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This paper studies multiobjective optimal control problems in the continuous-time framework when the space of states and the space of controls are infinite-dimensional and with lighter smoothness assumptions than the usual ones. The paper generalizes to the multiobjective case existing results for single-objective optimal control problems in that framework. The dynamics are governed by differential equations and a finite number of terminal equality and inequality constraints are present. Necessary conditions of Pareto optimality are provided namely Pontryagin maximum principles in the strong form. Sufficient conditions are also provided.

Introduction

In this paper we study multiobjective optimal control problems, with open loop information structure, in the continuous-time framework, when the space of states and the space of controls are infinite-dimensional. We derive necessary conditions and sufficient conditions of Pareto optimality. We rely on lighter smoothness assumptions than the usual ones. The paper extends to the multiobjective case, results obtained for single-objective optimal control problems in infinite dimension.

In the continuous-time framework, some results of multiobjective optimal control problems can be found in Bellaassali and Jourani [START_REF] Bellaassali | Necessary optimality conditions in multiobjective dynamic optimization[END_REF], in Zhu [START_REF] Zhu | Hamiltonian necessary conditions for a multiobjective optimal control problem with endpoint constraints[END_REF], in Bonnel and Kaya [START_REF] Bonnel | Optimization Over the Efficient Set of Multi-objective Convex Optimal Control Problems[END_REF], in Gramatovici [START_REF] Gramatovici | Optimality conditions in multiobjective control problems with generalized invexity[END_REF], in de Oliveira and Nunes Silva [START_REF] De Oliveira | On sufficient optimality conditions for multiobjective control problems[END_REF] and in references therein. Differential games are widely used in economic theory, see [START_REF] Leitmann | Cooperative and Noncooperative Many Player Differential Games[END_REF], [START_REF] Dockner | Differential Games in Economics and Management Science[END_REF], [START_REF] Reddy | Necessary and sufficient conditions for Pareto optimality in infinite horizon cooperative differential games[END_REF] , [START_REF] Engwerda | Necessary and sufficient conditions for Pareto optimal solutions of cooperative differential games[END_REF] and [START_REF] Stalford | Criteria for Pareto optimality in cooperative differential games[END_REF] and Pareto optimality plays a central role in analyzing these problems. In the discrete-time framework, results on infinite-horizon multiobjective optimal control problems can be found in Hayek [START_REF] Hayek | Infinite horizon multiobjective optimal control problem in the discrete time case[END_REF] and [START_REF] Hayek | A generalization of mixed problems with an application to multiobjective optimal control[END_REF], [START_REF] Hayek | Infinite-horizon multiobjective optimal control problems for bounded processes[END_REF], in Ngo-Hayek [START_REF] Ngo | Necessary Conditions of Pareto Optimality for Multiobjective Optimal Control Problems under Constraints[END_REF]. Bachir and Blot [START_REF] Bachir | Infinite Dimensional Infinite-horizon Pontryagin Principles for Discrete-time Problems[END_REF], [START_REF] Bachir | Infinite Dimensional Multipliers and Pontryagin Principles for Discrete-time Problems[END_REF] extended infinite-horizon single-objective optimal control problems in the discrete-time framework, to the case of infinite-dimensional spaces of states and controls and Hayek [START_REF] Hayek | Infinite-dimensional Infinite-horizon Multiobjective Optimal Control in Discrete Time[END_REF] extended these results to multiobjective optimal control problems.

In this paper we rely on the results of Blot and Yilmaz in [START_REF] Blot | A generalization of Michel's result on the Pontryagin Maximum Principle[END_REF] and [START_REF] Blot | Pontryagin Principle and Envelope theorem[END_REF] to study multiobjective optimal control problems in an infinite-dimensional setting and in continuous time. We obtain necessary conditions of Pareto optimality under the form of Pontryagin Principles and we provide sufficient conditions of Pareto optimality.

We start by providing necessary conditions of optimality for Mayer multiobjective optimal control problems and we deduce necessary conditions for Bolza problems with lighter smoothness assumptions. The Hadamard differential of a mapping between Banach spaces, which is stronger than the Gâteaux differential but weaker than the Fréchet differential, has been applied many times in the literature. In finite dimension, the Hadamard differential coincides with the Fréchet differential , but for infinite-dimensional spaces the Fréchet differential is much stronger, even for Lipschitz functions.

We provide different results relying on different constraint qualifications namely to obtain non trivial multipliers associated to the objective functions. For the sufficient conditions we follow Mangasarian [START_REF] Mangasarian | Nonlinear programming[END_REF] and Seierstadt-Sydsaeter [START_REF] Seierstad | Sufficient Conditions in Optimal Control Theory[END_REF] and we rely on weaker assumptions than the usual ones namely the concavity at a point and the quasi-concavity at a point.

The plan of this paper is as follows. Section 2 is devoted to definitions and assumptions. In section 3 the problems are presented: multiobjective optimal control problems governed by a differential equation when the space of states and the space of controls are infinite-dimensional, in the continuous-time framework. The notions of Pareto optimality and weak Pareto optimality are defined. In section 4 the theorems on necessary conditions of Pareto optimality are stated namely Pontryagin maximum principles in the strong form for a Mayer's problem and for a Bolza's problem. In section 5 we give sufficient conditions. The proofs of the necessary conditions theorems are provided in section 6 and those of the sufficient ones in section 7.

Definitions and assumptions

We set N the set of positive integers and N * = N \ {0}. R denotes the set of real numbers and R + the set of non-negative real numbers. When X and Y are Hausdorff space, C 0 (X, Y ) denotes the space of continuous mappings from X into Y . When Y be a Hausdorff space and T ∈ R * + =]0, +∞[. As in [START_REF] Blot | A generalization of Michel's result on the Pontryagin Maximum Principle[END_REF], a function u : [0, T ] → Y is called piecewise continuous when there exists a subdivision 0 = τ 0 < τ

1 < ... < τ k < τ k+1 = T such that • For all i ∈ {0, ..., k}, u is continuous on ]τ i , τ i+1 [.
• For all i ∈ {0, ..., k}, the right-hand limit u(τ i +) exists in Y .

• For all i ∈ {1, ..., k + 1}, the left-hand limit u(τ i -) exists in Y . The space of piecewise continuous mappings from [0, T ] to Y is denoted by

P C 0 ([0, T ], Y ). A function u ∈ P C 0 ([0, T ], Y
) is called a normalized piecewise continuous function when moreover u is right continuous on [0, T [ and when u(T -) = u(T ) cf. [START_REF] Blot | A generalization of Michel's result on the Pontryagin Maximum Principle[END_REF]. We denote by N P C 0 ([0, T ], Y ) the space of such functions. As in [START_REF] Blot | A generalization of Michel's result on the Pontryagin Maximum Principle[END_REF], when Y is a real Banach space, a function x : [0, T ] → Y is called piecewise continuously differentiable when x ∈ C 0 ([0, T ], Y ) and there exists a subdivision (τ i ) 0≤i≤k+1 of [0, T ] such that the following conditions are fulfilled.

• For all i ∈ {0, ..., k}, x is continuously differentiable on ]τ

i , τ i+1 [ • For all i ∈ {0, ..., k}, x ′ (τ i +) exists in Y • For all i ∈ {1, ..., k + 1}, x ′ (τ i -) exists in Y
The (τ i ) 1≤i≤k+1 are the corners of the function x.

We denote by P C 1 ([0, T ], Y ) the space of such functions.

When G is an open subset of Y , P C 1 ([0, T ], G) is the set of functions x ∈ P C 1 ([0, T ], Y ) such that x([0, T ]) ⊂ G. When x ∈ P C 1 ([0, T ], Y
) and (τ i ) 0≤i≤k+1 are the corners of the function x, we define the function dx : [0, T ] → Y , called the extended derivative of x, by setting

dx(t) :=    x ′ (t) if t ∈ [0, T ] \ {τ i : i ∈ {0, ..., k + 1}} x ′ (τ i +) if t = τ i , i ∈ {0, ..., k} x ′ (T -) if t = T. (2.1)
Notice that, contrary to the usual derivative of x, the extended derivative of x is defined on [0, T ] all over. Note that dx ∈ N P C 0 ([0, T ], Y ) and we have the following relation between x, dx and the Riemann integral:

for all a < t in [0, T ], x(t) -x(a) = t a dx(s)ds, Besides, d is a bounded linear operator from P C 1 ([0, T ], Y ) into N P C 0 ([0, T ], Y ).
All these properties motivated the authors of [START_REF] Blot | A generalization of Michel's result on the Pontryagin Maximum Principle[END_REF] to introduce the notion of extended derivative for piecewise continuously differentiable functions. When X and Y are real normed vector spaces, L(X, Y ) denotes the space of the bounded linear mappings from X into Y and X * denotes the topological dual of X. We denote by • L the usual norm of L(X, Y ). Let G be a non-empty open subset of X, let f : G → Y be a mapping and let x ∈ G. The mapping f is called Gâteaux differentiable at x when there exists D G f(x) ∈ L(X, Y ) such that for all h ∈ X, lim t→0+

f(x+th)-f(x) t = D G f(x) • h. Moreover, D G f(x) is called the Gâteaux differential of f at x.
We say that f is Hadamard differentiable at x when there exists D H f(x) ∈ L(X, Y ) such that for each K compact in X, lim t→0+ sup h∈K

f(x+th)-f(x) t -D H f(x)•h = 0. Moreover, D H f(x) is called the Hadamard differential of f at x. When f is Hadamard differentiable at x, f is also Gâteaux differentiable at x and D H f(x) = D G f(x).
But the converse is false in general when the dimension of X is greater than 2. Notice that Hadamard differentiability and Gâteaux differentiability always coincide for locally Lipschitz functions in any normed vector space. When it exists,

