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We study the zeros of sections of the form T k s k of a large power L ⊗k → M of a holomorphic positive Hermitian line bundle over a compact Kähler manifold M , where s k is a random holomorphic section of L ⊗k and T k is a Berezin-Toeplitz operator, in the limit k → +∞. In particular, we compute the second order approximation of the expectation of the distribution of these zeros. In a ball of radius of order k -1 2 around x ∈ M , assuming that the principal symbol f of T k is real-valued and vanishes transversally, we show that this expectation exhibits two drastically different behaviors depending on whether f (x) = 0 or f (x) = 0. These different regimes are related to a similar phenomenon about the convergence of the normalized Fubini-Study forms associated with T k : they converge to the Kähler form in the sense of currents as k → +∞, but not as differential forms (even pointwise). This contrasts with the standard case f = 1, in which the convergence is in the C ∞ -topology. From this, we are able to recover the zero set of f from the zeros of T k s k .

Introduction

The motivation for this paper stems from the following inverse problem: given the action of a quantum observable on random quantum states, can one recover properties of the underlying classical observable?

This question is part of the broader goal to study quantum footprints of classical observables, which has been the object of intense research in the last decades. Here we are specifically interested in the following inverse problem: if f ∈ C ∞ (M ) is a classical observable on a phase space M and T : H → H is a quantum observable quantizing f acting on a Hilbert space H, which properties of f can be derived from the study of T ? This type of inverse problems is often seen from a spectral point of view, as in the seminal article by Kac [START_REF] Kac | Can one hear the shape of a drum?[END_REF] dealing with the spectrum of the Laplacian on a planar domain, and the numerous works that it inspired (see for instance the surveys [START_REF] Datchev | Inverse problems in spectral geometry[END_REF][START_REF] Zelditch | Survey on the inverse spectral problem[END_REF]). Here we work in a semiclassical context, which means that the Hilbert spaces and quantum observables depend on a small parameter , and we are interested in the limit → 0. Inverse spectral problems in this setting have been intensively studied by various authors, see for instance the recent review [START_REF] San | Quantum footprints of Liouville integrable systems[END_REF] and the references therein.

Here we propose another approach, based on the observation of the action of T on quantum states obtained as random combinations of pure states: from the observation of this action for a large number of realizations of the random state, can one infer some properties of f ?

In this paper we answer this last question positively. More precisely, we are able to recover all the regular levels of f from the zeros of certain random holomorphic sections of (a large power of) a holomorphic line bundle over M .

Framework

We work in the context of geometric quantization [START_REF] Souriau | Quantification géométrique[END_REF][START_REF] Kostant | Quantization and unitary representations[END_REF] and Berezin-Toeplitz operators [START_REF] Berezin | General concept of quantization[END_REF][START_REF] Boutet De Monvel | The spectral theory of Toeplitz operators[END_REF][START_REF] Bordemann | Toeplitz quantization of Kähler manifolds and gl(N ), N → ∞ limits[END_REF][START_REF] Charles | Berezin-Toeplitz operators, a semi-classical approach[END_REF][START_REF] Ma | Toeplitz operators on symplectic manifolds[END_REF]. This means that the phase space M is a compact Kähler manifold and that the quantum observables are operators acting on spaces of holomorphic sections H 0 (M, L ⊗k ), where L → M is a positive line bundle and k is an integer; the semiclassical limit is k → +∞ (in this setting the small parameter corresponds to k -1 ). For each k, the space H 0 (M, L ⊗k ) is finite-dimensional and carries a natural L 2 Hermitian product •, • L 2 induced by the choice of a positively curved Hermitian metric h on L. This Hermitian product is defined as

σ, τ L 2 = x∈M h k x (σ(x), τ (x)) ω n n!
for any σ, τ ∈ H 0 (M, L ⊗k ), where ω = ic 1 (L, h).

Berezin-Toeplitz operators. To any classical observable f ∈ C ∞ (M ), one can naturally associate a sequence of operators T k (f ) : H 0 (M, L ⊗k ) → H 0 (M, L ⊗k ) as follows. Let L 2 (M, L ⊗k ) be the Hilbert space obtained as the closure of C ∞ (M, L ⊗k ) with respect to •, • L 2 , and let Π k : L 2 (M, L ⊗k ) → H 0 (M, L ⊗k ) be the orthogonal projector from this space to the space of holomorphic sections. Then

T k (f ) : s ∈ H 0 (M, L ⊗k ) → Π k (f s) ∈ H 0 (M, L ⊗k ).
This is an instance of Berezin-Toeplitz operator with principal symbol f . More generally, Berezin-Toeplitz operators are operators of the form

T k = Π k f (•, k) + R k : H 0 (M, L ⊗k ) → H 0 (M, L ⊗k )
where (f (•, k)) k∈N is a sequence of elements of C ∞ (M ) with an asymptotic expansion of the form

f (•, k) = f 0 + k -1 f 1 + k -2 f 2 + . . .
for the C ∞ topology, and the operator norm of R k is a O(k -N ) for every N ∈ N. The first term f 0 in the asymptotic expansion of f (•, k) is called the principal symbol of T k .

Random sections and Kodaira maps. Given a Berezin-Toeplitz operator T k , we study the zeros of T k s k where s k is a random holomorphic section of L ⊗k of the form

s k = N k =1 α e , α ∼ N C (0, 1) i.i.d. ( 1 
)
where N k = dim H 0 (M, L ⊗k ) and (e ) 1≤ ≤N k is any orthonormal basis of H 0 (M, L ⊗k ). Such random zeros are related to the properties of some Kodaira maps associated with T k . Before defining those, we recall some facts about the standard Kodaira maps. Let e 1 , . . . , e N k be any orthonormal basis of H 0 (M, L ⊗k ). By the Kodaira Embedding Theorem we have that, for k large enough, the base locus ∩ s∈H 0 (M,L ⊗k ) {s = 0} is empty and the Kodaira map

Φ k : x ∈ M → [e 1 (x) : • • • : e N k (x)] ∈ CP N k -1
is an embedding. The pull-back Φ * k ω F S of the Fubini-Study form does not depend on the choice of the orthonormal basis and its cohomology class [Φ * k ω F S ] equals k [ω]. It is then natural to compare the forms 1 k Φ * k ω F S and ω with each other. Tian's asymptotic isometry theorem [START_REF] Bouche | Convergence de la métrique de Fubini-Study d'un fibré linéaire positif[END_REF][START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF][START_REF] Zelditch | Szegö kernels and a theorem of Tian[END_REF] says that the former converges to the latter in the C ∞ topology, as k → +∞. More precisely, for any m ∈ N, we have

1 k Φ * k ω F S -ω C m = O(k -1 ).
Using this result, Shiffman and Zelditch [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF] proved that the expected normalized current of integration Z s of a random section s ∈ H 0 (M, L ⊗k ) converges weakly in the sense of currents to the Kähler form. In this paper, we will give similar results about Kodaira maps and zeros of random sections twisted by Berezin-Toeplitz operators.

Main results

(Non)-convergence of the Fubini-Study forms

Let e 1 , . . . , e N k be any orthonormal basis of H 0 (M, L ⊗k ), and let T k be a Berezin-Toeplitz operator with principal symbol f ∈ C ∞ (M, R). We consider the following "twisted" Kodaira map:

Φ T k : M CP N k -1 , x → [(T k e 1 )(x) : • • • : (T k e N k )(x)], (2) 
which is well-defined outside the locus s∈H 0 (M,L ⊗k ) {T k s = 0}. The first goal of the paper is to give a natural sufficient condition on f for which the map Φ T k is everywhere well-defined.

Theorem 1.1. Assume that the principal symbol f of T k is a smooth, real-valued function which vanishes transversally. Then, for k large enough, the map Φ T k is welldefined on the whole M , that is s∈H 0 (M,L ⊗k ) {T k s = 0} = ∅.

As a consequence of Theorem 1.1 we have that the pull-back of the Fubini-Study form ω F S is a smooth form defined on the whole M (rather than just a current). The pull-backed forms Φ * T k ω F S are usually also called Fubini-Study forms. The cohomology class of Φ * T k ω F S equals k[ω]; it is then natural to ask about the convergence of the sequence of smooth forms 1 k Φ * T k ω F S k∈N . The following theorem deals with the weak convergence of the normalized Fubini-Study forms.

Theorem 1.2. Assume that the principal symbol f ∈ C ∞ (M, R) of T k is a smooth function vanishing transversally. The sequence of smooth forms 1 k Φ * T k ω F S converges to ω weakly in the sense of currents.

The next result estimates the error term

1 k Φ * T k ω F S -ω, which explicitly involves f . Theorem 1.3. Let f ∈ C ∞ (M,
R) be a smooth function vanishing transversally, and let T k be a Berezin-Toeplitz operator with principal symbol f . Then log f 2 is locally integrable and

Φ * T k ω F S -kω -→ k→+∞ i∂ ∂ log f 2
in the sense of currents.

The following theorem shows that we cannot expect better than the convergence in the sense of currents as soon as f -1 (0) = ∅. This shows a striking difference with the Fubini-Study forms associated with the standard Kodaira maps. As recalled in Section 2.1, the Kähler form ω induces a Riemannian metric on M , which by duality induces a metric on T * M , that we denote by | • | ω .

Theorem 1.4. Let f ∈ C ∞ (M, R) be a smooth function vanishing transversally, and let T k be a Berezin-Toeplitz operator with principal symbol f . Then the sequence

1 k Φ * T k ω F S converges to ω locally uniformly on M \ f -1 (0) in the C ∞ norm. How- ever, 1 k Φ * T k ω F S
does not converge to ω in the C 0 -topology (and even pointwise) on f -1 (0). More precisely,

1 k Φ * T k ω F S x -ω x -→ k→+∞    0 if f (x) = 0, 4i(∂f ∧ ∂f )x |df (x)| 2 ω if f (x) = 0.

