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ABSTRACT

Recent progress in Geometric Deep Learning (GDL) has shown its potential to
provide powerful data-driven models. This gives momentum to explore new
methods for learning physical systems governed by Partial Differential Equations
(PDEs) from Graph-Mesh data. However, despite the efforts and recent achieve-
ments, several research directions remain unexplored and progress is still far from
satisfying the physical requirements of real-world phenomena. One of the major
impediments is the absence of benchmarking datasets and common physics eval-
uation protocols. In this paper, we propose a 2-D graph-mesh dataset to study the
airflow over airfoils at high Reynolds regime (from 106 and beyond). We also
introduce metrics on the stress forces over the airfoil in order to evaluate GDL
models on important physical quantities. Moreover, we provide extensive GDL
baselines.

1 INTRODUCTION AND MOTIVATION

The conception of cars, planes, rockets, wind turbines, boats, etc. requires the analysis of surround-
ing physical fields. Measuring them experimentally by building prototypes is time-consuming, com-
putationally expensive, and sometimes dangerous. Having a measurement in a particular point or
reproducing a complex configuration is sometimes impossible during the test phase. Virtual testing
allows us to tackle many of these constraints and to test configurations that could not be possible
in reality. Hence, numerical simulations are crucial for modeling physical phenomenas and are es-
pecially used in Computational Fluid Dynamics (CFD) to solve Navier-Stokes equations. At high
Reynolds number, these equations involve a complex dissipation process that cascade from large
length scales to small ones which make direct resolutions challenging. Traditional CFD frameworks
rely on turbulence models and the power of intensive parallel computations to simulate and analyze
fluid dynamics. Despite the efficiency of existing tools, fluid numerical simulations are still compu-
tationally expensive and can take several weeks to converge to an accurate solution. Nevertheless, a
huge quantity of data can be extracted from numerical simulation solutions and are today available
to assess a new way to recover fluid flow solutions. These data could be exploited to explore the po-
tential of data-driven models in approximating Navier-Stokes PDEs by capturing highly non-linear
phenomena. The framework of Deep Learning (DL) is one of the successful data-driven methods
that have drawn lots of attention recently (Krizhevsky et al., 2012; Feichtenhofer et al., 2016; Minaee
et al., 2021; Amodei et al., 2015). DL methods are particularly interesting thanks to their universal
approximation properties (Lu & Lu, 2020; Hornik et al., 1989); capable of approximating a wide
range of continuous functions, which makes it a relevant candidate to tackle physics problems while
leading to new perspectives for CFD. PDE and DL offer complementary strengths: the modeling
power, interpretability, and the accuracy of differential equations solutions, as well as the approxi-
mation capabilities and inference speed of DL methods.
In practice, CFD solvers operate on meshes to solve Navier-Stokes equations. However, standard
DL models such as Convolutional Neural Networks (CNNs) (Krizhevsky et al., 2012) achieve learn-
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ing on regular grid data. Hence, CNNs are not designed to operate directly on meshes but several
methods based on grid approaches (Um et al., 2020; Thuerey et al., 2020; Mohan et al., 2020; Wan-
del et al., 2021; Obiols-Sales et al., 2020; Gupta et al., 2021) have been proposed to approximate
the functional space of PDEs. Unfortunately, they cannot correctly infer the physical fields close to
obstacles, which make it difficult to correctly compute stress forces at the surface of a geometry. In
addition to grid approaches, PDE-based supervised learning methods such as Physics-Informed Neu-
ral Networks (PINNs) (Raissi et al., 2019) have emerged and could help to solve the physical fields
in the entire continuous domain but they are difficult to train (Wang et al., 2021) and are restricted
to solving one predefined PDE. Recently, DL on unstructured data has been categorized under the
name of Geometric Deep Learning (GDL) (Bronstein et al., 2017). It consists in designing geo-
metrical and compositional inductive biases in DL, reflecting the rich and complex structure in the
data. Graph Neural Networks (GNNs) (Gori et al., 2005; Scarselli et al., 2009; Li et al., 2016; Kipf
& Welling, 2017; Gilmer et al., 2017; Sanchez-Gonzalez et al., 2018) are part of this category and
several works on GNNs for approximating PDEs have been proposed (Pfaff et al., 2021; Xu et al.,
2021; Brandstetter et al., 2022), including solver in the loop method (Belbute-Peres et al., 2020) and
graph neural operator methods (Anandkumar et al., 2020; Li et al., 2020). An important advantage
of GDL techniques is their ability to predict quantities over arbitrary shapes without requiring their
voxelizations. In our case, this allows accurate computations of stress forces over airfoils.

In this work, we propose a benchmarking graph-mesh dataset for studying the problem of 2-D
steady-state incompressible Reynolds-Averaged Navier-Stokes (RANS) equations along with an
evaluation protocol, especially the computation of stress forces at the surface of the airfoils. Fi-
nally, we conduct extensive experiments to give insight about the potential of DL for solving physics
problems. We would like to mention that we identified in the literature one similar work but based
on structured grid data, that proposes a set of benchmarks to study physical systems (Otness et al.,
2021) with classical DL approaches.