D F f(x) denotes the Fréchet differential of f at x. When f is Fréchet differentiable at x, f is Hadamard differentiable at x and D F f(x) = D H f(x). But the converse is false in general when the dimension of X is infinite. When X is a finite product of n real normed spaces, X = 1≤i≤n X i , if k ∈ {1, ..., n}, D F,k f(x) (respectively D H,k f(x), respectively D G,k f(x)
) denotes the partial Fréchet (respectively Hadamard, respectively Gâteaux) differential of f at x with respect to the k-th vector variable. More information on these notions of differentials can be found in [START_REF] Tm | Differential analysis[END_REF]. Next, we introduce definitions of notions of concavity at a point in infinite dimension cf. Mangasarian [START_REF] Mangasarian | Nonlinear programming[END_REF] for the finite dimension. This concepts will be used for sufficient conditions. Let g : G → R be a mapping. The mapping g is said to be concave at x when for all y ∈ G, for all t ∈ [0, 1] s.t. (1t)x + ty ∈ G, g((1t)x + ty) ≥ (1t)g(x) + tg(y). When g is Gâteaux differentiable at x, the function g is said to be pseudo-concave

at x when for all y ∈ G, [D G g(x) • (y -x) ≤ 0 ⇒ g(y) ≤ g(x)].
The mapping g is said to be quasi-concave at x when for all y ∈ G, for all t ∈ [0, 1]

s.t. (1 -t)x + ty ∈ G,[g(x) ≤ g(y) ⇒ g(x) ≤ g((1 -t)x + ty)].
When g is Gâteaux differentiable at x and g is quasi-concave at x, we have, for all

y ∈ G, [g(y) ≥ g(x) ⇒ D G g(x) • (y -x) ≥ 0].

The multiobjective optimal control problems

Let T ∈]0, +∞[, E is a real Banach space, Ω is a non-empty subset of E, U is a Hausdorff topological space and ξ 0 ∈ Ω. We consider the functions f :

[0, T ] × Ω × U → E, f 0 i : [0, T ] × Ω × U → R when i ∈ {1, .
.., l}, g 0 i : Ω → R when i ∈ {1, ..., l}, g α : Ω → R when α ∈ {1, ..., m} and h β : Ω → R when β ∈ {1, ..., q}, when (l, m, q) ∈ (N * ) 3 . For all i ∈ {1, ..., l} we consider also the function J i :

P C 1 ([0, T ], Ω) × N P C 0 ([0, T ], U ) → R defined by, for all (x, u) ∈ P C 1 ([0, T ], Ω) × N P C 0 ([0, T ], U ), J i (x, u) := g 0 i (x(T )) + T 0 f 0 i (t, x(t), u(t))dt.
With these elements, we can build the following multiobjective Bolza problem (B)

           Maximize (J 1 (x, u), ..., J l (x, u)) subject to x ∈ P C 1 ([0, T ], Ω), u ∈ N P C 0 ([0, T ], U ) ∀t ∈ [0, T ], dx(t) = f (t, x(t), u(t)), x(0) = ξ 0 ∀α ∈ {1, ..., m}, g α (x(T )) ≥ 0 ∀β ∈ {1, ..., q}, h β (x(T )) = 0.
Our problem is a reformulation of the multiobjective classical Bolza problem where the controlled dynamical system is formulated as follows : x ′ (t) = f (t, x(t), u(t)) when x ′ (t) exists, and the control function u ∈ P C 0 ([0, T ], U ). In [START_REF] Blot | A generalization of Michel's result on the Pontryagin Maximum Principle[END_REF], we explain that the present formulation is equivalent to the classical one, for the singleobjective Bolza problem. By using the same reasoning, we remark that this formulation is also equivalent for the multiobjective Bolza problem. When for all i ∈ {1, ..., l}, f 0 i = 0, (B) is called a multiobjective Mayer problem and it is denoted by (M). We denote by Adm(B) (respectively Adm(M)) the set of the admissible processes of (B) (respectively (M)). It is clear that Adm(B) = Adm(M). When (x, u) is an admissible process for (B) or (M), we consider the following constraint qualifications, when the functions defining the terminal constraints and the terminal parts of the criterion are Hadamard differentiable at x(T ).

(QC 0 )            If (b i ) 1≤i≤l ∈ R l + , (c α ) 1≤α≤m ∈ R m + , (d β ) 1≤β≤q ∈ R q satisfy (∀α ∈ {1, ..., m}, c α g α (x(T )) = 0), and l i=1 b i D H g 0 i (x(T )) + m α=1 c α D H g α (x(T )) + q β=1 d β D H h β (x(T )) = 0, then (∀i ∈ {1, ..., l}, b i = 0), (∀α ∈ {1, ..., m}, c α = 0) and (∀β ∈ {1, ..., q}, d β = 0). and (QC 1 )        If (c α ) 1≤α≤m ∈ R m + , (d β ) 1≤β≤q ∈ R q satisfy (∀α ∈ {1, ..., m}, c α g α (x(T )) = 0), and m α=1 c α D H g α (x(T )) + q β=1 d β D H h β (x(T )) = 0,
then (∀α ∈ {1, ..., m}, c α = 0) and (∀β ∈ {1, ..., q}, d β = 0). Definition 3.1. An admissible process (x, u) for (B) is a Pareto optimal solution for (B) when there does not exist an admissible process (x, u) for (B) such that for all i ∈ {1, ..., l}, J i (x, u) ≥ J i (x, u) and for some i 0 ∈ {1, ..., l}, J i0 (x, u) > J i0 (x, u). Definition 3.2. An admissible process (x, u) for (B) is a weak Pareto optimal solution for (B) when there does not exist an admissible process (x, u) for (B) such that for all i ∈ {1, ..., l}, J i (x, u) > J i (x, u). Now, we formulate a list of conditions which will become the assumptions of our theorems. Let (x 0 , u 0 ) be an admissible process for (B) or (M).

Conditions on the vector field.

(Av1) f ∈ C 0 ([0, T ] × Ω × U, E), for all (t, ξ, ζ) ∈ [0, T ] × Ω × U , D G,2 f (t, ξ, ζ) exists, for all (t, ζ) ∈ [0, T ] × U , D F,2 f (t, x 0 (t), ζ) exists and [(t, ζ) → D F,2 f (t, x 0 (t), ζ)] ∈ C 0 ([0, T ] × U, L(E, E)). (Av2) For all non-empty compact K ⊂ Ω, for all non-empty compact M ⊂ U , sup (t,ξ,ζ)∈[0,T ]×K×M D G,2 f (t, ξ, ζ) L < +∞.
Conditions on the integrands of the criterion. (Ai1) For all i ∈ {1, ..., l}, f

0 i ∈ C 0 ([0, T ]×Ω×U, R), for all (t, ξ, ζ) ∈ [0, T ]×Ω×U , D G,2 f 0 i (t, ξ, ζ) exists, for all (t, ζ) ∈ [0, T ] × U , D F,2 f 0 i (t, x 0 (t), ζ) exists and [(t, ζ) → D F,2 f 0 i (t, x 0 (t), ζ)] ∈ C 0 ([0, T ] × U, E * ). (Ai2) For all i ∈ {1, ..., l}, for all non-empty compact K ⊂ Ω, for all non-empty compact M ⊂ U , sup (t,ξ,ζ)∈[0,T ]×K×M D G,2 f 0 i (t, ξ, ζ) L < +∞.
Conditions on the functions defining the terminal constraints and terminal parts of the criterion (At1) For all i ∈ {1, ..., l}, g 0 i is Hadamard differentiable at x 0 (T ). (At2) For all α ∈ {1, ..., m}, g α is Hadamard differentiable at x 0 (T ). (At3) For all β ∈ {1, ..., q}, h β is continuous on a neighborhood of x 0 (T ) and Hadamard differentiable at x 0 (T ). 

