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Abstract. This paper studies multiobjective optimal control problems in the
continuous-time framework when the space of states and the space of con-
trols are infinite-dimensional and with lighter smoothness assumptions than
the usual ones. The paper generalizes to the multiobjective case existing re-
sults for single-objective optimal control problems in that framework. The
dynamics are governed by differential equations and a finite number of termi-
nal equality and inequality constraints are present. Necessary conditions of
Pareto optimality are provided namely Pontryagin maximum principles in the
strong form. Sufficient conditions are also provided.

1. Introduction

In this paper we study multiobjective optimal control problems, with open loop
information structure, in the continuous-time framework, when the space of states
and the space of controls are infinite-dimensional. We derive necessary conditions
and sufficient conditions of Pareto optimality. We rely on lighter smoothness as-
sumptions than the usual ones. The paper extends to the multiobjective case,
results obtained for single-objective optimal control problems in infinite dimension.

In the continuous-time framework, some results of multiobjective optimal control
problems can be found in Bellaassali and Jourani [3], in Zhu [22], in Bonnel and
Kaya [6], in Gramatovici [10], in de Oliveira and Nunes Silva [20] and in references
therein.
Differential games are widely used in economic theory, see [15], [7], [18] ,[8] and
[21] and Pareto optimality plays a central role in analyzing these problems. In the
discrete-time framework, results on infinite-horizon multiobjective optimal control
problems can be found in Hayek [11] and [12], [13], in Ngo-Hayek [17]. Bachir
and Blot [1], [2] extended infinite-horizon single-objective optimal control problems
in the discrete-time framework, to the case of infinite-dimensional spaces of states
and controls and Hayek [14] extended these results to multiobjective optimal control
problems.

In this paper we rely on the results of Blot and Yilmaz in [4] and [5] to study
multiobjective optimal control problems in an infinite-dimensional setting and in
continuous time. We obtain necessary conditions of Pareto optimality under the
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form of Pontryagin Principles and we provide sufficient conditions of Pareto opti-
mality.

We start by providing necessary conditions of optimality for Mayer multiobjec-
tive optimal control problems and we deduce necessary conditions for Bolza prob-
lems with lighter smoothness assumptions. The Hadamard differential of a mapping
between Banach spaces, which is stronger than the Gâteaux differential but weaker
than the Fréchet differential, has been applied many times in the literature. In
finite dimension, the Hadamard differential coincides with the Fréchet differential
, but for infinite-dimensional spaces the Fréchet differential is much stronger, even
for Lipschitz functions.

We provide different results relying on different constraint qualifications namely
to obtain non trivial multipliers associated to the objective functions. For the
sufficient conditions we follow Mangasarian [16] and Seierstadt-Sydsaeter [19] and
we rely on weaker assumptions than the usual ones namely the concavity at a point
and the quasi-concavity at a point.

The plan of this paper is as follows. Section 2 is devoted to definitions and as-
sumptions. In section 3 the problems are presented: multiobjective optimal control
problems governed by a differential equation when the space of states and the space
of controls are infinite-dimensional, in the continuous-time framework. The notions
of Pareto optimality and weak Pareto optimality are defined. In section 4 the the-
orems on necessary conditions of Pareto optimality are stated namely Pontryagin
maximum principles in the strong form for a Mayer’s problem and for a Bolza’s
problem. In section 5 we give sufficient conditions. The proofs of the necessary
conditions theorems are provided in section 6 and those of the sufficient ones in
section 7.

2. Definitions and assumptions

We set N the set of positive integers and N
∗ = N \ {0}. R denotes the set of real

numbers and R+ the set of non-negative real numbers.
When X and Y are Hausdorff space, C0(X,Y ) denotes the space of continuous
mappings from X into Y .
When Y be a Hausdorff space and T ∈ R

∗
+ =]0,+∞[. As in [4], a function u :

[0, T ] → Y is called piecewise continuous when there exists a subdivision 0 = τ0 <

τ1 < ... < τk < τk+1 = T such that

• For all i ∈ {0, ..., k}, u is continuous on ]τi, τi+1[.
• For all i ∈ {0, ..., k}, the right-hand limit u(τi+) exists in Y .
• For all i ∈ {1, ..., k + 1}, the left-hand limit u(τi−) exists in Y .

The space of piecewise continuous mappings from [0, T ] to Y is denoted by
PC0([0, T ], Y ).
A function u ∈ PC0([0, T ], Y ) is called a normalized piecewise continuous function
when moreover u is right continuous on [0, T [ and when u(T−) = u(T ) cf. [4].
We denote by NPC0([0, T ], Y ) the space of such functions.
As in [4], when Y is a real Banach space, a function x : [0, T ] → Y is called piecewise
continuously differentiable when x ∈ C0([0, T ], Y ) and there exists a subdivision
(τi)0≤i≤k+1 of [0, T ] such that the following conditions are fulfilled.

• For all i ∈ {0, ..., k}, x is continuously differentiable on ]τi, τi+1[
• For all i ∈ {0, ..., k}, x′(τi+) exists in Y
• For all i ∈ {1, ..., k + 1}, x′(τi−) exists in Y
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The (τi)1≤i≤k+1 are the corners of the function x.
We denote by PC1([0, T ], Y ) the space of such functions.
When G is an open subset of Y , PC1([0, T ], G) is the set of functions
x ∈ PC1([0, T ], Y ) such that x([0, T ]) ⊂ G.
When x ∈ PC1([0, T ], Y ) and (τi)0≤i≤k+1 are the corners of the function x, we
define the function dx : [0, T ] → Y , called the extended derivative of x, by setting

dx(t) :=







x′(t) if t ∈ [0, T ] \ {τi : i ∈ {0, ..., k + 1}}
x′(τi+) if t = τi, i ∈ {0, ..., k}
x′(T−) if t = T.

(2.1)

Notice that, contrary to the usual derivative of x, the extended derivative of x is
defined on [0, T ] all over. Note that dx ∈ NPC0([0, T ], Y ) and we have the following
relation between x, dx and the Riemann integral:

for all a < t in [0, T ], x(t)− x(a) =

∫ t

a

dx(s)ds,

Besides, d is a bounded linear operator from PC1([0, T ], Y ) into NPC0([0, T ], Y ).
All these properties motivated the authors of [4] to introduce the notion of extended
derivative for piecewise continuously differentiable functions.
When X and Y are real normed vector spaces, L(X,Y ) denotes the space of the
bounded linear mappings from X into Y and X∗ denotes the topological dual of
X .
We denote by ‖ · ‖L the usual norm of L(X,Y ).
Let G be a non-empty open subset of X , let f : G→ Y be a mapping and let x ∈ G.
The mapping f is called Gâteaux differentiable at x when there exists DGf(x) ∈

L(X,Y ) such that for all h ∈ X , limt→0+
f(x+th)−f(x)

t
= DGf(x) · h.

Moreover, DGf(x) is called the Gâteaux differential of f at x.
We say that f is Hadamard differentiable at x when there exists DH f(x) ∈ L(X,Y )

such that for eachK compact in X , limt→0+ suph∈K ‖ f(x+th)−f(x)
t

−DH f(x)·h‖ = 0.
Moreover, DHf(x) is called the Hadamard differential of f at x.
When f is Hadamard differentiable at x, f is also Gâteaux differentiable at x and
DHf(x) = DGf(x). But the converse is false in general when the dimension of X is
greater than 2.
Notice that Hadamard differentiability and Gâteaux differentiability always coin-
cide for locally Lipschitz functions in any normed vector space. When it exists,
DF f(x) denotes the Fréchet differential of f at x.
When f is Fréchet differentiable at x, f is Hadamard differentiable at x andDF f(x) =
DHf(x). But the converse is false in general when the dimension of X is infinite.
When X is a finite product of n real normed spaces, X =

∏

1≤i≤nXi, if k ∈

{1, ..., n}, DF,kf(x) (respectively DH,kf(x), respectively DG,kf(x)) denotes the par-
tial Fréchet (respectively Hadamard, respectively Gâteaux) differential of f at x
with respect to the k-th vector variable.
More information on these notions of differentials can be found in [9].
Next, we introduce definitions of notions of concavity at a point in infinite dimen-
sion cf. Mangasarian [16] for the finite dimension. This concepts will be used for
sufficient conditions.
Let g : G→ R be a mapping. The mapping g is said to be concave at x when for all
y ∈ G, for all t ∈ [0, 1] s.t. (1− t)x+ ty ∈ G, g((1− t)x+ ty) ≥ (1− t)g(x) + tg(y).
When g is Gâteaux differentiable at x, the function g is said to be pseudo-concave
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at x when for all y ∈ G, [DGg(x) · (y − x) ≤ 0 ⇒ g(y) ≤ g(x)].
The mapping g is said to be quasi-concave at x when for all y ∈ G, for all t ∈ [0, 1]
s.t. (1− t)x+ ty ∈ G,[g(x) ≤ g(y) ⇒ g(x) ≤ g((1− t)x+ ty)].
When g is Gâteaux differentiable at x and g is quasi-concave at x, we have, for all
y ∈ G, [g(y) ≥ g(x) ⇒ DGg(x) · (y − x) ≥ 0].

3. The multiobjective optimal control problems

Let T ∈]0,+∞[, E is a real Banach space, Ω is a non-empty subset of E, U is
a Hausdorff topological space and ξ0 ∈ Ω. We consider the functions f : [0, T ] ×
Ω × U → E, f0

i : [0, T ] × Ω × U → R when i ∈ {1, ..., l}, g0i : Ω → R when
i ∈ {1, ..., l}, gα : Ω → R when α ∈ {1, ...,m} and hβ : Ω → R when β ∈ {1, ..., q},
when (l,m, q) ∈ (N∗)3. For all i ∈ {1, ..., l} we consider also the function Ji :
PC1([0, T ],Ω)×NPC0([0, T ], U) → R defined by, for all (x, u) ∈ PC1([0, T ],Ω)×

NPC0([0, T ], U), Ji(x, u) := g0i (x(T )) +
∫ T

0
f0
i (t, x(t), u(t))dt.