2 DATASET CONSTRUCTION AND DESCRIPTION

We chose OpenFOAM (Jasak et al., 2007), an open-source CFD software to run our simulations.
We use the steady-state solver simpleFOAM to run Reynolds-Averaged-Simulation with the Spalart-
Allmaras model (Spalart & Allmaras, 1992) for the turbulence modeling. These simulations were
done for multiple airfoil geometries1. We distinguish three different sets; namely training set, val-
idation set, and test set that are taken from the same distribution. The overall 2-D dataset statistics
are reported in Table 1. In this work, a geometry represents a shape of an airfoil and an angle of
attack. For each geometry, we define a compact domain around it, on which a tetrahedral mesh is
built (see Appendix B). Inlet velocity is uniformly sampled between 10 and 50 meters per second
which corresponds to a Reynolds number between 106 and 5 · 106 and a Mach number between
0.03 and 0.15. The characteristic length of the proposed airfoils is 1 meter, the kinematic viscosity
of air is approximated by 10−5. The meshes and boundary conditions are fed to the CFD solver to
run the simulations. Its outputs are four fields that represent the targets in our supervised learning
task, namely the x and y components of the velocity vector, the pressure and the turbulent viscosity.
All those information are wrapped up in a ready-to-use way via the framework of PyTorch Geo-
metric (PyG). Figure 1 depicts an example of the input/outputs of CFD solvers and GNNs. The
related details to the construction of the dataset and the normalization procedure are described in the
Appendices B and C.

3 TASK DEFINITION AND PHYSICAL METRICS

The incompressible steady-state RANS equations used for this dataset can be expressed as:{
(U · ∇)U = − 1

ρ∇p+ (ν + νt)∆U

∇ · U = 0
(1)

where U is the time-average velocity, ρ the density of the fluid, p an effective time-average pressure,
ν the kinematic viscosity and νt the kinematic turbulent viscosity. Boundary conditions are added
along with the Spalart-Allmaras turbulence equation to close the problem. The loss L used in this

1Geometries from the National Advisory Committee for Aeronautics (NACA).
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Table 1: Properties of the different sets. An interval means that the parameter for the related quantity
has been drawn from a uniform distribution over this interval.

Sets #Samples Graph-mesh parameters Physical parameters
#nodes/sample #edges/sample Angle of attack Inlet velocity Reynolds Mach

Mean Min Max Mean Min Max (deg) (m · s−1) number number

Train 180 13012 9585 17102 75803 55804 99818 [−0.3, 0.3] [10, 50] [106, 5 · 106] [0.03, 0.15]

Validation 20 12694 10028 15587 73948 58380 90934 [−0.3, 0.3] [10, 50] [106, 5 · 106] [0.03, 0.15]

Test 30 13519 10225 16193 78746 59570 94368 [−0.3, 0.3] [10, 50] [106, 5 · 106] [0.03, 0.15]

(a)

CFD Solver
======⇒

GNN

(b)

Figure 1: (a) Airfoil mesh. (b) x-velocity field. The goal of a GNN is to produce outputs that are as
accurate as those of a CFD solver while drastically reducing the computational time.

work is the sum of two terms, a loss over the volume LV and a loss over the surface LS :

L :=
1

|V|
∑
i∈V

∥fθ(xi)− yi∥22︸ ︷︷ ︸
LV loss over the volume

+ λ
1

|S|
∑
i∈S

∥fθ(xi)− yi∥22︸ ︷︷ ︸
LS loss over the surface

(2)

where V , S are respectively the set of the indices of the nodes that lie in the volume and on the surface
respectively, xi ∈ R4 is the input at node i containing the 2-D spatial coordinates, the velocity of
the flow at the inlet and the Euclidean distance function between the node and the airfoil, yi ∈ R4

the targets at node i containing the 2-D velocity, the pressure and the kinematic turbulent viscosity
at this node and fθ the model used. The coefficient λ is used to balance the weight of the error at the
surface of the geometry and over the volume2. We have to emphasize that this loss is not necessarily
a good proxy when it comes, for instance, to compute the wall shear stress or to ensure that the
inferred velocity field is divergence free. At the end of the training, we compute the global Wall
Shear Stress (WSS) and Wall Pressure (WP), see appendix G for the definition of those quantities.
The WSS and WP allow to recover the stress forces at the surface of the geometry and the integral
geometry forces which are the drag and the lift. To the best of our knowledge, this is the first work
that proposes an evaluation protocol to assess DL models not only on the quantity regressed but
also on more meaningful metrics for real-world problems that require geometries. In the literature
most of the models are experimented over the volume, except the recent work (Suk et al., 2022)
that proposes a model to regress WSS only on a surface mesh. It is not the direction we chose for
our baselines, as we want our model to output only the velocity, pressure and turbulent viscosity
fields in order to stick with the form of the RANS equations. From a given geometry and physical
parameters, the ultimate goal is to accurately regress the velocity, pressure, and turbulent viscosity
fields, as well as to compute the stress forces acting on this geometry. Because data comes in the
form of graphs, the task is a real challenge as most of the works focus on regular girds, though a
few interesting solutions on meshes are currently emerging as mentioned in section 1. Furthermore,
our inlet velocity corresponds to high Reynolds, from 106 to 5 · 106, which is closer to real-world
problems while precedent works focus on Reynolds of some orders of magnitude smaller.