M : [0, T ]×Ω×U ×E * → R defined by, for all (t, x, u, p) ∈ [0, T ] × Ω × U × E * , H M (t, x, u, p) := p • f (t, x, u).
Theorem 4.2. (Pontryagin Principle for the Mayer problem) When (x 0 , u 0 ) is a Pareto optimal solution of (M), under (Av1), (Av2), (At1), (At2) and (At3), there exists

(θ i ) 1≤i≤l ∈ R l , (λ α ) 1≤α≤m ∈ R m , (µ β ) 1≤β≤q ∈ R q
and an adjoint function p ∈ P C 1 ([0, T ], E * ) which satisfy the following conditions.

(NN) ((θ i ) 1 ≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q ) = 0 (Si) For all i ∈ {1, ..., l}, θ i ≥ 0 and for all α ∈ {1, ..., m}, λ α ≥ 0.

(Sℓ) For all α ∈ {1, ..., m}, λ α g α (x 0 (T )) = 0. (TC)

l i=1 θ i D H g 0 i (x 0 (T )) + m α=1 λ α D H g α (x 0 (T )) + q β=1 µ β D H h β (x 0 (T )) = p(T ). (AE.M) dp(t) = -D F,2 H M (t, x 0 (t), u 0 (t), p(t)) for all t ∈ [0, T ]. (MP.M) For all t ∈ [0, T ], for all ζ ∈ U , H M (t, x 0 (t), u 0 (t), p(t)) ≥ H M (t, x 0 (t), ζ, p(t)). (CH.M) HM := [t → H M (t, x 0 (t), u 0 (t), p(t))] ∈ C 0 ([0, T ], R).
(NN) is a condition of non nullity, (Si) is a sign condition, (Sℓ) is a slackness condition, (TC) is the transversality condition, (AE.M) is the adjoint equation, (MP.M) is the maximum principle and (CH.M) is a condition of continuity on the Hamiltonian.

Corollary 4.3. In this setting and under the assumptions of Theorem 4.2, if moreover we assume that (QC 1 ) is fulfilled for (x, u) = (x 0 , u 0 ), then, for all t ∈ [0, T ], ((θ i ) 1≤i≤l , p(t)) is never equal to zero.

Corollary 4.4. In this setting and under the assumptions of Theorem 4.2, if moreover we assume that (QC 0 ) is fulfilled for (x, u) = (x 0 , u 0 ), then, for all t ∈ [0, T ], p(t) is never equal to zero.

As in [START_REF] Blot | Pontryagin Principle and Envelope theorem[END_REF], we introduce another condition (Av3) U is a subset of a real normed vector space Y , there exists t ∈ [0, T ] s.t.

U is a neighborhood of u 0 ( t) in Y , D G,3 f ( t, x 0 ( t), u 0 ( t)) exists and it is surjective.

Corollary 4.5. In this setting and under the assumptions of Theorem 4.2, if moreover we assume that (QC 1 ) is fulfilled for (x, u) = (x 0 , u 0 ) and (Av3), then

(θ i ) 1≤i≤l = 0.
We introduce a new condition of linear independence.

(Alib) U is a subset of a real normed vector space Y s.t. U is a neighborhood of u 0 (T ) in Y , D G,3 f (T, x 0 (T ), u 0 (T )) exists and ((D H g α (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T ))) 1≤α≤m , (D H h β (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T ))) 1≤β≤q
) are linearly independent.

Corollary 4.6. In this setting and under the assumptions of Theorem 4.2, if moreover we assume (Alib) is fulfilled, then (θ i ) 1≤i≤l = 0.

For each j ∈ {1, ..., l}, we consider the following condition:

(Af) j U is a subset of a real normed vector space Y s.t. U is a neighborhood of u 0 (T ) in Y , D G,3 f (T, x 0 (T ), u 0 (T )) exists and ((D H g 0 i (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T ))) i =j , (D H g α (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T ))) 1≤α≤m , (D H h β (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T ))) 1≤β≤q ) are linearly independent.
Corollary 4.7. In this setting and under the assumptions of Theorem 4.2, if, for each j ∈ {1, ..., l}, we have (Af) j , then θ j = 0 i.e. we can take θ j = 1. Moreover,

((θ i ) 1≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q , p) ∈ R l × R m × R q × P C 1 ([0, T ], E * ) with θ j = 1
that verify the conclusions of Theorem 4.2 are unique. 

B : [0, T ] × Ω × U × E * × R l → R defined by, for all (t, x, u, p, θ) ∈ [0, T ]×Ω×U ×E * ×R l , H B (t, x, u, p, θ) := l i=1 θ i f 0 i (t, x, u) + p • f (t,
x, u). Theorem 4.9. (Pontryagin Principle for the Bolza problem) When (x 0 , u 0 ) is a Pareto optimal solution of (B), under (Ai1), (Ai2), (Av1), (Av2), (At1), (At2) and (At3), there exists (θ i ) 1≤i≤l ∈ R l , (λ α ) 1≤α≤m ∈ R m , (µ β ) 1≤β≤q ∈ R q and an adjoint function p ∈ P C 1 ([0, T ], E * ) which satisfy the following conditions.

(NN) ((θ i ) 1 ≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q ) = 0 (Si) For all i ∈ {1, ..., l}, θ i ≥ 0 and for all α ∈ {1, ..., m}, λ α ≥ 0.

(Sℓ) For all α ∈ {1, ..., m}, λ α g α (x 0 (T )) = 0. (TC)

l i=1 θ i D H g 0 i (x 0 (T )) + m α=1 λ α D H g α (x 0 (T )) + q β=1 µ β D H h β (x 0 (T )) = p(T ). (AE.B) dp(t) = -D F,2 H B (t, x 0 (t), u 0 (t), p(t), (θ i ) 1≤i≤l ) for all t ∈ [0, T ]. (MP.B) For all t ∈ [0, T ], for all ζ ∈ U , H B (t, x 0 (t), u 0 (t), p(t), (θ i ) 1≤i≤l ) ≥ H B (t, x 0 (t), ζ, p(t), (θ i ) 1≤i≤l ). (CH.B) HB := [t → H B (t, x 0 (t), u 0 (t), p(t), (θ i ) 1≤i≤l )] ∈ C 0 ([0, T ], R).
Corollary 4.10. In this setting and under the assumptions of Theorem 4.9, if moreover we assume that (QC 1 ) is fulfilled for (x, u) = (x 0 , u 0 ), then, for all t ∈ [0, T ], ((θ i ) 1≤i≤l , p(t)) is never equal to zero.

Corollary 4.11. In this setting and under the assumptions of Theorem 4.9, if moreover we assume that (QC 1 ) is fulfilled for (x, u) = (x 0 , u 0 ) and (Av3), then (θ i ) 1≤i≤l = 0. Corollary 4.12. In the setting and under the assumptions of Theorem 4.9, if moreover we assume (Alib) is fulfilled, then (θ i ) 1≤i≤l = 0.

For each j ∈ {1, ..., l}, we consider the following condition:

(Af) 0 j U is a subset of a real normed vector space Y s.t. U is a neighbor- hood of u 0 (T ) in Y , D G,3 f (T, x 0 (T ), u 0 (T )) exists, ∀i ∈ {1, ..., l}, i = j D G,3 f 0 i (T, x 0 (T ), u 0 (T )) exists and ((D H g 0 i (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T )) + D G,3 f 0 i (T, x 0 (T ), u 0 (T ))) i =j , (D H g α (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T ))) 1≤α≤m , (D H h β (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T ))) 1≤β≤q ) are linearly independent.
Corollary 4.13. In this setting and under the assumptions of Theorem 4.9, if, for each j ∈ {1, ..., l}, we have (Af) 0 j , then θ j = 0 (i.e. we can choose θ j = 1). Moreover, if D G,3 f 0 j (T, x 0 (T ), u 0 (T )) exists, then we have:

((θ i ) 1≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q , p) ∈ R l × R m × R q × P C 1 ([0, T ], E * ) with θ j = 1
that verify the conclusions of Theorem 4.9 are unique.

Sufficient conditions of Pareto optimality

Let (x, u) ∈ P C 1 ([0, T ], Ω) × N P C 0 ([0, T ], U ), we consider the following conditions. (St1) For all i ∈ {1, ..., l} g 0 i is concave at x(T ) and Hadamard differentiable at x(T ). (St1-bis) For all i ∈ {1, ..., l} g 0 i is pseudo-concave at x(T ) and Hadamard differentiable at x(T ). (St2) For all α ∈ {1, ..., m}, g α is quasi-concave at x(T ) and Hadamard differentiable at x(T ). (St3) For all β ∈ {1, ..., q}, h β and -h β are quasi-concave at x(T ) and Hadamard differentiable at x(T ). (Si1) For all i ∈ {1, ..., l}, f

0 i ∈ C 0 ([0, T ] × Ω × U, R). (Si2) For all t ∈ [0, T ], for all i ∈ {1, ..., l}, D F,2 f 0 i (t, x(t), u(t)) exists and [t → D F,2 f 0 i (t, x(t), u(t))] ∈ N P C 0 ([0, T ], E * ). (Sv1) f ∈ C 0 ([0, T ] × Ω × U, E).
(Shb1) For each (x, u) ∈ Adm(B), for all t ∈ [0, T ] almost everywhere for the canonical measure of Borel on [0, T ],

H B (t, x(t), u(t), p(t), (θ i ) 1≤i≤l )-H B (t, x(t), u(t), p(t), (θ i ) 1≤i≤l ) ≥ dp(t)•(x(t)-x(t)),
then we have: if (θ i ) 1≤i≤l = 0, then (x, u) is a weak Pareto optimal solution of (B), if for all i ∈ {1, ..., l}, θ i = 0, then (x, u) is a Pareto optimal solution of (B).