With these elements, we can build the following multiobjective Bolza problem

(B)























Maximize (J1(x, u), ..., Jl(x, u))
subject to x ∈ PC1([0, T ],Ω), u ∈ NPC0([0, T ], U)

∀t ∈ [0, T ], dx(t) = f(t, x(t), u(t)), x(0) = ξ0
∀α ∈ {1, ...,m}, gα(x(T )) ≥ 0
∀β ∈ {1, ..., q}, hβ(x(T )) = 0.

Our problem is a reformulation of the multiobjective classical Bolza problem where
the controlled dynamical system is formulated as follows : x′(t) = f(t, x(t), u(t))
when x′(t) exists, and the control function u ∈ PC0([0, T ], U). In [4], we ex-
plain that the present formulation is equivalent to the classical one, for the single-
objective Bolza problem. By using the same reasoning, we remark that this formu-
lation is also equivalent for the multiobjective Bolza problem.
When for all i ∈ {1, ..., l}, f0

i = 0, (B) is called a multiobjective Mayer problem
and it is denoted by (M).
We denote by Adm(B) (respectively Adm(M)) the set of the admissible processes
of (B) (respectively (M)).
It is clear that Adm(B) = Adm(M). When (x, u) is an admissible process for (B) or
(M), we consider the following constraint qualifications, when the functions defin-
ing the terminal constraints and the terminal parts of the criterion are Hadamard
differentiable at x(T ).

(QC0)























If (bi)1≤i≤l ∈ R
l
+, (cα)1≤α≤m ∈ R

m
+ , (dβ)1≤β≤q ∈ R

q satisfy
(∀α ∈ {1, ...,m}, cαg

α(x(T )) = 0), and
∑l

i=1 biDHg
0
i (x(T )) +

∑m

α=1 cαDHg
α(x(T )) +

∑q

β=1 dβDHh
β(x(T )) = 0,

then (∀i ∈ {1, ..., l}, bi = 0), (∀α ∈ {1, ...,m}, cα = 0) and
(∀β ∈ {1, ..., q}, dβ = 0).

and

(QC1)















If (cα)1≤α≤m ∈ R
m
+ , (dβ)1≤β≤q ∈ R

q satisfy
(∀α ∈ {1, ...,m}, cαg

α(x(T )) = 0), and
∑m

α=1 cαDHg
α(x(T )) +

∑q

β=1 dβDHh
β(x(T )) = 0, then

(∀α ∈ {1, ...,m}, cα = 0) and (∀β ∈ {1, ..., q}, dβ = 0).
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Definition 3.1. An admissible process (x, u) for (B) is a Pareto optimal solution
for (B) when there does not exist an admissible process (x, u) for (B) such that for all
i ∈ {1, ..., l}, Ji(x, u) ≥ Ji(x, u) and for some i0 ∈ {1, ..., l}, Ji0(x, u) > Ji0(x, u).

Definition 3.2. An admissible process (x, u) for (B) is a weak Pareto optimal
solution for (B) when there does not exist an admissible process (x, u) for (B) such
that for all i ∈ {1, ..., l}, Ji(x, u) > Ji(x, u).

Now, we formulate a list of conditions which will become the assumptions of our
theorems. Let (x0, u0) be an admissible process for (B) or (M).

Conditions on the vector field.

(Av1) f ∈ C0([0, T ] × Ω × U,E), for all (t, ξ, ζ) ∈ [0, T ] × Ω × U , DG,2f(t, ξ, ζ)
exists, for all (t, ζ) ∈ [0, T ] × U , DF,2f(t, x0(t), ζ) exists and [(t, ζ) 7→
DF,2f(t, x0(t), ζ)] ∈ C0([0, T ]× U,L(E,E)).

(Av2) For all non-empty compact K ⊂ Ω, for all non-empty compact M ⊂ U ,
sup(t,ξ,ζ)∈[0,T ]×K×M ‖DG,2f(t, ξ, ζ)‖L < +∞.

Conditions on the integrands of the criterion.

(Ai1) For all i ∈ {1, ..., l}, f0
i ∈ C0([0, T ]×Ω×U,R), for all (t, ξ, ζ) ∈ [0, T ]×Ω×U ,

DG,2f
0
i (t, ξ, ζ) exists, for all (t, ζ) ∈ [0, T ]×U , DF,2f

0
i (t, x0(t), ζ) exists and

[(t, ζ) 7→ DF,2f
0
i (t, x0(t), ζ)] ∈ C0([0, T ]× U,E∗).

(Ai2) For all i ∈ {1, ..., l}, for all non-empty compact K ⊂ Ω, for all non-empty
compact M ⊂ U , sup(t,ξ,ζ)∈[0,T ]×K×M ‖DG,2f

0
i (t, ξ, ζ)‖L < +∞.

Conditions on the functions defining the terminal constraints and ter-
minal parts of the criterion

(At1) For all i ∈ {1, ..., l}, g0i is Hadamard differentiable at x0(T ).
(At2) For all α ∈ {1, ...,m}, gα is Hadamard differentiable at x0(T ).
(At3) For all β ∈ {1, ..., q}, hβ is continuous on a neighborhood of x0(T ) and

Hadamard differentiable at x0(T ).

4. Necessary conditions of Pareto optimality

4.1. Necessary conditions of Pareto optimality for the Mayer problem.

Definition 4.1. The Hamiltonian of (M) is the function HM : [0, T ]×Ω×U×E∗ →
R defined by, for all (t, x, u, p) ∈ [0, T ]×Ω×U ×E∗, HM (t, x, u, p) := p · f(t, x, u).

Theorem 4.2. (Pontryagin Principle for the Mayer problem)
When (x0, u0) is a Pareto optimal solution of (M), under (Av1), (Av2), (At1),
(At2) and (At3), there exists (θi)1≤i≤l ∈ R

l, (λα)1≤α≤m ∈ R
m, (µβ)1≤β≤q ∈ R

q

and an adjoint function p ∈ PC1([0, T ], E∗) which satisfy the following conditions.

(NN) ((θi)1 ≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q) 6= 0
(Si) For all i ∈ {1, ..., l}, θi ≥ 0 and for all α ∈ {1, ...,m}, λα ≥ 0.
(Sℓ) For all α ∈ {1, ...,m}, λαg

α(x0(T )) = 0.

(TC)
∑l

i=1 θiDHg
0
i (x0(T )) +

∑m
α=1 λαDHg

α(x0(T )) +
∑q

β=1 µβDHh
β(x0(T )) =

p(T ).
(AE.M) dp(t) = −DF,2HM (t, x0(t), u0(t), p(t)) for all t ∈ [0, T ].
(MP.M) For all t ∈ [0, T ], for all ζ ∈ U ,

HM (t, x0(t), u0(t), p(t)) ≥ HM (t, x0(t), ζ, p(t)).
(CH.M) H̄M := [t 7→ HM (t, x0(t), u0(t), p(t))] ∈ C0([0, T ],R).
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(NN) is a condition of non nullity, (Si) is a sign condition, (Sℓ) is a slackness
condition, (TC) is the transversality condition, (AE.M) is the adjoint equation,
(MP.M) is the maximum principle and (CH.M) is a condition of continuity on the
Hamiltonian.

Corollary 4.3. In this setting and under the assumptions of Theorem 4.2, if more-
over we assume that (QC1) is fulfilled for (x, u) = (x0, u0), then, for all t ∈ [0, T ],
((θi)1≤i≤l, p(t)) is never equal to zero.

Corollary 4.4. In this setting and under the assumptions of Theorem 4.2, if more-
over we assume that (QC0) is fulfilled for (x, u) = (x0, u0), then, for all t ∈ [0, T ],
p(t) is never equal to zero.

As in [5], we introduce another condition

(Av3) U is a subset of a real normed vector space Y , there exists t̂ ∈ [0, T ] s.t.
U is a neighborhood of u0(t̂) in Y , DG,3f(t̂, x0(t̂), u0(t̂)) exists and it is
surjective.

Corollary 4.5. In this setting and under the assumptions of Theorem 4.2, if
moreover we assume that (QC1) is fulfilled for (x, u) = (x0, u0) and (Av3), then
(θi)1≤i≤l 6= 0.

We introduce a new condition of linear independence.

(Alib) U is a subset of a real normed vector space Y s.t. U is a neighborhood of
u0(T ) in Y , DG,3f(T, x0(T ), u0(T )) exists and
((DHg

α(x0(T )) ◦DG,3f(T, x0(T ), u0(T )))1≤α≤m,

(DHh
β(x0(T )) ◦DG,3f(T, x0(T ), u0(T )))1≤β≤q) are linearly independent.

Corollary 4.6. In this setting and under the assumptions of Theorem 4.2, if more-
over we assume (Alib) is fulfilled, then (θi)1≤i≤l 6= 0.

For each j ∈ {1, ..., l}, we consider the following condition:

(Af)j U is a subset of a real normed vector space Y s.t. U is a neighborhood of
u0(T ) in Y , DG,3f(T, x0(T ), u0(T )) exists and
((DHg

0
i (x0(T )) ◦DG,3f(T, x0(T ), u0(T )))i6=j ,

(DHg
α(x0(T )) ◦DG,3f(T, x0(T ), u0(T )))1≤α≤m,

(DHh
β(x0(T )) ◦DG,3f(T, x0(T ), u0(T )))1≤β≤q) are linearly independent.

Corollary 4.7. In this setting and under the assumptions of Theorem 4.2, if, for
each j ∈ {1, ..., l}, we have (Af)j, then θj 6= 0 i.e. we can take θj = 1. Moreover,
((θi)1≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q, p) ∈ R

l ×R
m ×R

q ×PC1([0, T ], E∗) with θj = 1
that verify the conclusions of Theorem 4.2 are unique.

