was formalized
using distributions, practical machine learning applications usually deal with
finite training sets that are sampled from an underlying distribution. Indeed,
instead of considering fairness robustness over perturbed underlying distribu-
tions (which, in practice, are unknown), we enforce robustness with respect
to the training set sampling. For this reason, we propose to use the Jaccard
distance Jδ as the distance metric measuring similarity between sample sets.

Definition 1 (Jaccard distance) Let D1 and D2 be two sample sets. The
Jaccard distance between D1 and D2 is defined as follows: Jδ(D1,D2) = 1 −
|D1∩D2|
|D1∪D2|

The Jaccard distance is a very popular measure, used to quantify (dis)similarity
between sample sets in a wide range of applications. For example, it has been
used in Machine Learning for feature ranking stability [29,40] and feature
selection [51]. Intuitively, two sample sets D1 and D2 that have a large in-
tersection are close (i.e., Jδ(D1,D2) is small and in particular Jδ(D,D) = 0)
while two sample sets D3 and D4 with empty intersection are far from each
other (i.e., Jδ(D3,D4) is 1).

We now define the perturbation sets of a given dataset D and highlight
some consequences.

Definition 2 (Perturbation sets) Let d ∈ [0, 1], we define a perturbation
set B(D, d) as the set of subsets of D whose Jaccard distance from D is less
than or equal to d. That is, B(D, d) = {D′ | Jδ(D,D′) ≤ d ∧ (D′ ⊆ D)}.

Definition 2 states that B(D, d) contains all subsets of D of size at least
|D|×(1−d). A special case arises if d = 0, as B(D, d) is D itself. Then, because
the perturbation sets defined in Definition 2 contain only subsets of D, the
Jaccard distance between such subsets and D is necessarily of the form i

|D| , in

which i is an integer between 0 and |D| (as the union between D and any of
its subsets is D itself).

Notice that extending a perturbation set consists in adding new subsets of
the original training set. An immediate consequence of Definition 2 is that a
perturbation set defined with Jaccard distance d is included in perturbation
sets with higher distance d′. This is stated in the following proposition:

Proposition 1 (Perturbation sets inclusion) Consider a dataset D and
two Jaccard distances d, d′ ∈ [0, 1]. Then, d ≤ d′ =⇒ B(D, d) ⊆ B(D, d′)
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Proof: Consider D′ ∈ B(D, d). Based on Definition 2, D′ ⊆ D and Jδ(D,D′) ≤
d ≤ d′. Hence, D′ ∈ B(D, d′) and B(D, d) ⊆ B(D, d′).

In the following definition, we introduce an additional notation to facilitate
the study of the space of our perturbation sets. We then formalize the notion
of neighbouring datasets, that will be useful in the remainder of our analysis.

Definition 3 (Sets of equidistant subsets) Let i be an integer between
0 and |D|. Then, for any d of the form i

|D| , we define Γ (D, d) as the set of

subsets of D whose Jaccard distance from D is exactly d:

Γ (D, d) = {D′ | Jδ(D,D′) = d ∧ (D′ ⊆ D)}

As an immediate consequence of Definition 3, {Γ (D, d′) | d′ ≤ d} consti-
tutes a partition of B(D, d).

Definition 4 (Neighbouring datasets) Let D1 and D2 be two sample sets.
D1 and D2 are called neighbouring datasets (in the Jaccard sense) if and only
if Jδ(D1,D2) = 1

|D1∪D2| . This means that D1 and D2 differ by exactly one

element.

In a nutshell, the subsets of D contained in B(D, d) can be seen as points
in a metric space equipped with the Jaccard distance1, contained within a ball
centered around D whose radius is d. This ball is itself contained within all
sets B(D, d′) with d′ ≥ d. Again, because we restrict our attention to subsets
of the training set, Γ (D, d) is a sphere centered in D with radius d. The ball
B(D, d) thus includes all spheres Γ (D, d′) with radius d′ ≤ d.

An interesting representation of our perturbation sets space can be done
using a nearest neighbours (in the Jaccard sense) graph. In such graph, each
vertex represents a subset of the training set, and each edge between two
vertices means that their associated sets are neighbours. Figure 1 uses such
representation to illustrate our perturbation sets structure on a toy dataset
with two protected groups for the statistical fairness measure. In the remain-
ing of the paper, the perturbation sets are considered for insuring fairness
constraints. Thus in this graph at least one example of each protected group
must be present in each subset. Based on this representation, we could also
derive a directed graph G′ in which each edge from D1 to D2 means that
D2 ⊆ D1, thus representing a superset relationship.

We now formulate a recursive definition of B(D, d). First, observe that the
smallest perturbation set B(D, d) not restricted to D itself is B(D, 1

|D| ). It

contains all subsets of D formed by removing at most one example from D.
This is a particular case of Proposition 2, which generalizes this observation.

Proposition 2 (Perturbation sets structure) Consider a dataset D and
a Jaccard distance d ∈ [0, 1− 1

|D| ]. We can formulate recursive definitions for

Γ (D, d) and B(D, d) as follows:

1 The Jaccard distance satisfies all required properties to equip a metric space, and in
particular the triangle inequality [30].
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{e1, e2, e3, e4, e5}
= D

{e2, e3, e4, e5}
{e1, e3, e4, e5}
{e1, e2, e4, e5}
{e1, e2, e3, e5}
{e1, e2, e3, e4}

{e3, e4, e5}
{e2, e4, e5}
{e2, e3, e5}
{e2, e3, e4}
{e1, e4, e5}
{e1, e3, e5}
{e1, e3, e4}
{e1, e2, e5}
{e1, e2, e4}

{e3, e4}
{e3, e5}
{e2, e4}
{e2, e5}
{e1, e4}
{e1, e5}

B(D, 0)

B(D, 1
5
)

B(D, 2
5
)

B(D, 3
5
)

Γ (D, 0)

Γ (D, 1
5
)

Γ (D, 2
5
)

Γ (D, 3
5
)

Fig. 1 Example of perturbation sets for a dataset D with 5 examples and two protected
groups a ({e1, e2, e3}) and b ({e4, e5}). Subsets that can not be used to audit a model’s
fairness with respect to protected groups a and b are not represented.

– Γ (D, d+ 1
|D| ) = {D′′ | ∃D′ ∈ Γ (D, d) | D′′ ⊂ D′ ∧ |D′′|= |D′|−1}

– B(D, d+ 1
|D| ) = B(D, d) ∪ Γ (D, d+ 1

|D| )

Proof:

– By construction following the definition of Γ (D, d+ 1
|D| ) (Definition 3).

– Definition 2 states that B(D, d) contains all subsets of D up to a Jaccard
distance d. Definition 3 states that Γ (D, d + 1

|D| ) contains all subsets of

D whose Jaccard distance from D is exactly d + 1
|D| . Thus, the union of

these two sets define exactly B(D, d+ 1
|D| ), which, according to Definition 2,

contains all subsets of D up to a Jaccard distance of d+ 1
|D| .

Proposition 2 states that the smallest set that is strictly bigger than B(D, d)
is B(D, d+ 1

|D| ). By construction, it contains B(D, d). The sets outside B(D, d)

and inside B(D, d+ 1
|D| ) are exactly those in Γ (D, d+ 1

|D| ). The later includes

all sets formed by removing exactly one element from the (smallest) sets in
B(D, d) (which form Γ (D, d)). Again, this can be visualized in Figure 1.

One may remark that instead of considering only subsets of the training set,
we could take into account all neighbouring sets (as stated in Definition 4).
This would require considering that examples can be added to our subsets.
Even though this formulation can seem theoretically appealing, it does not
have the interesting structure that we studied in this section and quantifying
it is computationally harder as the denominator of the Jaccard distance would
no longer be a constant.



Improving Fairness Generalization Through Sample-Robust Optimization 11

3.2 Sample-Robust Fair Learning with our Perturbation Sets

Similar to DRO, the proposed approach consists in ensuring a given property
(e.g., fairness) over a set of elements contained in a perturbation set. For
DRO, such elements are distributions while we rather consider sample sets.
By doing so, our objective is to improve the fairness generalization on unseen
data. Hence, our perturbation sets contain different samplings of the original
training set. Thus, we propose to study a sample-robust fair learning problem
to reach fairness generalization.

We formulate our sample-robust fair learning problem before characteriz-
ing the evolution of unfairness through the considered subsets. Then, we in-
vestigate the conditions and implications for perfectly satisfying our proposed
fairness sample-robustness criterion.

3.2.1 Robust Fair Learning for a Given Perturbation Set

By considering the perturbation set B(D, d) as a set of samplings of the dataset
D, we aim at building a model that is fair on all sets of B(D, d), including D
itself.

The sample-robust fair learning problem on a perturbation set B(D, d) is
formulated as follows:

argmin
h∈H

fobj(h,D) (5)

s.t. max
D′∈B(D,d)

unf(h,D′) ≤ ϵ.

This formulation is a particular instantiation of Problem (4), in which
robustness is applied only on the enforced fairness constraints rather than on
the objective function. An optimal solution to Problem (5) corresponds to a
model h that minimizes the objective function fobj on D, among those of H
that exhibit unfairness at most ϵ over all sets contained in B(D, d), including
D itself.

With the proposed perturbation sets definition, we observe that augment-
ing the distance d increases the number of subsets being considered, as stated
in Proposition 1. As a consequence, considering higher values of d can only
raise the worst-case fairness violation, thus hardening the problem. This is for-
malized in Proposition 3. Hence, the parameter d directly controls the strength
of the enforced robustness of the fairness constraint.

Proposition 3 (Worst-case fairness violation monotonicity with re-
spect to d) Consider a dataset D and a classifier h.

∀d, d′ ∈ [0, 1], d ≤ d′ =⇒ max
D′∈B(D,d)

unf(h,D′) ≤ max
D′′∈B(D,d′)

unf(h,D′′).

Proof: According to Proposition 1, if d ≤ d′ then B(D, d) ⊆ B(D, d′). Thus,
the maximum unfairness over all sets in B(D, d) is less than or equal to the
maximum unfairness over all sets in B(D, d′).
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3.2.2 Unfairness Increase through Neighbouring Subsets

In order to characterize the possible increase of fairness violation (i.e., the
strength of the fairness constraints applied in Problem (5)) induced by in-
creasing the size of the considered perturbation set, we first need to introduce
the notion of sensitivity, which is directly taken from the differential privacy
framework [20] in Definition 5.

Definition 5 (Unfairness l1-sensitivity) The unfairness measure l1-sensitivity
γ quantifies the maximum contribution of a single example to the unfairness
value of any classifier, for any pair of neighbouring datasets:

γ = max
h∈H
D1,D2

Jδ(D1,D2)=
1

|D1∪D2|

||unf(h,D2)− unf(h,D1)||1

= max
h∈H
D1,D2

Jδ(D1,D2)=
1

|D1∪D2|

|unf(h,D2)− unf(h,D1)|

The increase of the worst-case fairness violation induced by extending a
perturbation set B(D, d) to the next one B(D, d + 1

|D| ) can then be upper

bounded as shown in the next proposition. This is due to the bounded sen-
sitivity (as stated in Definition 5) of the unfairness measure unf(.) at hand,
which has been proved for common statistical fairness metrics in the context
of differentially private and fair learning [15]. The formalization of the bound
goes as follows.

Proposition 4 (Bounded worst-case fairness violation increase be-
tween consecutive perturbation sets (general case)) Consider a dataset
D and a classifier h. Let γ be the l1-sensitivity of the unfairness measure and
a Jaccard distance d ∈ [0, 1− 1

|D| ], we have:

max
D′∈B(D,d)

unf(h,D′) ≤ max
D′′∈B(D,d+ 1

|D| )
unf(h,D′′) ≤ max

D′∈B(D,d)
unf(h,D′) + γ.