Fubini-Study forms at Planck scale

Theorem 1.4 shows that the zero locus of f plays a fundamental role in the nonconvergence of the Fubini-Study forms 1 k Φ * T k ω F S to ω as differential forms. Indeed the difference 1 k Φ * T k ω F S x -ω x exhibits two very different behaviors on and outside f -1 (0). In order to further study these two regimes, a natural idea is to work on a smaller scale which allows us to localize around any given point. We show that the scale k -1 2 (that we call Planck scale in the rest of the paper) is well-adapted to this problem. Remark that the Planck scale k -1 2 is natural in both quantum mechanics and Kähler geometry (it is the scale at which the Bergman kernel displays its universality [START_REF] Bleher | Universality and scaling of correlations between zeros on complex manifolds[END_REF][START_REF] Dai | On the asymptotic expansion of Bergman kernel[END_REF][START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF]). At this scale, we are able to produce precise asymptotics for the difference 1 k Φ * T k ω F S -ω in the sense of currents. This is the content of Theorem 1.5 (for the behavior on f -1 (0)) and Theorem 1.7 (for the behavior outside f -1 (0)). Let n = dim C M . Theorem 1.5. Let f ∈ C ∞ (M, R) be a smooth function vanishing transversally, and let T k be a Berezin-Toeplitz operator with principal symbol f . Let ϕ be a smooth (n -1, n -1)-form on M . Then, for any x ∈ f -1 (0) we have

B(x, R √ k ) Φ * T k ω F S -kω ∧ ϕ = k -n+1 2F ϕ (x) |df (x)| 2 ω C n (R) + O(k -n+ 1 2 ).
Here

B(x, R √ k ) is the geodesic ball of radius R √ k around x, F ϕ is the function defined as i∂f ∧ ∂f ∧ ϕ = F ϕ ω n n!
and C n (R) is a positive (and explicit) universal constant, only depending on R and n.

The constant C n (R) in this statement is computed in Proposition 4.4 and equals

C n (R) = 2 n π n (n -1)! (2n -2)! n-1 =0 n -3 2 2 R 2 -(1 + 2R 2 ) n-3 2 (3) 
with α = α(α-1)...(α-+1) ! for α ∈ R, ∈ N >0 and α 0 = 1. In particular, C 1 (R) = 2π 1 - 1 √ 1 + 2R 2 .
As can be seen in the course of the proof of Proposition 4.4, the constant C n (R) can also be expressed in terms of hypergeometric functions. This seems to reflect some arithmetic flavor that is a priori surprising (at least for the authors).

Note that when ϕ = ω n-1 (n-1)! the first order term in the expansion of Theorem 1.5 is universal (it depends neither on f nor on X, but only on n and R). More precisely: Corollary 1.6. Let f ∈ C ∞ (M, R) be a smooth function vanishing transversally, and let T k be a Berezin-Toeplitz operator with principal symbol f . Then, for any x ∈ f -1 (0) we have

B(x, R √ k ) Φ * T k ω F S -kω ∧ ω n-1 (n -1)! = k -n+1 C n (R) + O(k -n+ 1 2 )
where C n (R) is as in Equation (3).

The next theorem is the analogue of Theorem 1.5 in the case where the point x is not a zero of f . Theorem 1.7. Let f ∈ C ∞ (M, R) be a smooth function vanishing transversally, and let T k be a Berezin-Toeplitz operator with principal symbol f . Let ϕ be a smooth (n -1, n -1)-form on M . For any x / ∈ f -1 (0) we have

B(x, R √ k ) Φ * T k ω F S -kω ∧ ϕ = k -n R 2n L ϕ (x)Vol(B R 2n (0, 1)) + O(k -n-1 2 ).
Here B(x, R √ k ) is the geodesic ball of radius R √ k centered at x, and L ϕ is the function defined as

i∂ ∂ log f 2 ∧ ϕ = L ϕ ω n n!
It is worth noting the two different behaviors of Theorems 1.5 and 1.7. Indeed, if x ∈ f -1 (0), the order of magnitude of

B(x, R √ k ) Φ * T k ω F S -kω ∧ϕ is O(k -n+1 ), whereas if x / ∈ f -1 (0) this order is O(k -n ).
This should be compared to Theorem 1.4, in which the differential forms 1 k Φ * T k ω F S did not converge exactly on the zero locus of f . Remark 1.8. If T k is a Berezin-Toeplitz operator with principal symbol f , then the operator T k -λId is a Berezin-Toeplitz operator with principal symbol f -λ. So up to replacing f by f -λ, we can replace f -1 (0) by any regular level of f in the above statements and discussions.

Applications to random zeros

In this section we study how the action of a Berezin-Toeplitz operator affects the zeros of random sections s ∈ H 0 (M, L ⊗k ). Here, "random" is with respect to the natural Gaussian measure µ k on H 0 (M, L ⊗k ) given by dµ k (s) = 1 π N k e -s 2 L 2 ds, where ds is the Lebesgue measure on (H 0 (M, L ⊗k ), •, • L 2 ) and N k = dim H 0 (M, L ⊗k ). Choosing a random element with respect to this probability measure amounts to considering a random linear combination as in Equation [START_REF] Berezin | General concept of quantization[END_REF]. Such random holomorphic sections were introduced in [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF] and have been intensively studied since (see for example [START_REF] Bleher | Universality and scaling of correlations between zeros on complex manifolds[END_REF][START_REF] Shiffman | Number variance of random zeros on complex manifolds[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Coman | Equidistribution results for singular metrics on line bundles[END_REF]). This can be seen as a natural geometric generalization of the more classical orthogonal polynomials.

Given a holomorphic section s ∈ H 0 (M, L ⊗k ), we denote by Z s the current of integration on {s = 0}. This is defined by its action on smooth (n -1, n -1)-forms ϕ as Z s , ϕ = {s=0} ϕ.

Given a Berezin-Toeplitz operator T k , we will be interested in the current-valued random variable s ∈ H 0 (M, L ⊗k ) → Z T k s . Recall that the expected value E[Z T k s ] of Z T k s is defined by the formula

E[ Z T k s , ϕ ] = s∈H 0 (M,L ⊗k ) {T k s=0} ϕ dµ k (s)
for any smooth (n -1, n -1)-form ϕ. For the basic case f = 1 (which corresponds to T k = Id), such an expected current of integration has been studied in [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF], where it is shown that

1 k E Z s , ϕ → 1 2π M ω ∧ ϕ.
Note that the factor 2π does not appear in [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF] due to a different convention (the volume of a complex projective line equals 1 in [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF] and 2π in the present paper). The following result is a generalization of [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF] when the random section is perturbated by a Berezin-Toeplitz operator.

Theorem 1.9. Let f ∈ C ∞ (M, R) be a smooth function vanishing transversally and let T k be a Berezin-Toeplitz operator with principal symbol f . Then

1 k E[Z T k s ] -→ k→+∞ ω 2π
weakly in the sense of currents. Moreover, we have

E[Z T k s ] - kω 2π -→ k→+∞ i 2π ∂ ∂ log f 2
weakly in the sense of currents.

As in Section 1.2.2, if we look at the Planck scale k -1 2 we can obtain much more precise asymptotics.

Theorem 1.10. Let f ∈ C ∞ (M, R) be a smooth function vanishing transversally, and let T k be a Berezin-Toeplitz operator with principal symbol f . Let x ∈ M . Let ϕ be a smooth (n -1, n -1)-form on M . For every R > 0,

B(x, R √ k ) E[Z T k s ] - k 2π ω ∧ϕ =    k -n+1 Fϕ(x) π|df (x)| 2 ω C n (R) + O(k -n+ 1 2 ) if x ∈ f -1 (0), k -n R 2n Lϕ(x)Vol(B R 2n (0,1)) 2π + O(k -n-1 2 ) if x / ∈ f -1 (0).
Here B(x, R √ k ), F ϕ , L ϕ and C n (R) are as in Theorems 1.5 and 1.7. Theorem 1.9 and Theorem 1.10 follow from Theorems 1.2, 1.3, 1.5 and 1.7 after the remark that E[Z T k s ] and 1 2π Φ * T k ω F S are equal as currents, see Lemma 5.1. As for Theorems 1.5 and 1.7, it is worth noting the two different behaviors of

B(x, R √ k ) E[Z T k s ] -k 2π ω ∧ ϕ for the cases f (x) = 0 and f (x) = 0. Indeed, in the first case, this is of order O(k -n+1 ) whereas if f (x) = 0 this is of order O(k -n ).
This suggests that the locus of zeros of T k s k tends to concentrate a little more on f -1 (0). This is confirmed by numerical simulations that we will show in Section 5.2.

Remark 1.11. Note that if we replace T k with principal symbol f by S k = λT k for some λ ∈ R \ {0}, the principal symbol of S k is g = λf . So the zero sets of f and g coincide, and if s is a holomorphic section of L ⊗k , the zeros of T k s and S k s agree. So the quantities that appear in all our results should be invariant by this scaling; one readily checks that they indeed are.

Organization of the paper

The paper is organized as follows. In Section 2 we recall the context and some useful properties of Berezin-Toeplitz operators; this also serves to introduce our notation and conventions. In Section 3 we prove Theorems 1.1, 1.2, 1.3 and 1.4. In Section 4 we prove Theorems 1.5 and 1.7. In Section 5 we explain why the previous theorems imply Theorems 1.9 and 1.10, and check the validity of our results by performing some numerical simulations. In Appendix A we give a proof of Theorem 2.1.
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Background

In this section we recall some necessary background in Kähler geometry and Berezin-Toeplitz operators. For more details about the latter, see for instance [START_REF] Schlichenmaier | Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results[END_REF][START_REF] Yohann | A brief introduction to Berezin-Toeplitz operators on compact Kähler manifolds[END_REF] and the references therein. The main result that we state in this section is the positivity of the Schwartz kernel of T * k T k on the diagonal when the principal symbol f of T k vanishes transversally; this will be a key ingredient in the proof of our main results.