4.2. Necessary conditions of Pareto optimality for the Bolza problem.

Definition 4.8. The Hamiltonian of (B) is the function HB : [0, T ]×Ω×U×E∗×
R

l → R defined by, for all (t, x, u, p, θ) ∈ [0, T ]×Ω×U×E∗×R
l, HB(t, x, u, p, θ) :=

∑l

i=1 θif
0
i (t, x, u) + p · f(t, x, u).

Theorem 4.9. (Pontryagin Principle for the Bolza problem)
When (x0, u0) is a Pareto optimal solution of (B), under (Ai1), (Ai2), (Av1),
(Av2), (At1), (At2) and (At3), there exists (θi)1≤i≤l ∈ R

l, (λα)1≤α≤m ∈ R
m,

(µβ)1≤β≤q ∈ R
q and an adjoint function p ∈ PC1([0, T ], E∗) which satisfy the

following conditions.
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(NN) ((θi)1 ≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q) 6= 0
(Si) For all i ∈ {1, ..., l}, θi ≥ 0 and for all α ∈ {1, ...,m}, λα ≥ 0.
(Sℓ) For all α ∈ {1, ...,m}, λαg

α(x0(T )) = 0.

(TC)
∑l

i=1 θiDHg
0
i (x0(T )) +

∑m
α=1 λαDHg

α(x0(T )) +
∑q

β=1 µβDHh
β(x0(T )) =

p(T ).
(AE.B) dp(t) = −DF,2HB(t, x0(t), u0(t), p(t), (θi)1≤i≤l) for all t ∈ [0, T ].
(MP.B) For all t ∈ [0, T ], for all ζ ∈ U ,

HB(t, x0(t), u0(t), p(t), (θi)1≤i≤l) ≥ HB(t, x0(t), ζ, p(t), (θi)1≤i≤l).
(CH.B) H̄B := [t 7→ HB(t, x0(t), u0(t), p(t), (θi)1≤i≤l)] ∈ C0([0, T ],R).

Corollary 4.10. In this setting and under the assumptions of Theorem 4.9, if
moreover we assume that (QC1) is fulfilled for (x, u) = (x0, u0), then, for all t ∈
[0, T ], ((θi)1≤i≤l, p(t)) is never equal to zero.

Corollary 4.11. In this setting and under the assumptions of Theorem 4.9, if
moreover we assume that (QC1) is fulfilled for (x, u) = (x0, u0) and (Av3), then
(θi)1≤i≤l 6= 0.

Corollary 4.12. In the setting and under the assumptions of Theorem 4.9, if
moreover we assume (Alib) is fulfilled, then (θi)1≤i≤l 6= 0.

For each j ∈ {1, ..., l}, we consider the following condition:

(Af)0j U is a subset of a real normed vector space Y s.t. U is a neighbor-
hood of u0(T ) in Y , DG,3f(T, x0(T ), u0(T )) exists, ∀i ∈ {1, ..., l}, i 6= j

DG,3f
0
i (T, x0(T ), u0(T )) exists and

((DHg
0
i (x0(T )) ◦DG,3f(T, x0(T ), u0(T )) +DG,3f

0
i (T, x0(T ), u0(T )))i6=j ,

(DHg
α(x0(T )) ◦DG,3f(T, x0(T ), u0(T )))1≤α≤m,

(DHh
β(x0(T )) ◦DG,3f(T, x0(T ), u0(T )))1≤β≤q) are linearly independent.

Corollary 4.13. In this setting and under the assumptions of Theorem 4.9, if, for
each j ∈ {1, ..., l}, we have (Af)0j , then θj 6= 0 (i.e. we can choose θj = 1).

Moreover, if DG,3f
0
j (T, x0(T ), u0(T )) exists, then we have:

((θi)1≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q, p) ∈ R
l ×R

m ×R
q ×PC1([0, T ], E∗) with θj = 1

that verify the conclusions of Theorem 4.9 are unique.

5. Sufficient conditions of Pareto optimality

Let (x, u) ∈ PC1([0, T ],Ω)× NPC0([0, T ], U), we consider the following condi-
tions.

(St1) For all i ∈ {1, ..., l} g0i is concave at x(T ) and Hadamard differentiable at
x(T ).

(St1-bis) For all i ∈ {1, ..., l} g0i is pseudo-concave at x(T ) and Hadamard differen-
tiable at x(T ).

(St2) For all α ∈ {1, ...,m}, gα is quasi-concave at x(T ) and Hadamard differen-
tiable at x(T ).

(St3) For all β ∈ {1, ..., q}, hβ and −hβ are quasi-concave at x(T ) and Hadamard
differentiable at x(T ).

(Si1) For all i ∈ {1, ..., l}, f0
i ∈ C0([0, T ]× Ω× U,R).

(Si2) For all t ∈ [0, T ], for all i ∈ {1, ..., l}, DF,2f
0
i (t, x(t), u(t)) exists and [t 7→

DF,2f
0
i (t, x(t), u(t))] ∈ NPC0([0, T ], E∗).

(Sv1) f ∈ C0([0, T ]× Ω× U,E).
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(Sv2) For all t ∈ [0, T ] DF,2f(t, x(t), u(t)) exists and [t 7→ DF,2f(t, x(t), u(t))] ∈
NPC0([0, T ],L(E,E)).

Theorem 5.1. When (x, u) ∈ Adm(M), under (St1-bis), (St2), (St3), (Sv1) if
there exists ((θi)1≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q, p) ∈ R

l+m+q×PC1([0, T ], E∗) verify-
ing the conclusions (NN), (Si), (Sℓ) and (TC) of Theorem 4.2 with (x0, u0) = (x, u)
and if the following condition is satisfied

(Shm1) For each (x, u) ∈ Adm(M), for all t ∈ [0, T ] almost everywhere for the
canonical measure of Borel on [0, T ],

HM (t, x(t), u(t), p(t))−HM (t, x(t), u(t), p(t)) ≥ dp(t) · (x(t)− x(t)),

then we have:
if (θi)1≤i≤l 6= 0, then (x, u) is a weak Pareto optimal solution of (M),
if for all i ∈ {1, ..., l}, θi 6= 0, then (x, u) is a Pareto optimal solution of (M).

Theorem 5.2. When (x, u) ∈ Adm(M), under (St1-bis), (St2), (St3), (Sv1),
(Sv2) if there exists ((θi)1≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q, p) ∈ R

l+m+q×PC1([0, T ], E∗)
verifying all the conclusions of Theorem 4.2 with (x0, u0) = (x, u) and if the follow-
ing condition is satisfied

(Shm2) for all (t, ξ) ∈ [0, T ]× Ω,
H∗

M (t, ξ, p(t)) = maxζ∈U HM (t, ξ, ζ, p(t)) exists, and for all t ∈ [0, T ] ,
[ξ 7→ H∗

M (t, ξ, p(t))] is concave at x(t) and Gâteaux differentiable at x(t),

then we have:
if (θi)1≤i≤l 6= 0, then (x, u) is a weak Pareto optimal solution of (M),
if for all i ∈ {1, ..., l}, θi 6= 0, then (x, u) is a Pareto optimal solution of (M).

Theorem 5.3. When (x, u) ∈ Adm(M), under (St1-bis), (St2), (St3), (Sv1),
(Sv2) if there exists ((θi)1≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q, p) ∈ R

l+m+q×PC1([0, T ], E∗)
verifying all the conclusions of Theorem 4.2 with (x0, u0) = (x, u) and if the follow-
ing condition is satisfied

(Shm3) U is a subset of a real normed vector space Y s.t. for all t ∈ [0, T ], U is a
neighborhood of u(t), and for all t ∈ [0, T ],
[(ξ, ζ) 7→ HM (t, ξ, ζ, p(t)) is Gâteaux differentiable at (x(t), u(t)) and con-
cave at (x(t), u(t)),

then we have:
if (θi)1≤i≤l 6= 0, then (x, u) is a weak Pareto optimal solution of (M),
if for all i ∈ {1, ..., l}, θi 6= 0, then (x, u) is a Pareto optimal solution of (M).

Remark 5.4. By using our constraint qualifications, we can rewrite the conclusion
of Theorem 5.2 and Theorem 5.3 as follows.
If the condition (Alib) or [(QC1) and (Av3)] is fulfilled for (x0, u0) = (x, u) then
(x, u) is a weak Pareto optimal solution of (M),
if, for each j ∈ {1, ..., l}, (Af)j is fulfilled for (x0, u0) = (x, u), then (x, u) is a
Pareto optimal solution of (M).

Theorem 5.5. When (x, u) ∈ Adm(B), under (St1), (St2), (St3), (Si1), (Si2)
(Sv1), (Sv2) if there exists ((θi)1≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q, p) belongs to R

l+m+q×
PC1([0, T ], E∗) verifying the conclusions (NN), (Si), (Sℓ) and (TC) of Theorem 4.9
with (x0, u0) = (x, u) and if the following condition is satisfied
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(Shb1) For each (x, u) ∈ Adm(B), for all t ∈ [0, T ] almost everywhere for the
canonical measure of Borel on [0, T ],

HB(t, x(t), u(t), p(t), (θi)1≤i≤l)−HB(t, x(t), u(t), p(t), (θi)1≤i≤l) ≥ dp(t)·(x(t)−x(t)),

then we have:
if (θi)1≤i≤l 6= 0, then (x, u) is a weak Pareto optimal solution of (B),
if for all i ∈ {1, ..., l}, θi 6= 0, then (x, u) is a Pareto optimal solution of (B).