2In this work λ is set to 1.
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Table 2: Scores in MSE of the different models over the test set, LV and LS are given in terms of
normalized quantities and the integral geometry forces are given in terms of unnormalized quantities.
Each model is trained 10 times. GNO* and MGNO* stand respectively for our modified GNO
(Anandkumar et al., 2020) and MGNO (Li et al., 2020) in comparison with GrapheSAGE (Hamilton
et al., 2017), GAT (Veličković et al., 2018), PointNet (Charles et al., 2017), Graph-Unet (Gao & Ji,
2019), and PointNet++ (Qi et al., 2017). See Appendix E for the details of each model.

Models Local metrics Integral geometry forces #Params Training Inference
time time

LV LS x-WSS y-WSS x-WP y-WP(
×10−2

) (
×10−2

) (
×10−3

) (
×10−4

)
(×10)

(
×102

)
(hh:mm.ss) (sec)

Single-scale

GraphSAGE 2.97 ± 0.15 4.81 ± 0.27 5.19 ± 1.04 3.39 ± 0.66 4.42 ± 1.13 7.18 ± 1.81 29140 0:10.47 0.40
GAT 3.20 ± 0.29 35.9 ± 15.3 235 ± 172 16.5 ± 11.7 3.64 ± 1.01 6.59 ± 1.22 47924 0:14.56 0.84

PointNet 4.31 ± 0.25 8.33 ± 1.01 12.6 ± 3.75 4.82 ± 2.14 7.33 ± 1.31 20.7 ± 5.97 75180 0:09.56 0.40
GNO* 3.02 ± 0.24 5.29 ± 0.27 5.15 ± 1.26 3.37 ± 1.17 5.91 ± 2.33 9.02 ± 1.97 23260 0:20.28 0.41

Multi-scale

Graph-Unet 3.03 ± 0.67 4.98 ± 0.37 6.26 ± 1.66 3.71 ± 0.98 6.26 ± 1.66 7.35 ± 1.49 65756 0:21.03 0.42
PointNet++ 3.61 ± 0.60 6.39 ± 0.44 5.99 ± 2.67 4.43 ± 1.36 6.75 ± 2.47 11.7 ± 3.94 4046156 0:54.20 0.77

MGNO* 1.83 ± 0.12 4.03 ± 0.28 3.94 ± 1.39 1.80 ± 0.34 2.99 ± 0.69 8.24 ± 1.36 75484 5:14.38 2.01

4 EXPERIMENTS

Task definition. For our baselines, we chose to regress the unknown fields involved in the RANS
equations 1 and to compute the stress forces as a post-processing step.

Controlling the numerical complexity. The number of nodes and edges in CFD meshes are very
high (especially in 3-D cases). Hence, the methods used have to be robust to downsampling to better
generalize to more complex problems. This implies that we cannot directly use a CFD mesh as
input. One way to overcome this problem is to uniformly draw a subsampling of points in the entire
mesh and to build a graph on these point clouds. During the training, at each sample and at each
epoch, 1600 different nodes are sampled which represent 10% to 20% of the total number of nodes
(depending on the simulation). If needed, a graph is built over this point cloud by connecting the
nodes that are closer than a fixed Euclidean distance. We call this graph, radius graph. We chose
the radius of our graphs to be 0.1 and we set the maximum number of neighbor points to 64 in
order to limit the memory footprint. The entire normalized domain is roughly square of length 8 (in
normalized unit). Hence, we connect only very locally and the resulting graphs are not necessarily
connected. For the inference, we keep all the points of the CFD meshes, rebuild graphs of radius 0.1
and set the maximum number of neighbor points to 512.

Baselines. We apply several Geometric Deep Learning (GDL) models to the dataset developed in
this work. We distinguish two families of methods, single-scale models and multi-scale models.
The former include GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018), PointNet
(Charles et al., 2017) and GNO (Anandkumar et al., 2020) while the latter is composed of Graph-
Unet (Gao & Ji, 2019), PointNet++ (Qi et al., 2017), and MGNO (Li et al., 2020). The GraphSAGE,
GAT, GNO, Graph-Unet and MGNO are graph-based models while PointNet and PointNet++ act
on point clouds. The GNO and MGNO belong to the class of neural operator methods that consist
in learning a mapping between two Hilbert spaces. We use Adam (Kingma & Ba, 2014) along with
one-cycle cosine learning rate scheduler (Smith & Topin, 2018) of maximum 3·10−3 to optimize our
neural networks. Details of the architectures are provided in the supplementary material along with
an ablation study. We present in Table 2 scores for the trained models evidencing the difficulty of the
various baselines to perform well on all real-world metrics (see Appendix F for results discussion).
The MSE for the stress forces is computed with the unnormalized inferred quantities whereas the
MSE over the surface and the volume is computed with normalized quantities (see Appendix C).