Framework

Let (M, ω) be a n-dimensional compact Kähler manifold such that [ ω 2π ] ∈ H 2 (M, Z) and let (L, h) be a Hermitian line bundle whose Chern curvature c 1 (L, h) equals -iω. We recall that this curvature is locally defined by -∂ ∂ log h(e L , e L ), where e L is any local non-vanishing holomorphic section of L.

Induced metrics. Let j be the complex structure on T M and let G = ω(•, j•) be the Riemannian metric induced by ω and j on T M ; by extending it by sesquilinearity, we obtain an Hermitian metric on T M ⊗ C, which in turn induces an Hermitian metric on T * M ⊗ C by duality. We still denote by G these metrics, and, when the context is clear, we use | • | ω for the pointwise norm associated with G.

If α ∈ (T 1,0 M ) * and β ∈ (T 0,1 M ) * , then G(α, β) = 0. In local holomorphic coordinates z 1 = x 1 + iy 1 , . . ., z n = x n + iy n , we have ω = i 2 n ,m=1 G ,m dz ∧ dz m and ∀ , m ∈ {1, . . . , n} G (dz , dz m ) = 2G ,m , G(dx , dx m ) = G(dy , dy m ) = G ,m (4)
where

∀ , m ∈ {1, . . . , n} n p=1 G ,p G m,p = δ ,m .
Using this expression, one readily checks that

∀α, β ∈ T * M ⊗ C G(ᾱ, β) = G(α, β).
To avoid confusion, we denote by | • | ω the norm induced by this metric. Moreover, we consider the holomorphic Laplacian on M , which reads in these local coordinates

∆ = 2 n ,m=1 G ,m ∂ z ∂ zm .
L 2 -Hermitian products. For any positive k ∈ N, we denote by h k the Hermitian metric on L k := L ⊗k induced by the metric h on L. Remark that for this induced metric we have c

1 (L k , h k ) = kc 1 (L, h).
For any positive k ∈ N, the space of global holomorphic sections

H 0 (M, L k ) is naturally equipped with the L 2 -Hermitian product •, • L 2 defined by σ, τ L 2 = x∈M h k x (σ(x), τ (x)) ω n n! for any σ, τ ∈ H 0 (M, L k ). It is standard that the space H 0 (M, L k ) is finite-dimensional, with dimension N k = k 2π n Vol(M ) + O(k n-1 )
where n = dim C M and Vol(M ) is the volume of M computed with respect to the volume form dVol = ω n n! induced by ω.

Berezin-Toeplitz operators

For k ∈ N, let L 2 (M, L k ) be the Hilbert space obtained as the closure of C ∞ (M, L k ) with respect to •, • L 2 , and let Π k : L 2 (M, L k ) → H 0 (M, L k ) be the orthogonal projector from this space to the space of holomorphic sections. For any smooth function f ∈ C ∞ (M ), the Berezin-Toeplitz operator associated with f is the endomorphism

T k (f ) = Π k f : H 0 (M, L k ) → H 0 (M, L k ).
More generally, Berezin-Toeplitz operators are operators of the form

T k = Π k f (•, k) + R k : H 0 (M, L k ) → H 0 (M, L k ) where (f (•, k)) k∈N is a sequence of elements of C ∞ (M ) with an asymptotic expansion of the form f (•, k) = f 0 + k -1 f 1 + k -2 f 2 + . . .
for the C ∞ topology, and the operator norm of

R k is a O(k -N ) for every N ∈ N.
The first term f 0 in the asymptotic expansion of f (•, k) is called the principal symbol of T k . Similarly, we will call f 1 the subprincipal symbol of T k (it is the contravariant subprincipal symbol, see for instance [START_REF] Charles | Berezin-Toeplitz operators, a semi-classical approach[END_REF]). Recall that any Berezin-Toeplitz operator T k has a Schwartz kernel, which is a holomorphic section of L k Lk → M × M that we still denote by T k . This means that for any s ∈ H 0 (M, L k ) and for any x ∈ M ,

(T k s)(x) = M T k (x, y)s(y) dVol(y).
Recall that if e 1 , . . . , e N k is any orthonormal basis of

H 0 (M, L k ), then ∀x, y ∈ M T k (x, y) = N k =1 (T k e )(x) ⊗ e (y). (5) 
In order to prove our main results described in Section 1.2, we will need to compute the subprincipal term in the asymptotic expansion of the Schwartz kernel of the product of two Berezin-Toeplitz operators. This is the content of Theorem 2.1. This is nowadays a standard result and can be found for example in [17, Formula (0.16)] or derived from [START_REF] Charles | Berezin-Toeplitz operators, a semi-classical approach[END_REF]. Since our notation differs from both these references, for the sake of completeness, we will give a proof of this result following [START_REF] Charles | Berezin-Toeplitz operators, a semi-classical approach[END_REF] in Appendix A .

Theorem 2.1. Let T k , S k be Berezin-Toeplitz operators with respective real-valued principal symbols f 0 , g 0 ∈ C ∞ (M, R) and subprincipal symbols f 1 , g 1 ∈ C ∞ (M ). Then the on-diagonal expansion of the Schwartz kernel of the Berezin-Toeplitz operator

B k = T k S k reads B k (x, x) = k 2π n b 0 (x) + k -1 b 1 (x) + O(k -2 )
where the O(k -2 ) is uniform on M , with b 0 = f 0 g 0 and

b 1 = f 0 g 1 + f 1 g 0 + f 0 ∆g 0 + g 0 ∆f 0 + r 2 f 0 g 0 + G(∂g 0 , ∂f 0 ).
Here, r denotes the scalar curvature of M and G is the metric on T * M defined in Section 2.1.

Lemma 2.2. Let f ∈ C ∞ (M ). Then |df | 2 ω = 2|∂f | 2 ω . Proof. Since df = ∂f + ∂f , we have that |df | 2 ω = |∂f | 2 ω + 2Re G(∂f, ∂f ) + | ∂f | 2 ω = |∂f | 2 ω + | ∂f | 2 ω since ∂f ∈ Ω (1,0) (M ) and ∂f ∈ Ω (0,1) (M ). Moreover, | ∂f | 2 ω = G( ∂f, ∂f ) = G(∂f, ∂f ) = G(∂f, ∂f ) = |∂f | 2 ω .
Corollary 2.3. Let T k be a Berezin-Toeplitz operator with real-valued principal symbol f ∈ C ∞ (M, R) and subprincipal symbol g ∈ C ∞ (M ). Then the on-diagonal expansion of the Schwartz kernel of the Berezin-Toeplitz operator

B k = T * k T k equals k 2π n f 2 + k -1 b 1 + O(k -2 )
where the remainder O(k -2 ) is uniform on M and

b 1 = 2f Re (g) + 2f ∆f + r 2 f 2 + 1 2 |df | 2 ω .
Proof. The principal symbol of T * k is f , and its subprincipal symbol is ḡ.

So Theorem 2.1 yields b 1 = 2f Re (g) + 2f ∆f + r 2 f 2 + |∂f | 2 ω
and Lemma 2.2 gives the result.

The previous result implies the following crucial fact that will be key in the proof of all our main results: if f vanishes transversally, the kernel of B k on the diagonal is always strictly positive. More precisely: Corollary 2.4. Let T k be a Berezin-Toeplitz operator with real-valued principal symbol f and let B k = T * k T k . If f vanishes transversally, there exists c > 0 such that, for k large enough and for any x ∈ M , we have B k (x, x) > ck n-1 . Proof. By Corollary 2.3 we have the following uniform asymptotics:

B k (x, x) = k 2π n (b 0 (x) + k -1 b 1 (x) + O(k -2 )) where b 0 (x) = |f (x)| 2 and b 1 = 2f Re (g) + 2f ∆f + r 2 f 2 + 1 2 |df | 2 ω
with g the subprincipal symbol of T k . Since f vanishes transversally, we have that

b 1 (x) = 1 2 |df (x)| 2 ω > 0 for x ∈ f -1 (0), so b 1 is strictly positive in a neighborhood U of f -1 (0). Let c be the minimum of b 1 on U and C be the minimum of |f | 2 on M \ U . We then have B k (x, x) ≥ Ck n + O(k n-1 ) outside U and B k (x, x) ≥ ck n-1 + O(k n-2 ) on U . Hence the result.
The next corollary is equivalent to the previous one. However, we prefer to put a separate statement because we will use it repeatedly throughout the paper. 

2 + k -1 b 1 > ck -1 and |f | 2 + k -1 2 |df | 2 ω > ck -1 .
3 Kodaira maps and Fubini-Study forms

The goal of this section is to study the Kodaira map associated with T k . First we prove that it is well-defined for k large enough; this is Theorem 1.1. Then we prove Theorems 1.2 and 1.3 which deal with the convergence in the sense of currents of the associated Fubini-Study form. Finally, we show the non-convergence of this form in the sense of differential forms, that is Theorem 1.4. We follow the notation introduced in Section 2.