Theorem 5.6. When (x, u) ∈ Adm(B), under (St1), (St2), (St3), (Si1), (Si2),
(Sv1), (Sv2) if there exists ((θi)1≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q, p) belongs to R

l+m+q×
PC1([0, T ], E∗) verifying all the conclusions of Theorem 4.9 with (x0, u0) = (x, u)
and if the following condition is satisfied

(Shb2) for all (t, ξ) ∈ [0, T ]× Ω,
H∗

B(t, ξ, p(t), (θi)1≤i≤l) = maxζ∈U HB(t, ξ, ζ, p(t), (θi)1≤i≤l) exists, and for
all t ∈ [0, T ], [ξ 7→ H∗

B(t, ξ, p(t), (θi)1≤i≤l)] is concave at x(t) and Gâteaux
differentiable at x(t),

then we have:
if (θi)1≤i≤l 6= 0, then (x, u) is a weak Pareto optimal solution of (B),
if for all i ∈ {1, ..., l}, θi 6= 0, then (x, u) is a Pareto optimal solution of (B).

Theorem 5.7. When (x, u) ∈ Adm(B), under (St1), (St2), (St3), (Si1), (Si2),
(Sv1), (Sv2) if there exists ((θi)1≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q, p) belongs to R

l+m+q×
PC1([0, T ], E∗) verifying all the conclusions of Theorem 4.9 with (x0, u0) = (x, u)
and if the following condition is satisfied

(Shb3) U is a subset of a real normed vector space Y s.t. for all t ∈ [0, T ], U is a
neighborhood of u(t), and for all t ∈ [0, T ],
[(ξ, ζ) 7→ HB(t, ξ, ζ, p(t), (θi)1≤i≤l) is Gâteaux differentiable at (x(t), u(t))
and concave at (x(t), u(t)),

then we have:
if (θi)1≤i≤l 6= 0, then (x, u) is a weak Pareto optimal solution of (B),
if for all i ∈ {1, ..., l}, θi 6= 0, then (x, u) is a Pareto optimal solution of (B).

Remark 5.8. By using our constraint qualifications, we can rewrite the conclusion
of Theorem 5.6 and Theorem 5.7 as follows.
If the condition (Alib) or [(QC1) and (Av3)] is fulfilled for (x0, u0) = (x, u) then
(x, u) is a weak Pareto optimal solution of (B),
if, for each j ∈ {1, ..., l}, (Af)0j is fulfilled for (x0, u0) = (x, u), then (x, u) is a

Pareto optimal solution of (B).

6. Proof of the necessary conditions

6.1. Proof of the Theorem 4.2.

Lemma 6.1. For all i ∈ {1, ..., l}, (x0, u0) is a solution of the following single-
objective Mayer problem

(Mi)































Maximize Ji(x, u) := g0i (x(T ))
subject to x ∈ PC1([0, T ],Ω), u ∈ NPC0([0, T ], U)

∀t ∈ [0, T ], dx(t) = f(t, x(t), u(t)), x(0) = ξ0
∀k ∈ {1, ..., l}, k 6= i, g0k(x(T )) ≥ g0k(x0(T ))
∀α ∈ {1, ...,m}, gα(x(T )) ≥ 0
∀β ∈ {1, ..., q}, hβ(x(T )) = 0.
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Proof. Let i ∈ {1, ..., l}. We proceed by contradiction, we assume that (x0, u0) is
not a solution of (Mi) i.e. there exists (x, u) an admissible process of (Mi) s.t.
g0i (x(T )) > g0i (x0(T )).
This can be rewritten (x, u) ∈ Adm(M) s.t. g0i (x(T )) > g0i (x0(T )) and for all
k ∈ {1, ..., l}, k 6= i, g0k(x(T )) ≥ g0k(x0(T )).
Therefore, (x0, u0) is not a Pareto optimal solution. This is a contradiction. �

For each x ∈ Ω, for each i ∈ {2, ..., l}, we set gi(x) = g0i (x) − g0i (x0(T )).
Thanks to (At1), for each i ∈ {2, ..., l}, gi is Hadamard differentiable at x0(T ) and
DHgi(x0(T )) = DHg

0
i (x0(T )).

Consequently, by using the Lemma 6.1 and (At2), (At3), (Av1), (Av2), the as-
sumptions of Theorem 2.4 in [5] are fulfilled for (M1)

(M1)































Maximize g01(x(T ))
subject to x ∈ PC1([0, T ],Ω), u ∈ NPC0([0, T ], U)

∀t ∈ [0, T ], dx(t) = f(t, x(t), u(t)), x(0) = ξ0
∀i ∈ {2, ..., l}, gi(x(T )) ≥ 0
∀α ∈ {1, ...,m}, gα(x(T )) ≥ 0
∀β ∈ {1, ..., q}, hβ(x(T )) = 0.

Hence, we obtain that there exists (θi)1≤i≤l ∈ R
l, (λα)1≤α≤m ∈ R

m, (µβ)1≤β≤q ∈
R

q and an adjoint function p ∈ PC1([0, T ], E∗) which satisfy the following condi-
tions.

(NNs) ((θi)1 ≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q) 6= 0.
(Sis) For all i ∈ {1, ..., l}, θi ≥ 0 and for all α ∈ {1, ...,m}, λα ≥ 0.
(Sℓs) For all i ∈ {2, ..., l}, θigi(x0(T )) = 0 and for all α ∈ {1, ...,m}, λαg

α(x0(T )) =
0.

(TCs)
∑l

i=1 θiDHg
0
i (x0(T )) +

∑m

α=1 λαDHg
α(x0(T )) +

∑q

β=1 µβDHh
β(x0(T )) =

p(T ).
(AE.Ms) dp(t) = −DF,2HM (t, x0(t), u0(t), p(t)) for all t ∈ [0, T ].
(MP.Ms) For all t ∈ [0, T ], for all ζ ∈ U ,

HM (t, x0(t), u0(t), p(t)) ≥ HM (t, x0(t), ζ, p(t)).
(CH.Ms) H̄M := [t 7→ HM (t, x0(t), u0(t), p(t))] ∈ C0([0, T ],R).

Therefore, since for all i ∈ {2, ..., l}, gi(x0(T )) = 0, (NNs), (Sis), (Sℓs), (TCs),
(AE.Ms) , (MP.Ms) and (CH.Ms) are equivalent to (NN), (Si), (Sℓ), (TC), (AE.M)
, (MP.M) and (CH.M). Therefore, the proof Theorem 4.2 is complete.

6.2. Proof of Corollary 4.3. We proceed by contradiction by assuming that there
exists t1 ∈ [0, T ] such ((θi)1≤i≤l, p(t1)) = (0, 0).
Since (AE.M) is an homogeneous linear equation, and by using the uniqueness of
the Cauchy problem ((AE.M), p(t1) = 0), we obtain that p is equal to zero on [0, T ],
in particular we have p(T ) = 0.
Hence, by using (TC), (Si), (Sℓ), (QC1), we obtain that (∀α ∈ {1, ...,m}, λα = 0)
and (∀β ∈ {1, ..., q}, µβ = 0).
Therefore, since (θi)1≤i≤l = 0, we have ((θi)1 ≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q) = 0
which is a contradiction with (NN).

6.3. Proof of Corollary 4.4. We proceed by contradiction by assuming that there
exists t1 ∈ [0, T ] such p(t1) = 0.
Since (AE.M) is an homogeneous linear equation, and by using the uniqueness of
the Cauchy problem ((AE.M), p(t1) = 0, we obtain that p is equal to zero on [0, T ],
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in particular we have p(T ) = 0.
Consequently, by using (TC), (Si), (Sℓ), (QC0), we obtain that ((θi)1 ≤i≤l, (λα)1≤α≤m,
(µβ)1≤β≤q) = 0 which is a contradiction with (NN).

6.4. Proof of Corollary 4.5. We proceed by contradiction, we assume that
(θi)1≤i≤l = 0. Since DG,3f(t̂, x0(t̂), u0(t̂)) exists, DG,3HM (t̂, x0(t̂), u0(t̂), p(t̂)) ex-
ists and

DG,3HM (t̂, x0(t̂), u0(t̂), p(t̂)) = p(t̂) ◦DG,3f(t̂, x0(t̂), u0(t̂)).

Therefore, by using (MP.M), we have p(t̂) ◦DG,3f(t̂, x0(t̂), u0(t̂)) = 0.

Since DG,3f(t̂, x0(t̂), u0(t̂)) is surjective, we have p(t̂) = 0.
This is a contradiction with the Corollary 4.3, therefore (θi)1≤i≤l 6= 0.

6.5. Proof the Corolloray 4.6. We proceed by contradiction, we assume that
(θi)1≤i≤l = 0.
Since DG,3f(T, x0(T ), u0(T )) exists, DG,3HM (T, x0(T ), u0(T ), p(T )) exists and

DG,3HM (T, x0(T ), u0(T ), p(T )) = p(T ) ◦DG,3f(T, x0(T ), u0(T )).

Consequently, by using (MP.M), we have p(T ) ◦DG,3f(T, x0(T ), u0(T )) = 0.
That is why, thanks to (TC) and (θi)1≤i≤l = 0, we obtain that

∑m

α=1 λαDHg
α(x0(T )) ◦DG,3f(T, x0(T ), u0(T ))

+
∑q

β=1 µβDHh
β(x0(T )) ◦DG,3f(T, x0(T ), u0(T )) = 0.

}

Hence, thanks to (Alib), we have ((λα)1≤α≤m, (µβ)1≤β≤q) = 0.
Consequently, since (θi)1≤i≤l = 0, we have ((θi)1 ≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q) = 0
this a contradiction with (NN).

6.6. Proof the Corolloray 4.7. Let j ∈ {1, ..., l}. We assume that (Af)j .
We proceed by contradiction, we assume that θj = 0.
Since DG,3f(T, x0(T ), u0(T )) exists, DG,3HM (T, x0(T ), u0(T ), p(T )) exists and

DG,3HM (T, x0(T ), u0(T ), p(T )) = p(T ) ◦DG,3f(T, x0(T ), u0(T )).