5 CONCLUSION

In this work, we developed a preliminary version of a graph-mesh dataset to study 2-D steady-state
incompressible RANS equations along with physics-based evaluation protocol. We also provided
a set of appropriate baselines to illustrate the potential of GDL to partially replace CFD solvers
leading to new perspectives for design and shape optimization processes. We proposed a new way
of measuring the performance of DL models and we underlined the importance to use unstructured
data in order to have access to more physical quantities such as stress forces. We argue that there
is no step forward in a Machine Learning task without a decent set of data and well predefined
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metrics. This work is a first step to propose elements for the task of quantitative and real-world
physics problems.

Future works will be dedicated to a brand new version of this dataset with more precision in the
CFD meshing process and proof of convergence of the CFD simulations. Moreover, we would like
to increase the level of difficulty of the test set by proposing test data out of the training distribution
(for Reynolds slightly higher or lower from the training data). We also consider the importance of
developing similar data for compressible, unsteady flows, and 3-D cases.

6 BROADER IMPACT

This work could be used to:

1. experiment new GDL models in this area,

2. study the capabilities of DL to capture physical phenomena relying on our physics-based
evaluation protocol,

3. give insights to establish new research directions for numerical simulation and ML follow-
ing the behaviors that will be observed in our quantitative and qualitative results (as well as
in the next version of the dataset) with the physical metrics,

4. extend graph benchmarking datasets and applications of GNNs to physics problems,

5. build surrogate solvers to help CFD engineers to optimize design cycles and iterate effi-
ciently as much as needed on their designs,

7 REPRODUCTIBILITY STATEMENT

We provide a GitHub repository to reproduce the experiments and a link to download the dataset.
The experiments have been done with a NVIDIA GeForce RTX 3090 24Go.
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A DESCRIPTION OF SOFTWARE

In this section, we describe the tools that we have used in this work to build the dataset, make the
visualizations, and train the models. This work makes use of computational fluid dynamics (CFD)
and ML tools.

OpenFOAM (Jasak et al., 2007) stands for Open-source Field Operation And Manipulation, a C++
software for developing custom numerical solvers to study continuum mechanics and CFD prob-
lems. In this work, we have used version 8.0 of OpenFOAM to make our simulations. OpenFOAM
is released as free and open-source software under the GNU General Public Licence.

Gmsh (Geuzaine & Remacle, 2009) is an open-source meshing tool based on 3-D finite element
mesh generator with a built-in CAD engine. It supports an Application Programming Interface
(API) in four languages: C , C++, Python and Julia. This tool is also able to build meshes in 2-D.
We have used version 4.9.3 of Gmsh in this work. Gmsh is released as free and open-source software
under the GNU General Public Licence.

ParaView (Ayachit, 2015) is an open-source visualization tool designed to explore and visualize
efficiently large data using quantitative and qualitative metrics. ParaView runs on distributed and
shared memory parallel and single processor systems. In this work, we have used it to visualize the
following: point clouds, meshes, the predicted (as well as the ground truth) physical fields. We have
used version 5.7.0 of ParaView in this work. ParaView is released as free and open-source software
under the Berkeley Software Distribution License.

PyVista (Sullivan & Kaszynski, 2019) is an open-source tool based on a handy interface for the
Visualization ToolKit (VTK). It is simple to use in interaction with NumPy (Oliphant, 2006) and
other Python libraries. It is mainly used for mesh analysis. In this work, we use PyVista to build the
inputs of our DL models. We have used version 0.33.0 of PyVista in this work. PyVista is released
as free and open-source software under the MIT License.

NetworkX (Hagberg et al., 2008) is an open-source Python Library for creating and studying com-
plex networks. It is endowed with several standard graph algorithms and data structures for graphs.
In this work, we use NetworkX to make statistics on graphs, namely number of nodes, number
of edges, and density, as well connectivity. We have used version 2.6 of NetworkX in this work.
NetworkX is released as free and open-source Berkeley Software Distribution License.

PyTorch (Paszke et al., 2019) is an open-source library for DL using GPUs and CPUs. In this work,
we use PyTorch to build our training protocol. In this work, we have used version 1.9.1 of Pytorch
along with CUDA 11.1. PyTorch is released as free and open-source Berkeley Software Distribution
License.

PyTorch Geometric (PyG) (Fey & Lenssen, 2019) is an open-source library for GDL built upon
PyTorch which targets the training of geometric neural networks, including point clouds, graphs and
meshes. We use PyG to design our message passing schemes. In this work, we have used version
2.0.2 of PyG along with CUDA 11.1. PyG is released as free and open-source software under the
MIT License.