Theorem )] is concave at x(t) and Gâteaux differentiable at x(t), then we have: if (θ i ) 1≤i≤l = 0, then (x, u) is a weak Pareto optimal solution of (B), if for all i ∈ {1, ..., l}, θ i = 0, then (x, u) is a Pareto optimal solution of (B).

Theorem 5.7. When (x, u) ∈ Adm(B), under (St1), (St2), (St3), (Si1), (Si2), (Sv1), (Sv2) if there exists ((θ i ) 1≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q , p) belongs to R l+m+q × P C 1 ([0, T ], E * ) verifying all the conclusions of Theorem 4.9 with (x 0 , u 0 ) = (x, u) and if the following condition is satisfied (Shb3) U is a subset of a real normed vector space Y s.t. for all t ∈ [0, T ], U is a neighborhood of u(t), and for all t ∈ [0, T ], [(ξ, ζ) → H B (t, ξ, ζ, p(t), (θ i ) 1≤i≤l ) is Gâteaux differentiable at (x(t), u(t)) and concave at (x(t), u(t)), then we have: if (θ i ) 1≤i≤l = 0, then (x, u) is a weak Pareto optimal solution of (B), if for all i ∈ {1, ..., l}, θ i = 0, then (x, u) is a Pareto optimal solution of (B).

Remark 5.8. By using our constraint qualifications, we can rewrite the conclusion of Theorem 5.6 and Theorem 5.7 as follows. If the condition (Alib) or [(QC 1 ) and (Av3)] is fulfilled for (x 0 , u 0 ) = (x, u) then (x, u) is a weak Pareto optimal solution of (B), if, for each j ∈ {1, ..., l}, (Af) 0 j is fulfilled for (x 0 , u 0 ) = (x, u), then (x, u) is a Pareto optimal solution of (B).

6. Proof of the necessary conditions 6.1. Proof of the Theorem 4.2. Lemma 6.1. For all i ∈ {1, ..., l}, (x 0 , u 0 ) is a solution of the following singleobjective Mayer problem

(M i )                Maximize J i (x, u) := g 0 i (x(T )) subject to x ∈ P C 1 ([0, T ], Ω), u ∈ N P C 0 ([0, T ], U ) ∀t ∈ [0, T ], dx(t) = f (t, x(t), u(t)), x(0) = ξ 0 ∀k ∈ {1, ..., l}, k = i, g 0 k (x(T )) ≥ g 0 k (x 0 (T )) ∀α ∈ {1, ..., m}, g α (x(T )) ≥ 0 ∀β ∈ {1, ..., q}, h β (x(T )) = 0.
Proof. Let i ∈ {1, ..., l}. We proceed by contradiction, we assume that (x 0 , u 0 ) is not a solution of (M i ) i.e. there exists (x, u) an admissible process of (M i ) s.t. g 0 i (x(T )) > g 0 i (x 0 (T )). This can be rewritten (x, u) ∈ Adm(M) s.t. g 0 i (x(T )) > g 0 i (x 0 (T )) and for all k ∈ {1, ..., l}, k = i, g 0 k (x(T )) ≥ g 0 k (x 0 (T )). Therefore, (x 0 , u 0 ) is not a Pareto optimal solution. This is a contradiction.

For each x ∈ Ω, for each i ∈ {2, ..., l}, we set g i (x) = g 0 i (x)g 0 i (x 0 (T )). Thanks to (At1), for each i ∈ {2, ..., l}, g i is Hadamard differentiable at x 0 (T ) and D H g i (x 0 (T )) = D H g 0 i (x 0 (T )). Consequently, by using the Lemma 6.1 and (At2), (At3), (Av1), (Av2), the assumptions of Theorem 2.4 in [START_REF] Blot | Pontryagin Principle and Envelope theorem[END_REF] are fulfilled for (M 1 )

(M 1 )                Maximize g 0 1 (x(T )) subject to x ∈ P C 1 ([0, T ], Ω), u ∈ N P C 0 ([0, T ], U ) ∀t ∈ [0, T ], dx(t) = f (t, x(t), u(t)), x(0) = ξ 0 ∀i ∈ {2, ..., l}, g i (x(T )) ≥ 0 ∀α ∈ {1, ..., m}, g α (x(T )) ≥ 0 ∀β ∈ {1, ..., q}, h β (x(T )) = 0.
Hence, we obtain that there exists

(θ i ) 1≤i≤l ∈ R l , (λ α ) 1≤α≤m ∈ R m , (µ β ) 1≤β≤q ∈ R q and an adjoint function p ∈ P C 1 ([0, T ], E * ) which satisfy the following condi- tions. (NNs) ((θ i ) 1 ≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q ) = 0.
(Sis) For all i ∈ {1, ..., l}, θ i ≥ 0 and for all α ∈ {1, ..., m}, λ α ≥ 0. (Sℓs) For all i ∈ {2, ..., l}, θ i g i (x 0 (T )) = 0 and for all α ∈ {1, ..., m}, λ α g α (x 0 (T )) = 0. (TCs)

l i=1 θ i D H g 0 i (x 0 (T )) + m α=1 λ α D H g α (x 0 (T )) + q β=1 µ β D H h β (x 0 (T )) = p(T ). (AE.Ms) dp(t) = -D F,2 H M (t, x 0 (t), u 0 (t), p(t)) for all t ∈ [0, T ]. (MP.Ms) For all t ∈ [0, T ], for all ζ ∈ U , H M (t, x 0 (t), u 0 (t), p(t)) ≥ H M (t, x 0 (t), ζ, p(t)). (CH.Ms) HM := [t → H M (t, x 0 (t), u 0 (t), p(t))] ∈ C 0 ([0, T ], R).
Therefore, since for all i ∈ {2, ..., l}, g i (x 0 (T )) = 0, (NNs), (Sis), (Sℓs), (TCs), (AE.Ms) , (MP.Ms) and (CH.Ms) are equivalent to (NN), (Si), (Sℓ), (TC), (AE.M) , (MP.M) and (CH.M). Therefore, the proof Theorem 4.2 is complete.

6.2. Proof of Corollary 4.3. We proceed by contradiction by assuming that there exists t 1 ∈ [0, T ] such ((θ i ) 1≤i≤l , p(t 1 )) = (0, 0). Since (AE.M) is an homogeneous linear equation, and by using the uniqueness of the Cauchy problem ((AE.M), p(t 1 ) = 0), we obtain that p is equal to zero on [0, T ], in particular we have p(T ) = 0. Hence, by using (TC), (Si), (Sℓ), (QC 1 ), we obtain that (∀α ∈ {1, ..., m}, λ α = 0) and (∀β ∈ {1, ..., q}, µ β = 0). Therefore, since (θ i ) 1≤i≤l = 0, we have ((θ i ) 1 ≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q ) = 0 which is a contradiction with (NN).

6.3. Proof of Corollary 4.4. We proceed by contradiction by assuming that there exists t 1 ∈ [0, T ] such p(t 1 ) = 0. Since (AE.M) is an homogeneous linear equation, and by using the uniqueness of the Cauchy problem ((AE.M), p(t 1 ) = 0, we obtain that p is equal to zero on [0, T ],

in particular we have p(T ) = 0. Consequently, by using (TC), (Si), (Sℓ), (QC 0 ), we obtain that ((θ i ) 1 ≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q ) = 0 which is a contradiction with (NN).

6.4. Proof of Corollary 4.5. We proceed by contradiction, we assume that (θ i ) 1≤i≤l = 0. Since D G,3 f ( t, x 0 ( t), u 0 ( t)) exists, D G,3 H M ( t, x 0 ( t), u 0 ( t), p( t)) exists and

D G,3 H M ( t, x 0 ( t), u 0 ( t), p( t)) = p( t) • D G,3 f ( t, x 0 ( t), u 0 ( t)).
Therefore, by using (MP.M), we have

p( t) • D G,3 f ( t, x 0 ( t), u 0 ( t)) = 0. Since D G,3 f ( t, x 0 ( t), u 0 ( t)
) is surjective, we have p( t) = 0. This is a contradiction with the Corollary 4.3, therefore (θ i ) 1≤i≤l = 0.