Consequently, by using (MP.M), we have p(T ) ◦DG,3f(T, x0(T ), u0(T )) = 0.
That is why, thanks to (TC) and θj = 0, we obtain that

∑

i6=j θiDHg
0
i (x0(T )) ◦DG,3f(T, x0(T ), u0(T ))

+
∑m

α=1 λαDHg
α(x0(T )) ◦DG,3f(T, x0(T ), u0(T ))

+
∑q

β=1 µβDHh
β(x0(T )) ◦DG,3f(T, x0(T ), u0(T )) = 0.







Hence, thanks to (Af)j , we have ((θi)i6=j , (λα)1≤α≤m, (µβ)1≤β≤q) = 0.
Consequently, since θj = 0, we have ((θi)1 ≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q) = 0 this a
contradiction with (NN).
We set ∀i ∈ {1, ..., l}, θ′i =

θi
θj
, ∀α ∈ {1, ...,m}, λ′α := λα

θj
, ∀β ∈ {1, ..., q}, µ′

β :=
µβ

θj

and p′ := 1
θj
p.

Since the set of ((θi)1 ≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q, p) ∈ R
l+m+q × PC1([0, T ], E∗)

verifying the conclusions of Theorem 4.2 is a cone, we have
((θ′i)1≤i≤l, (λ

′
α)1≤α≤m, (µ

′
β)1≤β≤q, p

′) that verifies the conclusions of Theorem 4.2

with θ′j = 1.

Let ((θ1i )1≤i≤l, (λ
1
α)1≤α≤m, (µ

1
β)1≤β≤q, p

1) ∈ R
l+m+q × PC1([0, T ], E∗) and



12 N. HAYEK, H. YILMAZ

((θ2i )1≤i≤l, (λ
2
α)1≤α≤m, (µ

2
β)1≤β≤q, p

2) ∈ R
l+m+q × PC1([0, T ], E∗) s.t. the conclu-

sions of the Theorem 4.2 are verified with θ1j = θ2j = 1.

Then, we have, for all ℓ ∈ {1, 2}, pℓ(T ) ◦DG,3f(T, x0(T ), u0(T )) = 0. Therefore, we
have (p1(T )− p2(T )) ◦DG,3f(T, x0(T ), u0(T )) = 0. By using (TC), we have

∑

i6=j(θ
1
i − θ2i )DHg

0
i (x0(T )) ◦DG,3f(T, x0(T ), u0(T ))

+
∑m

α=1(λ
1
α − λ2α)DHg

α(x0(T )) ◦DG,3f(T, x0(T ), u0(T ))
+
∑q

β=1(µ
1
β − µ2

β)DHh
β(x0(T )) ◦DG,3f(T, x0(T ), u0(T )) = 0.







Hence, by using (Af)j , ∀(i, α, β) ∈ {1, ..., l}×{1, ...,m}×{1, ..., q}, θ1i = θ2i , λ
1
α = λ2α

and µ1
β = µ2

β.

Therefore, p1(T ) = p2(T ); that is why (AE.M), we have : p1 = p2.

6.7. Proof of the Theorem 4.9. In [4], by transforming the single-objective Bolza
problem into a single-objective Mayer problem, the authors proof the Pontryagin
Maximum Principle for the single-objective Bolza problem thanks to the Pontryagin
Maximum Principle for the single-objective Mayer problem. For the proof of the
Pontryagin Maximum Principle for the multiobjective Bolza problem, we will use
the same reasoning. That is why, we introduce the following elements, for all
t ∈ [0, T ], for all X = (σ1, ..., σl, x) ∈ R

l × Ω, for all u ∈ U ,
F (t,X, u) := (f0

1 (t, x, u), ..., f
0
l (t, x, u), f(t, x, u)), G

0
i (X) := σi + g0i (x) for all i ∈

{1, ..., l}, Gα(X) := gα(x) for all α ∈ {1, ...,m}, Hβ(X) := hβ(x) for all β ∈
{1, ..., q}.
Then, we can introduce the following multiobjective Mayer problem

(MB)























Maximize (G0
1(X(T )), ..., G0

l (X(T )))
subject to X ∈ PC1([0, T ],Rl × Ω), u ∈ NPC0([0, T ], U)

dX(t) = F (t,X(t), u(t)), X(0) = (0, ξ0)
∀α ∈ {1, ...,m}, Gα(X(T )) ≥ 0
∀β ∈ {1, ..., q}, Hβ(X(T )) = 0.

Lemma 6.2. For each (x, u) ∈ Adm(B), by setting for all t ∈ [0, T ], for all i ∈

{1, ..., l}, σi(t) :=
∫ t

0
f0
i (s, x(s), u(s))ds, we have ((σ1, ..., σl, x), u) ∈ Adm(MB).

Proof. Let (x, u) ∈ Adm(B). Since u ∈ NPC0([0, T ], U) and x ∈ PC1([0, T ],Ω), by
using (Ai1), we have, for each i ∈ {1, ..., l}, [t 7→ f0

i (t, x(t), u(t))] ∈ NPC0
d([0, T ],R).

Consequently, for each i ∈ {1, ..., l}, σi ∈ PC1([0, T ],R) and for all t ∈ [0, T ],
dσi(t) = f0

i (t, x(t), u(t)).
Hence, (σ1, ..., σl, x) ∈ PC1([0, T ],Rl × Ω) and for all t ∈ [0, T ],

d(σ1, ..., σl, x)(t) = (dσ1(t), ..., dσl(t), dx(t))
= (f0

1 (t, x(t), u(t)), ..., f
0
l (t, x(t), u(t)), f(t, x(t), u(t)))

= F (t, (σ1, ..., σl, x)(t), u(t))

Moreover, we have, for all α ∈ {1, ...,m}, Gα((σ1, ..., σl, x)(T )) = gα(x(T )) ≥
0 and ∀β ∈ {1, ..., q}, Hβ((σ1, ..., σl, x)(T )) = hβ(x(T )) = 0. Therefore, since
(σ1, ..., σl, x)(0) = (σ1(0), ..., σl(0), x(0)) = (0, ξ0), we have ((σ1, ..., σl, x), u) ∈
Adm(MB). �

Hence, by setting for all i ∈ {1, ..., l}, for all t ∈ [0, T ],

σ0
i (t) :=

∫ t

0
f0
i (s, x0(s), u0(s))ds, by using the Lemma 6.2, we have (X0, u0) :=

((σ0
1 , ..., σ

0
l , x0), u0) ∈ Adm(MB).
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Lemma 6.3. (X0, u0) is a Pareto optimal solution of the multiobjective problem
(MB).

Proof. We proceed by contradiction, we assume that (X0, u0) is not a Pareto opti-
mal solution for (MB) i.e. there exists (X,u) = ((σ1, ..., σl, x), u) ∈ PC1([0, T ],Rl×
Ω)×NPC0([0, T ], U) admissible process for (MB) s.t. for all i ∈ {1, ..., l},
G0

i (X(T )) ≥ G0
i (X0(T )) and there exists i0 ∈ {1, ..., l}, G0

i0
(X(T )) > G0

i0
(X0(T )).

Since X ∈ PC1([0, T ],Rl × Ω) and ∀t ∈ [0, T ], dX(t) := F (t,X(t), u(t)), we have
x ∈ PC1([0, T ],Ω) and for all i ∈ {1, ..., l}, σi ∈ PC1([0, T ],R) s.t.

∀t ∈ [0, T ], dx(t) = f(t, x(t), u(t)) and dσi(t) = f0
i (t, x(t), u(t)).

Moreover, we have also for all α ∈ {1, ...,m}, gα(x(T )) ≥ 0 and for all β ∈ {1, ..., q},
hβ(x(T )) = 0.
Consequently, we have (x, u) ∈ Adm(B).

Moreover, for all t ∈ [0, T ], we have σi(t) =
∫ t

0
f0
i (s, x(s), u(s))ds. Then, for all

i ∈ {1, ..., l},

G0
i (X(T )) =

∫ T

0 f0
i (s, x(s), u(s))ds + g0i (x(T ))

≥ G0
i (X0(T )) =

∫ T

0 f0
i (s, x0(s), u0(s))ds+ g0i (x0(T ))

and there exists i0 ∈ {1, ..., l},

G0
i0
(X(T )) =

∫ T

0
f0
i0
(s, x(s), u(s))ds + g0i0(x(T ))

> G0
i0
(X0(T )) =

∫ T

0
f0
i0
(s, x0(s), u0(s))ds+ g0i0(x0(T )).

This a contradiction with (x0, u0) is a Pareto optimal solution.
�

Lemma 6.4. The assumptions of Theorem 4.9 for the multiobjective Mayer prob-
lem (MB) with the Pareto optimal solution (X0, u0) are verified.