In Figure 2, we illustrate the whole pipeline to make the experiments. Starting from mesh generation
to model training and output visualizations. We show the connection between all the aforementioned
tools to perform our task.

B GRAPH GENERATION: FROM GEOMETRIES TO CFD MESHES AND RADIUS
GRAPHS.

We start the CFD process with only the different airfoils as input. We load these geometries (under
the form of point clouds) in Gmsh and reconstruct a spline interpolating the point clouds in order
to recover continuous geometries. We specify the density of points we want at the surface of those
geometries and at the boundaries of the domains. Then, we use Gmsh to create 2-D conformal
meshes made of triangles and extrude them along the z-direction to get 3-D conformal meshes made
of one tetrahedral in the z-direction. We need to do the extrusion step as OpenFOAM only works
with 3-D meshes. An example of such mesh is given in Figure 3.
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Figure 2: The pipeline to make the experiments and the connection between the different tools. CFD,
VTK, GNNs stand respectively for Computational Fluid Dynamic, Visualization Toolkit, Graph
Neural Networks.

C PREPROCESSING

In this section, we describe the process of input and output variables normalization that we use prior
to feeding them to DL models. We compute the mean value µk and the standard deviation σk, of
each component k ∈ {0, 1, 2, 3} of all the nodes inputs of all the samples in the training set and we
normalize each sample’s inputs x as follow:

x
′

k =
xk − µk

σk + 10−8
(3)

where the factor 10−8 is added for numerical stability. For the targets, a similar process is applied.
However, we observed a particularity in the distribution of the turbulent viscosity at the surface
compared to the one in the volume. The values of the turbulent viscosity at the surface are of, at
least, one order of magnitude smaller. Hence, we have chosen to normalize it independently from the
volume values. This trick leads to a better performance on the inference of the turbulent viscosity
over the surface. The transformation applied to the targets are as follow, we first normalize the
targets y via:

y
′

k =
yk − µk

σk + 10−8
(4)

where µk is the mean value of the k-component of all of the targets of all the samples in the training
set and σk their standard deviation. In addition to that, for the turbulent viscosity component (i.e.
for k = 4) associated to the nodes at the surface of airfoils, we apply a second transformation as
follow:

y
′′

4 =
y

′

4(σ4 + 10−8) + µ4 − µ
(s)
4

σ
(s)
4 + 10−8

(5)

=
y
(s)
4 − µ

(s)
4

σ
(s)
4 + 10−8

(6)

where µs
4 is the mean value of the turbulent viscosity of all surface nodes of all samples in the

training set and σs
4 their standard deviation. These mean and standard deviation values are used to

normalize the validation set and test set.
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D DATASET FIGURES

In Figure 3 are displayed the CFD meshes of samples from the training, validation and test sets. In
Figure 4 are displayed the simulated pressure field of the same samples from the training, validation
and test sets. It would be better to visualize them using Paraview for more flexibility. We release the
code for that as already mentioned in Appendix 7.

(a) Example in the training set.

(b) Example in the validation set.

(c) Example in the test set.

Figure 3: Examples of CFD meshes in the dataset.

12



Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

(a) Example in the training set.

(b) Example in the validation set.

(c) Example in the test set.

Figure 4: Examples of pressure fields in the dataset.

E DETAILS ABOUT EXPERIMENTS

First of all, each type of model used is preceded by an encoder and followed by a decoder. Those
encoder and decoder have the same architecture for each model tested, we chose a MLP with 4 −
64 − 64 − 8 neurons for the encoder and a MLP with 8 − 64 − 64 − 4 neurons for the decoder.
Both with ReLU activation function. Moreover, for each model tested, the encoder and decoder are
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Table 3: Scores of the GraphSAGE model on the radius graph and the CFD mesh.

Graph Local metrics Integral geometry forces
LV LS x-WSS y-WSS x-WP y-WP(

×10−2
) (

×10−2
) (

×10−3
) (

×10−4
)

(×10)
(
×102

)
Radius graph 2.94 ± 0.20 4.71 ± 0.35 5.12 ± 0.65 2.93 ± 0.50 3.47 ± 0.89 6.10 ± 1.13
CFD mesh 3.00 ± 0.24 4.54 ± 0.40 3.47 ± 1.05 3.41 ± 0.71 6.29 ± 1.12 6.94 ± 0.94

trained from scratch together with the new model between. In order to have a standard deviation
for the scores, we trained 10 times each model and did the statistics of the obtained results. All the
models are trained using Pytorch Geometric on a single GPU (nVidia Tesla P100, 16 Go).

In Figure 7 and Figure 9, we show respectively the pressure and the x-component of the velocity
fields, inferred by the different models compared to the ground truth and in Figure 8 and Figure 10
we show the difference between the ground truth and the predicted fields.