Proof:

– Left inequality: Follows from Proposition 3 and the fact that d ≤ d+ 1
|D| .

– Right inequality: Consider D′′ ∈ B(D, d+ 1
|D| ). By Proposition 2, we know

that D′′ is either in B(D, d) or in Γ (D, d+ 1
|D| ).

– In the first case,D′′ ∈ B(D, d). The maximum unfairness measure across
the perturbation set is not worsened and we have:

unf(h,D′′) ≤ max
D′∈B(D,d)

unf(h,D′)

– In the second case, D′′ ∈ Γ (D, d+ 1
|D| ). By definition of Γ , we know that

there exists some set D′ ∈ B(D, d) such that D′′ is formed by remov-
ing exactly one element from D′. Hence, D′ and D′′ are neighbouring
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datasets, and following Definition 5, we know that:

|unf(h,D′′)− unf(h,D′)|≤ γ =⇒ unf(h,D′′) ≤ unf(h,D′) + γ

=⇒ unf(h,D′′) ≤ max
D′∈B(D,d)

unf(h,D′) + γ.

This property can be visualized using the Jaccard neighbouring graph of
Figure 1. It states that extending the perturbation set B(D, d) by adding
one more layer of the graph (the sets contained in Γ (D, d + 1

|D| )) cannot

worsen the worst-case fairness violation by more than γ. This is due to the
fact that the unfairness measure cannot be increased by more than γ between
any two neighbouring datasets (i.e., represented by two connected vertices in
the Jaccard neighbours graph).

While Proposition 4 does not rely on any specific fairness formulation,
depending on the metric at hand, tight values of γ can be computed. For
instance, considering common statistical fairness metrics, we demonstrate that
an exact finite value of γ can be computed for each subset, given the classifier’s
predictions. To ease the readibility, hereafter we consider the binary sensitive
attribute setting in which there are only two non-overlapping protected groups
a and b. However, note that the generalisation of the following proposition is
valid for any number of protected groups, by considering all pairs of protected
groups, as the resulting unfairness can be measured as the pairwise maximum
unfairness.

Common statistical unfairness metrics can be defined using expressions of

the form unf(h,D1) = | S
D1
a

X
D1
a

− S
D1
b

X
D1
b

|, in which
S

D1
i

X
D1
i

is the chosen statistical

measure of classifier h for group i ∈ {a, b}. As it will always be clear from
context, we do not include index h in the notations S and X.

For instance, for the Statistical Parity metric, SD1
i (respectivelyXD1

i ) is the
number of positive predictions (respectively number of examples) among group
i in the dataset D1, given classifier h’s predictions. For the Equal Opportunity
metric, SD1

i (respectively XD1
i ) is the number of true positive predictions

(respectively number of positively labeled examples) among group i, for the
dataset D1, given classifier h’s predictions.

We assume without loss of generality that
SD1
a

X
D1
a

>
S

D1
b

X
D1
b

. We also assume

XD1
a > 0 and XD1

b > 0, which means that the (sub)set D1 contains examples
from both protected groups that can be used to quantify fairness. Other-
wise, D1 cannot be used to audit a model’s fairness with respect to protected
groups a and b. An exact value of γ can then be obtained, that depends
on the particular (sub)set D1 considered. Indeed, common statistical fairness
metrics’ sensitivity are data-dependent, as discussed in [15] in the context of
differentially-private fair learning. By a slight abuse of notation, we define
γ(h,D1) as a particular case of l1-sensitivity of the unfairness measure, given
a classifier h, considering a dataset D1 and any neighbouring dataset D2 (see
Definition 4) such that D2 ⊆ D1. In other words, γ(h,D1) quantifies the maxi-
mum unfairness increase made possible by removing at most one element from
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D1. It upper bounds the fairness violation increase between D1 and any of its
neighbours D2 such that D2 ⊆ D1:

γ(h,D1) = max
D2⊆D1

Jδ(D1,D2)=
1

|D1∪D2|

||unf(h,D2)− unf(h,D1)||1

= max
D2⊆D1

Jδ(D1,D2)=
1

|D1∪D2|

|unf(h,D2)− unf(h,D1)|

We can illustrate this notion with Figure 1. On one hand, our general γ
(Proposition 4) was previously able to upper bound the increase of the fairness
violation among all edges of the graph. On the other hand, by leveraging
the statistical fairness metrics’ formulation, we can compute the exact value
γ(h,D1), upper-bounding the unfairness increase through all edges outgoing
the vertex associated to D1, in G′ (the directed graph derived from Figure 1,
where each edge from D1 to D2 means that D2 ⊆ D1).

Proposition 5 (Bounded worst-case fairness violation increase be-
tween consecutive perturbation sets (statistical fairness metrics))
Consider a dataset D, a classifier h and a Jaccard distance d ∈ [0, 1 − 1

|D| ].

We have:

1. Given a subset D′ of D, the value of γ(h,D′) can be computed explicitly
and has finite value.

2. max
D′′∈B(D,d+ 1

|D| )
unf(h,D′′) ≤ max

D′∈B(D,d)
unf(h,D′) + γ(h,D′).

3. ∃D′′ ∈ B(D, d+ 1
|D| ) such that unf(h,D′′) = max

D′∈B(D,d)
unf(h,D′) + γ(h,D′).

Proof: We sketch the proof here and give the details in Appendix A. In this
Proposition, γ(h,D′) is the maximum increase of the unfairness measure made
possible by removing at most one example from D′. For statistical metrics,

unf(h,D′) = | S
D′
a

XD′
a

− SD′
b

XD′
b

| and we observe that there are exactly four ways

of modifying unf(h,D′) : removing an example of group a satisfying or not
satisfying the measure, or removing an example of group b satisfying or not
satisfying the measure.

Proposition 5 shows that the worst-case unfairness increase induced by
extending our perturbation set with minimal change can be bounded and that
this upper-bound can be reached (i.e., the corresponding subset can be build
by carefully selecting the element to be removed from D′). The analysis of this
bound (explicitly stated in Appendix A) demonstrates that the higher both
groups’ size are, the smoother unf(.) is. This observation naturally holds for
any value of the Jaccard distance d, theoretically highlighting the advantage of
working with sufficiently large protected groups. Indeed, too small protected
groups cause unfairness to have higher sensitivity, hence being less stable to
punctual changes in the data.
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3.2.3 Conditions for Perfect Statistical Fairness Metrics Sample-Robustness

One important implication of Proposition 5 is that the worst-case fairness vio-
lation increase induced by minimal extension of any perturbation set is, in the
general case, greater than 0 and can be computed exactly. Hence, it is in gen-
eral not possible for a classifier h to be perfectly fair over all our perturbation
sets. Formally, we say that h achieves perfect fairness sample-robustness given
unfairness tolerance ϵ if and only if ∀d ∈ [0, 1],∀D′ ∈ B(D, d), unf(h,D′) ≤ ϵ.
In the general case, for common statistical fairness metrics, it is not possible
for h to be fair for all 0 < d ≤ 1. Indeed, it is possible to build a subset of D on
which unfairness is exactly 1.0 (hence violating any fairness constraint ϵ < 1).
Given the values of SD

i and XD
i for all protected groups i (here, i ∈ {a, b}), we

can easily check whether the corresponding classifier h verifies perfect fairness
sample robustness without building any subsets. The following proposition
gives necessary and sufficient conditions that both imply the impossibility for
h to satisfy perfect fairness sample robustness.

Proposition 6 (Necessary and sufficient conditions for perfect fair-
ness sample-robustness infeasibility) Consider a dataset D and a clas-
sifier h, as well as a maximum acceptable unfairness ϵ < 1. Perfect fair-
ness sample-robustness of h on D is infeasible, that is ∃D′ ⊆ D such that
unf(h,D′) = 1.0, if and only if one of the following two conditions holds:

1. SD
a > 0 and SD

b < XD
b . In this case, D′ ∈ B(D, d), for all d ≥ 1

|D| (X
D
a −

SD
a + SD

b ).
2. SD

b > 0 and SD
a < XD

a . In this case, D′ ∈ B(D, d), for all d ≥ 1
|D| (X

D
b −

SD
b + SD

a ).

Proof: The gist of the proof is that we can, by removing a sufficiently im-
portant number of examples from D, get a subset D′ which exhibits the worst
possible unfairness unf(h,D′) = 1.0. Indeed, to reach this value, one of the

two rate measures
SD′
a

XD′
a

or
SD′
b

XD′
b

has to be brought to 0 while the other reaches

1. To achieve value 0 for the ratio
SD′
i

XD′
i

, we need to remove SD
i instances

from D (those satisfying the measure), and to reach value 1.0, we must re-
move XD

i − SD
i examples (those not satisfying the measure). Finally, we can

either remove XD
a − SD

a + SD
b or XD

b − SD
b + SD

a carefully chosen examples
from D. In Case 1, we bring the a-ratio to 1 and the b-ratio to 0. In Case 2,
it is the contrary. If neither 1 nor 2 can be applied, then necessarily either
SD
i = 0 for all protected groups or SD

i = XD
i for all protected groups. In that

case, perfect fairness sample-robustness is achieved (which is discussed later
in Proposition 8).

Proposition 6 shows that a minimum finite value of d can be easily com-
puted to define the smallest B(D, d) containing a subset for which unfairness is
exactly 1.0 (i.e., fairness is 0.0 - the worst possible value). This illustrates the
fact that considering too large values of d may not make sense and that the
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constraints defined in Problem (5) are very strong. For example, for the Statis-
tical Parity metric, this implies that any classifier with non-constant prediction
across protected groups a and b (hence, XD

a > SD
a > 0 or XD

b > SD
b > 0 for

this metric) may be exactly fair on D but exactly unfair for some subset of
D contained in B(D, d). Additionally, Proposition 6 shows how this value of
d can be computed. Based on the principles of this proposition, we infer in
Proposition 7 a simple, yet powerful, sufficient condition for perfect fairness
sample-robustness infeasibility based on the unfairness measure over D.

Proposition 7 (Sufficient condition for perfect fairness sample-robustness
infeasibility) Consider a dataset D and a classifier h. If unf(h,D) > 0 then
perfect fairness sample-robustness of h on D is infeasible for any maximum
acceptable unfairness value ϵ < 1.

Proof:
Assume that unf(h,D) > 0, which means that | S

D
a

XD
a
− SD

b

XD
b

|> 0, hence either

SD
a > 0 or SD

b > 0 (or both). We also observe that either SD
a < XD

a or
SD
b < XD

b (or both). If SD
a > 0, two cases are possible:

– On the one hand, it may be that SD
a = XD

a . Then, necessarily, SD
b < XD

b and Case 1
of Proposition 6 is applicable.

– On the other hand, SD
a < XD

a
– If SD

b = XD
b , then Case 2 of Proposition 6 is applicable.

– If SD
b = 0, then Case 1 of Proposition 6 is applicable.

– If 0 < SD
b < XD

b then either Case 1 or Case 2 of Proposition 6 are applicable.

A similar disjunction can be conducted over possible values of SD
b . Observe

that if unf(h,D) = 0 then we can not conclude without looking at SD
a and SD

b .

We now formulate necessary and sufficient conditions for guaranteeing per-
fect fairness sample-robustness.

Proposition 8 (Necessary and sufficient conditions for perfect fair-
ness sample-robustness) Consider a dataset D and a classifier h as well as
a maximum acceptable unfairness ϵ < 1. Perfect fairness sample-robustness is
guaranteed if and only if one of the following conditions holds:

1. SD
i = XD

i for all protected groups i (here, i ∈ {a, b}).
2. SD

i = 0 for all protected groups i (here, i ∈ {a, b}).