Proof. We consider the linear functions i ∈ {1, ..., l}, w1
i : Rl ×E → R defined by,

w1
i (σ1, ..., σl, ξ) = σi and w

2 : Rl × E → E, defined by, w2(σ1, ..., σl, ξ) = ξ.
For all i ∈ {1, ..., l}, since G0

i = w1
i Rl×Ω + g0i ◦w

2
|Rl×Ω, by using the property of the

chain rule of the Hadamard differentiable function, see [9] p.267, and (At1), we
have

DHG
0((σ0

1 , ..., σ
0
l , x0)(T )) = w1

i +DHg
0
i (x0(T )) ◦ w

2. (6.1)

Therefore, (At1) is verified for (MB) with the Pareto optimal solution (X0, u0).
Next, for all α ∈ {1, ...,m}, since Gα = gα ◦ w2

|Rl×Ω, by using the property of the

chain rule of the Hadamard differentiable function, see [9] p.267, and (At2), we
have

DHG
α((σ0

1 , ..., σ
0
l , x0)(T )) = DHg

α(x0(T )) ◦ w
2. (6.2)

Hence, (At2) is verified for (MB) with the Pareto optimal solution (X0, u0).
Moreover, for all β ∈ {1, ..., q}, since Hβ = hβ ◦ w2

|Rl×Ω, by using the property of

chain rule of the Hadamard differentiable function, see [9] p.267, and (At3), we
have

DHH
β((σ0

1 , ..., σ
0
l , x0)(T )) = DHh

β(x0(T )) ◦ w
2. (6.3)

Since hβ is continuous on a neighborhood V β
0 of x0(T ) in Ω and w2

|Rl×Ω ∈ C0(Rl ×

Ω,Ω), there exists W β
0 of X0(T ) in R

l × Ω s.t. w2|W 0

β
∈ C0(W β

0 , V
β
0 ). Hence,

we have Hβ

|Wβ
0

∈ C0(W β
0 ,R). Consequently, (At3) is verified for (MB) with the
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Pareto optimal solution (X0, u0).
We consider the continuous function χ : [0, T ]×R

l×Ω×U → [0, T ]×R
l×Ω defined

by χ(t, σ, ξ, ζ) = (t, ξ, ζ).
We remark that F := (f0

1 ◦ χ, ..., f0
l ◦ χ, f ◦ χ).

By using (Ai1) and (Av1), we have, for all i ∈ {1, ..., l}, f0
1 ◦ χ ∈ C0([0, T ]× R

l ×
Ω× U,R) and f ◦ χ ∈ C0([0, T ]× R

l × Ω× U,E).
Consequently, we have F ∈ C0([0, T ]× R

l × Ω× U,Rl × E).
By using (Ai1) and (Av1), we have, for all (t, σ, ξ, ζ) ∈ [0, T ] × R

l × Ω × U ,
DG,2F (t, (σ, ξ), ζ) exists and

DG,2F (t, (σ, ξ), ζ)
= (DG,2f

0
1 (t, ξ, ζ) ◦ w

2, ..., DG,2f
0
l (t, ξ, ζ) ◦ w

2, DG,2f(t, ξ, ζ) ◦ w
2).

}

(6.4)

For all t ∈ [0, T ] and ζ ∈ U , since F (t, ·, ζ) := (f0
1 (t, ·, ζ) ◦ w

2
|Rl×Ω, ..., f

0
l (t, ·, ζ) ◦

w2
|Rl×Ω, f(t, ·, ζ) ◦ w

2
|Rl×Ω), by using (Ai1) and (Av1), we have DF,2F (t,X0(t), ζ)

exists and

DF,2F (t,X0(t), ζ)
= (DF,2f

0
1 (t, x0(t), ζ) ◦ w

2, ..., DF,2f
0
l (t, x0(t), ζ) ◦ w

2, DF,2f(t, x0(t), ζ) ◦ w
2).

}

Consequently, by using (Ai1) and (Av1), we have

[(t, ζ) 7→ DF,2F (t,X0(t), ζ)] ∈ C0([0, T ] × U,L(Rl × E,Rl × E).

Therefore, (Av1) is verified for (MB) with the Pareto optimal solution (X0, u0).
Let K be a non-empty compact s.t. K ⊂ R

l × Ω and M be a non-empty compact
s.t. M ⊂ U .
We consider the linear continuous function ̟ : Rl × Ω → Ω, defined by, for all
(σ, ξ) ∈ R

l × Ω, ̟(σ, ξ) := ξ.

Since K is a non-empty compact, K̃ = ̟(K) is a non empty compact s.t. K̃ ⊂ Ω.
Consequently, by using (Ai2) and (Av2), we have

for all i ∈ {1, ..., l} sup
(t,ξ,ζ)∈[0,T ]×K̃×M

‖DG,2f
0
i (t, ξ, ζ)‖L < +∞,

and

sup
(t,ξ,ζ)∈[0,T ]×K̃×M

‖DG,2f(t, ξ, ζ)‖L < +∞.

Therefore, by using (6.4), we have

sup
(t,(σ,ξ),ζ)∈[0,T ]×K×U

‖DG,2F (t, (σ, ξ), ζ)‖L

≤
∑l

i=1 sup
(t,ξ,ζ)∈[0,T ]×K̃×M

‖DG,2f
0
i (t, ξ, ζ)‖L + sup

(t,ξ,ζ)∈[0,T ]×K̃×M

‖DG,2f(t, ξ, ζ)‖L

< +∞.

Hence (Av2) is verified for (MB) with the Pareto optimal solution (X0, u0). �

By using the Lemma 6.4, by applying the Theorem 4.9, we obtain that, there
exists (θi)1≤i≤l ∈ R

l, (λα)1≤α≤m ∈ R
m, (µβ)1≤β≤q ∈ R

q and an adjoint function
P ∈ PC1([0, T ], (Rl × E)∗) which satisfy the following conditions.

(i) ((θi)1 ≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q) 6= 0
(ii) For all i ∈ {1, ..., l}, θi ≥ 0 and for all α ∈ {1, ...,m}, λα ≥ 0.
(iii) For all α ∈ {1, ...,m}, λαG

α(X0(T )) = 0.
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(iv)
∑l

i=1 θiDHG
0
i (X0(T ))+

∑m

α=1 λαDHG
α(X0(T ))+

∑q

β=1 µβDHH
β(X0(T )) =

P (T ).
(v) dP (t) = −DF,2HMB(t,X0(t), u0(t), P (t)) for all t ∈ [0, T ].
(vi) For all t ∈ [0, T ], for all ζ ∈ U ,

HMB(t,X0(t), u0(t), P (t)) ≥ HMB(t,X0(t), ζ, P (t)).
(vii) H̄MB := [t 7→ HMB(t,X0(t), u0(t), P (t))] ∈ C0([0, T ],R).

Where the functionHMB : [0, T ]×(Rl×Ω)×U×(Rl×E)∗ → R is the Hamiltonian of
the problem (MB), defined byHMB(t, (σ1, ..., σl, x), u, P ) = P ·F (t, (σ1, ..., σl, x), u).
We consider the linear continuous function ψ : (Rl × E)∗ → E∗ defined by, for all
l ∈ (Rl × E)∗, for all ξ ∈ E, ψ(l)· = l · (0, ξ).
We set p = ψ ◦ P . Since ψ ∈ L((Rl × E)∗, E∗), we have p ∈ PC1([0, T ], E∗) and
for all t ∈ [0, T ], dp(t) = ψ · dP (t).
Therefore, by using (i), (ii) and (iii), we have respectively (NN), (Si) and (Sℓ).
By using (iv), we have , for each i ∈ {1, ..., l} P (T ) · (ei, 0) = θi where (ei)1≤i≤l is
the canonical basis of Rl and ∀ξ ∈ E,

p(T ) · ξ = P (T ) · (0, ξ)

= (
∑l

i=1 θiDHG
0
i (X0(T )) +

∑m
α=1 λαDHG

α(X0(T ))
+
∑q

β=1 µβDHH
β(X0(T ))) · (0, ξ)

= (
∑l

i=1 θiDHg
0
i (x0(T )) +

∑m

α=1 λαDHg
α(x0(T )) +

∑q

β=1 µβDHh
β(x0(T ))) · ξ.

Hence (TC) is verified.
For all i ∈ {1, ..., l}, we consider the linear continuous function ϕi : (R

l ×E)∗ → R

defined by, ∀l ∈ (Rl × E)∗, ϕi(l) = l · (ei, 0). We set pi0 = ϕi ◦ P .
Since ϕi ∈ L((Rl × E)∗,R) we have p0i ∈ PC1([0, T ],R) and

dpi0(t) = ϕi · dP (t) = dP (t) · (ei, 0) = 0.

Moreover, since pi0(T ) = θi, we have ∀t ∈ [0, T ], dp0i (t) = θi.
Besides, ∀ξ ∈ E, ∀t ∈ [0, T ],

dp(t) · ξ = dP (t) · (0, ξ)
= −P (t) ·DF,2F (t,X0(t), u0(t)) · (0, ξ)

= −
∑l

i=1 p
i
0(t)DF,2f

0
i (t, x0(t), u0(t)) · ξ − p(t) ·DF,2f(t, x0(t), u0(t)) · ξ

= −
∑l

i=1 θiDF,2f
0
i (t, x0(t), u0(t)) · ξ − p(t) ·DF,2f(t, x0(t), u0(t)) · ξ

= −DF,2HB(t, x0(t), u0(t), p(t), (θi)1≤i≤l) · ξ

Consequently (AE.B) is verified.
Furthermore, we have, ∀(t, ζ) ∈ [0, T ]× U ,

HMB(t,X0(t), ζ, P (t)) = HB(t, x0(t), ζ, p(t), (θi)1≤i≤l).

Consequently, by using (vi) and (vii), we have proved (MP.B) and (CH.B).
Hence the proof of the Theorem 4.9 is complete.

6.8. Proof of Corollary 4.10. We proceed by contradiction by assuming that
there exists t1 ∈ [0, T ] such ((θi)1≤i≤l, p(t1)) = (0, 0).
Since (AE.B) becomes an homogeneous linear equation, and by using the uniqueness
of the Cauchy problem ((AE.B), p(t1) = 0), we obtain that p is equal to zero on
[0, T ], in particular we have p(T ) = 0.
Hence, by using (TC), (Si), (Sℓ), (QC1), we obtain that (∀α ∈ {1, ...,m}, λα = 0)
and (∀β ∈ {1, ..., q}, µβ = 0).
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Therefore, since (θi)1≤i≤l = 0, we have ((θi)1 ≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q) = 0
which is a contradiction with (NN).