E.1 SINGLE-SCALE MODELS

E.1.1 GRAPHSAGE
The GraphSAGE layer (Hamilton et al., 2017) is the basic inductive type layer, it gives us a first
indicator of the difficulty of the task. We used a 4-layers GraphSAGE network 8− 64− 64− 64− 8
channels, each layer is followed by a batchnorm layer to make the optimization problem easier and a
ReLU activation function. Also, as the number of nodes is still pretty small in our dataset, the CFD
mesh holds in the memory of our GPU. Hence, we compared the scores of the same model trained
over the CFD mesh and with our downsampling technique using the radius graph. Table 3 reports
the results of this comparison. We observe that even though the CFD mesh includes 5 to 10 times
more points than the radius graph during training, the model has similar scores with the radius graph
setting. In Figure 11, we also show the inferred WSS and WP with the radius graph methods and
compare it with the ground truth.

E.1.2 GAT
The GAT layer (Veličković et al., 2018) is designed for inductive tasks too but is often better per-
forming than GraphSAGE. We used a 4-layers GAT network 8− 64− 64− 64− 8 channels, each
layer is followed by a batchnorm layer and a ReLU activation function.

E.1.3 POINTNET

PointNet (Charles et al., 2017) is not a GNN but a model that operate on point clouds. It is a two
scales architecture that is better equipped to handle long-range interactions between nodes compared
to the aforementioned GNNs. Moreover, it can be built with a GraphSAGE or a GAT layer for the
representation task. We chose to keep a MLP for the representation task as it gives similar scores
and is faster to train. For the architecture, see (Charles et al., 2017) for the segmentation task, we just
changed the output in order to fit with our problem and get rid of the batchnorm layers and dropout
as it was performing poorly with.

E.2 MULTI-SCALE MODELS

The resolution of PDEs may involve long-range interactions where all the points of the domain
influence the solution at a certain position. It is difficult to take into account those interactions
between far-away nodes in architectures such as the GraphSAGE or GAT as it would imply stacking
a consequent number of layers (equivalent to the diameter of a graph) which would make the training
process difficult. Multi-scale models can overcome this issue by representing the signal at different
scales allowing long-range interactions by coarsening the input graphs or point clouds.

E.2.1 GRAPH-UNET

The Graph-Unet (Gao & Ji, 2019) is the archetypal multi-scale architecture. It extends the well-
known U-Net architecture (Ronneberger et al., 2015) initially designed for image segmentation, to
graph data. Our Graph-Unet makes use of GraphSAGE layers instead of GCN (Kipf & Welling,
2017) layers as in the historical paper. Moreover, we did not use the gPool technique developed in
the Graph-Unet as we found that it is not robust to the downsampling. We replaced it by a simple
random downsampling and nearest neighbour upsampling. Our architecture is composed of 5 scales
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with downsampling ratio of 3/4 − 3/4 − 2/3 − 2/3 and at each scale a radius graph is built with
radius of 0.1−0.2−0.5−1−10 where the last radius is taken big enough for the graph to be totally
connected. In the training process, each radius graph is set to produce a maximum of 64 neighbors
whereas for inference we raise this number to 512.

The architecture is composed of 9 layers, each followed by a batchnorm layer, a ReLU activation
function and a downsampling or upsampling layer (for all but the last block). The number of chan-
nels is doubled at each scale starting at 8 and the intra-scale information of the Graph U-net are
aggregated via concatenations. Hence, the number of channels is 8 − 16 − 32 − 64 − 128 in the
downward pass and 192− 96− 48− 24− 8 in the upward pass.

E.2.2 POINTNET++
The PointNet++ (Qi et al., 2017) is a multi-scale extension of the PointNet model discussed above.
It allows refinement in the global representation of the PointNet by using multiple PointNet on local
areas leading to a multi-scale representation of the task. Our architecture is the same as described
in the original paper for the segmentation task. We chose 7 scales with downsampling ratio of
3/4 − 3/4 − 2/3 − 2/3 − 3/4 − 2/3 and on each scale a radius graph is built with radius of
0.1− 0.2− 0.4− 0.8− 1.6− 10 where the last radius is taken big enough for the graph to be totally
connected. In the training process, each radius graph is set to produce a maximum of 64 neighbors
whereas for inference we raise this number to 512. No dropout is used.

E.3 GRAPH NEURAL OPERATORS

Neural operators are a new paradigm in DL that aim at approximating operators between Hilbert
spaces instead of applications between real and finite dimensional vector spaces (Kovachki et al.,
2022). Those models are often composed of an encoder which is in charge of finding a finite di-
mensional representation of the infinite dimensional input space, an approximator that transforms
this representation and a decoder that maps this finite representation of the solution to the infinite
dimensional output space.
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E.3.1 GRAPH NEURAL OPERATOR (GNO)
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Figure 5: Representation of the GNO
architecture for T = 3.