The Kodaira map is well-defined

In this section we prove that the Kodaira map Φ T k defined in Equation ( 2) is welldefined everywhere on M for k large enough (see Theorem 1.1). This follows from the combination of the the positivity result for the Schwartz kernel of T * k T k (see Corollary 2.4) and the next lemma. Lemma 3.1. Let A ∈ End H 0 (M, L k ) and e 1 , . . . , e N k be any orthonormal basis of H 0 (M, L k ). Then, for any x, y ∈ M we have the equality

N k =1 (Ae )(x) ⊗ (Ae )(y) = N k =1 (A * Ae )(x) ⊗ e (y).
Proof. For any , p ∈ {1, N k }, let A ,p = Ae , e p . Then

N k =1 (Ae )(x) ⊗ (Ae )(y) = N k =1 N k p=1 A ,p e p (x) ⊗ N k q=1 A ,q e q (y) = N k =1 N k p=1 N k q=1 A ,p A ,q e p (x) ⊗ e q (y) = N k =1 N k p=1 N k q=1 A ,p A * q, e p (x) ⊗ e q (y) = N k p=1 N k q=1 (A * A) q,p e p (x) ⊗ e q (y) = N k q=1 (A * Ae q )(x) ⊗ e q (y).
Proof of Theorem 1.1. The map Φ T k is well-defined everywhere on M if and only if

N k i=1 {T k s i = 0} = ∅.
In order to prove this we will show that there exists an integer k 0 such that, for any x ∈ M and any k ≥ k 0 , the quantity

N k =1 |(T k e )(x)| 2
k is strictly positive. By Equation ( 5) and Lemma 3.1,

N k =1 |(T k e )(x)| 2 k equals the value on the diagonal of the Schwartz kernel B k of T * k T k , that is N k =1 |(T k e )(x)| 2 k = B k (x, x)
. By Corollary 2.4, for k large enough, B k (x, x) is strictly positive, hence the result.

(Non)-convergence of the Fubini-Study forms

In this section, we prove Theorem 1.2, which deals with the convergence of the normalized Fubini-Study forms 1 k Φ * T k ω F S in the sense of currents, and Theorem 1.4, which instead says that such forms do not converge in the sense of differential forms. Throughout this section, T k is a Berezin-Toeplitz operator with real-valued principal symbol f and subprincipal symbol g. As above, the on-diagonal expansion of the Schwartz kernel of

B k = T * k T k is denoted by B k (x, x) = k 2π n (b 0 (x) + k -1 b 1 (x) + O(k -2 ))
where b 0 and b 1 are given by Corollary 2. [START_REF] Bordemann | Toeplitz quantization of Kähler manifolds and gl(N ), N → ∞ limits[END_REF]. In what follows we will use the slightly abusive notation B k for the restriction of B k to the diagonal; we will never need to evaluate this kernel away from the diagonal.

Proof of Theorem 1.2. The following equality of smooth forms is standard:

i∂ ∂ log B k = Φ * T k ω F S -kω (6) 
so that, in order to prove the theorem, we have to show that 1 k ∂ ∂ log B k goes to 0 in the sense of currents as k → +∞.

Remark that we have the equality

∂ ∂ log B k = ∂ ∂ log (2 max |f | 2 k 2π n ) -1 B k .
Moreover, for k large enough, we have

ck -1 < 2 max |f | 2 k 2π n -1 B k < 1,
where the left-hand inequality follows from Corollary 2.4 and the right-hand one from Corollary 2.3.

For any (n -1, n -1) smooth form ϕ on M , let us denote by f ϕ the function given by the equality ∂ ∂ϕ = f ϕ ω n n! and by ∂ ∂ϕ ∞ the sup-norm of f ϕ . We then have

M ∂ ∂ log B k ∧ ϕ = M ∂ ∂ log (2 max |f | 2 k n ) -1 B k ∧ ϕ ≤ M ∂ ∂ log (2 max |f | 2 k n ) -1 B k ∧ ϕ ≤ M log ck -1 ∂ ∂ϕ = M log ck -1 f ϕ ω n n! = ∂ ∂ϕ ∞ O(log k).
This implies that, for any (n-1, n-1) smooth form ϕ, the quantity M 1 k log B k ∂ ∂ϕ goes to 0 as k → +∞, which exactly means that 1 k ∂ ∂ log B k goes to 0 in the sense of currents as k → +∞. Hence the result.

Proof of Theorem 1.4. We start by proving that the sequence 1 k Φ * T k ω F S converges to ω locally uniformly on M \ f -1 (0) in the C ∞ norm. Remark that the equality [START_REF] Charles | Berezin-Toeplitz operators, a semi-classical approach[END_REF] implies that this is equivalent to showing that for any relatively compact open set U ⊂ M \ f -1 (0) and for any m ∈ N, we have

∂ ∂ log B k C m ,U = O(1). Now, we know that B k (x) = k 2π n (f 2 + O(k -1
)) uniformly, so that we have

∂ ∂ log B k = ∂ ∂ log f 2 + O(k -1 )
uniformly. The result follows from the fact that there exists two positive constants c U and 1), which was our goal.

C U such that c U ≤ f 2 ≤ C U on U , so that ∂ ∂ log f 2 + O(k -1 ) = ∂ ∂ log f 2 (1 + O(k -1 )) = ∂ ∂ log f 2 + O(k -1 ) on U . This shows that ∂ ∂ log B k C m ,U = O(
Let us now prove that the smooth form 1 k ∂ ∂ log B k does not tend to 0 on f -1 (0) as k → +∞. We have

∂ ∂ log B k = ∂ ∂ log f 2 + k -1 b 1 + O(k -2 ) = ∂ 2f ∂f + k -1 ∂b 1 + O(k -2 ) f 2 + k -1 b 1 = (2∂f ∧ ∂f + 2f ∂ ∂f + k -1 ∂ ∂b 1 ) f 2 + k -1 b 1 - (2f ∂f + k -1 ∂b 1 ) ∧ (2f ∂f + ∂k -1 b 1 ) + O(k -2 ) (f 2 + k -1 b 1 ) 2 . (7) 
If we evaluate this form at a point x where f vanishes we obtain

∂ ∂ log B k x = (2(∂f ∧ ∂f ) x + k -1 (∂ ∂b 1 ) x )k -1 b 1 (x) -k -2 ( ∂b 1 ∧ ∂b 1 ) x + O(k -2 ) b 1 (x) 2 k -2 = 2k(∂f ∧ ∂f ) x b 1 (x) + O(1) = 4k(∂f ∧ ∂f ) x |df (x)| 2 ω + O(1).
At a point where f vanishes we then have that

1 k ∂ ∂ log B k tends to 4∂f ∧ ∂f |df | 2 ω
which is non zero as f vanishes transversally. Moreover, at a point where f does not vanish, Equation [START_REF] Coman | Equidistribution results for singular metrics on line bundles[END_REF] shows that ∂ ∂ log

B k = O(1), so 1 k ∂ ∂ log B k goes to zero as k → +∞.

Convergence of the error term

In this section, we prove Theorem 1.3, which estimates (in the sense of currents) the error term 1 k Φ * T k ω F S -ω. We start with a lemma, which is actually part of the statement of Theorem 1.3. Lemma 3.2. Let f : M → R be a smooth function vanishing transversally. Then log f 2 is (locally) integrable, so ∂ ∂ log f 2 is a well-defined current.

Proof. As M is compact, it is enough to show that log f 2 is locally integrable. Locally around a point x where f (x) = 0 there is nothing to prove since log f 2 is locally bounded there.

Let us consider a point x ∈ f -1 (0). By Hadamard's lemma, we can find a small neighborhood U of x and local (real) coordinates x 1 , . . . , x 2n , in which f -1 (0) becomes {x 1 = 0}, such that f (x 1 , . . . , x 2n ) = x 1 g(x 1 , . . . , x 2n ) + h(x 1 , . . . , x 2n ), where the function g is smooth with g(0) = 0 and h(x 1 , . . . , x 2n ) = O(x 2 1 + . . . + x 2 2n ). Up to replacing U with a smaller neighborhood, we can assume that U is of the form (-, ) 2n . We then have log f 2 = log x 2 1 + log g 2 + O(1), so that

U log f 2 = (-, ) 2n log x 2 1 dx 1 • • • dx 2n + (-, ) 2n log g 2 dx 1 • • • dx 2n + O(1).
The integral (-, ) 2n log g 2 dx 1 • • • dx 2n is bounded as g 2 is bounded from below by a positive constant. The integral

(-, ) 2n log x 2 1 dx 1 • • • dx 2n equals (2 ) 2n-1 (-, ) log x 2 1 dx 1 , which is also finite as log x 2
1 is integrable around 0. Hence the result. Proof of Theorem 1.3. Recall that, as currents,

Φ * T k ω F S -kω = i∂ ∂ log B k . For any smooth (n -1, n -1)-form ϕ we then get M Φ * T k ω F S -kω ∧ ϕ = i M log B k ∂ ∂ϕ
so that we have to prove the following convergence

M log B k ∂ ∂ϕ -→ k→+∞ M log f 2 ∂ ∂ϕ. (8) 
Recall that by Corollary 2.3, we have log

B k = log k 2π n +log(f 2 + k -1 b 1 + O(k -2 )), so that M log B k ∂ ∂ϕ = M log f 2 + k -1 b 1 + O(k -2 ) ∂ ∂ϕ. (9) 
By Corollary 2.5, we get

log f 2 + k -1 b 1 + O(k -2 ) = log (f 2 +k -1 b 1 )(1+O(k -1 )) = log f 2 + k -1 b 1 +O(k -1 ) so that M log f 2 + k -1 b 1 + O(k -2 ) ∂ ∂ϕ = M log f 2 + k -1 b 1 ∂ ∂ϕ + O(k -1 ). (10) 
In order to prove (8), we then have to show that

M log f 2 + k -1 b 1 ∂ ∂ϕ -→ k→+∞ M log f 2 ∂ ∂ϕ. (11) 
For this, we will partition M into two subsets. For this, remark that since b 1 =

1 2 |df | 2 ω > 0 on Σ := f -1 (0)
, we can find a positive such that b 1 is strictly positive on an -tubular neighborhood Σ of Σ. We can then write