6.9. Proof of Corollary 4.11. We proceed by contradiction, we assume that
(θi)1≤i≤l = 0.

Since DG,3f(t̂, x0(t̂), u0(t̂)) exists, DG,3HB(t̂, x0(t̂), u0(t̂), p(t̂), 0) exists and

DG,3HB(t̂, x0(t̂), u0(t̂), p(t̂), 0) = p(t̂) ◦DG,3f(t̂, x0(t̂), u0(t̂)).

Therefore, by using (MP.B), we have p(t̂) ◦DG,3f(t̂, x0(t̂), u0(t̂)) = 0.

Since DG,3f(t̂, x0(t̂), u0(t̂)) is surjective, we have p(t̂) = 0.

Therefore, we have ((θi)1≤i≤l, p(t̂)) = 0.
This is a contradiction with the Corollary 4.10, therefore (θi)1≤i≤l 6= 0.

6.10. Proof the Corolloray 4.12. We proceed by contradiction, we assume that
(θi)1≤i≤l = 0.
Since DG,3f(T, x0(T ), u0(T )) exists, DG,3HB(T, x0(T ), u0(T ), p(T ), 0) exists and

DG,3HM (T, x0(T ), u0(T ), p(T ), 0) = p(T ) ◦DG,3f(T, x0(T ), u0(T )).

Consequently, by using (MP.B), we have p(T ) ◦DG,3f(T, x0(T ), u0(T )) = 0.
That is why, thanks to (TC) and (θi)1≤i≤l = 0, we obtain that

∑m
α=1 λαDHg

α(x0(T )) ◦DG,3f(T, x0(T ), u0(T ))
+
∑q

β=1 µβDHh
β(x0(T )) ◦DG,3f(T, x0(T ), u0(T )) = 0.

}

Hence, thanks to (Alib), we have ((λα)1≤α≤m, (µβ)1≤β≤q) = 0.
Consequently, since (θi)1≤i≤l = 0, we have ((θi)1 ≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q) = 0
this a contradiction with (NN).

6.11. Proof the Corolloray 4.13. Let j ∈ {1, ..., l}. We assume that (Af)j .
We proceed by contradiction, we assume that θj = 0.
Since DG,3f(T, x0(T ), u0(T )) exists and for all i 6= j, DG,3f

0
i (T, x0(T ), u0(T )) ex-

ists,
DG,3HB(T, x0(T ), u0(T ), p(T ), (θi)1≤i≤l) exists and

DG,3HB(T, x0(T ), u0(T ), p(T ), (θi)1≤i≤l)
= p(T ) ◦DG,3f(T, x0(T ), u0(T )) +

∑

i6=j θiDG,3f
0
i (T, x0(T ), u0(T )).

}

Consequently, by using (MP.B), we have

p(T ) ◦DG,3f(T, x0(T ), u0(T )) +
∑

i6=j

θiDG,3f
0
i (T, x0(T ), u0(T )) = 0.

That is why, thanks to (TC) and θj = 0, we obtain that
∑

i6=j θi(DHg
0
i (x0(T )) ◦DG,3f(T, x0(T ), u0(T )) +DG,3f

0
i (T, x0(T ), u0(T )))

+
∑m

α=1 λαDHg
α(x0(T )) ◦DG,3f(T, x0(T ), u0(T ))

+
∑q

β=1 µβDHh
β(x0(T )) ◦DG,3f(T, x0(T ), u0(T )) = 0.







Hence, thanks to (Af)0j , we have ((θi)i6=j , (λα)1≤α≤m, (µβ)1≤β≤q) = 0.
Consequently, since θj = 0, we have ((θi)1 ≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q) = 0 this a
contradiction with (NN).
We set ∀i ∈ {1, ..., l}, θ′i =

θi
θj
, ∀α ∈ {1, ...,m}, λ′α := λα

θj
, ∀β ∈ {1, ..., q}, µ′

β :=
µβ

θj

and p′ := 1
θj
p.
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Since the set of ((θi)1 ≤i≤l, (λα)1≤α≤m, (µβ)1≤β≤q, p) ∈ R
l+m+q × PC1([0, T ], E∗)

verifying the conclusions of Theorem 4.9 is a cone, we have
((θ′i)1≤i≤l, (λ

′
α)1≤α≤m, (µ

′
β)1≤β≤q, p

′) that verifies the conclusions of Theorem 4.9

with θ′j = 1.

Now, we assume that DG,3f
0
j (T, x0(T ), u0(T )) exists.

Let ((θ1i )1≤i≤l, (λ
1
α)1≤α≤m, (µ

1
β)1≤β≤q, p

1) ∈ R
l+m+q × PC1([0, T ], E∗) and

((θ2i )1≤i≤l, (λ
2
α)1≤α≤m, (µ

2
β)1≤β≤q, p

2) ∈ R
l+m+q × PC1([0, T ], E∗) s.t. the conclu-

sions of the Theorem 4.9 are verified with θ1j = θ2j = 1.
Then, we have, for all ℓ ∈ {1, 2},

pℓ(T ) ◦DG,3f(T, x0(T ), u0(T )) +DG,3f
0
j (T, x0(T ), u0(T ))+

∑

i6=j θ
ℓ
iDG,3f

0
i (T, x0(T ), u0(T )) = 0.

}

Therefore, we have

(p1(T )−p2(T ))◦DG,3f(T, x0(T ), u0(T ))+
∑

i6=j

(θ1i −θ
2
i )DG,3f

0
i (T, x0(T ), u0(T )) = 0.

By using (TC), we have
∑

i6=j(θ
1
i − θ2i )(DHg

0
i (x0(T )) ◦DG,3f(T, x0(T ), u0(T ))+

DG,3f
0
i (T, x0(T ), u0(T )))

+
∑m

α=1(λ
1
α − λ2α)DHg

α(x0(T )) ◦DG,3f(T, x0(T ), u0(T ))
+
∑q

β=1(µ
1
β − µ2

β)DHh
β(x0(T )) ◦DG,3f(T, x0(T ), u0(T )) = 0.















Hence, by using (Af)0j , ∀(i, α, β) ∈ {1, ..., l}×{1, ...,m}×{1, ..., q}, θ1i = θ2i , λ
1
α = λ2α

and µ1
β = µ2

β.

Therefore, p1(T ) = p2(T ); that is why, by using (AE.B), we have : p1 = p2.

7. Proof of the sufficient conditions

7.1. Proof of the Theorem 5.1. Let (x, u) ∈ Adm(M). By using (TC), we have
∑l

i=1 θiDHg
0
i (x(T )) · (x(T )− x(T ))

= p(T ) · (x(T )− x(T ))−
∑m

α=1 λαDHg
α(x(T )) · (x(T )− x(T ))

−
∑q

β=1 µβDHh
β(x(T )) · (x(T )− x(T ))







(7.1)

Moreover, by using (Si) and (Sℓ), we have for each α ∈ {1, ...,m}, λαg
α(x(T )) ≤

λαg
α(x(T )).

Consequently, by using (St2), we have for all α ∈ {1, ...,m}, λαDHg
α(x(T )) ·

(x(T )− x(T )) ≥ 0.
Moreover, thanks to (St3), we have for all β ∈ {1, ..., q}, µβDHh

β(x(T )) · (x(T )−
x(T )) = 0.
Hence

∑l

i=1 θiDHg
0
i (x(T )) · (x(T )− x(T ))

≤ p(T ) · (x(T )− x(T ))

= p(0) · (x(0)− x(0)) +
∫ T

0 d(p(t) · (x(t) − x(t)))dt

=
∫ T

0 dp(t) · (x(t)− x(t))dt+
∫ T

0 p(t) · d(x(t) − x(t))dt

≤
∫ T

0 (HM (t, x(t), u(t), p(t))−HM (t, x(t), u(t), p(t)))dt+
∫ T

0
(HM (t, x(t), u(t), p(t)) −HM (t, x(t), u(t), p(t)))dt

= 0

where we have used (Shm1).
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Therefore, thanks to (St1-bis), we have
∑l

i=1 θig
0
i (x(T )) ≤

∑l

i=1 θig
0
i (x(T )).

Hence, (x, u) is a solution of the following single-objective optimization problem :

(Pθ)

{

Maximize
∑l

i=1 θiJi(x, u)
subject to (x, u) ∈ Adm(M).

Now, we assume that (θi)1≤i≤l 6= 0.
We want to prove that (x, u) is a weak Pareto optimal solution. We proceed by
contradiction, we assume that (x, u) is not a weak Pareto optimal solution i.e. there
exists (x, u) ∈ Adm(M) such that for all i ∈ {1, ..., l}, Ji(x, u) > Ji(x, u).

Consequently, we have
∑l

i=1 θiJi(x, u) >
∑l

i=1 θiJi(x, u). But this contradicts the
optimality of (x, u) for the problem (Pθ).
Next, we assume that for all i ∈ {1, ..., l}, θi 6= 0.
We want to prove that (x, u) is a Pareto optimal solution. We proceed by con-
tradiction, we assume that (x, u) is not a Pareto optimal solution i.e. there ex-
ists (x, u) ∈ Adm(M) such that for all i ∈ {1, ..., l}, Ji(x, u) ≥ Ji(x, u) and for

some i0 ∈ {1, ..., l}, Ji0(x, u) > Ji0 (x, u). Hence, we obtain that
∑l

i=1 θiJi(x, u) >
∑l

i=1 θiJi(x, u) which contradicts the optimality of (x, u).

7.2. Proof of the Theorem 5.2. Notice that (Shm2) implies (Shm1).
Indeed, let (x, u) ∈ Adm(M).
For all t ∈ [0, T ], for all ε > 0 small enough, we have x(t) + ε(x(t) − x(t)) ∈ Ω,
therefore by using (MP.M)

1
ε
(H∗

M (t, x(t) + ε(x(t)− x(t)), p(t)) −H∗
M (t, x(t), p(t)))

≥ 1
ε
(HM (t, x(t) + ε(x(t)− x(t)), u(t), p(t)) −HM (t, x(t), u(t), p(t))).