Our model is a modulation of the architecture proposed
in (Anandkumar et al., 2020). It is a recurrent network
that mimics the resolution of Poisson’s equation through
a convolutional operator and repeats it several times to
approximate the solutions. We can write it as:

hti =
1

|Ni|
∑
j∈Ni

κθk(e
t−1
ij )ht−1

j + ht−1
i (7)

where Ni is the set of neighbors of the node i, κθk a neu-
ral network, etij the attributes of the edge between the
nodes i and j at iteration t and hti the hidden state at it-
eration t and node i. We also use an encoder and a de-
coder at the beginning and the end of our network, such
that h0i = ϕθe(xi) and û(xi) = ψθd(h

T
i ) for a network

with T iterations, where ϕθe and ψθd are also both neu-
ral networks. Note that just after each graph convolution
block, we use a batchnorm layer. The edge attributes etij
are defined as a vector containing the relative position,
velocity and pressure between nodes i and j at iteration
t, the signed distance function of node i and j and the
inlet velocity. The computation of the velocity field and
pressure field at an intermediate iteration is done through
the decoding of the hidden state at that iteration. Also, a
multiscale architecture has been designed with the same
philosophy in order to capture long-range interactions be-
tween nodes without blowing up the numerical complex-
ity. In Figure 5 we depicts our modified Graph Neural
Operator (GNO) architecture.
For the kernel in the graph convolution, we used a 4-
layers MLP with 8−64−64−64−64 neurons and ReLU
activation function. This kernel takes as inputs the edge
attributes of the graph and outputs a convolution matrix
of size 8× 8.
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E.3.2 MULTIPOLE GRAPH NEURAL OPERATOR (MGNO)
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Figure 6: Representation of the MGNO convolu-
tion block with 3 scales.

We also propose a multiscale version of the
GNO, namely the Multipole Graph Neural Op-
erator (MGNO) which is a modulation of (Li
et al., 2020). The architecture follows the same
form as depicted in Figure 5 but the graph
convolution here is different from the one in
the GNO. We replaced the multipole technique
used in the original paper to a more classical U-
Net like architecture for the block of convolu-
tion. Figure 6 depicts the details of the block. A
convolution is done at multiple scales by down-
sampling the input graph via a mean pooling.
Then, these convolutions are aggregated scale
by scale through a nearest neighbors upsam-
pling. At each scale, a kernel is needed for the
convolution. All the kernels are 4-layers MLP
with 8− 64− 64− 64− 64 neurons and ReLU
activation function as in the GNO model.

F RESULTS DISCUSSION

In this section, we discuss the results reported in Table 2. First remark is that multi-scale models
do not necessarily perform better than single-scale models. A second remark is that the MSE over
the points of the domain is not necessarily a good proxy for good performance on the stress forces.
Actually, a simple GraphSAGE model gives similar results compared to more complicated archi-
tectures such as GNO or MGNO on stress forces whereas the latter gives better results for the loss
function. The training process of the PointNet and PointNet++ networks seems less robust com-
pared to the GraphSAGE or the GNO/MGNO one. However, no model outperforms all the other
in every aspect. MGNO yields the best results in all our metrics but the y component of the wall
pressure may suffer from scalability problem as it is memory and time consuming to train it. Hence,
in this supervised problem settings, we cannot conclude on the efficiency of a particular design such
as classical GNNs, neural operators or network acting on point clouds.

G STRESS FORCES

We call stress the force σ(n) that is acting (by contact) on a surface of unit normal n. For an
infinitesimal surface dS which normal n points towards the fluid that is acting on it, the resulting
force df can be written as:

df = σ(n)dS (8)

Let us take an infinitesimal cube, we look only at three contiguous faces, and call σij the force per
unit of surface acting on the ith face on the jth direction. We then define the second order stress
tensor (also known as the Cauchy stress tensor) σ whose components are σij . By the third law of
Newton, we find that, at first order, for an infinitesimal cube, σ(n) = −σ(−n) which tells us that
we only need to know the tensor σ to know completely the surface forces acting on the entire cube
(and not only on the three contiguous faces chosen previously). Moreover, by an argument on the
kinetic moment of this infinitesimal cube, we find that σ needs to be symmetric.

We conclude that for an arbitrary normal n, we only need to project the stress tensor on this normal
to have the force acting on it, we find:

σ(n) = σ · n (9)

In the case of a fluid with a null velocity field, there are only normal stresses acting on our infinites-
imal cube. Moreover, those stresses are isotropic. We call pressure, denoted by p, the intensity of
those stresses. We then find σ = −pI , where I is the identity matrix of dimension 3. The minus
sign is because we took the convention of outward normal when we defined σ(n).
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In the case of a general velocity field, we define the viscous stress tensor σ′ by:

σ = −pI + σ′ (10)

We remark that σ′ is also a second order symmetric tensor.

On the other hand, the deformation of an infinitesimal volume of control can be quantified thanks
to the Jacobian J of the velocity. This Jacobian can be decoupled in a symmetric tensor S and a
skew-symmetric tensor W via:

J = S +W (11)

S =
1

2
(J + J t) (12)

W =
1

2
(J − J t) (13)

where J t correspond to the transpose of J .