Proof: If SD
i = XD

i for all protected groups i, then the ratio associated to all
protected groups is exactly 1.0 and cannot be modified by removing examples.
Similarly, if SD

i = 0 for all protected groups i, then the ratio associated to all
protected groups is exactly 0.0 and cannot be modified by removing examples.
Finally, in any other case, either Points 1 or 2 of Proposition 6 can be applied
to prove the infeasibility of perfect fairness sample-robustness.

The different possible cases mentioned in Propositions 6 and 8 are sum-
marized in Figure 2. Observe that, as excepted, the conditions established in
Proposition 8 are equivalent to the negation of those formulated in Proposi-
tion 6.
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SD
a

SD
b

0 < SD
a < XD

a

SD
b

= 0

SD
b

= XD
a

No (6.2)

= XD
b

No (6.1)

< XD
b

Yes (8)

= 0

No (6.2)

> 0

Yes (8)

= XD
b

No (6.1)

< XD
b

Fig. 2 The different possible situations to establish perfect fairness sample-robustness (Yes)
or its impossibility (No)

3.2.4 Implications of Perfect Statistical Fairness Metrics Sample-Robustness

Based on the conditions established in Proposition 8, we now study the impli-
cations for h of being exactly fair for all our perturbation sets for statistical
fairness metrics.

Consider a dataset D and a classifier h satisfying perfect fairness sample-
robustness. On the one hand, it means that h is perfectly fair on D and all its
subsets, which can be desirable. However, depending on the fairness metric at
hand, such a model may not be interesting as we show below.

Statistical Parity For the Statistical Parity metric, it means that h’s predic-
tions are constant for all instances of groups a and b. This conflict strongly
with utility and may result in h being a trivial model.

Predictive Equality For the Predictive Equality metric, it means that either
all negative samples of groups a and b are well classified (True Negative Rates
are 1.0), or they are all misclassified (False Positive Rates are 1.0). Hence, a
perfectly robust-fair model for this metric would either be 100% accurate over
negative samples, or 100% inaccurate over such examples. Observe that the
first case is desirable, but also easily reachable by a trivial classifier constantly
predicting the negative class.

Equal Opportunity For the Equal Opportunity metric, it means that either
all positive samples of groups a and b are well classified (True Positive Rates
are 1.0) or they are all misclassified (False Negative Rates are 1.0). Hence, a
perfectly robust-fair model for this metric would also be either 100% accurate
over positive samples, or 100% inaccurate over such examples. Observe that the
first case is desirable, but also easily reachable by a trivial classifier constantly
predicting the positive class.
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Equalized Odds The Equalized Odds metric is the conjunction of Predictive
Equality and Equal Opportunity. Hence, a perfectly robust-fair model for this
metric would be 100% accurate over its training set (or 100% inaccurate over
its training set - in which case inverting its predictions would be sufficient).

These results illustrate the strength of our robustness notion. However,
they also suggest that a direct application may not be possible. Indeed, a
training accuracy of 100% cannot be reached in general. In addition, it may
not be desirable to reach such accuracy as it usually indicates overfitting. In
the next subsection, we show how our framework can be used to quantify the
sample-robustness of statistical fairness.

3.3 Maximal Perturbation Set Ensuring Fairness Constraint

We showed in Proposition 8 that in the special situations in which both SD
a = 0

and SD
b = 0, or both SD

a = XD
a and SD

b = XD
b , h is perfectly fair over all the

perturbation sets defined with respect to D. However, as discussed earlier,
perfect fairness sample-robustness may not be desirable, nor achievable.

Instead of trying to enforce perfect sample-robustness of statistical fairness
for a classifier, we will use our new framework to quantify a classifier’s fairness
sample-robustness, as defined in the following definition.

Definition 6 (Quantifying sample-robustness for fairness) Consider a
dataset D, a classifier h and an acceptable unfairness tolerance ϵ. The unfair-
ness sample-robustness of h on D for constraint ϵ, denoted by SR(h,D, ϵ), is
the Jaccard distance (SR(h,D, ϵ) ∈ [0, 1]) such that:

1. ∀d ≥ SR(h,D, ϵ),∃D′ ∈ B(D, d) such that unf(h,D′) > ϵ.
2. ∀d < SR(h,D, ϵ),∀D′ ∈ B(D, d), unf(h,D′) ≤ ϵ.

In other words, SR(h,D, ϵ) is the largest possible value of the Jaccard distance
d such that h is fair over all sets in B(D, d′),∀d′ < d.

Consider that D and all its subsets are points into a metric space equipped
with the Jaccard distance. Intuitively, SR(h,D, ϵ) is the radius of the largest
ball centered around D such that h if fair over all sample sets strictly contained
within this ball. In simple words, h is fair on D and on subsets of D up to a
(Jaccard) distance of SR(h,D, ϵ). The bigger SR(h,D, ϵ), the more sample-
robust h’s fairness is. The a- and b-ratios evolve non-linearly. Hence, it is
not possible to compute a simple bound as in Proposition 6 for values of ϵ
such that 0 < ϵ < 1. Therefore, we propose to consider a simple constrained
optimization problem, denoted by IPSR(h,D, ϵ), to compute the minimal
number of examples that need to be removed from D to build a subset of
examples such that h is not ϵ-fair over it. Note, however, that the bounds
proposed in Proposition 6 still hold, but are not tight (i.e., using these bounds
we get an over-estimation of SR(h,D, ϵ)).
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Definition 7 (The integer program for quantifying sample-robustness
for fairness) A solution of IPSR(h,D, ϵ) is a tuple (xa, xb, ya, yb), in which
these four decision variables represent the number of examples to be removed
from D to form a subset on which the unfairness constraint is violated. More
precisely, xi represents the number of examples of group i satisfying the given
measure (hence counted within both SD

i andXD
i ), while yi represents the num-

ber of examples of group i not satisfying the given measure (hence counted
within XD

i ). The optimal solution of IPSR(h,D, ϵ) is the one minimizing the
total number of examples to be removed (7) to build the closest (in the Jaccard
sense) subset of D.

IPSR(h,D, ϵ) : (6)

min
xa,xb,ya,yb

xa + xb + ya + yb (7)

s.t. | SD
a −xa

XD
a −xa−ya

− SD
b −xb

XD
b −xb−yb

|> ϵ (8)

0 ≤ xa ≤ SD
a (9)

0 ≤ xb ≤ SD
b (10)

0 ≤ ya ≤ XD
a − SD

a (11)

0 ≤ yb ≤ XD
b − SD

b (12)

xa + ya < XD
a (13)

xb + yb < XD
b . (14)

Constraint (8) encodes the fact that the fairness constraint must be violated
on the resulting subset. Constraints (9) to (12) capture the variables’ domains.
Finally, constraints (13) and (14) enforce that at least one example of each
group is kept (otherwise unfairness is undefined).

In the next proposition, we show that IPSR(h,D, ϵ) can be used to exactly
compute a classifier’s fairness sample-robustness SR(h,D, ϵ).

Proposition 9 (Quantifying Sample-Robustness for fairness using
IPSR(h,D, ϵ)) Let (x∗

a, x
∗
b , y

∗
a, y

∗
b ) be the optimal solution of IPSR(h,D, ϵ).

Then:

SR(h,D, ϵ) =
x∗
a + x∗

b + y∗a + y∗b
|D|

.

Proof: To prove this equality, we will need to prove the two conditions of
Definition 6.

Let z∗ = x∗
a + x∗

b + y∗a + y∗b be the value of the objective function of the

optimal solution of IPSR(h,D, ϵ). We define d∗ = z∗

|D| =
x∗
a+x∗

b+y∗
a+y∗

b

|D| . Then:

1. Consider D∗, the subset of D formed by removing x∗
a (respectively x∗

b) ex-
amples of group a (respectively b) satisfying the statistical criterion, and
y∗a (respectively y∗b ) examples of group a (respectively b) not satisfying the
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statistical criterion. The bounds of the decision variables of Problem (6)

enforce that D∗ exists. We have: Jδ(D,D∗) =
x∗
a+x∗

b+y∗
a+y∗

b

|D| = d∗. Addi-

tionally, we know that unf(h,D∗) > ϵ, because (x∗
a, x

∗
b , y

∗
a, y

∗
b ) is a solu-

tion of IPSR(h,D, ϵ) and then necessarily satisfies Constraint (8). Hence,
∀d ≥ d∗,∃D′ = D∗ ∈ B(D, d) such that unf(h,D′) > ϵ.

2. Assume that ∃D′′ ∈ B(D, d) with d < d∗ such that unf(h,D′′) > ϵ. Then,
D′′ is formed by removing z′′ < z∗ examples from D. In addition, D′′ is a
solution to Problem (6) as unf(h,D′′) > ϵ. This contradicts the fact that
z∗ is the optimal objective value of Problem (6). Hence, ∀d < d∗,∀D′ ∈
B(D, d), unf(h,D′) ≤ ϵ.

Finally, by (1) and (2), d∗ = SR(h,D, ϵ).

IPSR(h,D, ϵ) can be solved using any Mixed-Integer Programming (MIP)
solver. The main computational challenge resides in the fact that Constraint (8)
is non-linear. However, due to the modest size of the model, common solvers
are able to solve the problem to optimum within fractions of seconds.

Additionally, based on the principles described in Proposition 5, we have
designed a simple greedy algorithm GreedySR(h,D, ϵ) that can be used to
approximate SR(h,D, ϵ). Its pseudo-code is depicted in Appendix B.

Intuitively, GreedySR(h,D, ϵ) starts with the entire dataset D, and suc-
cessively removes examples to build subsets of D until fairness is violated. At
each step, it removes exactly one example from the current subset Dc. This
example is chosen to maximize the fairness violation increase. Indeed, this
value, as well as the associated example to be removed, can be computed in
constant time using γ(h,Dc) as defined in Proposition 5. This is due to the
fact that, given Dc, only four possible operations can be considered to modify
fairness: remove an example of protected group a (respectively b) that satisfies
(respectively does not satisfy) the fairness requirement.

GreedySR(h,D, ϵ) comes with no optimality guarantee and we can easily
craft instances on which it does not achieve optimality. However, it provides
an upper-bound on SR(h,D, ϵ), and has polynomial O(|D|) complexity, where
|D| is the number of examples in D. We show empirically in Section 5.1.4 that
it can approximate SR(h,D, ϵ) well in practice.

We formally defined our sample-robustness criterion for fairness, as well as
an Integer Programming model to precisely quantify it. One of the strengths of
the proposed approach is that it can be used to quantify the fairness robustness
of any classifier h, given only an access to its predictions. In particular, the
approach is agnostic to the hypothesis class of the classifier h, no additional
assumptions are necessary and a black-box access to the model is sufficient.
In the next subsection, we present the resulting learning problem statement.
Afterwards, we discuss the practical issues with this formulation and show how
it can be integrated within existing learning algorithms.
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3.4 Integration with Fair Learning Algorithms and Practical Challenges

As discussed previously, the use of the Jaccard distance to define the per-
turbation sets around D has some theoretical advantages. However, carefully
calibrating the parameter d to avoid over-constraining the problem is neces-
sary. In addition, the resulting problem may still be hard to solve in practice
and/or penalize utility too much.