M log f 2 + k -1 b 1 ∂ ∂ϕ = M \Σ log f 2 + k -1 b 1 ∂ ∂ϕ + Σ log f 2 + k -1 b 1 ∂ ∂ϕ (12)
For the first integral in the right-hand side of [START_REF] Kac | Can one hear the shape of a drum?[END_REF], remark that log(f 2 + k -1 b 1 ) converges to log f 2 uniformly on M \ Σ and then

M \Σ log f 2 + k -1 b 1 ∂ ∂ϕ ----→ k→+∞ M \Σ log f 2 ∂ ∂ϕ. (13) 
It remains to prove that

Σ log f 2 + k -1 b 1 ∂ ∂ϕ ----→ k→+∞ Σ log f 2 ∂ ∂ϕ. (14) 
By the choice of , the function f 2 + k -1 b 1 is strictly positive on Σ . Moreover, up to taking a smaller , we can suppose that f 2 + k -1 b 1 < 1 on Σ , for k large enough. Let us write ∂ ∂ϕ = ψω n , for ψ a smooth function on M . We have the pointwise convergence log(f 2 + k -1 b 1 )ψ → log(f 2 )ψ. Moreover, for k large enough, we have

log f 2 + k -1 b 1 ψ ≤ log f 2 sup |ψ|.
By Lemma 3.2, the function log(f 2 ) is integrable, so by Lebesgue's dominated convergence theorem, we obtain the convergence [START_REF] Yohann | A brief introduction to Berezin-Toeplitz operators on compact Kähler manifolds[END_REF]. Hence the result.

Estimates at Planck scale

This section is organized as follows. In Section 4.1 we prove Theorem 1.5 and Corollary 1.6 and in Section 4.2 we prove Theorem 1.7. We will need the following notation and lemma in both Sections 4.1 and 4.2. For any (n -1, n -1)-form ϕ, any R > 0, any k ∈ N and any point x ∈ M , we denote by ϕ x,R,k the (n -1, n -1)-form

χ B(x, R √ k ) ϕ, where χ B(x, R √ k
) is the characteristic function of the geodesic ball B(x, R √ k ). For a smooth (1, 1)-form ψ, we denote by ψ, ϕ x,R,k the natural pairing B(x, R √ k

) ψ ∧ ϕ.

Lemma 4.1. Let ϕ be a smooth (n -1, n -1)-form and let R > 0. Then, for any x ∈ M , we have

∂ ∂ log B k , ϕ x,R,k = ∂ ∂ log f 2 + k -1 b 1 , ϕ x,R,k + O(k -n-1 ) as k → +∞. Proof. Recall that B k = k 2π n (f 2 + k -1 b 1 + O(k -2 )) (see Corollary 2.3), so that ∂ ∂ log B k = ∂ ∂ log k 2π n (f 2 + k -1 b 1 + O(k -2 )) = ∂ ∂ log f 2 + k -1 b 1 + O(k -2 ) .
Now, by Corollary 2.5, we can write

f 2 + k -1 b 1 + O(k -2 ) = (f 2 + k -1 b 1 )(1 + O(k -1
)), so that we obtain

∂ ∂ log f 2 + k -1 b 1 + O(k -2 ) , ϕ x,R,k = ∂ ∂ log (f 2 + k -1 b 1 )(1 + O(k -1 ) , ϕ x,R,k .
The latter equals

∂ ∂ log f 2 + k -1 b 1 , ϕ x,R,k + ∂ ∂ log 1 + O(k -1 ) , ϕ x,R,k .
We obtain the result by remarking that

∂ ∂ log(1 + O(k -1 )) = O(k -1 ) and that ϕ x,R,k satisfies Vol(Supp ϕ x,R,k ) = O(k -n ).

Estimates on the zero set

In this section, we prove Theorem 1.5 and Corollary 1.6. We also compute the universal constant C n (R) appearing in these results; this is done in Proposition 4.4 Lemma 4.2. Let ϕ be a smooth (n -1, n -1)-form and let R > 0. Then, for any x ∈ f -1 (0), we have

∂ ∂ log f 2 + k -1 b 1 , ϕ x,R,k = 4 B(x, R √ k ) k -1 |df | 2 ω -2f 2 (2f 2 + k -1 |df | 2 ω ) 2 ∂f ∧ ∂f ∧ ϕ + O(k -n+ 1 2 )
as k → +∞.

Proof. We start by developing ∂ ∂ log(f 2 + k -1 b 1 ) and obtain

∂ ∂ log f 2 + k -1 b 1 = (f 2 + k -1 b 1 )∂ ∂(f 2 + k -1 b 1 ) -∂(f 2 + k -1 b 1 ) ∧ ∂(f 2 + k -1 b 1 ) (f 2 + k -1 b 1 ) 2 .
We now use that

f 2 ∂ ∂f 2 -∂f 2 ∧ ∂f 2 = -2f 2 ∂f ∧ ∂f + 2f 3 ∂ ∂f, that |f | = O(k -1/2 ) and that b 1 = 1 2 |df | 2 ω + O(k -1 ) on B(x, R √ k ) (see Corollary 2.
3) to obtain, after expanding and collecting the lower order terms, that on

B(x, R √ k ) ∂ ∂ log f 2 + k -1 b 1 = (k -1 |df | 2 ω -2f 2 ) f 2 + k -1 2 (|df | 2 ω + O(k -1 )) 2 ∂f ∧ ∂f + O(k 1 2 ). (15) 
By Corollary 2.5, we have that

f 2 + k -1 2 (|df | 2 ω + O(k -1 )) = (f 2 + k -1 2 |df | 2 ω )(1 + O(k -1 )),
hence Equation ( 15) yields

∂ ∂ log f 2 + k -1 b 1 = 4(k -1 |df | 2 ω -2f 2 ) 2f 2 + k -1 |df | 2 ω 2 ∂f ∧ ∂f + O(k 1 2 ) on B(x, R √ k ), whose volume is a O(k -n ), hence the result. Lemma 4.3. Let ϕ be a smooth (n -1, n -1)-form and let R > 0. Then, for any x ∈ f -1 (0), we have i B(x, R √ k ) k -1 |df | 2 ω -2f 2 (2f 2 + k -1 |df | 2 ω ) 2 ∂f ∧ ∂f ∧ϕ = k -n+1 F ϕ(x) |df (x)| 2 ω B R 2n (0,R) 1 -2t 2 1 (1 + 2t 2 1 ) 2 dλ(t)+O(k -n+ 1 2 ) as k → +∞, where F ϕ is such that i∂f ∧ ∂f ∧ ϕ = F ϕ ω n
n! and dλ = dt 1 . . . dt 2n . Proof. Let x ∈ f -1 (0) and let

I k = i B(x, R √ k ) k -1 |df | 2 ω -2f 2 (2f 2 + k -1 |df | 2 ω ) 2 ∂f ∧ ∂f ∧ ϕ ( 16 
)
be the integral that we want to estimate. Let z 1 = x 1 + iy 1 , . . . , z n = x n + iy n be normal holomorphic coordinates at x, defined on some open set U (and, thus, on the ball B(x, R √ k ) for any k large enough). Recall that these normal holomorphic coordinates at x have the property that

ω = i 2 n ,m=1
G ,m dz ∧ dz m [START_REF] Ma | Berezin-Toeplitz quantization on Kähler manifolds[END_REF] with (G ,m ) 1≤ ,m≤n = Id + O(|z| 2 ). Since a unitary linear map sends normal holomorphic coordinates to normal holomorphic coordinates, we may assume that ∂f ∂x 1 (0) = 0 and that the kernel of df (x) is Span(∂ y 1 , ∂ x 2 , . . . , ∂ yn ). By Hadamard's lemma, this implies that there exists smooth functions g 1 , . . . , g 2n such that

f (x 1 , y 1 , . . . , x n , y n ) = n =1 (x g (x 1 , y 1 , . . . , x n , y n ) + y g n+ (x 1 , y 1 , . . . , x n , y n ))
for every z = (x 1 , y 1 , . . . , x n , y n ) and g 2 (0) = . . . = g 2n (0

) = 0. Hence, on B(x, R √ k ) we have f (x 1 , y 1 , . . . , x n , y n ) = x 1 g 1 (x 1 , y 1 , . . . , x n , y n ) + O(|z| 2 ). ( 18 
)
On the ball B(x, R √ k ), we also have the estimate

|df (z)| 2 ω = ∂f ∂x 1 (z) 2 + O(|z| 2 ) (19) 
because of the definition of | • | ω (see Equation ( 4)) and Equation [START_REF] Ma | Berezin-Toeplitz quantization on Kähler manifolds[END_REF]. Using Equation [START_REF] Schlichenmaier | Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results[END_REF] we then obtain that

k -1 |df | 2 ω -2f 2 (2f 2 + k -1 |df | 2 ω ) 2 = k -1 ∂f ∂x 1 2 -2f 2 2f 2 + k -1 ∂f ∂x 1 2 2 + O(k|z| 2 ),
where, in the denominator, we have used that

2f 2 + k -1 ∂f ∂x 1 2 2
≥ ck -2 , see Corollary 2.5. So we obtain that the integral ( 16) that we want to estimate is equal to

I k = i B k k -1 ∂f ∂x 1 2 -2f 2 2f 2 + k -1 ∂f ∂x 1 2 2 ∂f ∧ ∂f ∧ ϕ + i B k O(k|z| 2 )∂f ∧ ∂f ∧ ϕ ( 20 
)
where B k denotes the ball B(x, R √ k ) in the coordinates z 1 , . . . , z n . Since in these coordinates, the Riemannian metric is the standard metric up to O(|z| 2 ), there exists

c > 0 such that B R 2n (0, R √ k (1 -c √ k )) ⊂ B k ⊂ B R 2n (0, R √ k (1 + c √ k )).
The second integral on the right-hand side of Equation ( 20) can then be estimated as

i B k O(k|z| 2 )∂f ∧ ∂f ∧ ϕ = O(1)vol B R 2n (0, R √ k ) = O(k -n )
and moreover for the first integral on the right-hand side of Equation ( 20) we have