The tensor W represents the pure rotation of the volume of control and the tensor S represents the
compression and dilation of the volume of control with respect to a certain basis (as it is symmetric,
it can be diagonalizable in an orthonormal basis). Moreover, we remark that ∇·v = Tr(J) = Tr(S),
hence, if the fluid is incompressible, J , S and W are traceless.

For newtonian and incompressible fluids, we find the relation:

σ′ = 2µS (14)

where µ is the coefficient that quantifies the dissipation property of the fluids through shear stresses,
we call it the dynamic viscosity.

Hence, we find that the stress force df acting on a face of area dS and normal n of our infinitesimal
cube is:

df = −pn+ 2µS · n (15)

And we can conclude that for a geometry of surface S, the stress force F acting on it can be com-
puted via:

F =

∮
S
σ · ndS (16)

= −
∮
S
pndS +

∮
S
2µS · ndS (17)

We call the term P := −pn the wall pressure and the term τ := 2µS · n the wall shear stress. Ulti-
mately, we call drag D and lift L the component of F that are respectively parallel and orthogonal
to the main direction of the flow. If the fluid flows in the x-direction, we have:

D =

(∮
S
PdS +

∮
S
τdS

)
x

(18)

L =

(∮
S
PdS +

∮
S
τdS

)
y

(19)

In the case of RANS equations, we add terms that take in account the effect of turbulence over the
geometry. The pressure p is replaced by an effective pressure pe and the wall shear stress is given
by τ = 2(µ+ µt)S · n where µt is the dynamic turbulent viscosity.

For incompressible fluids we also often divide those quantities by ρ the density of the fluid and
solvers often express the results in terms of reduced pressure p′ := pe/ρ and kinematic (turbulent)
viscosity ν := µ/ρ (νt := µt/ρ). We use this convention in this work.
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H NON-DIMENSIONALIZATION OF THE NAVIER-STOKES EQUATION

Solving Navier-Stokes’ equations for a set of parameters ρ and ν and boundary conditions may
actually be equivalent to solving a whole family of equations. To enlighten this phenomena we
can work with non-dimensional quantities. Moreover, such formulation will help us to see the
importance of each term in the system of partial differential equations.

In order to do so, let T , L, V , P be characteristics time scale, length scale, velocity scale and
pressure scale (respectively) of the problem. We define:

t = T t̂ r = Lr̂ v = V v̂ p = P p̂ (20)

All the quantities with a hat are dimensionless and we can update the incompressible Navier-Stokes
equations without source term:

V

T
∂t̂v̂ +

V 2

L
(v̂ · ∇̂)v̂ = − P

ρL
∇̂p̂+ νV

L2
∆̂v̂ (21)

Let us take T equal to L/V and P equal to ρV 2, we find:

V 2

L
∂t̂v̂ +

V 2

L
(v̂ · ∇̂)v̂ = −V

2

L
∇̂p̂+ νV

L2
∆̂v̂ (22)

In total, this gives:

∂t̂v̂ + (v̂ · ∇̂)v̂ = −∇̂p̂+ 1

Re
∆̂v̂ (23)

Re =
V L

ν
(24)

The dimensionless number Re is called the Reynolds number. This equation only depends on the
Reynolds number and two flows with the same Reynolds number will have the same dimensionless
solution.

Moreover, the Reynolds number can be seen as the ratio of the order of magnitude of the convective
term over the order of magnitude of the viscous term:

Re =
convective term

viscous term
=

∥(v · ∇)v∥
∥ν∆v∥

=
V 2/L

νV/L2
=
V L

ν
(25)

We then have two particular regimes:

• Re→ 0, viscous term dominates the flow (we call this a Stokes flow)

• Re → ∞, convective term dominates the flow (Navier-Stokes equations tends towards
Euler’s equations for inviscid fluids)
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(a) Ground truth (b) GraphSAGE

(c) GAT (d) PointNet

(e) GNO (f) Graph U-Net

(g) PointNet++ (h) MGNO

Figure 7: Comparison of the pressure of the velocity field for the different models.
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(a) GraphSAGE (b) GAT

(c) PointNet (d) GNO

(e) Graph U-Net (f) PointNet++

(g) MGNO

Figure 8: Difference of the pressure field between the ground truth and the different models.
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(a) Ground truth (b) GraphSAGE

(c) GAT (d) PointNet

(e) GNO (f) Graph U-Net

(g) PointNet++ (h) MGNO

Figure 9: Comparison of the x-component of the velocity field for the different models.
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(a) GraphSAGE (b) GAT

(c) PointNet (d) GNO

(e) Graph U-Net (f) PointNet++

(g) MGNO

Figure 10: Difference of the x-component of the velocity field between the ground truth and the
different models.

23



Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Figure 11: Order plot over the different samples in the test set of the stress forces for the GraphSAGE
model. The relative errors are given in logarithmic scale with respect to the mean value of the stress
forces.
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