A possible use would be to solve IPSR(h,D, ϵ) and directly use the re-
sulting SR(h,D, ϵ) to quantify the fairness sample-robustness of classifier h.
Integrating this term directly within the objective function of a learning al-
gorithm might appear to be suitable. However, this would require solving
IPSR(h,D, ϵ) at each model update to be able to audit the fairness sample-
robustness. For instance, this would not be trivial for gradient-based learning
techniques, as SR(h,D, ϵ) is not a differentiable value. In addition, sample-
robustness values found by solving IPSR(h,D, ϵ) depend on the dataset con-
sidered and its structure (in particular, through the influence of the cardinali-
ties of the protected groups). This implies that a particular sample-robustness
value may be satisfactory for a given task, but may not be meaningful for
another dataset or another pair of protected groups. Furthermore, there is of-
ten an important gap between realistic, task-useful models’ sample-robustness
and that of any constant classifier (which is 1.0). These observations make the
integration of our robustness quantification notion into learning algorithms
more difficult. Then, we formulate the sample-robust fair learning problem as a
multi-objective problem, using an ϵ-constraint method. In other words, consid-
ering the fair learning problem (3), we include our fairness sample-robustness
term as a constraint:

argmin
h∈H

fobj(h,D) (15)

s.t. unf(h,D) ≤ ϵ

SR(h,D, ϵ) ≥ µ

As discussed earlier, an important difficulty with Problem (15) is the cali-
bration of the µ parameter. More precisely, as a meaningful value of µ depends
on the dataset at hand, on the considered sensitive attributes, on the unfair-
ness metric and on the unfairness constraint ϵ, determining a good value for
µ is difficult. For this reason, we propose to build a Pareto frontier between
utility (fobj(h,D)) and fairness sample-robustness (SR(h,D, ϵ)), for a fixed
value of ϵ. To realize this, we first solve Problem (15) with no constraint on
SR(h,D, ϵ) (µ = 0). Then, we measure the resulting model’s h0 sample ro-
bustness and solve Problem (15) again, using this value (SR(h0,D, ϵ)) for the
µ parameter. We iterate this process until reaching perfect sample-robustness
of 1.0 (which can always be reached by building a trivial constant classifier).
However, remark that this approach has two drawbacks. First, it is not obvious
which solution of the Pareto frontier should be kept. Second, as the process is
done sequentially, it may be long to finish and this time is not predictable.
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To address the first challenge, once a model’s training is finished, we pro-
pose to audit its fairness on a separate validation set. If the validation unfair-
ness meets a given criterion (e.g., is lower than the training unfairness or lower
than ϵ), we return this model. Otherwise, we strengthen the sample-robustness
constraint and iterate. The second difficulty remains (even though the valida-
tion step stops the process earlier instead of building the entire Pareto frontier).

Finally, we propose a sample-robustness framework for statistical fairness.
After characterizing our perturbation sets structure and the resulting learning
problem, we show how it can be integrated within existing algorithms. We
further conduct an experimental evaluation of this approach in Section 5.1.
However, practical difficulties remain, such as an important computational
overhead and practical integration challenges (solving a MIP within a learning
algorithm). These challenges motivate a heuristic formulation of the problem.

4 A Heuristic Method to Improve Fairness Sample-Robustness

In this section, we propose a heuristic method designed to improve fairness
sample-robustness, without exhibiting some of the practical limitations of the
exact approach proposed in the previous section. First, we introduce this
heuristic method before showing how it can be integrated into two state-of-
the-art fair learning algorithms.

4.1 Approximating the Perturbation Sets

We have showed that an exact application of our proposed formulation is
possible, but challenging. Indeed, in practice, a heuristic application of our
proposed principle can be beneficial, even if no formal guarantees hold. The
approach we propose consists in computing n random subsets of the training
set using n random binary masks. Each mask Mi is a vector of size |D|, in
which each coordinate Mij ∈ {0, 1} (i ∈ {1 . . . n} and j ∈ {1 . . . |D|}) is a
random binary value. We denote by Di the subset associated with mask Mi

as follows: Di = {ej ∈ D | Mi,j = 1}. This is used in Definition 8 to define
the heuristic perturbation set.

Definition 8 (Heuristic perturbation sets)
Consider a dataset D and a set of n binary masks M1 . . .Mn of size |D|.

The heuristic perturbation set, denoted by Bω(D, n), is defined as: Bω(D, n) =
{D,D1,D2, . . .Dn}.

In a nutshell, instead of considering the entire previously defined perturba-
tion set B(D, d), we only enforce fairness on some randomly generated subsets
(belonging to B(D, d) by construction). Intuitively, B(D, d) considers all sub-
sets of D whose Jaccard distance from D is at most d. In contrast, Bω(D, n)
only considers n random subsets of D (along with D itself). In the graph
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representation of Figure 1, our heuristic perturbation sets contain randomly
selected vertices.

By replacing B(D, d) by Bω(D, n) in Problem (5), we get the heuristic for-
mulation of our sample-robust fair learning problem. The intuition behind this
heuristic approach is that the randomly sampled subsets of D have slightly dif-
ferent distributions. Hence, enforcing fairness for such subsets effectively leads
to a form of heuristic distributionally robust optimization. It is possible to
draw a parallel with the Bagging (Bootstrap AGGregatING) ensemble learn-
ing method [50]. Indeed, the idea underlying bagging is that training different
models using different samplings of the training set may improve robustness
by reducing the variance. This happens because such samplings have slightly
different distributions, neighbouring the original one. While bagging leverages
the different samplings to learn a set of models that will reduce the variance
of the accuracy, we use them to enforce fairness in a robust manner.

This heuristic formulation does not have the theoretical appeal of our exact
sample-robustness quantification framework, but exhibits considerable practi-
cal advantages. Indeed, it does not require calibrating the µ parameter of
Problem (15), which explains why we no longer need a separate validation
set. In addition, computing unfairness over a finite set of subsets defined with
masks can be done in linear time with respect to the input size, which is
considerably simpler than solving IPSR(h,D, ϵ). It is also easier to integrate
within existing algorithms (and in particular, gradient-based techniques - as
we show later).

Compared to the approach of [32], our heuristic method for robust fair
learning does not come with theoretical guarantees, but its simplicity provides
practical advantages in terms of scalability and applicability. First, it can be
easily integrated into most fair classification techniques and it does not re-
quire access to a cost-sensitive learning algorithm (in cost-sensitive learning,
the instances of the training set are associated to weights that define their
contribution to the objective function value). Second, unlike [12,13], we do
not require a prior split of the data. Finally, as we show later in the exper-
iments section, our heuristic method can be efficiently integrated within fair
learning algorithms and allows an empirical improvement of the generalization
of fairness.

In the next two sections, we show how to include our heuristic method
into two state-of-the-art fair classification techniques (solving Problem (3))
that have different characteristics. The first one is an exact branch-and-bound
algorithm that builds inherently interpretable models. It works with binary
data and binary protected group membership. As interpretability is becoming
a key property for machine learning models [22,39], we believe that our method
could be applicable in a wide range of contexts.

The second one is based on a two-player game formulation of constrained
optimization. It uses gradient-based techniques without necessarily binarizing
the data and handles fairness for any number of protected groups. Both meth-
ods are metric-agnostic and could be used to enforce any statistical fairness
measure.
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4.2 Integration with FairCORELS

FairCORELS [2,3] is an extension of the CORELS [4,5] algorithm that builds
fair rule lists on binary datasets (attributes and labels) given two protected
groups. A rule list [38] is a classification model defined by an ordered list of
if-then rules (with a default prediction if non of the rules applies). Given a
collection of rules (consisting in any combination of attributes mined as prepro-
cessing), FairCORELS certifiably builds a rule list with the highest objective
function among those meeting a given statistical fairness constraint. It is a
branch-and-bound algorithm that represents the search space of the rule lists
R using a prefix tree. In this prefix tree, each node is a rule and each path
from the root to a node is a prefix (ordered set of rules), that can be extended
with a default decision to form a potential solution. Leveraging a collection of
bounds, FairCORELS explores this search space using a given search heuristic
and updates the current best solution only when the candidate model has an
unfairness value at most equal to a given ϵ. Let misc(.) be the misclassification
error, unf(.) the unfairness oracle, Kr the length of prefix of rule list r and λ
a regularization parameter penalizing longer rule lists, FairCORELS solves the
following constrained optimization problem:

argmin
r∈R

fobjFairCORELS = misc(r,D) + λ.Kr

s.t. unf(r,D) ≤ ϵ

Integrating the proposed heuristic perturbation sets into the FairCORELS

algorithm is quite simple. Whenever an evaluated rule list improves over the
current best objective function, it is accepted only if it has an unfairness value
lower than ϵ on the training set and on each of its subsets defined by the n
masks. Finally, the modified algorithm searches for the rule list solution to the
following problem:

argmin
r∈R

fobjFairCORELS = misc(r,D) + λ.Kr

s.t. max
D′∈Bω(D,n)

unf(h,D′) ≤ ϵ

In practice, it is often not necessary to compute unf(.) for each subset. We only
compute these quantities if the candidate prefix improves over the current best
one and meets the fairness constraint on the training set. In this case, sub-
sets unfairness are computed sequentially and stopped early if the constraint
is violated on any of the subsets. This efficient implementation leads to no
significant computational overhead compared to the original FairCORELS.

4.3 Integration with TFCO

TensorFlow Constrained Optimization2 (TFCO) is a Python library for op-
timizing inequity-constrained problems in TensorFlow to produce machine

2 https://github.com/google-research/tensorflow constrained optimization
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learning models (not restricted to the fair learning problem). It implements
the method of [14], formulating the constrained optimization problem as a
two-player game. Considering the Lagrangian relaxation of the problem, the
first player (θ-player) optimizes a model’s parameters to minimize the objective
function while the second player (λ-player) updates the Lagrangian-multipliers
to approximate the strongest Lagrangian relaxation. While original fairness
constraints are non-differentiable proportions (linear combinations of indica-
tors), TFCO allows for the computation of objective and proxy constraints as
hinge upper bounds of the real quantities, which allows for the use of gradient-
based techniques. In this setting, [14] proposes the Proxy Lagrangian frame-
work. The latter reduces the constrained optimization problem to a two-player
non-zero sum game, in which the “learner” optimizes the model’s parameters
to minimize objective function including proxy constraints while the “auditor”
updates the Lagrangian multipliers based on the true constraints’ violations.

In the general context of constrained optimization, the proxy Lagrangians
associated to the two players optimizing objective function g0(θ) under m
constraints gi,i∈[m] are:

Lθ(θ, λ) = λ1g0(θ) +

m∑
i=1

λi+1g̃i(θ) (16)

Lλ(θ, λ) =

m∑
i=1

λi+1gi(θ)

in which λj are the Lagrange multipliers, gi measures violation of constraint i
and g̃i is its differentiable proxy.

Integrating our heuristic perturbation sets into the TFCO framework does
not require modifying the library. Indeed, it simply consists in including addi-
tional constraints to the declared optimization problem, to enforce the fairness
constraints on the subsets of the training set defined by the n masks. Formally,
we add one constraint per protected group per mask. When dealing withm pro-
tected groups, the original fair formulation includes m constraints (bounding
a statistical measure’s difference between each protected group and the overall
training set). Our heuristic sample-robust method declares m.(n+ 1) fairness
constraints (enforcing the m fairness constraints on the n+1 sets of Bω(D, n))
that will be included in the objective function and weighted with Lagrange-
multipliers, following the approach of [14], as in Equation (16). Finally, inte-
grating our proposed heuristic approach within TFCO is quite straightforward.
One may observe that it would not be the case for the exact method proposed
in Section 3, as the output of IPSR is not a differentiable value.

5 Experiments

We now empirically evaluate the proposed sample-robustness approaches for
statistical fairness, over a variety of datasets, sensitive attributes, and statis-
tical fairness metrics, and two fair learning algorithms of the literature.
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In a first subsection, we compare the exact and heuristic formulations, both
integrated within the FairCORELS algorithm. Afterwards in a second subsec-
tion, we demonstrate the effectiveness of our heuristic formulation within TFCO

and compare it to a state-of-the art technique for improving statistical fairness
generalization [12,13].