J k (-c) ≤ i B k k -1 ∂f ∂x 1 2 -2f 2 2f 2 + k -1 ∂f ∂x 1 2 2 ∂f ∧ ∂f ∧ ϕ ≤ J k (c) (21) 
with

J k (±c) = i B R 2n (0, R √ k (1± c √ k )) k -1 ∂f ∂x 1 2 -2f 2 2f 2 + k -1 ∂f ∂x 1 2 2 ∂f ∧ ∂f ∧ ϕ. ( 22 
)
Now on U , thanks to Equation ( 17), we have the estimate

i∂f ∧ ∂f ∧ ϕ = F ϕ ω n n! = F ϕ dx 1 ∧ dy 1 . . . dx n ∧ dy n 1 + O(|z| 2 ) ,
which, put into Equation ( 22), gives us

J k (c) = B R 2n (0, R √ k (1+ c √ k )) k -1 ∂f ∂x 1 (z) 2 -2f (z) 2 2f (z) 2 + k -1 ∂f ∂x 1 (z) 2 2 F ϕ (z) 1 + O(|z| 2 ) dλ(z)
with dλ = dx 1 dy 1 . . . dx n dy n . The change of variables w = z √ k yields

J k (c) = k -n D k k -1 ∂f ∂x 1 (k -1 2 w) 2 -2f (k 1 2 w) 2 2f (k -1 2 w) 2 + k -1 ∂f ∂x 1 (k -1 2 w) 2 2 F ϕ (k -1 2 w) 1 + O(k -1 |w| 2 ) dλ(w),
where D k denotes the Euclidian ball B R 2n (0, R(1

+ c √ k )). Since by Equation (18), f (k -1 2 w) 2 = k -1 t 2 1 g 1 (k -1 2 w) 2 + O(k -3 2 |w| 2 )
this gives

J k (c) = k -n+1 D k ∂f ∂x 1 (k -1 2 w) 2 -2t 2 1 g 1 (k -1 2 w) 2 2t 2 1 g 1 (k -1 2 w) 2 + ∂f ∂x 1 (k -1 2 w) 2 2 F ϕ (k -1 2 w) 1 + O(k -1 2 |w| 2 ) dλ(w). (23) 
We now treat the function inside the integral appearing in Equation [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF]. By Taylor's formula, we have

∂f ∂x 1 (k -1 2 w) 2 -2t 2 1 g 1 (k -1 2 w) 2 2t 2 1 g 1 (k -1 2 w) 2 + ∂f ∂x 1 (k -1 2 w) 2 2 F ϕ (k -1 2 w) = ∂f ∂x 1 (0) 2 -2t 2 1 g 1 (0) 2 2t 2 1 g 1 (0) 2 + ∂f ∂x 1 (0)
Putting the latter in [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF], using the fact that Vol(

D k \ B R 2n (0, R)) = O(k -1 2
), the equality ∂f ∂x 1 (0) = g 1 (0) and Equation ( 19), we finally obtain that

J k (c) = k -n+1 F ϕ (0) |df (0)| 2 ω B R 2n (0,R) 1 -2t 2 1 (1 + 2t 2 1 ) 2 dt 1 . . . dt 2n + O(k -n+ 1 2 ).
Since the same holds for J k (-c) (by the same reasoning), we conclude thanks to Equation [START_REF] Shiffman | Number variance of random zeros on complex manifolds[END_REF].

To conclude the proof of Theorem 1.5, we need to compute explicitly the integral in the above lemma. Proposition 4.4. For every R ≥ 0,

B R 2n (0,R) 1 -2t 2 1 (1 + 2t 2 1 ) 2 dt 1 . . . dt 2n = 2 n-1 π n (n -1)! (2n -2)! P n (2R 2 ) -(1 + 2R 2 ) n-3 2
where P n is the Taylor polynomial of order n -1 of

g n : x → (1 + x) n-3 2 at x = 0. More explicitly, P n (X) = n-1 =0 n -3 2 X , α = α(α -1) . . . (α -+ 1) ! for ∈ N >0 , α 0 = 1.
Moreover, for every R > 0,

B R 2n (0,R) 1 -2t 2 1 (1 + 2t 2 1 ) 2 dt 1 . . . dt 2n > 0.
Proof. The change of variables u = t √ 2 yields that the integral that we want to compute equals 2 -n I n (R √ 2) with

I n (R) = B R 2n (0,R) 1 -u 2 1 (1 + u 2 1 ) 2 du 1 . . . du 2n
Using spherical coordinates (in principle we need to assume that n ≥ 2 for the rest of the proof, but for the case n = 1 everything works in a similar way), we write

I n (R) = D 1 -r 2 cos 2 θ 1 (1 + r 2 cos 2 θ 1 ) 2 r 2n-1 sin 2n-2 θ 1 sin 2n-3 θ 2 . . . sin θ 2n-2 dr dθ 1 . . . dθ 2n-1 .
where D = [0, R]×]0, π[ 2n-2 ×]0, 2π[. Hence we obtain that

I n (R) = 2 2n-1 J n (R) 2n-3 =0 W = 2 2n-1 J n (R) π n-1 (n -1)! (2n -2)! (24) 
with W the -th Wallis integral and

J n (R) = R 0 π 0 1 -r 2 cos 2 θ (1 + r 2 cos 2 θ) 2 r 2n-1 sin 2n-2 θ dr dθ.
So we are left with computing J n . The change of variables r = Ru yields

J n (R) = R 2n 1 0 π 0 1 -R 2 u 2 cos 2 θ (1 + R 2 u 2 cos 2 θ) 2 r 2n-1 sin 2n-2 θ du dθ.
But, if D is the quarter of the unit disc in R 2 contained in the upper-right quadrant, then

1 0 π 0 1 -R 2 u 2 cos 2 θ (1 + R 2 u 2 cos 2 θ) 2 u 2n-2 sin 2n-2 θ u du dθ = 2 D 1 -R 2 t 2 1 (1 + R 2 t 2 1 ) 2 t 2n-2 2 dt 1 dt 2
so we obtain by writing

D = {(t 1 , t 2 ) | 0 ≤ t 1 ≤ 1, 0 ≤ t 2 ≤ 1 -t 2 1 }
and by integrating with respect to t 2 that

J n (R) = 2R 2n 2n -1 1 0 1 -R 2 t 2 1 (1 + R 2 t 2 1 ) 2 (1 -t 2 1 ) 2n-1 2 dt 1 .
The change of variables u = t 2 1 yields

J n (R) = R 2n 2n -1 1 0 (1 -R 2 u)u -1 2 (1 -u) 2n-1 2 (1 + R 2 u) 2 du = R 2n 2n -1 1 0 u -1 2 (1 -u) 2n-1 2 (1 + R 2 u) 2 du -R 2 1 0 u 1 2 (1 -u) 2n-1 2 (1 + R 2 u) 2 du .
Using Equations (15.6.1) and (15.1.2) in [START_REF] Frank | NIST handbook of mathematical functions[END_REF], we can rewrite these integrals in terms of the hypergeometric function F = 2 F 1 :

J n (R) = R 2n Γ(n + 1 2 ) 2n -1 Γ( 1 2 ) n! F 2, 1 2 ; n + 1; -R 2 - Γ( 3 2 )R 2 (n + 1)! F 2, 3 2 ; n + 2; -R 2
and with the standard explicit expressions for Γ at half-integers we obtain that

J n (R) = R 2n (2n -2)!π 2 2n-1 n!(n -1)! K n (R) (25) 
where

K n (R) = F 2, 1 2 ; n + 1; -R 2 - R 2 2(n + 1) F 2, 3 2 ; n + 2; -R 2 . (26) 
Now, Equation (15.5.15) in [START_REF] Frank | NIST handbook of mathematical functions[END_REF] 

with a = 1, b = 3 2 , c = n + 2 and z = -R 2 yields F 2, 3 2 ; n + 2; -R 2 = (n + 1)F 1, 3 2 ; n + 1; -R 2 -nF 1, 3 2 ; n + 2; -R 2
and Equation (15.5.16) in [START_REF] Frank | NIST handbook of mathematical functions[END_REF] (together with the fact that F is symmetric with respect to a and b)

with a = 1, b = 3 2 , c = n + 1 and z = -R 2 gives nR 2 F 1, 3 2 ; n + 2; -R 2 = (n+1) (1 + R 2 )F 1, 3 2 ; n + 1; -R 2 -F 1, 1 2 ; n + 1; -R 2 .
Proof of Theorem 1.5. Recall that, as currents,

Φ * T k ω F S -kω = i∂ ∂ log B k , so we have Φ * T k ω F S -kω , ϕ x,R,k = i ∂ ∂ log B k , ϕ x,R,k . (29) 
By Lemma 4.1 and by (29) we have that

Φ * T k ω F S -kω , ϕ x,R,k = i ∂ ∂ log f 2 + k -1 b 1 , ϕ x,R,k + O(k -n-1 ). (30) 
The result then follows from Equation (30), Lemma 4.2 and Lemma 4.3.