6.5. Proof the Corolloray 4.6. We proceed by contradiction, we assume that (θ i ) 1≤i≤l = 0. Since D G,3 f (T, x 0 (T ), u 0 (T )) exists, D G,3 H M (T, x 0 (T ), u 0 (T ), p(T )) exists and

D G,3 H M (T, x 0 (T ), u 0 (T ), p(T )) = p(T ) • D G,3 f (T, x 0 (T ), u 0 (T )).
Consequently, by using (MP.M), we have p(T )

• D G,3 f (T, x 0 (T ), u 0 (T )) = 0.
That is why, thanks to (TC) and (θ i ) 1≤i≤l = 0, we obtain that

m α=1 λ α D H g α (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T )) + q β=1 µ β D H h β (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T )) = 0.
Hence, thanks to (Alib), we have ((λ α ) 1≤α≤m , (µ β ) 1≤β≤q ) = 0. Consequently, since (θ i ) 1≤i≤l = 0, we have ((θ i ) 1 ≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q ) = 0 this a contradiction with (NN). 6.6. Proof the Corolloray 4.7. Let j ∈ {1, ..., l}. We assume that (Af) j . We proceed by contradiction, we assume that θ j = 0. Since D G,3 f (T, x 0 (T ), u 0 (T )) exists, D G,3 H M (T, x 0 (T ), u 0 (T ), p(T )) exists and

D G,3 H M (T, x 0 (T ), u 0 (T ), p(T )) = p(T ) • D G,3 f (T, x 0 (T ), u 0 (T )).
Consequently, by using (MP.M), we have p(T ) • D G,3 f (T, x 0 (T ), u 0 (T )) = 0. That is why, thanks to (TC) and θ j = 0, we obtain that

i =j θ i D H g 0 i (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T )) + m α=1 λ α D H g α (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T )) + q β=1 µ β D H h β (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T )) = 0.    Hence, thanks to (Af) j , we have ((θ i ) i =j , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q ) = 0.
Consequently, since θ j = 0, we have ((θ i ) 1 ≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q ) = 0 this a contradiction with (NN). We set ∀i ∈ {1, ..., l}, θ ′ i = θi θj , ∀α ∈ {1, ..., m}, λ ′ α := λα θj , ∀β ∈ {1, ..., q}, µ ′ β := µ β θj and p ′ := 1 θj p. Since the set of (

(θ i ) 1 ≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q , p) ∈ R l+m+q × P C 1 ([0, T ], E * ) verifying the conclusions of Theorem 4.2 is a cone, we have ((θ ′ i ) 1≤i≤l , (λ ′ α ) 1≤α≤m , (µ ′ β ) 1≤β≤q , p ′ ) that verifies the conclusions of Theorem 4.2 with θ ′ j = 1. Let ((θ 1 i ) 1≤i≤l , (λ 1 α ) 1≤α≤m , (µ 1 β ) 1≤β≤q , p 1 ) ∈ R l+m+q × P C 1 ([0, T ], E * ) and ((θ 2 i ) 1≤i≤l , (λ 2 α ) 1≤α≤m , (µ 2 β ) 1≤β≤q , p 2 ) ∈ R l+m+q × P C 1 ([0, T ], E * ) s.t.
the conclusions of the Theorem 4.2 are verified with θ 1 j = θ 2 j = 1. Then, we have, for all ℓ ∈ {1, 2}, p ℓ (T ) • D G,3 f (T, x 0 (T ), u 0 (T )) = 0. Therefore, we have (p 1 (T )p 2 (T )) • D G,3 f (T, x 0 (T ), u 0 (T )) = 0. By using (TC), we have

i =j (θ 1 i -θ 2 i )D H g 0 i (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T )) + m α=1 (λ 1 α -λ 2 α )D H g α (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T )) + q β=1 (µ 1 β -µ 2 β )D H h β (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T )) = 0.   
Hence, by using (Af) j , ∀(i, α, β) ∈ {1, ..., l}×{1, ..., m}×{1, ..., q}, θ

1 i = θ 2 i , λ 1 α = λ 2 α
and µ 1 β = µ 2 β . Therefore, p 1 (T ) = p 2 (T ); that is why (AE.M), we have : p 1 = p 2 . 6.7. Proof of the Theorem 4.9. In [START_REF] Blot | A generalization of Michel's result on the Pontryagin Maximum Principle[END_REF], by transforming the single-objective Bolza problem into a single-objective Mayer problem, the authors proof the Pontryagin Maximum Principle for the single-objective Bolza problem thanks to the Pontryagin Maximum Principle for the single-objective Mayer problem. For the proof of the Pontryagin Maximum Principle for the multiobjective Bolza problem, we will use the same reasoning. That is why, we introduce the following elements, for all t ∈ [0, T ], for all X = (σ 1 , ..., σ l , x) ∈ R l × Ω, for all u ∈ U , F (t, X, u) := (f 0 1 (t, x, u), ..., f 0 l (t, x, u), f (t, x, u)), G 0 i (X) := σ i + g 0 i (x) for all i ∈ {1, ..., l}, G α (X) := g α (x) for all α ∈ {1, ..., m}, H β (X) := h β (x) for all β ∈ {1, ..., q}. Then, we can introduce the following multiobjective Mayer problem (MB)

           Maximize (G 0 1 (X(T )), ..., G 0 l (X(T ))) subject to X ∈ P C 1 ([0, T ], R l × Ω), u ∈ N P C 0 ([0, T ], U )
dX(t) = F (t, X(t), u(t)), X(0) = (0, ξ 0 ) ∀α ∈ {1, ..., m}, G α (X(T )) ≥ 0 ∀β ∈ {1, ..., q}, H β (X(T )) = 0. Lemma 6.2. For each (x, u) ∈ Adm(B), by setting for all t ∈ [0, T ], for all i ∈ {1, ..., l}, σ i (t) := t 0 f 0 i (s, x(s), u(s))ds, we have ((σ 1 , ..., σ l , x), u) ∈ Adm(MB). Proof. Let (x, u) ∈ Adm(B). Since u ∈ N P C 0 ([0, T ], U ) and x ∈ P C 1 ([0, T ], Ω), by using (Ai1), we have, for each i ∈ {1, ..., l}, [t → f 0 i (t, x(t), u(t))] ∈ N P C 0 d ([0, T ], R). Consequently, for each i ∈ {1, ..., l}, σ i ∈ P C 1 ([0, T ], R) and for all t ∈ [0, T ], dσ i (t) = f 0 i (t, x(t), u(t)). Hence, (σ 1 , ..., σ l , x) ∈ P C 1 ([0, T ], R l × Ω) and for all t ∈ [0, T ],

d(σ 1 , ..., σ l , x)(t) = (dσ 1 (t), ..., dσ l (t), dx(t)) = (f 0 1 (t, x(t), u(t)), ..., f 0 l (t, x(t), u(t)), f (t, x(t), u(t))) = F (t, (σ 1 , ..., σ l , x)(t), u(t))
Moreover, we have, for all α ∈ {1, ..., m}, G α ((σ 1 , ..., σ l , x)(T )) = g α (x(T )) ≥ 0 and ∀β ∈ {1, ..., q}, H β ((σ 1 , ..., σ l , x)(T )) = h β (x(T )) = 0. Therefore, since (σ 1 , ..., σ l , x)(0) = (σ 1 (0), ..., σ l (0), x(0)) = (0, ξ 0 ), we have ((σ 1 , ..., σ l , x), u) ∈ Adm(MB).

Hence, by setting for all i ∈ {1, ..., l}, for all t ∈ [0, T ], σ 0 i (t) := t 0 f 0 i (s, x 0 (s), u 0 (s))ds, by using the Lemma 6.2, we have (X 0 , u 0 ) := ((σ 0 1 , ..., σ 0 l , x 0 ), u 0 ) ∈ Adm(MB).

Lemma 6.3. (X 0 , u 0 ) is a Pareto optimal solution of the multiobjective problem (MB).

Proof. We proceed by contradiction, we assume that (X 0 , u 0 ) is not a Pareto optimal solution for (MB) i.e. there exists (X, u) = ((σ 1 , ..., σ l , x), u) ∈ P C 1 ([0, T ], R l × Ω) × N P C 0 ([0, T ], U ) admissible process for (MB) s.t. for all i ∈ {1, ..., l}, G 0 i (X(T )) ≥ G 0 i (X 0 (T )) and there exists i 0 ∈ {1, ..., l}, G 0 i0 (X(T )) > G 0 i0 (X 0 (T )). Since X ∈ P C 1 ([0, T ], R l × Ω) and ∀t ∈ [0, T ], dX(t) := F (t, X(t), u(t)), we have x ∈ P C 1 ([0, T ], Ω) and for all i ∈ {1, ..., l}, σ i ∈ P C 1 ([0, T ], R) s.t.