5.1 Integration into FairCORELS and Comparison between Exact and
Heuristic Methods

In this section, we integrate and evaluate our exact and heuristic methods
within the FairCORELS algorithm. We first introduce the considered setup and
define the different methods implemented. Then, we show that the exact for-
mulation effectively improves unfairness generalization through the performed
iterations. In the fourth and fifth subsections, we show that our heuristic
method improves fairness sample-robustness and statistical fairness general-
ization. Finally, we compare the exact and heuristic approaches in terms of
fairness sample-robustness and learning quality (trade-offs between accuracy
and fairness at test time).

5.1.1 Setup

Our experiments cover four binarized datasets widely used in the fair learn-
ing literature. For each dataset, the mined rules are single- and two-clause
antecedents (i.e., conjunctions of at most two attributes or their negation).

– Adult Income dataset3 [21]. This dataset gathers records of more than
45, 000 individuals from the 1994 U.S. census. We consider the binary clas-
sification task of predicting whether an individual earns more than 50, 000$
per year. We use the same preprocessing as [2,3], considering gender to be
the binary sensitive attribute (Male or Female).

– COMPAS dataset4(analyzed by [6]). We consider the same discretized
dataset used to evaluate CORELS in [4]. The associated label/decision is
whether the person will re-offend (recidivate) within 2 years (yes or no)
while the binary sensitive attribute is race (African-American or Caucasian).
Rule mining is done similarly to [2,3].

– Defaut of Credit Card Clients dataset5 [47]. The dataset is discretized
using quantiles. The discrete attributes were used to generate single and
two clause rules, and only rules with support higher than 0.5 were kept.
The associated decision is whether the person will default in payment (the
next time they use their credit card), with the sensitive attribute being
gender (Male or Female). The resulting dataset contains 189 rules and
29,986 examples.

3 https://archive.ics.uci.edu/ml/datasets/adult
4 https://raw.githubusercontent.com/propublica/compas-analysis/master/compas-

scores-two-years.csv
5 https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
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– Bank Marketing dataset6 [33]. The dataset is discretized using quantiles.
The discrete attributes are used to generate single and two clause rules
and only rules with support higher than 0.5 were kept. The associated
decision is whether the person will subscribe to a term deposit. The re-
sulting dataset contains 41,175 examples and 179 rules, among which the
2 protected attributes : age:30-60 and not age:30-60.

For each dataset, we prevent the use of the sensitive attributes in the model
built to avoid disparate treatment. For all experiments, we set the maximum
number of nodes in FairCORELS’ prefix tree to 2.5×106 along with some fixed
parameters such as the branching heuristic after a preprocessing step.

5.1.2 Methods

Exact Method. We modified FairCORELS to solve Problem (15)7. Solving
IPSR(h,D, ϵ) is costly (even though it can be done in fractions of seconds
in practice) and we should avoid doing it at each iteration of the learning
algorithm. Within FairCORELS, IPSR(h,D, ϵ) is solved only when the current
best solution update subroutine is called (just like mask-related constraints are
verified in the integration of our heuristic approach). In other words, we only
audit a model’s sample-robustness when it is about to become the new current
best solution. This guarantees that the final solution meets the desired fairness
sample-robustness constraint, while in practice performing a small number of
calls to the solver. For our experiments, IPSR(h,D, ϵ) is solved using the
OR-Tools CP-SAT solver [35]. We consider the four fairness metrics presented
in Table 1 and an unfairness tolerance ϵ ∈ {0.02, 0.015, 0.01, 0.005}. Results
for the different values of ϵ show similar trends, hence we only report those for
ϵ = 0.01 for conciseness reasons. We compare 4 variants based on our exact
method:

– We solve Problem (15) iteratively and update the fairness sample-robustness
constraint µ at each step, without validation set, until SR(h,D, ϵ) = 1.
More precisely, we build the entire Pareto frontier between accuracy and
fairness sample-robustness, for a fixed value of ϵ. We denote this set of mod-
els the sample robust fair frontier (no validation). While select-
ing a particular model within the built sequence remains an open problem,
this enables to visualize the different trade-offs that are obtained during
the iterations. Among these built models, we select the non-constant one
with higher fairness sample robustness. We call this the no validation

(before-constant) method.
– We solve Problem (15) iteratively with a validation set considering two

stopping criteria. The first one, called validation (ϵ criterion), stops
iterating when the validation unfairness is under ϵ (i.e., when the fairness
constraint enforced on the training set is also met on the validation set).

6 https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
7 Our source code will be publicly released upon acceptance.
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The second one is called validation (train unf. criterion). It stops
iterating when the validation unfairness is smaller or equal to the training
one.

Heuristic Method. The integration of our heuristic approach within
FairCORELS is depicted in Section 4.28. For a number of masks n ∈ {0, 10, 30},
we compute the training Pareto frontier (between accuracy and fairness) of
FairCORELS, with a fixed list of 147 values for the unfairness tolerance ϵ
(ranging non-linearly with a higher density for higher fairness constraints).
By evaluating each model obtained on its test set, we obtain approxima-
tions of the Pareto frontier of FairCORELS in test. We compute such fron-
tier for the four different statistical notions of fairness presented in Table 1.
Based on this setup, we assess FairCORELS’ fairness generalization ability, with
(n ∈ {10, 30}) or without (n = 0) our proposed approach.

All reported values are averaged using 5-folds cross-validation, with all
methods are trained and evaluated on the same data splits. For the methods
validation (ϵ criterion) and validation (train unf. criterion), part
of the original training set is used for validation (and not used for training the
model).

5.1.3 Exact Method: Effects of Fairness Sample-Robustness on Fairness
Generalization and Accuracy

In this subsection, we show that our exact method effectively improves the
statistical fairness generalization. We also visualize the resulting trade-offs
between accuracy and fairness sample-robustness.

Figures 3 and 4 illustrate the obtained results on the four datasets, for the
Statistical Parity fairness metric (ϵ = 0.01). Results for the three other metrics
(ϵ = 0.01), and for the four datasets, are given in Appendices C.1 and C.2. In
both figures, the sample-robust fair frontier presents all obtained models
(without validation set), sorted by their index in the sequence. This means
that the leftmost grey point corresponds to the unconstrained model, while
the rightmost point exhibits 1.0 fairness sample-robustness and is obtained
after the last iteration of the process. Note that this last model is usually a
constant classifier, as discussed in Section 3.2.4. However, this is not always
the case, and for the Predictive Equality and Equal Opportunity metrics, some
models achieve perfect sample-robustness without reaching trivial accuracy.
This is possible if the built rule lists only make mistakes on the positively
(respectively negatively) labelled instances. This is the case, for example, if the
model’s prefix rules only capture positively (respectively negatively) labelled
examples, while a default decision classifies negatively (respectively positively)
the uncaptured ones.

Intuitively, we strengthen the fairness sample-robustness constraint of Prob-
lem (15) through the iterations of the method (numbered in the x-axis). This
increases the fairness sample-robustness sequentially, as shown in Figure 4.

8 Our source code will be publicly released upon acceptance.
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Fig. 3 Training, Test and Validation (when applicable) unfairness of models generated by
FairCORELS through the iterations of our exact method (Statistical Parity metric, ϵ = 0.01).

This effectively lowers the test unfairness as expected (Figure 3), but degrades
the training accuracy (Figure 4). This suggests that a trade-off between ac-
curacy and fairness sample robustness exists. In Figure 3, we see that con-
sidering the non-constant classifier with higher fairness sample-robustness (no
validation (before-constant) method) satisfies the fairness requirement
at test time, which was precisely the aim of our method. However, we see in
Figure 4 that this fairness generalization improvement comes at a high cost in
terms of training accuracy.

While using a separate validation set, we see that we usually require fewer
iterations and get models closer to the unfairness tolerance ϵ. Such models
do not always meet the fairness constraint at test time, but still lead to a
reduction of the test unfairness.

One may observe that the points associated to no validation (before-constant),
validation (ϵ criterion) and validation (train unf. criterion) do
not lie on their associated curves. The reason for this is that the stopping cri-
teria are applied separately on each fold (with the fold’s validation set). Hence,
the models obtained with these methods are learnt with different number of
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Fig. 4 Training Sample Robustness and accuracy of models generated by FairCORELS

through the iterations of our exact method (Statistical Parity metric, ϵ = 0.01)

steps on different folds. The x-positioning of the points is then performed
based on the average sample-robustness value within the corresponding fron-
tier. Finally, we see that when the fairness constraint is already satisfied (as
for the Bank Marketing dataset), the method still allows a reduction of the
test unfairness, which may strengthen unfairness robustness.

The evaluation of our exact methods’ test accuracy as well as comparison
with our heuristic method is performed later in Section 5.1.6. In the next two
subsections, we evaluate our heuristic method.

5.1.4 Heuristic Method: Fairness Sample-Robustness Improvement Results

In this part of our experiments, we use our heuristic sample-robust method
within FairCORELS and empirically show that it effectively improves the fair-
ness sample-robustness. As stated previously, we compare three variants: the
original FairCORELS (no mask) as well as FairCORELSmodified with our heuris-
tic sample-robust method for 10 masks and 30 masks.

We use IPSR(h,D, ϵ) and GreedySR(h,D, ϵ) to audit a posteriori the
fairness sample-robustness of the models built with each of the three methods.
As discussed earlier, GreedySR(h,D, ϵ) provides no optimality guarantee, but
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it has polynomial complexity and can be used to upper-bound SR(h,D, ϵ).
On the other side, IPSR(h,D, ϵ) computes the exact value of SR(h,D, ϵ) but
is computationally more expensive.

0.95 0.96 0.97 0.98 0.99 1.00
1-

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Fa
irn

es
s s

am
pl

e-
ro

bu
st

ne
ss

Statistical Parity metric
no mask
10 masks
30 masks

(h, , )
reedy (h, , )

0.95 0.96 0.97 0.98 0.99 1.00
1-

0.000

0.005

0.010

0.015

0.020

Fa
irn

es
s s

am
pl

e-
ro

bu
st

ne
ss

Predictive Equality metric
no mask
10 masks
30 masks

(h, , )
reedy (h, , )

0.95 0.96 0.97 0.98 0.99
1-

0.000

0.005

0.010

0.015

0.020

Fa
irn

es
s s

am
pl

e-
ro

bu
st

ne
ss

Equal Opportunity metric
no mask
10 masks
30 masks

(h, , )
reedy (h, , )

0.95 0.96 0.97 0.98 0.99
1-

0.000

0.005

0.010

0.015

0.020

Fa
irn

es
s s

am
pl

e-
ro

bu
st

ne
ss

Equalized Odds metric
no mask
10 masks
30 masks

(h, , )
reedy (h, , )

Fig. 5 Fairness Sample-Robustness of models generated by FairCORELS using our heuristic
method (Default of Credit Card Clients dataset)

To empirically demonstrate that our heuristic approach is suitable to im-
prove sample-robustness, we report in Figure 5 results for the four metrics (Sta-
tistical Parity, Predictive Equality, Equal Opportunity and Equalized Odds),
for the Defaut of Credit Card Clients dataset. Results for the remaining
datasets are given in Appendix C.3. When the fairness constraint enforced
is strengthened (1 − ϵ grows), fairness sample-robustness decreases. We ex-
plain this by the fact that, as the fairness constraint becomes tighter, it is met
on a lower number of subsets of the training set. In particular, the radius of
the ball (measured using the Jaccard distance) around the training dataset
in which the fairness constraint is met everywhere (SR(h,D, ϵ)) diminishes.
However, we observe in Figure 5 that our heuristic method is able to mitigate
the decrease of the fairness sample-robustness. Additionally, there seems to
be a correlation between the number of masks used and the resulting fairness
sample-robustness. We note that GreedySR(h,D, ϵ) actually performs very
well and proposes a close over-approximation of SR(h,D, ϵ). For these experi-
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ments, GreedySR(h,D, ϵ) found the optimal solution (i.e., the value returned
by IPSR(h,D, ϵ)) 88% of the time. For the remaining 12%, the average gap to
optimality is less than 5%. Considering the four datasets and the four fairness
metrics, GreedySR(h,D, ϵ) found the optimal solutions for 78% of the execu-
tions. For the remaining 22%, the average gap to optimality is around 36%.
This means that, for some executions, the value found by GreedySR(h,D, ϵ)
is considerably higher than the exact value of IPSR(h,D, ϵ), resulting in a
high upper-bound.