Proof of Corollary 1.6. In view of the statement, we need to prove that when ϕ =

ω n-1 (n-1)! , the function F ϕ defined as i∂f ∧ ∂f ∧ ϕ = F ϕ ω n n! satisfies F ϕ = 1 2 |df | 2 ω .
As this is a pointwise property, we may assume that (M, ω) 

= (C n , ω C n ) with ω C n = i 2 n =1 dz ∧ dz . Then one readily checks that i∂f ∧ ∂f ∧ ω n-1 (n -1)! = i n 2 n-1 n =1 ∂f ∂z ∂f ∂ z dz 1 ∧ dz 1 ∧ . . . ∧ dz n ∧ dz n and that ω n n! = i n 2 n dz 1 ∧ dz 1 ∧ . . . ∧

Estimates outside the zero set

In this section, we prove Theorem 1.7. We keep the notation introduced at the beginning of Section 4. Lemma 4.5. Let ϕ be a smooth (n -1, n -1)-form and let R > 0. Then, for any x / ∈ f -1 (0), we have

∂ ∂ log f 2 + k -1 b 1 , ϕ x,R,k = B(x, R √ k ) ∂ ∂ log f 2 ∧ ϕ + O(k -n-1 )
as k → +∞.

Proof. The result follows directly from the uniform estimate

∂ ∂ log f 2 + k -1 b 1 = ∂ ∂ log f 2 + O(k -1 ) on B(x, R √ k
) and from the volume estimate Vol(Supp

ϕ x,R,k ) = O(k -n ).
Lemma 4.6. Let ϕ be a smooth (n -1, n -1)-form and let R > 0. Then, for any x / ∈ f -1 (0), we have

i B(x, R √ k ) ∂ ∂ log f 2 ∧ ϕ = R 2n k -n Vol B R 2n (0, 1) L ϕ (x) + O(k -n-1 2 )
as k → +∞, where L ϕ is the function defined by the equality i∂ ∂ log

f 2 ∧ ϕ = L ϕ ω n n! . Proof. For any z ∈ B(x, R √ k ), we have L ϕ (z) = L ϕ (x) + O(|z -x|) = L ϕ (x) + O(k -1 2 ) so that i B(x, R √ k ) ∂ ∂ log f 2 ∧ ϕ = L ϕ (x) + O(k -1 2 ) B(x, R √ k ) ω n n! = Vol B x, R √ k L ϕ (x) + O(k -n-1 2 ).
Now, we use the same argument as in the proof of Lemma 4.3 to prove that

Vol B x, R √ k = R 2n k -n Vol B R 2n (0, 1) + O(k -n-1 2 ).
Hence the result.

Proof of Theorem 1.7. The proof follows the lines of the proof of Theorem 1.5, using Lemmas 4.5 and 4.6 instead of Lemmas 4.2 and 4.3.

5 Distribution of zeros of random sections and numerical simultations

Random sections of line bundles

In this section we recall the setting of random algebraic geometry introduced in [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF]. We follow the notation of Section 2. In particular let (L, h) be a holomorphic line bundle with positive curvature ω = ic 1 (L, h) over a Kähler manifold (M, ω) and let f be a smooth function on M . The L 2 Hermitian product constructed in Section 2.1 induces a Gaussian measure µ k on H 0 (M, L k ) given by dµ k (s) = 1 π N k e -s 2 L 2 ds. Here ds is the Lebesgue measure on H 0 (M, L k ), •, • L 2 and N k = dim H 0 (M, L k ). This Gaussian measure allows us to study the distribution-valued random variable

s ∈ H 0 (M, L k ) → Z T k s ∈ D 1,1 (M ).
The expected value of this random variable is then defined by

E Z T k s , ϕ = s∈H 0 (M,L k ) T k s=0 ϕ dµ k (s). (31) 
for any smooth (n -1, n -1)-form ϕ. In the case of f = 1, Shiffman and Zelditch proved that

1 k E Z s , ϕ = 1 2π M ω ∧ ϕ + O(k -1 ). (32) 
We will obtain a similar result for E Z T k s by combining Theorem 1.2 and the following standard result.

Lemma 5.1. Let T k be a Berezin-Toeplitz operator with principal symbol f . For any k ∈ N, we have the following equality of currents:

E Z T k s = 1 2π Φ * T k ω F S .
Proof On this open set U we then have the equality T k e i = f i e k L , for some holomorphic function f i defined on U . Thus, locally on U , the Kodaira map Φ T k can be read as x ∈ U → (f 1 (x), . . . , f N k (x)) and the pull-back of the Fubini-Study form on U equals

Φ * T k ω F S | U = i∂ ∂ log N k i=1 |f i | 2 . ( 33 
)
On the other hand, by the Poincaré-Lelong formula [11, p. 388], we have that the current defined by integration along the zero locus of a section s

= N k i=1 a i T k s is (locally on U ) equal to i π ∂ ∂ log N k i=1 a i f i .
We then have to prove that, for any smooth test (n -1, n -1)-form ϕ with compact support in U , we have the following equality:

i π a∈C N k M ∂ ∂ log N k i=1 a i f i ∧ ϕdµ k = i 2π M ∂ ∂ log N k i=1 |f i | 2 ∧ ϕdµ k . (34) 
In order to prove this equality, let us denote by |f | 2 the quantity

N k i=1 |f i | 2 1 2
, so that

N k i=1 a i f i equals |f | 2 N k i=1 a i u i , with N k i=1 |u i | 2 = 1. The left-hand side of (34) is then equal to i π a∈C N k M ∂ ∂ log N k i=1 a i u i ∧ ϕdµ k + i π a∈C N k M ∂ ∂ log N k i=1 |f i | 2 1 2 ∧ ϕdµ k . ( 35 
)
The function inside the integral in the second term of the sum (35) does not depend on a ∈ C N k , so that

i π a∈C N k M ∂ ∂ log N k i=1 |f i | 2 1 2 ∧ ϕ dµ k = i π M ∂ ∂ log N k i=1 |f i | 2 1 2
∧ ϕ which is the right-hand side of (34). In order to prove the equality (34), we then have to prove that the first term of the sum (35) is zero. In order to prove this, we use polar coordinates a = rθ, for r ∈ R + and θ = (θ 1 , . . . , θ N k ) ∈ S N k -1 and obtain

i π a∈C N k M ∂ ∂ log N k i=1 a i u i ∧ ϕ dµ k = i π θ∈S N k -1 M ∂ ∂ log N k i=1 θ i u i ∧ ϕ dµ k dθ = i π M ∂ ∂ θ∈S N k -1 log N k i=1 θ i u i dθ ∧ ϕ dµ k = 0 since the quantity θ∈S N k -1 log N k
i=1 θ i u i dθ does not depend on u for |u| = 1. Hence the result.

As said in Section 1.2.3, Theorem 1.9 and Theorem 1.10 follow from Lemma 5.1 and from Theorems 1.2, 1.3, 1.5 and 1.7.

Numerics

We conclude by illustrating Theorem 1.10 numerically. In order to do so, we investigate examples on the Riemann sphere; let us briefly recall the constructions in this context. For more details, see for instance [14, Example 5.2.4, Example 7.2.5] and the references therein.

Notation. We endow (M, ω) = (CP 1 , ω FS ) with the line bundle L = O(1), equipped with the Hermitian metric h which is dual to the metric on O(-1) coming from the standard Hermitian metric on C 2 . The curvature of (O(1), h) equals -iω FS with ω FS the Fubini-Study form, normalized so that Vol(CP 1 , ω FS ) = 2π. It is standard that for every k ∈ N, there is a canonical isomorphism

H 0 (CP 1 , O(k)) C hom k [z 0 , z 1 ]
between the space of holomorphic sections of O(k) → CP 1 and the space of homogeneous polynomials of degree k in two complex variables. An orthonormal basis for the L 2 -Hermitian product obtained from this isomorphism is

e ,k = (k + 1) k 2π z 0 z k- 1 , 0 ≤ ≤ k.
So a random holomorphic section of O(k) will be of the form

s k = k =0 α ,k e ,k , α ,k ∼ N C (0, 1) i.i.d. ( 36 
)
By considering the affine chart {[z 0 : z 1 ], z 1 = 0} of CP 1 and the corresponding trivialization of O(1), we will work in the space C k [z] of polynomials of degree at most k in one complex variable, and our Berezin-Toeplitz operators will be differential operators with respect to z. Moreover, by symplectically identifying (CP 1 , ω FS ) with (S 2 , -1 2 ω S 2 ) where ω S 2 is the usual symplectic form given by

(ω S 2 ) u (v, w) = u, v ∧ w R 3 , u ∈ S 2 , v, w ∈ T u S 2 ,
we work with symbols in C ∞ (S 2 , R).

Sample mean. In our simulations, we will consider N independent random holomorphic sections s

k , . . . , s

(N ) k ∈ H 0 (CP 1 , O(k))
and compute the difference between the sample mean of the number of zeros of T k s k contained in the geodesic ball

B(x, R √ k ) and k 2π Vol(B(x, R √ k ), around a point x ∈ S 2 : E(x, R, k, N ) = 1 N N m=1 # Z T k s (m) k ∩ B(x, R √ k ) -k 1 - 1 1 + tan 2 ( R √ k ) . ( 37 
)
Here we have used that

Vol B x, R √ k = 2π 1 - 1 1 + tan 2 ( R √ k ) . For a fixed value of k, the random variable # Z T k s (m) k ∩ B(x, R √ k ) is bounded, so by the law of large numbers E(x, R, k, N ) converges almost surely towards E # Z T k s k ∩ B(x, R √ k ) -k 1 - 1 1 + tan 2 ( R √ k ) as N → +∞. Recall that Theorem 1.10 applied to ϕ = 1 states that as k → +∞, E # Z T k s k ∩ B(x, R √ k ) -k 1 - 1 1 + tan 2 ( R √ k ) = C 1 (R) 2π + O(k -1 2 ) (38) if f (x) = 0 and E # Z T k s k ∩ B(x, R √ k ) -k 1 - 1 1 + tan 2 ( R √ k ) = k -1 R 2 L 1 (x) 2 + O(k -3 2 ) (39) if f (x) = 0, where L 1 is such that i∂ ∂ log f 2 = L 1 ω FS . So for a fixed but large k, E(x, R, k, N ) should be close, for large N , either to C 1 (R) 2π if f (x) = 0 or to k -1 R 2 L 1 (x) 2 if f (x) = 0.
First example. Firstly, we consider the height function f = x 3 on S 2 ⊂ R 3 , with (x 1 , x 2 , x 3 ) the Cartesian coordinates in R 3 . The operator

T k = 1 k + 2 2z d dz -kId acting on C k [z]
is a Berezin-Toeplitz operator with principal symbol f . Let s k be a random polynomial in C k [z] as in Equation (36). Since T k e ,k = -2k k+2 e ,k for any ∈ {0, . . . , k}, the zeros of T k s k are the zeros of the random polynomial

T k s k = k =0 -2k k + 2 α ,k e ,k (40) 
and can be computed numerically. So we can locate them and compute E as in Equation (37). We compare this quantity to the theoretical limits displayed in Equation (38) and Equation (39).