∀t ∈ [0, T ], dx(t) = f (t, x(t), u(t)) and dσ i (t) = f 0 i (t, x(t), u(t)). Moreover, we have also for all α ∈ {1, ..., m}, g α (x(T )) ≥ 0 and for all β ∈ {1, ..., q}, h β (x(T )) = 0. Consequently, we have (x, u) ∈ Adm(B). Moreover, for all t ∈ [0, T ], we have σ i (t) = t 0 f 0 i (s, x(s), u(s))ds. Then, for all i ∈ {1, ..., l},

G 0 i (X(T )) = T 0 f 0 i (s, x(s), u(s))ds + g 0 i (x(T )) ≥ G 0 i (X 0 (T )) =
T 0 f 0 i (s, x 0 (s), u 0 (s))ds + g 0 i (x 0 (T )) and there exists i 0 ∈ {1, ..., l},

G 0 i0 (X(T )) = T 0 f 0 i0 (s, x(s), u(s))ds + g 0 i0 (x(T )) > G 0 i0 (X 0 (T )) = T 0 f 0 i0 (s, x 0 (s), u 0 (s))ds + g 0 i0 (x 0 (T )
). This a contradiction with (x 0 , u 0 ) is a Pareto optimal solution. Lemma 6.4. The assumptions of Theorem 4.9 for the multiobjective Mayer problem (MB) with the Pareto optimal solution (X 0 , u 0 ) are verified.

Proof. We consider the linear functions i ∈ {1, ..., l}, w 1 i : R l × E → R defined by, w 1 i (σ 1 , ..., σ l , ξ) = σ i and w 2 : R l × E → E, defined by, w 2 (σ 1 , ..., σ l , ξ) = ξ. For all i ∈ {1, ..., l}, since

G 0 i = w 1 i R l ×Ω + g 0 i • w 2 |R l ×Ω
, by using the property of the chain rule of the Hadamard differentiable function, see [START_REF] Tm | Differential analysis[END_REF] p.267, and (At1), we have

D H G 0 ((σ 0 1 , ..., σ 0 l , x 0 )(T )) = w 1 i + D H g 0 i (x 0 (T )) • w 2 . ( 6 
.1) Therefore, (At1) is verified for (MB) with the Pareto optimal solution (X 0 , u 0 ). Next, for all α ∈ {1, ..., m}, since G α = g α • w 2 |R l ×Ω , by using the property of the chain rule of the Hadamard differentiable function, see [START_REF] Tm | Differential analysis[END_REF] p.267, and (At2), we have

D H G α ((σ 0 1 , ..., σ 0 l , x 0 )(T )) = D H g α (x 0 (T )) • w 2 . (6.
2) Hence, (At2) is verified for (MB) with the Pareto optimal solution (X 0 , u 0 ). Moreover, for all β ∈ {1, ..., q}, since H β = h β • w 2 |R l ×Ω , by using the property of chain rule of the Hadamard differentiable function, see [START_REF] Tm | Differential analysis[END_REF] p.267, and (At3), we have

D H H β ((σ 0 1 , ..., σ 0 l , x 0 )(T )) = D H h β (x 0 (T )) • w 2 . (6.3) Since h β is continuous on a neighborhood V β 0 of x 0 (T ) in Ω and w 2 |R l ×Ω ∈ C 0 (R l × Ω, Ω), there exists W β 0 of X 0 (T ) in R l × Ω s.t. w 2|W 0 β ∈ C 0 (W β 0 , V β 0 ). Hence, we have H β |W β 0 ∈ C 0 (W β 0 , R).
Consequently, (At3) is verified for (MB) with the Since the set of ((θ i ) 1 ≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q , p) ∈ R l+m+q × P C 1 ([0, T ], E * ) verifying the conclusions of Theorem 4.9 is a cone, we have ((θ ′ i ) 1≤i≤l , (λ ′ α ) 1≤α≤m , (µ ′ β ) 1≤β≤q , p ′ ) that verifies the conclusions of Theorem 4.9 with θ ′ j = 1. Now, we assume that D G,3 f 0 j (T, x 0 (T ), u 0 (T )) exists. Let ((θ

1 i ) 1≤i≤l , (λ 1 α ) 1≤α≤m , (µ 1 β ) 1≤β≤q , p 1 ) ∈ R l+m+q × P C 1 ([0, T ], E * ) and ((θ 2 i ) 1≤i≤l , (λ 2 α ) 1≤α≤m , (µ 2 β ) 1≤β≤q , p 2 ) ∈ R l+m+q × P C 1 ([0, T ], E * ) s.t.
the conclusions of the Theorem 4.9 are verified with θ 1 j = θ 2 j = 1. Then, we have, for all ℓ ∈ {1, 2},

p ℓ (T ) • D G,3 f (T, x 0 (T ), u 0 (T )) + D G,3 f 0 j (T, x 0 (T ), u 0 (T ))+ i =j θ ℓ i D G,3 f 0 i (T, x 0 (T ), u 0 (T )) = 0. Therefore, we have (p 1 (T )-p 2 (T ))•D G,3 f (T, x 0 (T ), u 0 (T ))+ i =j (θ 1 i -θ 2 i )D G,3 f 0 i (T, x 0 (T ), u 0 (T )) = 0.
By using (TC), we have

i =j (θ 1 i -θ 2 i )(D H g 0 i (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T ))+ D G,3 f 0 i (T, x 0 (T ), u 0 (T ))) + m α=1 (λ 1 α -λ 2 α )D H g α (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T )) + q β=1 (µ 1 β -µ 2 β )D H h β (x 0 (T )) • D G,3 f (T, x 0 (T ), u 0 (T )) = 0.       
Hence, by using (Af) 0 j , ∀(i, α, β) ∈ {1, ..., l}×{1, ..., m}×{1, ..., q}, θ

1 i = θ 2 i , λ 1 α = λ 2 α
and µ 1 β = µ 2 β . Therefore, p 1 (T ) = p 2 (T ); that is why, by using (AE.B), we have : p 1 = p 2 . 7. Proof of the sufficient conditions 7.1. Proof of the Theorem 5.1. Let (x, u) ∈ Adm(M). By using (TC), we have

l i=1 θ i D H g 0 i (x(T )) • (x(T ) -x(T )) = p(T ) • (x(T ) -x(T )) - m α=1 λ α D H g α (x(T )) • (x(T ) -x(T )) - q β=1 µ β D H h β (x(T )) • (x(T ) -x(T ))    (7.1)
Moreover, by using (Si) and (Sℓ), we have for each α ∈ {1, ..., m}, λ α g α (x(T )) ≤ λ α g α (x(T )). Consequently, by using (St2), we have for all α ∈ {1, ..., m}, λ α D H g α (x(T )) • (x(T )x(T )) ≥ 0. Moreover, thanks to (St3), we have for all β ∈ {1, ..., q}, µ β D H h β (x(T )) • (x(T )x(T )) = 0. Hence T 0 (H M (t, x(t), u(t), p(t)) -H M (t, x(t), u(t), p(t)))dt+ T 0 (H M (t, x(t), u(t), p(t)) -H M (t, x(t), u(t), p(t)))dt = 0 where we have used (Shm1).

(AE.M) and (MP.M), we have D G,(2,3) H M (t, x(t), u(t), p(t))•(x(t)-x(t), u(t)-u(t)) = -dp(t)•(x(t)-x(t)). Therefore, (Shm1) is verified. Hence, the assumptions of the Theorem 5.1 are verified and the conclusions follow. Furthermore, by using (Si) and (Sℓ), we have for each α ∈ {1, ..., m}, λ α g α (x(T )) ≤ λ α g α (x(T )). Consequently, by using (ST2), we have for all α ∈ {1, ..., m}, λ α D H g α (x(T )) • (x(T )x(T )) ≥ 0. Besides, thanks to (ST3), we have for all β ∈ {1, ..., q}, µ β D H h β (x(T )) • (x(T )x(T )) = 0. Hence, by using Now, we assume that (θ i ) 1≤i≤l = 0. We want to prove that (x, u) is a weak Pareto optimal solution. We proceed by contradiction, we assume that (x, u) is not a weak Pareto optimal solution i.e. there exists (x, u) ∈ Adm(B) such that for all i ∈ {1, ..., l}, J i (x, u) > J i (x, u). Consequently, we have l i=1 θ i J i (x, u) > l i=1 θ i J i (x, u). This is a contradiction with (x, u) is a solution of (P θ ). Next, we assume that for all i ∈ {1, ..., l}, θ i = 0. We want to prove that (x, u) is a Pareto optimal solution. We proceed by contradiction, we assume that (x, u) is not a Pareto optimal solution i.e. there exists

4 . 1 .

 41 Necessary conditions of Pareto optimality 4.Necessary conditions of Pareto optimality for the Mayer problem. Definition 4.1. The Hamiltonian of (M) is the function H

4. 2 .

 2 Necessary conditions of Pareto optimality for the Bolza problem. Definition 4.8. The Hamiltonian of (B) is the function H

l

  i=1 θ i D H g 0 i (x(T )) • (x(T )x(T )) ≤ p(T ) • (x(T )x(T )) = p(0) • (x(0)x(0)) + T 0 d(p(t) • (x(t)x(t)))dt = T 0 dp(t) • (x(t)x(t))dt + T 0 p(t) • d(x(t)x(t))dt ≤

7. 4 .