We have showed that our heuristic method empirically improves fairness
sample-robustness. In the next subsection, we show that as a result it also
improves the fairness generalization, hence allowing the construction of models
with better test accuracy/fairness trade-offs in regimes of low unfairness.

5.1.5 Heuristic Method: Statistical Fairness Generalization Improvement
Results

In this part of our experiments, we use our heuristic sample-robust method
within FairCORELS and empirically show that it effectively enhances the sta-
tistical fairness generalization.

Figures 6, 7, 8 and 9 present respectively the performances of the three
variants on the Adult Income, COMPAS, Defaut of Credit Card Clients and
Bank Marketing datasets, for the Equal Opportunity metric (which is widely
used in the literature). Results for the four datasets using all fairness metrics,
which display similar trends, are included in Appendix C.4. Each figure has
three graphs, with each point of a graph corresponding to a solution (averaged
with the 5-folds cross validation). Note that we focus on solutions whose un-
fairness is at most 0.05, because this part of the trade-offs (medium to strong
fairness constraints) is the most interesting one in our experiments. It allows
us to investigate unfairness generalization under meaningful constraints.

The first graph is a Pareto frontier built on the training set, which dis-
plays the set of non-dominated solutions (in terms of unfairness and error)
on the training set. Solutions closer to the lower left corner are preferable, as
they correspond to lower error and lower unfairness. We observe that, in all
cases, our heuristic method leads to a lower trade-off on the training set. This
suggests that robustness comes at the cost of a lower training performance,
which is not really problematic as we shall prefer solutions exhibiting worse
accuracy/fairness trade-offs at training time but generalizing better.

The second graph is the Pareto frontier built on the test set, which il-
lustrates the effectiveness of our proposed approach. In all cases, using our
heuristic method (with either 10 or 30 masks) leads to a denser Pareto fron-
tier, exhibiting better accuracy/fairness tradeoffs. This is particularly the case
for tight fairness constraints, in which the standard FairCORELS fails to gen-
erate solutions exhibiting such low test unfairness.

The third graph illustrates the generalization of unfairness, presenting the
test unfairness as a function of the training one. The ideal generalization sce-
nario, in which the test unfairness is exactly equal to the training unfairness, is
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Fig. 6 Results of our heuristic method (Adult Income dataset, equal opportunity metric).
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Fig. 7 Results of our heuristic method (COMPAS dataset, equal opportunity metric).
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Fig. 8 Results of our heuristic method (Default Credit dataset, equal opportunity metric).
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Fig. 9 Results of our heuristic method (Marketing dataset, equal opportunity metric).
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represented by the diagonal line. We observe that for tight fairness constraints
(left side of the figure), solutions generated by the original FairCORELS gener-
alize badly: they exhibit low training unfairness but considerably higher test
unfairness. In contrast, solutions generated using our approach generalize con-
siderably better as the corresponding points are closer to the ideal scenario.

Finally, all the presented results show that the use of our heuristic method
leads to the generation of models trading some training performances for fair-
ness robustness, and presenting better accuracy/fairness trade-offs on unseen
data (at test time). In particular, models learnt using our heuristic method
have a considerably smaller unfairness generalization error, which allows for
populating areas of the test Pareto frontier that the original FairCORELS failed
to fill in.

5.1.6 Comparing the Exact and Heuristic Approaches

We now compare the proposed exact and heuristic approaches on similar prob-
lems.
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Fig. 10 Fairness sample-robustness of models generated by FairCORELS using our exact and
heuristic sample-robust fair methods (Statistical Parity metric, ϵ = 0.01)

.

Figure 10 displays the built models’ sample-robustness, for the Statistical
Parity metric (ϵ = 0.01). Results for the three other metrics (ϵ = 0.01) and
for the four datasets, are given in Appendix C.5. We observe that both the
heuristic and exact methods are able to improve fairness sample-robustness
over the original FairCORELS. Overall, as expected the exact method can lead
to higher sample-robustness values as the models are learnt with constraints
over this precise value.

Figure 11 shows the obtained test error/test unfairness trade-offs for the
Statistical Parity metric (ϵ = 0.01). Results for the three other metrics (ϵ =
0.01), for the four datasets, are given in Appendix C.6. We observe that all
the proposed methods usually diminish fairness violation at test time (the
associated points are either under ϵ or closer to it). This improvement on
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Fig. 11 Test error and unfairness of models generated by FairCORELS using our exact and
heuristic sample-robust fair methods (Statistical Parity metric, ϵ = 0.01)

fairness generalization induces a cost on the model’s error. As a general trend,
we see that the greater the fairness generalization improvement, the greater
the error incurred. However, the generated solutions often propose interesting
trade-offs between error and unfairness. In particular, in the Bank Marketing
experiment the robustness enforced for fairness can sometimes benefit the error
generalization as well.

Finally, we showed that the integration of our exact or heuristic methods
within FairCORELS practically improve fairness generalization. While both ap-
proaches successfully enforce fairness robustness, the exact method is compu-
tationally more expensive, because it consists in a sequence of trainings (while
the heuristic method only trains once). In addition, each training is more
expensive as it requires solving an integer programming model. Overall, the
heuristic approach seems more appealing for practical applications, thanks to
its flexibility, computational efficiency and empirical effectiveness.
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5.2 Heuristic Method: Integration into TFCO and Comparison to a
State-of-the-Art Method

The objective of this section is two-fold. First, we show that the use of our
heuristic sample-robust method improves fairness generalization over the stan-
dard fair learning formulation using TFCO. Second, we compare these results
with a state-of-the-art method improving fairness generalization [12,13]. This
approach possesses scalability and applicability properties similar to ours. It
is also implemented using TensorFlow Constrained Optimization, which
enables a direct comparison with our heuristic method.

5.2.1 Setup

For these experiments, we build on the setup of [13] and compare the following
approaches:

– unconstrained trains a model without enforcing fairness constraints (hence
only minimizing training error).

– baseline is the fair learning approach based on the implementation of [14]
for non-convex constrained optimization (minimizing training error subject
to fairness constraints).

– validation is the approach described in [12,13], which is proposed to im-
prove fairness generalization over the baseline approach. In a nutshell, to
avoid constraints overfitting, the training set is split between two distinct
sets: train and validation. Then, the Lagrangians of Equation (16) are com-
puted on these two different sets. On the one side, the θ-player optimizes
the model parameters over train. On the other side, the λ-player measures
fairness constraints violations on validation.

– dromasks-n is the integration of our method into baseline, using n masks
(in practice, we use n ∈ {10, 30, 50}).

All methods are implemented using the TensorFlow Constrained Optimization

library [14]. Similar to [13], we evaluate all methods using two formulations:
the Proxy Lagrangian described in Equation (16) (Algorithm 2 of [14]) and
the usual Lagrangian (Algorithm 3 of [14]).

For baseline, validation and dromasks-n, the result of the training is
a sequence of iterations. Following [13], we use their “shrinking” procedure
to find the best stochastic classifier supported on the sequence of iterates.
We average all the results obtained over 100 runs. For unconstrained and
baseline, the runs differ by the random seed used to generate the mini-
batches. For validation, the runs are different due to the seed used to gener-
ate the training/validation split, and for dromasks-n, they differ by the seed
used to generate the random binary masks. All methods see exactly the same
training data at each run and are evaluated over the same testing set.
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We extend the setup of [13], considering four experiments using different
datasets and notions of fairness9. We train the neural network models with one
hidden layer containing 50 ReLU neurons. All models are trained using mini-
batches of 100 instances. For each experiment, we measure the training and
testing errors and maximum fairness constraint violations. The latter increases
as the reported values increase (values ≤ 0 correspond to no fairness violation).
For the validation method, training error is computed on the training sub-
set while training constraint violation is computed on the validation subset
similarly to [13].

Experimentation 1 uses the UCI Adult dataset10 [21], preprocessed to
include only binary attributes, with the classification task being to predict
whether a person’s yearly income is greater than $50,000, subject to the 80%
rule for Statistical Parity. This means that for each of four overlapping pro-
tected classes (Black, White, Female and Male), the Positive Prediction Rate
must be at least 80% of the overall Positive Prediction Rate. We use the des-
ignated training/testing split, with 32, 561 instances for training and 16, 281
for testing. The dataset has 122 attributes with the model being trained for
40 epochs.

Experimentation 2 uses the ProPublica COMPAS dataset11 (analyzed by [6]),
preprocessed to include only binary attributes, with the classification task be-
ing to predict recidivism, subject to Equal Opportunity fairness constraints.
This means that for each of four overlapping protected classes (Black, White,
Female and Male), the Positive Prediction Rate on the positively-labeled ex-
amples (True Positive Rate) must be at most 5% higher than the overall
Positive Prediction Rate on positively-labeled examples. We use a designated
training/testing split, with 4, 134 instances for training and 2, 038 for testing.
The dataset has 32 attributes with all models being trained for 100 epochs.

Experimentation 3 uses the UCI Bank Marketing dataset12 [33], with the
classification task being to predict recidivism, subject to Predictive Equality
fairness constraints. We form four protected groups based on the quartiles of
the real-valued age attribute and constrain each group’s false positive rate to
be no larger than that of the full dataset. We use a designated training/testing
split, with 30, 292 instances for training and 14, 919 for testing. While real
attributes are left unchanged, we one-hot encode categorical ones. We also
apply a standard preprocessing (centering and scaling) to all features, which
result in a dataset with 51 attributes. All models are trained for 200 epochs.

Experimentation 4 uses the Defaut of Credit Card Clients dataset13 [47],
which contains 23 numerical attributes (among which three integer attributes
represent categories). Here also, we apply a standard preprocessing (centering

9 The third and fourth experiments differ respectively because we could not reproduce
their results and because the data is not publicly available
10 https://archive.ics.uci.edu/ml/datasets/adult
11 https://raw.githubusercontent.com/propublica/compas-analysis/master/compas-
scores-two-years.csv
12 https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
13 https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
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Table 2 Error rates and maximum fairness constraints violations for all compared methods,
for our four experiments (all values are averaged over 100 runs as described in the setup).
Best test results are shown in bold, second best in italics.

Proxy Lagrangian Lagrangian
Train Test Train Test

Method Error Viol. Error Viol. Error Viol. Error Viol.