Since n = 1, the universal constant appearing in Equation ( 38) is

C 1 (R) 2π = 1 - 1 √ 1 + 2R 2 . ( 41 
)
This equality is confirmed numerically in Figure 1 by computing E(x, R, k, N ) for some x ∈ f -1 (0).

We also look at what happens outside f -1 (0). Hence we need to compute the term L 1 appearing in the right-hand side of Equation (39). For this, note that the height function

f = x 3 reads f (z) = |z| 2 -1 |z| 2 +1 in the affine holomorphic coordinate z, so that if z / ∈ f -1 (0), then (∂ ∂ log f 2 ) z = - 4(1 + |z| 4 ) (|z| 2 -1) 2 (|z| 2 + 1) 2 dz ∧ dz.
This implies, using that ω FS = idz∧dz (1+|z| 2 ) 2 , that Equation (39) becomes in this case

E # Z T k s (m) k ∩ B(π -1 N (z), R √ k ) -k 1 - 1 1 + tan 2 ( R √ k ) = - 2k -1 R 2 (1 + |z| 4 ) (|z| 2 -1) 2 +O(k -3 2 ).
(42) This is checked in Figure 2. where µ p,q,k = p(p -1)(k -q)(k -q -1) if p, q ∈ {2, . . . , k -2} and µ p,q,k = 0 otherwise. So if s k is a random holomorphic section as in Equation (36), then we compute T k s k by applying this matrix and locate its zeros numerically. In Figure 3, we show how our results allow us to recover the set f -1 λ (0) by computing the quantity E(x, R, k, N ) as in Equation (37) for a large number of values of x; indeed, recall (see Equations ( 38) and (39) and the discussion after them) that for N sufficiently large, this quantity is close to C 1 (R) 2π > 0 when f λ (x) = 0 and is close to a O(k -1 ) otherwise. A Appendix: a proof of Theorem 2.1

In this appendix, we show how to derive Theorem 2.1 from [START_REF] Charles | Berezin-Toeplitz operators, a semi-classical approach[END_REF]. Once again, we stress that Theorem 2.1 already exists in the literature (see for instance [START_REF] Charles | Berezin-Toeplitz operators, a semi-classical approach[END_REF][START_REF] Ma | Berezin-Toeplitz quantization on Kähler manifolds[END_REF]). Our goal here is to write a proof with our notation and conventions (which differ from those of [START_REF] Charles | Berezin-Toeplitz operators, a semi-classical approach[END_REF] and [START_REF] Ma | Berezin-Toeplitz quantization on Kähler manifolds[END_REF]) as the explicit values of the constants appearing in the statement have been intensively used throughout the paper.

Proof of Theorem 2.1. Since T k -k -1 T k (f 1 ) and S k -k -1 T k (g 1 ) are Berezin-Toeplitz operators with respective principal symbols f and g and vanishing subprincipal symbols, it suffices to consider the case f 1 = 0 = g 1 . Moreover the terms of order k -, ≥ 2 in the symbols of T k and S k do not contribute to b 1 , so we may assume that T k = T k (f 0 ) and S k = T k (g 0 ). We write the asymptotic expansion of the kernel of B k on the diagonal as

B k (x, x) = ≥0 k -b (f 0 , g 0 )(x) + O(k -∞ ).
We want to compute the term b 1 in the symbol

σ(B k ) = ≥0 b (f 0 , g 0 ).
Recall from [START_REF] Charles | Berezin-Toeplitz operators, a semi-classical approach[END_REF] that the covariant and contravariant symbols of T k are defined as

σ cov (T k ) = σ(T k )σ(Π k ) -1 , σ cont (T k (f )) = f.
The associated star-products, , cov and cont are σ(ST ) = σ(S) σ(T ), σ cov (ST ) = σ cov (S) cov σ cov (T ), σ cont (ST ) = σ cont (S) cont σ cont (T ).

So by definition,

σ(T k (f 0 )T k (g 0 )) = σ cov (T k (f 0 )T k (g 0 ))σ(Π k ). 29

Let Ψ be the isomorphism sending σ cont to σ cov , so that σ(T k (f 0 )T k (g 0 )) = Ψ(σ cont (T k (f 0 )T k (g 0 )))σ(Π k ) = Ψ(f 0 cont g 0 )σ(Π k ).

We know from [6, Proposition 4] that Ψ(f ) = f + ∆f + O( 2 ) and that

f 0 cont g 0 = f 0 g 0 -2 n ,m=1
G ,m ∂f 0 ∂z

∂g 0 ∂ zm + O( 2 )
(note the different conventions for G ,m between [START_REF] Charles | Berezin-Toeplitz operators, a semi-classical approach[END_REF] and the present paper). Furthermore, it is stated in [6, Corollary 2] that

σ(Π k ) = 1 + r 2 + O( 2 )
where r is the scalar curvature of M . Consequently,

σ(T k (f 0 )T k (g 0 )) = (f 0 cont g 0 + ∆(f 0 cont g 0 )) 1 + r 2 + O( 2 ) = f 0 g 0 -2 n ,m=1
G ,m ∂f 0 ∂z

∂g 0 ∂ zm + ∆(f 0 g 0 ) + O( 2 ) 1 + r 2 + O( 2 ) = f 0 g 0 + ∆(f 0 g 0 ) -2 n ,m=1
G ,m ∂f 0 ∂z

∂g 0 ∂ zm + rf 0 g 0 2 + O( 2 ).
But one readily checks that ∆(f g) = f 0 ∆g 0 + g 0 ∆f 0 + 2 G ,m ∂g 0 ∂z ∂f 0 ∂ zm .

Consequently, we finally obtain that σ(T k (f 0 )T k (g 0 )) = f 0 g 0 + f 0 ∆g 0 + g 0 ∆f 0 + rf 0 g 0 2 + 2 n ,m=1

G ,m ∂g 0 ∂z

∂f 0 ∂ zm + O( 2 ).
But, in view of Equation ( 4) and since f 0 and g 0 are real-valued,

2 n ,m=1
G ,m ∂g 0 ∂z ∂f 0 ∂ zm = G(∂g 0 , ∂f 0 ).

Corollary 2 . 5 .

 25 Let T k be a Berezin-Toeplitz operator with real-valued principal symbol f and let B k = T * k T k . If f vanishes transversally, then there exists c > 0 such that, for any k large enough we have |f |
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  The proof follows the lines of[START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF] Lemma 3.1], but we give it for the sake of completeness. Let us fix an orthonormal basis e 1 , . . . , e N k of H 0 (M, L k ) and a local non-vanishing holomorphic section e L of L defined on some open set U ⊂ M .
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 1 Figure 1: The blue diamonds are the numerical values of E(x, R, k, N ) (see Equation (37)) for x = (1, 0, 0), k = 400, N = 1000 and various values of R. The solid red line is the graph of C 1 2π , see Equation (41).

Figure 2 :

 2 Figure 2: The blue diamonds are the numerical values of E(x, R, k, N ) (see Equation (37)) for z = 0, k = 100, N = 100000 and various values of R. The solid red line is the graph of R → -2k -1 R 2 (1+|z| 4 ) (|z| 2 -1) 2

Figure 3 : 1 √ 2 ,

 312 Figure 3: Reconstruction of the set f -1 λ (0) for f λ = x 1 x 2 -λ on S 2 , with λ = 1 3 , after stereographic projection. On the left we display the values of E(z, R, k, N ) (see Equation (37)) for R = 1 √ 2 , k = 100, N = 1000, and z taken on a 200 × 200 grid discretizing the square {|Re (z)|, |Im (z)| ≤ 2}. On the right we show the level set f -1 λ (0) for λ = 1 3 .

  dz n ∧ dz n . Then the result follows from the equality

	n =1	∂f ∂z	∂f ∂ z	=	1 2	|∂f | 2 ω =	1 4	|df | 2 ω
	see Equation (4) and Lemma 2.2.						

2 F ϕ (0)+O(k -1 2 |w|).

After injecting these two equations in [START_REF] Zelditch | Survey on the inverse spectral problem[END_REF] and simplifying, we get

which reduces, using Equation (15.5.12) in [START_REF] Frank | NIST handbook of mathematical functions[END_REF] with

Substituting this in Equation ( 25), we finally obtain that

We claim that this gives the desired result. In order to prove this, we use the integral expression for the remainder in Taylor's formula to write

But one readily checks that

so the above equation becomes

Using once again Equations (15.6.1) and (15.1.2) in [START_REF] Frank | NIST handbook of mathematical functions[END_REF], we see after simplification that

Comparing this with Equation (27) gives

and we conclude using Equation ( 24) that

1 ) 2 dt 1 . . . dt 2n is positive for every R > 0 is clear from the expression given in Equation (28).

We are now able to prove Theorem 1.5 and Corollary 1.6.