 4 Proof of the Theorem 5.5. Let (x, u) ∈ Adm(B). By using (ST1), we havel i=1 θ i J i (x, u) = l i=1 θ i g 0 i (x(T )) + T 0 l i=1 θ i f 0 i (t, x(t), u(t))dt ≤ l i=1 θ i g 0 i (x(T )) + l i=1 θ i D H g i (x(T )) • (x(T )x(T ))+ T 0 l i=1 θ i f 0 i (t, x(t), u(t))dt. By using (TC), we havel i=1 θ i D H g 0 i (x(T )) • (x(T )x(T )) = p(T ) • (x(T )x(T )) -m α=1 λ α D H g α (x(T )) • (x(T )x(T )) -q β=1 µ β D H h β (x(T )) • (x(T )x(T ))

l

  i=1 θ i D H g 0 i (x(T )) • (x(T )x(T )) ≤ p(T ) • (x(T )x(T )) = T 0 d(p(t) • (x(t)x(t)))dt = T 0 dp(t) • (x(t)x(t))dt + T 0 p(t) • d(x(t)x(t))dt ≤ T 0 (H B (t, x(t), u(t), p(t), (θ i ) 1≤i≤l ) -H B (t, x(t), u(t), p(t), (θ i ) 1≤i≤l ))dt+

T0

  (p(t) • f (t, x(t), u(t))p(t) • f (t, x(t), u(t)))dt= T 0 l i=1 θ i f 0 i (t, x(t), u(t))dt -T 0 l i=1 θ i f 0 i (t, x(t), u(t))dt. Therefore, we have l i=1 θ i J i (x, u) ≤ l i=1 θ i g 0 i (x(T )) + T 0 l i=1 θ i f 0 i (t, x(t), u(t))dt -T 0 l i=1 θ i f 0 i (t, x(t), u(t))dt + T 0 l i=1 θ i f 0 i (t, x(t), u(t))dt = l i=1 θ i J i (x, u).. Consequently, (x, u) a solution of the following single optimization problem : (P θ ) Maximize l i=1 θ i J i (x, u) subject to (x, u) ∈ Adm(B).

  ) 1≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q , p) belongs to R l+m+q × P C 1 ([0, T ], E * )verifying all the conclusions of Theorem 4.9 with (x 0 , u 0 ) = (x, u) and if the following condition is satisfied (Shb2) for all (t, ξ) ∈ [0, T ] × Ω, H

	5.6. When (x, u) ∈ Adm(B), under (St1), (St2), (St3), (Si1), (Si2),
	(Sv1), (Sv2) if there exists ((θ i

* B (t, ξ, p(t), (θ i ) 1≤i≤l ) = max ζ∈U H B (t, ξ, ζ, p(t), (θ i ) 1≤i≤l ) exists, and for all t ∈ [0, T ], [ξ → H * B (t, ξ, p(t), (θ i ) 1≤i≤l

(Sv2) For all t ∈ [0, T ] D F,2 f (t, x(t), u(t)) exists and [t → D F,2 f (t, x(t), u(t))] ∈ N P C 0 ([0, T ], L(E, E)).

Theorem 5.1. When (x, u) ∈ Adm(M), under (St1-bis), (St2), (St3), (Sv1) if there exists ((θ i ) 1≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q , p) ∈ R l+m+q ×P C 1 ([0, T ], E * ) verifying the conclusions (NN), (Si), (Sℓ) and (TC) of Theorem 4.2 with (x 0 , u 0 ) = (x, u) and if the following condition is satisfied (Shm1) For each (x, u) ∈ Adm(M), for all t ∈ [0, T ] almost everywhere for the canonical measure of Borel on [0, T ],

H M (t, x(t), u(t), p(t)) -H M (t, x(t), u(t), p(t)) ≥ dp(t) • (x(t)x(t)), then we have: if (θ i ) 1≤i≤l = 0, then (x, u) is a weak Pareto optimal solution of (M), if for all i ∈ {1, ..., l}, θ i = 0, then (x, u) is a Pareto optimal solution of (M).

Theorem 5.2. When (x, u) ∈ Adm(M), under (St1-bis), (St2), (St3), (Sv1), (Sv2) if there exists ((θ i ) 1≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q , p) ∈ R l+m+q ×P C 1 ([0, T ], E * ) verifying all the conclusions of Theorem 4.2 with (x 0 , u 0 ) = (x, u) and if the following condition is satisfied (Shm2) for all (t, ξ) ∈ [0, T ] × Ω, H * M (t, ξ, p(t)) = max ζ∈U H M (t, ξ, ζ, p(t)) exists, and for all t ∈ [0, T ] , [ξ → H * M (t, ξ, p(t))] is concave at x(t) and Gâteaux differentiable at x(t), then we have: if (θ i ) 1≤i≤l = 0, then (x, u) is a weak Pareto optimal solution of (M), if for all i ∈ {1, ..., l}, θ i = 0, then (x, u) is a Pareto optimal solution of (M).

Theorem 5.3. When (x, u) ∈ Adm(M), under (St1-bis), (St2), (St3), (Sv1), (Sv2) if there exists ((θ i ) 1≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q , p) ∈ R l+m+q ×P C 1 ([0, T ], E * ) verifying all the conclusions of Theorem 4.2 with (x 0 , u 0 ) = (x, u) and if the following condition is satisfied (Shm3) U is a subset of a real normed vector space Y s.t. for all t ∈ [0, T ], U is a neighborhood of u(t), and for all t

is Gâteaux differentiable at (x(t), u(t)) and concave at (x(t), u(t)), then we have: if (θ i ) 1≤i≤l = 0, then (x, u) is a weak Pareto optimal solution of (M), if for all i ∈ {1, ..., l}, θ i = 0, then (x, u) is a Pareto optimal solution of (M).

Remark 5.4. By using our constraint qualifications, we can rewrite the conclusion of Theorem 5.2 and Theorem 5.3 as follows.

If the condition (Alib) or [(QC 1 ) and (Av3)] is fulfilled for (x 0 , u 0 ) = (x, u) then (x, u) is a weak Pareto optimal solution of (M), if, for each j ∈ {1, ..., l}, (Af) j is fulfilled for (x 0 , u 0 ) = (x, u), then (x, u) is a Pareto optimal solution of (M).

Theorem 5.5. When (x, u) ∈ Adm(B), under (St1), (St2), (St3), (Si1), (Si2) (Sv1), (Sv2) if there exists ((θ i ) 1≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q , p) belongs to R l+m+q × P C 1 ([0, T ], E * ) verifying the conclusions (NN), (Si), (Sℓ) and (TC) of Theorem 4.9 with (x 0 , u 0 ) = (x, u) and if the following condition is satisfied Pareto optimal solution (X 0 , u 0 ). We consider the continuous function χ :

We remark that F := (f 0 1 • χ, ..., f 0 l • χ, f • χ). By using (Ai1) and (Av1), we have, for all i ∈ {1, ..., l}, f 0

By using (Ai1) and (Av1), we have, for all (t, σ, ξ, ζ)

, by using (Ai1) and (Av1), we have D F,2 F (t, X 0 (t), ζ) exists and

). Consequently, by using (Ai1) and (Av1), we have

Therefore, (Av1) is verified for (MB) with the Pareto optimal solution (X 0 , u 0 ). Let K be a non-empty compact s.t. K ⊂ R l × Ω and M be a non-empty compact s.t. M ⊂ U . We consider the linear continuous function ̟ : R l × Ω → Ω, defined by, for all (σ, ξ) ∈ R l × Ω, ̟(σ, ξ) := ξ. Since K is a non-empty compact, K = ̟(K) is a non empty compact s.t. K ⊂ Ω. Consequently, by using (Ai2) and (Av2), we have for all i ∈ {1, ..., l} sup

and sup

Therefore, by using (6.4), we have sup

Hence (Av2) is verified for (MB) with the Pareto optimal solution (X 0 , u 0 ).

By using the Lemma 6.4, by applying the Theorem 4.9, we obtain that, there exists (θ i ) 1≤i≤l ∈ R l , (λ α ) 1≤α≤m ∈ R m , (µ β ) 1≤β≤q ∈ R q and an adjoint function

For all i ∈ {1, ..., l}, θ i ≥ 0 and for all α ∈ {1, ..., m}, λ α ≥ 0.

(iii) For all α ∈ {1, ..., m}, λ α G α (X 0 (T )) = 0.