Adult Income Dataset
unconstrained .122 .072 .144 .071 .122 .072 .144 .071

baseline .141 0 .154 .009 .141 0 .155 .006
validation .132 -.002 .158 .004 .134 0 .157 .004
dromasks-10 .14 -.003 .156 .003 .143 -.001 .155 -.003
dromasks-30 .14 -.004 .157 -.001 .148 -.002 .156 -.003
dromasks-50 .14 -.003 .157 -.001 .151 -.002 .157 -.003

COMPAS Dataset
unconstrained .265 .043 .33 .064 .265 .043 .33 .064

baseline .263 -.004 .33 .019 .264 -.003 .328 .025
validation .235 .001 .353 .005 .235 -.002 .352 .001
dromasks-10 .261 -.008 .336 .014 .295 -.007 .326 -.006
dromasks-30 .261 -.009 .337 .015 .307 -.009 .326 -.011
dromasks-50 .262 -.009 .337 .013 .31 -.011 .322 -.012

Bank Marketing Dataset
(unfairness violations are ×10−1)

unconstrained .058 .071 .102 .161 .058 .071 .102 .161
baseline .073 .001 .099 .096 .081 0 .099 .073

validation .078 .005 .102 .041 .075 0 .105 .042
dromasks-10 .074 .001 .099 .091 .089 0 .101 .057
dromasks-30 .076 0 .099 .083 .114 0 .115 .009
dromasks-50 .078 0 .1 .082 .117 0 .117 .003

Default of Credit Card Clients Dataset
unconstrained .171 .141 .181 .164 .171 .141 .181 .164

baseline .18 -.001 .192 .035 .183 -.002 .193 .03
validation .18 .001 .203 .012 .182 -.001 .204 .011
dromasks-10 .18 -.002 .192 .035 .185 -.017 .197 .016
dromasks-30 .18 -.002 .193 .035 .188 -.035 .202 .001
dromasks-50 .18 -.002 .193 .035 .19 -.041 .205 -.005

and scaling) to all features. There are 30, 000 examples in the dataset. We
generate 100 random splits, using two thirds of the dataset for training, and
one third for testing. We form four overlapping protected groups, based on the
values of the attributes gender (Male or Female) and age (Young or Old, based
on the median value). The classification task is to predict whether a client will
default in payment. However, the dataset is highly unbalanced, with about
78% negative examples. Hence, machine learning models can reach a high
predictive accuracy without accurately detecting positive examples. For this
reason, we enforce that the True Positive rates among each protected group is
at least 50%. This may result in slightly increasing the overall error (because we
might increase the False Positive rates), but detecting more positive examples.
Remark that such constraints do not follow the traditional statistical fairness
formulation but nevertheless, we show that our approach is still able to improve
their generalization. The models are trained for 100 epochs.
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5.2.2 Results

Table 2 summarizes the results obtained and shows that our method effec-
tively improves fairness generalization while not penalizing accuracy signifi-
cantly. Overall, the method is competitive to the state-of-the-art validation
method without requiring prior split of the data. Results of Experimentation
1 on Adult Income demonstrate that the fairness constraints violations on the
test set are the smallest using our method. In addition, only the dromasks-n

techniques are able to meet the fairness constraints on the test set. Further-
more, increasing the number of masks seems to improve the fairness generaliza-
tion while penalizing accuracy, which suggest a fairness robustness / accuracy
trade-off. While the validation method also proposes an important reduc-
tion of the test fairness violation, dromasks-n gives more interesting results on
these experiments while less conflicting with accuracy (which was expected as
in the validation approach, each player only sees half of the data during train-
ing). Results for Experimentation 2 (on the COMPAS dataset) suggest that in
some situations the fact that our approach does not use a separate validation
set (but subsets of the same training data) can limit its generalization im-
provement abilities. However, compared to validation, it has a considerably
smaller impact on accuracy, and the resulting trade-offs appear competitive
overall. Additionally, we observe that enforcing fairness constraints in a robust
manner can improve error generalization due to the metric used (i.e., Equal
Opportunity) being aligned with accuracy. Hence, ensuring fairness robustness
may also benefit to accuracy. This is also observed is the third experiment on
the Bank Marketing dataset, in which some fair models are also more accurate
at testing time. Overall, the Lagrangian algorithm appears more suitable for
our method. Indeed, we observe that enforcing our proxy constraints (as done
with the Proxy Lagrangian algorithm) may not always lead to significant gen-
eralization improvements using our masks method. This is particularly clear
in the fourth experiment using the Default of Credit Card Clients dataset.

Overall, our method, combined with the Lagrangian algorithm, leads to
the most important constraints violation generalization improvements, while
having limited impact on accuracy.

6 Conclusion

We proposed a novel formulation of robustness for fair learning aimed at en-
hancing the statistical fairness generalization in machine learning. Our frame-
work is metric-agnostic and based on the idea that one wants to learn a model
whose fairness is verified, even if the training dataset sampling is somehow
different. Our formulation is designed to be widely applicable, as many real-
world machine learning applications consider finite training sets. In addition,
the proposed method can be used both to audit any classifier’s fairness robust-
ness without any knowledge of the classifier’s structure but also for robust fair
learning, although it has some practical limitations. To deal with this issue,
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we proposed an effective and efficient heuristic method, exhibiting practical
advantages while still improving fairness sample-robustness and fairness gen-
eralization.

A limitation of our framework is that it considers only subsets of the train-
ing set (and not all possible sample sets within a given Jaccard distance).
This prevents the creation of unrealistic sample sets, which could result in
over-constraining the problem. It also gives an interesting structure to our
perturbation sets, allowing the derivation of several theoretical properties. Ad-
ditionally, it leads to an important computational advantage. Indeed, fairness
sample robustness audit can be performed solving an integer programming
model whose objective function is linear in the decision variables. However,
in a more general formulation of sample robustness, this would not be the
case, as the denominator of the Jaccard distance would no longer be a con-
stant. Formulating and solving this problem efficiently is a promising direction
as well as studying the theoretical and empirical privacy implications of our
sample-robustness formulation for fairness.

Finally, automatically determining the best parameters for our heuristic
method (i.e., number of masks and cardinalities of the defined subsets) is also
a research avenue that we want to pursue in the future.
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Appendix A Proof of Proposition (5)

Proposition 5 (Bounded worst-case fairness violation increase be-
tween consecutive perturbation sets (statistical fairness metrics))
Consider a dataset D, a classifier h and a Jaccard distance d ∈ [0, 1 − 1

|D| ].

We have:

1. Given a subset D′ of D, the value of γ(h,D′) can be computed explicitly
and has finite value.

2. max
D′′∈B(D,d+ 1

|D| )
unf(h,D′′) ≤ max

D′∈B(D,d)
unf(h,D′) + γ(h,D′)

3. ∃D′′ ∈ B(D, d+ 1
|D| ) such that unf(h,D′′) = max

D′∈B(D,d)
unf(h,D′) + γ(h,D′).

Proof:

1. We consider a dataset D′, whose associated unfairness is unf(h,D′). In the
context of this Proposition, γ(h,D′) is then the maximum increase of the
unfairness measure made possible by removing at most one example from
D′. We will denote the resulting dataset D′′ throughout this proof. Recall

that unf(h,D′) = | S
D′
a

XD′
a

− SD′
b

XD′
b

|. Observe that there are exactly four ways

of modifying unf(h,D′).

– In the first case, we remove an example of group a not satisfying the

measure. The a-ratio becomes
SD′
a

XD′
a −1

. Then, unf(h,D′′) =
SD′
a

XD′
a −1

− SD′
b

XD′
b

and we have:

unf(h,D′′)− unf(h,D′) = (
SD′

a

XD′
a − 1

− SD′

b

XD′
b

)− (
SD′

a

XD′
a

− SD′

b

XD′
b

)

=
SD′

a .XD′

a − SD′

a .(XD′

a − 1)

(XD′
a − 1).XD′

a

=
SD′

a

(XD′
a − 1).XD′

a

= α1(D′)

We note that this change is possible only if SD′

a < XD′

a and XD′

a > 1.
We define 1(ξ) as the indicator function, which evaluates to 1 if ξ is
True, and to 0 otherwise. Finally, we note:

β1(D′) = 1(SD′

a < XD′

a ∧XD′

a > 1).α1(D′)

– In the second case, we remove an example of group b satisfying the

measure. The b-ratio becomes
SD′
b −1

XD′
b −1

. Then, unf(h,D′′) =
SD′
a

XD′
a

− SD′
b −1

XD′
b −1
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and we have:

unf(h,D′′)− unf(h,D′) = (
SD′

a

XD′
a

− SD′

b − 1

XD′
b − 1

)− (
SD′

a

XD′
a

− SD′

b

XD′
b

)

=
SD′

b

XD′
b

− SD′

b − 1

XD′
b − 1

=
SD′

b .(XD′

b − 1)− (SD′

b − 1).XD′

b

(XD′
b − 1).XD′

b

=
XD′

b − SD′

b

(XD′
b − 1).XD′

b

= α2(D′)

We note that this change is possible only if SD′

b > 0 and XD′

b > 1.
Finally, we note:

β2(D′) = 1(SD′

b > 0 ∧XD′

b > 1).α2(D′)

– In a third case, we remove an example of group a satisfying the measure.

This will decrease the a-ratio, which becomes
SD′
a −1

XD′
a −1

. However, because

we consider the absolute value of the difference, this may result in

increasing unfairness overall. Then, unf(h,D′′) = | S
D′
a −1

XD′
a −1

− SD′
b

XD′
b

|. If

SD′
a −1

XD′
a −1

≥ SD′
b

XD′
b

, unfairness is not increased and this modification should

not be considered. We hence only consider the case where
SD′
a −1

XD′
a −1

<

SD′
b

XD′
b

. Then, we have:

unf(h,D′′)− unf(h,D′) = (
SD′

b

XD′
b

− SD′

a − 1

XD′
a − 1

)− (
SD′

a

XD′
a

− SD′

b

XD′
b

)

=
2.SD′

b

XD′
b

− 2.SD′

a .XD′

a −XD′

a − SD′

a

XD′
a .(XD′

a − 1)

= α3(D′)

We note that this change is possible only if SD′

a > 0 and XD′

a > 1.
Finally, we note:

β3(D′) = 1(SD′

a > 0 ∧XD′

a > 1 ∧ SD′

a − 1

XD′
a − 1

<
SD′

b

XD′
b

).α3(D′)

– In a fourth case, we remove an example of group b not satisfying the

measure. This will increase the b-ratio, which becomes
SD′
b

XD′
b −1

. However,

because we consider the absolute value of the difference, this may result
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in increasing unfairness overall. Then, unf(h,D′′) = | S
D′
a

XD′
a

− SD′
b

XD′
b −1

|. If
SD′
b

XD′
b −1

≤ SD′
a

XD′
a

, unfairness is not increased and this modification should

not be considered. We hence only consider the case where
SD′
b

XD′
b −1

>

SD′
a

XD′
a

. Then, we have:

unf(h,D′′)− unf(h,D′) = (
SD′

b

XD′
b − 1

− SD′

a

XD′
a

)− (
SD′

a

XD′
a

− SD′

b

XD′
b

)

=
2.SD′

b .XD′

b − SD′

b

XD′
b .(XD′

b − 1)
− 2.SD′

a

XD′
a

= α4(D′)

We note that this change is possible only if SD′

b < XD′

b and XD′

b > 1.
Finally, we note:

β4(D′) = 1(SD′

b < XD′

b ∧XD′

b > 1 ∧ SD′

b

XD′
b − 1

>
SD′

a

XD′
a

).α4(D′)

By picking the option that worsens fairness the most, we build D′′ such
that

unf(h,D′′)− unf(h,D′) = γ(h,D′)

= max(β1(D′), β2(D′), β3(D′), β4(D′))

An interesting observation is that γ(h,D′) depends on the protected groups
sizes. In particular, the bigger such groups are, the smaller γ(h,D′) is
(because XD′

j , j ∈ {a, b} terms appear at the denominators of all αi, i ∈
{1..4}).

2. Consequence of Proposition 4 and of the fact that γ(h,D′) is the l1-
sensitivity of the unfairness measure of h over dataset D′, in the particular
case where we remove at most one example from D′. Intuitively, observe
that for all D′′ ∈ B(D, d + 1

|D| ), there exists a superset D′ ∈ B(D, d)

such that D′′ is formed by removing exactly one element from D′. Hence,
unf(h,D′′) ≤ unf(h,D′) + γ(h,D′).

