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Tracer stretching  !" # = ?    ( ̅% : spatial average )
Assumption 1: low-spatial resolution of SSH and SST
∇' (

∇') ( ≈ 1 + -# (> 1)

Stretching growth rate  -# 1, 3 = ? ( 3 : advection duration )  
How to estimate it from a single velocity snapshot 6 1, 3 = 0 ?

Assumption 2: low-temporal resolution of SSH
• Small streamline curvature 8 1 ≤ 8:;<=>;?@A

> Stretching by velocity shear  - ≈ :

BC D

• Large streamline curvature 8 1 > 8:;<=>;?@A

> Stationary convective cells with shear of angular velocity - ≈
:

BE D

Understanding and parametrizing downscaling and mixing 
analyses from altimeter-derived oceanic currents

Ocean eddies play an important role in the transport of heat, salt, nutrients or
pollutants. During a finite-time advection, the gradients of these tracers can
increase or decrease, depending on finite-time Lyapunov exponents (FTLE).
Numerous studies on mixing and/or tracer downscaling methods rely on
satellite altimeter-derived ocean velocities. Filtering most oceanic small-scale
eddies, those resulting Eulerian velocities are often stationary during the
characteristic time of tracer gradient growth (∼ 1 week). Using finite-time
advections, the averaged tracer gradients can then only increase.
Thus, such methods can be described analytically & are sometimes
unrealistic.

V. Resseguier, B. Chapron, E. Mémin

Using finite-time advections by the SSH-derived surface oceanic currents, the averaged tracer gradients can then only increase – possibly without bound – with local
growth rate independent of the initial coarse-scale tracer distribution.

The key mixing processes are then only governed by locally uniform shears and foldings around stationary convective cells.

To predict the tracer deformations and the evolution of their 2nd-order statistics ( !" #, SST spectrum, etc), an efficient proxy is proposed. Applied to a single velocity
snapshot, this proxy extends the Okubo-Weiss criterion. For the Lagrangian advection-based downscaling methods, it successfully predicts the evolution of tracer spectral
energy density after a finite time, and the optimal time to stop the downscaling operation.
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Figure 1 : SST measured by satellite (left) and after 10-day advection downscaling (right)
(1st of January 2011, GHI = 130° ± 5°, GN3 = 45° ± 3°) 
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Fig. 9. Kinetic energy (KE) (left in m2.s�2) and vorticity (right in s�1) derived from SSH

measured the 1st of January 2011.
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ADVECTING SSH-DERIVED CURRENT
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t = 5 day
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Fig. 10. SST (in �C) (from top to bottom) measured by satellite the 1st of January 2011, after

5-, 10-, and 48-day advection.
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SST  DOWNSCALING BY  ADVECTION
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Fig. 10. SST (in �C) (from top to bottom) measured by satellite the 1st of January 2011, after

5-, 10-, and 48-day advection.
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Fig. 10. SST (in �C) (from top to bottom) measured by satellite the 1st of January 2011, after

5-, 10-, and 48-day advection.
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Fig. 10. SST (in �C) (from top to bottom) measured by satellite the 1st of January 2011, after

5-, 10-, and 48-day advection.
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Fig. 11. The time-normalized stretching growth rate (↵/t)2 (s�2) (top) and the squared inverse

of the stretching time, 1/⌧ 2, (s�2) (bottom), in the initial grid (points x0) at time t = 5 days.
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Fig. 11. The time-normalized stretching growth rate (↵/t)2 (s�2) (top) and the squared inverse

of the stretching time, 1/⌧ 2, (s�2) (bottom), in the initial grid (points x0) at time t = 5 days.
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SPATIAL  DISTRIBUTION OF STRETCHING GROWTH RATE AND ITS  PROXY

Stretching growth rate PQ (similar to FTLE)
R"ST =

U

#:
argcosh 1 + -#

≈
U

#:
log -# (if FTLE ≫ 1)

Our proxy
P ≈

e

f
(analytic computation from a single velocity snapshot)
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Ground truth

Our model

TEMPORAL EVOLUTION OF 
STRETCHING AND ITS  PROXY

Lagrangian
displacement

Local growth rate of gradient strengthening (related to FTLE)

One closed 
streamline

=
One temporal
frequency g
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