(iv)

Where the function H MB : [0, T ]×(R l ×Ω)×U ×(R l ×E) * → R is the Hamiltonian of the problem (MB), defined by H MB (t, (σ 1 , ..., σ l , x), u, P ) = P •F (t, (σ 1 , ..., σ l , x), u). We consider the linear continuous function ψ

Therefore, by using (i), (ii) and (iii), we have respectively (NN), (Si) and (Sℓ). By using (iv), we have , for each i ∈ {1, ..., l} P (T ) • (e i , 0) = θ i where (e i ) 1≤i≤l is the canonical basis of R l and ∀ξ ∈ E,

For all i ∈ {1, ..., l}, we consider the linear continuous function

Consequently, by using (vi) and (vii), we have proved (MP.B) and (CH.B). Hence the proof of the Theorem 4.9 is complete. 6.8. Proof of Corollary 4.10. We proceed by contradiction by assuming that there exists t 1 ∈ [0, T ] such ((θ i ) 1≤i≤l , p(t 1 )) = (0, 0). Since (AE.B) becomes an homogeneous linear equation, and by using the uniqueness of the Cauchy problem ((AE.B), p(t 1 ) = 0), we obtain that p is equal to zero on [0, T ], in particular we have p(T ) = 0. Hence, by using (TC), (Si), (Sℓ), (QC 1 ), we obtain that (∀α ∈ {1, ..., m}, λ α = 0) and (∀β ∈ {1, ..., q}, µ β = 0). Therefore, since (θ i ) 1≤i≤l = 0, we have ((θ i ) 1 ≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q ) = 0 which is a contradiction with (NN). 6.9. Proof of Corollary 4.11. We proceed by contradiction, we assume that (θ i ) 1≤i≤l = 0. Since D G,3 f ( t, x 0 ( t), u 0 ( t)) exists, D G,3 H B ( t, x 0 ( t), u 0 ( t), p( t), 0) exists and

Therefore, by using (MP.B), we have p( t) • D G,3 f ( t, x 0 ( t), u 0 ( t)) = 0. Since D G,3 f ( t, x 0 ( t), u 0 ( t)) is surjective, we have p( t) = 0. Therefore, we have ((θ i ) 1≤i≤l , p( t)) = 0. This is a contradiction with the Corollary 4.10, therefore (θ i ) 1≤i≤l = 0. 6.10. Proof the Corolloray 4.12. We proceed by contradiction, we assume that (θ i ) 1≤i≤l = 0. Since D G,3 f (T, x 0 (T ), u 0 (T )) exists, D G,3 H B (T, x 0 (T ), u 0 (T ), p(T ), 0) exists and

Consequently, by using (MP.B), we have p(T ) • D G,3 f (T, x 0 (T ), u 0 (T )) = 0. That is why, thanks to (TC) and (θ i ) 1≤i≤l = 0, we obtain that

Hence, thanks to (Alib), we have ((λ α ) 1≤α≤m , (µ β ) 1≤β≤q ) = 0. Consequently, since (θ i ) 1≤i≤l = 0, we have ((θ i ) 1 ≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q ) = 0 this a contradiction with (NN). 6.11. Proof the Corolloray 4.13. Let j ∈ {1, ..., l}. We assume that (Af) j . We proceed by contradiction, we assume that θ j = 0. Since D G,3 f (T, x 0 (T ), u 0 (T )) exists and for all i = j, D G,3 f 0 i (T, x 0 (T ), u 0 (T )) exists, D G,3 H B (T, x 0 (T ), u 0 (T ), p(T ), (θ i ) 1≤i≤l ) exists and

x 0 (T ), u 0 (T )). Consequently, by using (MP.B), we have

That is why, thanks to (TC) and θ j = 0, we obtain that

Hence, thanks to (Af) 0 j , we have ((θ i ) i =j , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q ) = 0. Consequently, since θ j = 0, we have ((θ i ) 1 ≤i≤l , (λ α ) 1≤α≤m , (µ β ) 1≤β≤q ) = 0 this a contradiction with (NN). We set ∀i ∈ {1, ..., l}, θ ′ i = θi θj , ∀α ∈ {1, ..., m}, λ ′ α := λα θj , ∀β ∈ {1, ..., q}, µ ′ β := µ β θj and p ′ := 1 θj p.

Therefore, thanks to (St1-bis), we have

). Hence, (x, u) is a solution of the following single-objective optimization problem :

Now, we assume that (θ i ) 1≤i≤l = 0. We want to prove that (x, u) is a weak Pareto optimal solution. We proceed by contradiction, we assume that (x, u) is not a weak Pareto optimal solution i.e. there exists (x, u) ∈ Adm(M) such that for all i ∈ {1, ..., l}, J i (x, u) > J i (x, u). Consequently, we have

But this contradicts the optimality of (x, u) for the problem (P θ ). Next, we assume that for all i ∈ {1, ..., l}, θ i = 0. We want to prove that (x, u) is a Pareto optimal solution. We proceed by contradiction, we assume that (x, u) is not a Pareto optimal solution i.e. there exists (x, u) ∈ Adm(M) such that for all i ∈ {1, ..., l}, J i (x, u) ≥ J i (x, u) and for some i 0 ∈ {1, ..., l}, J i0 (x, u) > J i0 (x, u). Hence, we obtain that l i=1 θ i J i (x, u) > l i=1 θ i J i (x, u) which contradicts the optimality of (x, u). 7.2. Proof of the Theorem 5.2. Notice that (Shm2) implies (Shm1). Indeed, let (x, u) ∈ Adm(M). For all t ∈ [0, T ], for all ε > 0 small enough, we have x(t) + ε(x(t)x(t)) ∈ Ω, therefore by using (MP.M)

ε (H M (t, x(t) + ε(x(t)x(t)), u(t), p(t)) -H M (t, x(t), u(t), p(t))). Therefore, since (Shm2) and (Sv2), when ε → 0 we have D G,2 H * M (t, x(t), p(t)) • (x(t)-x(t)) ≥ D G,2 H M (t, x(t), u(t), p(t))•(x(t)-x(t)). Therefore, by using (AE.M), we have

Besides, for all ε > 0 small enough, we have x(t) + ε(x(t)x(t)) ∈ Ω, therefore by using (MP.M) and (Shm2), we have 

Hence, we have

). Consequently, when ε → 0 and thanks to (AE.M) and (7.2), we have H M (t, x(t), u(t), p(t)) -H M (t, x(t), u(t), p(t)) ≥ dp(t) • (x(t)x(t)). Hence, the assumptions of the Theorem 5.1 are verified and the conclusions follow. 7.3. Proof of the Theorem 5.3. Notice that (Shm3) implies (Shm1). Indeed, let (x, u) ∈ Adm(M), let t ∈ [0, T ], since [(ξ, ζ) → H M (t, ξ, ζ, p(t))] is Gâteaux differentiable and concave at (x(t), u(t)), we have H M (t, x(t), u(t), p(t)) -H M (t, x(t), u(t), p(t)) ≤ D G,(2,3) H M (t, x(t), u(t), p(t)) • (x(t)x(t), u(t)u(t)). Therefore, by using (x, u) ∈ Adm(B) such that for all i ∈ {1, ..., l}, J i (x, u) ≥ J i (x, u) and there exists i 0 ∈ {1, ..., l}, J i0 (x, u) > J i0 (x, u). Hence, we obtain that l i=1 θ i J i (x, u) > l i=1 θ i J i (x, u). This is a contradiction with (x, u) is a solution of (P θ ). 7.5. Proof of the Theorem 5.6. Notice that (Shb2) implies (Shb1). Indeed, let (x, u) ∈ Adm(B). We set θ = (θ i ) 1≤i≤l . For all t ∈ [0, T ], for all ε > 0 small enough, we have x(t) + ε(x(t)x(t)) ∈ Ω, therefore by using (MP.B)

. Hence, by using (AE.B), we have

Besides, for all ε > 0 small enough, we have x(t) + ε(x(t)x(t)) ∈ Ω, hence by using (MP.B) and (Shb2), we have ). Consequently, when ε → 0, from (7.4), we have H B (t, x(t), u(t), p(t), θ) -H B (t, x(t), u(t), p(t), θ) ≥ dp(t) • (x(t)x(t)). Hence, the assumptions of the Theorem 5.5 are verified and the conclusions follow. 7.6. Proof of the Theorem 5.7. Notice that (Shb3) implies (Shb1). Indeed, let (x, u) ∈ Adm(B), let t ∈ [0, T ], since [(ξ, ζ) → H B (t, ξ, ζ, p(t), (θ i ) 1≤i≤l )] is Gâteaux differentiable and concave at (x(t), u(t)), we have H B (t, x(t), u(t), p(t), (θ i ) 1≤i≤l ) -H B (t, x(t), u(t), p(t), (θ i ) 1≤i≤l ) ≤ D G,(2,3) H B (t, x(t), u(t), p(t), (θ i ) 1≤i≤l ) • (x(t)x(t), u(t)u(t)). Therefore, by using (AE.B) and (MP.B), we have D G,(2,3) H B (t, x(t), u(t), p(t), (θ i ) 1≤i≤l ) • (x(t)x(t), u(t)u(t)) = -dp(t) • (x(t)x(t)). Hence, (Shb1) is verified. Therefore,the assumptions of the Theorem 5.5 are verified and the conclusions follow.