3. In 1, we showed that γ(h,D′) can be reached be carefully selecting the
element to be removed from D′ to build dataset D′′ ∈ B(D, d+ 1

|D| ).
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Appendix B Greedy Algorithm for Quantifying Sample
Robustness

The pseudo-code of GreedySR(h,D, ϵ) is depicted in Algorithm 1. Intuitively,
our greedy algorithm starts from D and successively removes elements to build
a subset of D. The process stops when the fairness constraint is violated over
the current subset or when there are no more examples that can be removed
to increase unfairness. At each iteration of the main loop, we compute the
unfairness increase induced by the four possible moves (removing an element
from protected group i that satisfies (or not) the statistical criterion). Details
on the computation of these values can be found in the proof of Proposition 5
in Appendix A. We then execute the move associated to the higher unfairness
increase. Finally, the algorithm returns the Jaccard distance from D to the
(implicitly) built subset.

The objective of this greedy strategy is to find the closest subset (in the Jac-
card sense) on which the fairness constraint is violated. This algorithm comes
with no optimality guarantee (as the subset found by the greedy strategy may
not be the closest from the original dataset). In other terms, GreedySR(h,D, ϵ)
returns an upper-bound on SR(h,D, ϵ), and this upper-bound may be not be
tight. Its has O(|D|) worst-case complexity, as the operations performed within
the While loop are constant-time, and this loop is executed at most |D| − 2
times (we keep at least one example from each group - which is guaranteed by
the conditions of the indicator functions). Such appealing complexity can be
achieved because we do not need to explicitly build the corresponding subsets
(as, for the unfairness metric, only subgroups cardinalities Si and Xi matter).
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Algorithm 1 GreedySR(h,D, ϵ)
Input: classifier h’s predictions, dataset D, unfairness tolerence ϵ

1: Sa, Xa, Sb, Xb ⇐ SD
a , XD

a , SD
b , XD

b

2: while | Sa
Xa

− Sb
Xb

|≤ ϵ do

3: α1 ⇐ Sa
(Xa−1).Xa

4: β1 ⇐ 1(Sa < Xa ∧Xa > 1).α1

5: α2 ⇐ Xb−Sb
(Xb−1).Xb

6: β2 ⇐ 1(Sb > 0 ∧Xb > 1).α2

7: α3 ⇐ 2.Sb
Xb

− 2.Sa.Xa−Xa−Sa
Xa.(Xa−1)

8: β3 ⇐ 1(Sa > 0 ∧Xa > 1 ∧ Sa−1
Xa−1

< Sb
Xb

).α3

9: α4 ⇐ 2.Sb.Xb−Sb
Xb.(Xb−1)

− 2.Sa
Xa

10: β4 ⇐ 1(Sb < Xb ∧Xb > 1 ∧ Sb
Xb−1

> Sa
Xa

).α4

11: switch max(β1, β2, β3, β4) do
12: case β1

13: Xa ⇐ Xa − 1

14: case β2

15: Sb, Xb ⇐ Sb − 1, Xb − 1

16: case β3

17: Sa, Xa ⇐ Sa − 1, Xa − 1

18: case β4

19: Xb ⇐ Xb − 1

20: case 0 ▷ No operation can be done anymore
21: return 1
22: end while
23: return

|D|−Sa−Sb−Xa−Xb
|D|

Appendix C Integration of our Methods within FairCORELS:
Experimental Results

This appendix section contains the experimental results of the integration of
our exact and heuristic methods within the FairCORELS algorithm.

C.1 Exact Method: Unfairness Generalization Improvements Results

This subsection contains experimental results (training, test and validation
unfairness functions of the number of steps performed by our method) for the
integration of our exact method with FairCORELS. Results for the Statistical
Parity metric are presented in Section 5.1.3. Results for the remaining metrics,
for ϵ = 0.01, are detailed here.

Figures 12, 13 and 14 summarize the experimental results using the Predic-
tive Equality, Equal Opportunity, and Equalized Odds metrics (respectively).
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C.2 Exact Method: Sample Robustness and Train Accuracy Evolution

This subsection contains experimental results (training sample robustness and
accuracy functions of the number of steps performed by our method) for the
integration of our exact method with FairCORELS. Results for the Statistical
Parity metric are presented in Section 5.1.3. Results for the remaining metrics,
for ϵ = 0.01, are detailed here.

Figures 15, 16 and 17 summarize the experimental results using the Predic-
tive Equality, Equal Opportunity, and Equalized Odds metrics (respectively).

C.3 Heuristic Method: Fairness Sample-Robustness Audit Results

This appendix section contains experimental results for the integration of our
heuristic method with FairCORELS. Sample-Robustness audit performed on
the built models using IPSR(h,D, ϵ) and GreedySR(h,D, ϵ) are presented
in Section 5.1.4 for the Default of Credit Card Clients dataset. Results for
the Adult Income, COMPAS, and Bank Marketing datasets are presented in
Figures 18, 19, and 20 (respectively).

C.4 Heuristic Method: Performances Results

This appendix section contains experimental results for the integration of our
heuristic method with FairCORELS. Performances results for the equal oppor-
tunity metric are presented in Section 5.1.5. Results for the remaining metrics
are detailed here.

Figures 21, 22, 23, 24 summarize the experimental results using the Statis-
tical Parity metric. Figures 25, 26, 27, 28 summarize the experimental results
using the Predictive Equality metric. Figures 29, 30, 31, 32 summarize the
experimental results using the Equalized Odds metric.

C.5 Comparison between the Exact and Heuristic Methods: Fairness
Sample Robustness

This appendix section contains the experimental comparison of the fairness
sample robustness of our exact and heuristic methods with FairCORELS. Re-
sults for the Statistical Parity metric are presented in Section 5.1.6. Results
for the remaining metrics, for ϵ = 0.01, are detailed here. Figures 33, 34 and 35
summarize the experimental results using the Predictive Equality, Equal Op-
portunity, and Equalized Odds metrics (respectively).

C.6 Comparison between the Exact and Heuristic Methods: Performances

This appendix section contains the experimental comparison of the perfor-
mances (test error/test unfairness tradeoffs) of our exact and heuristic meth-



50 Julien Ferry et al.

ods with FairCORELS. Results for the statistical parity metric are presented in
Section 5.1.6. Results for the remaining metrics, for ϵ = 0.01, are detailed here.
Figures 36, 37 and 38 summarize the experimental results using the Predictive
Equality, Equal Opportunity, and Equalized Odds metrics (respectively).
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Fig. 12 Training, Test, and Validation (when applicable) unfairness of models generated
by FairCORELS through the iterations of our exact method (Predictive Equality metric,
ϵ = 0.01)
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Fig. 13 Training, Test, and Validation (when applicable) unfairness of models generated by
FairCORELS through the iterations of our exact method (Equal Opportunity metric, ϵ = 0.01)
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Fig. 14 Training, Test, and Validation (when applicable) unfairness of models generated by
FairCORELS through the iterations of our exact method (Equalized Odds metric, ϵ = 0.01)



Improving Fairness Generalization Through Sample-Robust Optimization 53

0 5 10 15 20 25 30 35
Steps for the Fairness Sample-Robust Frontier

10 2

10 1

100

Tr
ai

n 
Fa

irn
es

s S
am

pl
e 

Ro
bu

st
ne

ss
 (l

og
)

0.76

0.77

0.78

0.79

0.80

0.81

0.82

Tr
ai

n 
Ac

cu
ra

cy

Adult dataset

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Steps for the Fairness Sample-Robust Frontier

10 2

10 1

100

Tr
ai

n 
Fa

irn
es

s S
am

pl
e 

Ro
bu

st
ne

ss
 (l

og
)

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

Tr
ai

n 
Ac

cu
ra

cy

Compas dataset

0 5 10 15 20 25 30 35 40
Steps for the Fairness Sample-Robust Frontier

10 3

10 2

10 1

100

Tr
ai

n 
Fa

irn
es

s S
am

pl
e 

Ro
bu

st
ne

ss
 (l

og
)

0.780

0.785

0.790

0.795

0.800

0.805

0.810

Tr
ai

n 
Ac

cu
ra

cy

Default of Credit Card Clients dataset

0 5 10 15 20 25
Steps for the Fairness Sample-Robust Frontier

10 3

10 2

10 1

100

Tr
ai

n 
Fa

irn
es

s S
am

pl
e 

Ro
bu

st
ne

ss
 (l

og
)

0.888

0.890

0.892

0.894

0.896

0.898

0.900

Tr
ai

n 
Ac

cu
ra

cy

Bank Marketing dataset

no validation (before-constant)
validation (  criterion)
validation (train unf. criterion)

sample robust fair frontier (no validation)
sample robust fair frontier (validation)

train sample robustness
train accuracy

Fig. 15 Training Sample Robustness and accuracy of models generated by FairCORELS

through the iterations of our exact method (Predictive Equality metric, ϵ = 0.01)
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Fig. 16 Training Sample Robustness and accuracy of models generated by FairCORELS

through the iterations of our exact method (Equal Opportunity metric, ϵ = 0.01)
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Fig. 17 Training Sample Robustness and accuracy of models generated by FairCORELS

through the iterations of our exact method (Equalized Odds metric, ϵ = 0.01)
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Fig. 18 Fairness Sample-Robustness of models generated by FairCORELS using our heuristic
method (Adult Income dataset)
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Fig. 19 Fairness Sample-Robustness of models generated by FairCORELS using our heuristic
method (COMPAS dataset)
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Fig. 20 Fairness Sample-Robustness of models generated by FairCORELS using our heuristic
method (Bank Marketing dataset)
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Fig. 21 Results of our heuristic method (Adult Income dataset, statistical parity metric).
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Fig. 22 Results of our heuristic method (COMPAS dataset, statistical parity metric).
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Fig. 23 Results of our heuristic method (Default Credit dataset, statistical parity metric).
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Fig. 24 Results of our heuristic method (Marketing dataset, statistical parity metric).
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Fig. 25 Results of our heuristic method (Adult Income dataset, predictive equality metric).
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Fig. 26 Results of our heuristic method (COMPAS dataset, predictive equality metric).
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Fig. 27 Results of our heuristic method (Default Credit dataset, predictive equality metric).
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Fig. 28 Results of our heuristic method (Marketing dataset, predictive equality metric).
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Fig. 29 Results of our heuristic method (Adult Income dataset, equalized odds metric).
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Fig. 30 Results of our heuristic method (COMPAS dataset, equalized odds metric).
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Fig. 31 Results of our heuristic method (Default Credit dataset, equalized odds metric).
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Fig. 32 Results of our heuristic method (Marketing dataset, equalized odds metric).
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Fig. 33 Fairness sample-robustness of models generated by FairCORELS using our exact and
heuristic sample-robust fair methods (Predictive Equality metric, ϵ = 0.01)
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Fig. 34 Fairness sample-robustness of models generated by FairCORELS using our exact and
heuristic sample-robust fair methods (Equal Opportunity metric, ϵ = 0.01)
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Fig. 35 Fairness sample-robustness of models generated by FairCORELS using our exact and
heuristic sample-robust fair methods (Equalized Odds metric, ϵ = 0.01)
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Fig. 36 Test error and unfairness of models generated by FairCORELS using our exact and
heuristic sample-robust fair methods (Predictive Equality metric, ϵ = 0.01)
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Fig. 37 Test error and unfairness of models generated by FairCORELS using our exact and
heuristic sample-robust fair methods (Equal Opportunity metric, ϵ = 0.01)
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Fig. 38 Test error and unfairness of models generated by FairCORELS using our exact and
heuristic sample-robust fair methods (Equalized Odds metric, ϵ = 0.01)
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