Therefore, since (Shm2) and (Sv2), when ε → 0 we have DG,2H
∗
M (t, x(t), p(t)) ·

(x(t)−x(t)) ≥ DG,2HM (t, x(t), u(t), p(t))·(x(t)−x(t)). Therefore, by using (AE.M),
we have

−DG,2H
∗
M (t, x(t), p(t)) · (x(t) − x(t)) ≥ dp(t) · (x(t)− x(t)). (7.2)

Besides, for all ε > 0 small enough, we have x(t) + ε(x(t)− x(t)) ∈ Ω, therefore by
using (MP.M) and (Shm2), we have

1
ε
(H∗

M (t, x(t) + ε(x(t)− x(t)), p(t))−H∗
M (t, x(t), p(t)))

≥ H∗
M (t, x(t), p(t)) −H∗

M (t, x(t), p(t))
≥ HM (t, x(t), u(t), p(t)) −HM (t, x(t), u(t), p(t)).

Hence, we have

HM (t, x(t), u(t), p(t))−HM (t, x(t), u(t), p(t))
≥ 1

ε
(H∗

M (t, x(t), p(t))−H∗
M (t, x(t) + ε(x(t)− x(t)), p(t))).

Consequently, when ε→ 0 and thanks to (AE.M) and (7.2), we have
HM (t, x(t), u(t), p(t))−HM (t, x(t), u(t), p(t)) ≥ dp(t) · (x(t) − x(t)).
Hence, the assumptions of the Theorem 5.1 are verified and the conclusions follow.

7.3. Proof of the Theorem 5.3. Notice that (Shm3) implies (Shm1).
Indeed, let (x, u) ∈ Adm(M), let t ∈ [0, T ], since [(ξ, ζ) 7→ HM (t, ξ, ζ, p(t))] is
Gâteaux differentiable and concave at (x(t), u(t)), we have HM (t, x(t), u(t), p(t))−
HM (t, x(t), u(t), p(t))
≤ DG,(2,3)HM (t, x(t), u(t), p(t)) · (x(t) − x(t), u(t) − u(t)). Therefore, by using
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(AE.M) and (MP.M), we have
DG,(2,3)HM (t, x(t), u(t), p(t))·(x(t)−x(t), u(t)−u(t)) = −dp(t)·(x(t)−x(t)). There-
fore, (Shm1) is verified. Hence, the assumptions of the Theorem 5.1 are verified
and the conclusions follow.

7.4. Proof of the Theorem 5.5. Let (x, u) ∈ Adm(B). By using (ST1), we have
∑l

i=1 θiJi(x, u) =
∑l

i=1 θig
0
i (x(T )) +

∫ T

0

∑l

i=1 θif
0
i (t, x(t), u(t))dt

≤
∑l

i=1 θig
0
i (x(T )) +

∑l

i=1 θiDHgi(x(T )) · (x(T )− x(T ))+
∫ T

0

∑l

i=1 θif
0
i (t, x(t), u(t))dt.

By using (TC), we have
∑l

i=1 θiDHg
0
i (x(T )) · (x(T )− x(T ))

= p(T ) · (x(T )− x(T ))−
∑m

α=1 λαDHg
α(x(T )) · (x(T )− x(T ))

−
∑q

β=1 µβDHh
β(x(T )) · (x(T )− x(T ))







(7.3)

Furthermore, by using (Si) and (Sℓ), we have for each α ∈ {1, ...,m}, λαg
α(x(T )) ≤

λαg
α(x(T )).

Consequently, by using (ST2), we have for all α ∈ {1, ...,m}, λαDHg
α(x(T )) ·

(x(T )− x(T )) ≥ 0.
Besides, thanks to (ST3), we have for all β ∈ {1, ..., q}, µβDHh

β(x(T )) · (x(T ) −
x(T )) = 0.
Hence, by using

∑l

i=1 θiDHg
0
i (x(T )) · (x(T )− x(T ))

≤ p(T ) · (x(T )− x(T ))

=
∫ T

0
d(p(t) · (x(t)− x(t)))dt

=
∫ T

0
dp(t) · (x(t) − x(t))dt+

∫ T

0
p(t) · d(x(t) − x(t))dt

≤
∫ T

0
(HB(t, x(t), u(t), p(t), (θi)1≤i≤l)−HB(t, x(t), u(t), p(t), (θi)1≤i≤l))dt+

∫ T

0
(p(t) · f(t, x(t), u(t))− p(t) · f(t, x(t), u(t)))dt

=
∫ T

0

∑l

i=1 θif
0
i (t, x(t), u(t))dt −

∫ T

0

∑l

i=1 θif
0
i (t, x(t), u(t))dt.

Therefore, we have
∑l

i=1 θiJi(x, u) ≤
∑l

i=1 θig
0
i (x(T )) +

∫ T

0

∑l

i=1 θif
0
i (t, x(t), u(t))dt

−
∫ T

0

∑l

i=1 θif
0
i (t, x(t), u(t))dt +

∫ T

0

∑l

i=1 θif
0
i (t, x(t), u(t))dt

=
∑l

i=1 θiJi(x, u).

.

Consequently, (x, u) is a solution of the following single optimization problem :

(Pθ)

{

Maximize
∑l

i=1 θiJi(x, u)
subject to (x, u) ∈ Adm(B).

Now, we assume that (θi)1≤i≤l 6= 0.
We want to prove that (x, u) is a weak Pareto optimal solution. We proceed by
contradiction, we assume that (x, u) is not a weak Pareto optimal solution i.e. there
exists (x, u) ∈ Adm(B) such that for all i ∈ {1, ..., l}, Ji(x, u) > Ji(x, u).

Consequently, we have
∑l

i=1 θiJi(x, u) >
∑l

i=1 θiJi(x, u). This is a contradiction
with (x, u) is a solution of (Pθ).
Next, we assume that for all i ∈ {1, ..., l}, θi 6= 0.
We want to prove that (x, u) is a Pareto optimal solution. We proceed by con-
tradiction, we assume that (x, u) is not a Pareto optimal solution i.e. there exists
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(x, u) ∈ Adm(B) such that for all i ∈ {1, ..., l}, Ji(x, u) ≥ Ji(x, u) and there ex-

ists i0 ∈ {1, ..., l}, Ji0(x, u) > Ji0(x, u). Hence, we obtain that
∑l

i=1 θiJi(x, u) >
∑l

i=1 θiJi(x, u). This is a contradiction with (x, u) is a solution of (Pθ).

7.5. Proof of the Theorem 5.6. Notice that (Shb2) implies (Shb1).
Indeed, let (x, u) ∈ Adm(B).
We set θ = (θi)1≤i≤l. For all t ∈ [0, T ], for all ε > 0 small enough, we have
x(t) + ε(x(t)− x(t)) ∈ Ω, therefore by using (MP.B)

1
ε
(H∗

B(t, x(t) + ε(x(t)− x(t)), p(t), θ) −H∗
B(t, x(t), p(t), θ))

≥ 1
ε
(HB(t, x(t) + ε(x(t)− x(t)), u(t), p(t), θ) −HB(t, x(t), u(t), p(t), θ)).

Hence, since (Shb2), (Si2) and (Sv2), when ε→ 0 we have DG,2H
∗
B(t, x(t), p(t), θ) ·

(x(t)−x(t)) ≥ DG,2HB(t, x(t), u(t), p(t), θ) · (x(t)−x(t)). Hence, by using (AE.B),
we have

−DG,2H
∗
B(t, x(t), p(t), θ) · (x(t) − x(t)) ≥ dp(t) · (x(t) − x(t)). (7.4)

Besides, for all ε > 0 small enough, we have x(t) + ε(x(t) − x(t)) ∈ Ω, hence by
using (MP.B) and (Shb2), we have

1
ε
(H∗

B(t, x(t) + ε(x(t) − x(t)), p(t), θ) −H∗
B(t, x(t), p(t), θ))

≥ H∗
B(t, x(t), p(t), θ) −H∗

B(t, x(t), p(t), θ)
≥ HB(t, x(t), u(t), p(t), θ) −HB(t, x(t), u(t), p(t), θ).

Hence, we have

HB(t, x(t), u(t), p(t), θ)−HB(t, x(t), u(t), p(t), θ)
≥ 1

ε
(H∗

B(t, x(t), p(t), θ)−H∗
B(t, x(t) + ε(x(t) − x(t)), p(t), θ)).

Consequently, when ε→ 0, from (7.4), we have
HB(t, x(t), u(t), p(t), θ) −HB(t, x(t), u(t), p(t), θ) ≥ dp(t) · (x(t) − x(t)).
Hence, the assumptions of the Theorem 5.5 are verified and the conclusions follow.

7.6. Proof of the Theorem 5.7. Notice that (Shb3) implies (Shb1).
Indeed, let (x, u) ∈ Adm(B), let t ∈ [0, T ], since [(ξ, ζ) 7→ HB(t, ξ, ζ, p(t), (θi)1≤i≤l)]
is Gâteaux differentiable and concave at (x(t), u(t)), we have
HB(t, x(t), u(t), p(t), (θi)1≤i≤l)−HB(t, x(t), u(t), p(t), (θi)1≤i≤l)
≤ DG,(2,3)HB(t, x(t), u(t), p(t), (θi)1≤i≤l) · (x(t) − x(t), u(t) − u(t)). Therefore, by
using (AE.B) and (MP.B), we have
DG,(2,3)HB(t, x(t), u(t), p(t), (θi)1≤i≤l) · (x(t)− x(t), u(t)− u(t)) = −dp(t) · (x(t) −
x(t)). Hence, (Shb1) is verified. Therefore,the assumptions of the Theorem 5.5 are
verified and the conclusions follow.
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