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Introduction

We read with interest the work of [START_REF] Gorsky | Multiscale Fisher's independence test for multivariate dependence[END_REF] on statistical dependence testing using a Multiscale Fisher's Independence Test (MultiFIT). The procedure consists in first transforming the data to map to the unit ball, then performing univariate Fisher's exact tests of independence on a collection of 2 × 2 contingency tables, and finally correcting for the use of multiple testing. The collection is obtained using a divide-and-conquer approach with a coarse-to-fine procedure: the unit ball is partitioned into cuboids and 2 × 2 contingency tables of counts of samples in the cuboids are tested, the cuboids with small associated p-values are then further partitioned at finer resolutions and tested again, etc. This approach has a number of advantages, chief among them that the test is multivariate, the computational cost is in general O(n log n) as a function of sample size n, and the test threshold is exact at any sample size (not an asymptotic limit).

The problem of computationally efficient, linear-time dependence testing is important to address, and a number of approaches have been proposed in the machine learning and statistics literature. In the present discussion, we will provide brief descriptions of certain of these approaches, enumerating their advantages and disadvantages in comparison with MultiFIT. We will evaluate the performance in terms of power of all tests on both synthetic and real-world data.

We begin by placing the statistics against which the authors compared, namely the (Brownian) distance covariance and its generalisations [START_REF] Székely | Brownian distance covariance[END_REF][START_REF] Lyons | Distance covariance in metric spaces[END_REF], within the broader framework of kernel-based independence testing. Sejdinovic et al. (2013, Theorem 24) established that the (generalised) distance covariance is an instance of a Hilbert-Schmidt independence criterion (HSIC; [START_REF] Gretton | Measuring statistical dependence with Hilbert-Schmidt norms[END_REF], which is the Hilbert-Schmidt norm of a covariance operator between features of X and of Y in respective reproducing kernel Hilbert spaces (RKHSs). When these reproducing kernel Hilbert spaces are sufficiently rich (i.e., characteristic, [START_REF] Sriperumbudur | Hilbert space embeddings and metrics on probability measures[END_REF], then HSIC is zero if and only if X and Y are independent [START_REF] Gretton | A simpler condition for consistency of a kernel independence test[END_REF][START_REF] Szabó | Characteristic and universal tensor product kernels[END_REF]. This is always the case for exponentiated quadratic kernels, and is also true for the family of distanceinduced kernels that define the (Brownian) distance covariance, subject to appropriate moment conditions (Sejdinovic et al., 2013, Proposition 29, Remark 31). Statistical tests of independence using HSIC have been proposed by [START_REF] Gretton | A kernel statistical test of independence[END_REF]; Chwialkowski and Gretton (2014); Chwialkowski et al. (2014), with computational cost O(n 2 ). In the next section, we will describe approaches developed from these kernel statistics to yield greater computational efficiency and improved power.

As with all kernel methods, the power of the distance covariance in statistical testing can be improved by a suitable selection of parameters [START_REF] Li | On the optimality of Gaussian kernel based nonparametric tests against smooth alternatives[END_REF]. In the case of the distance covariance on R d , this amounts to raising the Euclidean distances between samples to a power a ∈ (0, 2], as discussed by Sejdinovic et al. (2013, Section 8.2). When exponentiated quadratic kernels are used, [START_REF] Albert | Adaptive test of independence based on HSIC measures[END_REF] propose an adaptive minimax quadratic-time test for alternatives over Sobolev balls, which aggregates tests with varying kernel parameters. [START_REF] Schrab | Efficient aggregated kernel tests using incomplete U -statistics[END_REF] have recently proposed a linear-time variant of this adaptive test and have quantified the cost incurred in the minimax rate for computational efficiency. These approaches provide a systematic instantiation of the notions corresponding to "departures from independence at coarse-to-fine scales" as discussed by Gorsky and Ma.

Linear-time HSIC tests

We note that a number of methodological contributions pertaining to large-scale versions of tests based on HSIC and related quantities have appeared in the prior literature. Large-scale approximations to kernel methods are a well-studied field of research: among the most widely used approximation paradigms are the Nyström approximation [START_REF] Williams | Using the Nyström method to speed up kernel machines[END_REF], where the corresponding RKHS is approximated by a subspace spanned by the so-called inducing or landmark points, and the Random Fourier Features approximation (RFF; [START_REF] Rahimi | Random features for large-scale kernel machines[END_REF], where explicit feature maps are constructed via Fourier rep-
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June 23, 2022 resentations of shift-invariant kernels. [START_REF] Zhang | Large-scale kernel methods for independence testing[END_REF] employ both of these approaches to construct computationally efficient HSIC-based independence tests, demonstrating significant savings in computation time and memory. With those approximations, the asymptotic null distribution is estimated in linear time using an eigendecomposition of primal covariance matrices, which is computationally more efficient than using permutations or sampling directly from the null distribution. We refer to the two resulting tests as NyHSIC (Nyström approximation, with cost O(m x m y n), where m x , m y are the numbers of Nyström inducing points for the respective feature spaces) and FoHSIC (random Fourier feature approximation, with cost O(d x d y n), where d x , d y are the numbers of Fourier features used to approximate the respective feature spaces). We remark that, for the tests to be consistent, the number of Nyström points/Fourier features must grow with increasing sample size n : this is analogous to the partition refinement of MultiFIT with n (Gorsky and Ma, 2022, Theorem 2.3).

The Finite Set Independence Criterion (FSIC; [START_REF] Jitkrittum | An adaptive test of independence with analytic kernel embeddings[END_REF]) is an adaptive linear-time independence test that is applicable to high-dimensional problems. Briefly, the FSIC statistic is defined as the average of covariances of a finite number of real analytic functions (i.e., features) defined on the joint domain of the two multivariate variables in consideration. While the use of finitely many analytic functions resembles the RFFbased HSIC test discussed above, FSIC's features are adaptive, in that they are chosen to maximize a lower bound on the test power (on a held-out sample, which reduces the number of samples available for testing, but nonetheless results in a net improvement in test power: see experiments for details). Under smoothness conditions on the kernels, the FSIC test is consistent for any finite number of features used (see Proposition 2 of [START_REF] Jitkrittum | An adaptive test of independence with analytic kernel embeddings[END_REF]. In our experiments, we consider the permutation-based test which uses the Normalized FSIC (NFSIC). The normalized variant NFSIC has a distribution-free asymptotic null distribution (chi-squared), further facilitating fast testing on a large-scale dataset by avoiding permutations. Note that both feature optimization for a local optimum, and the statistical test using NFSIC, can be accomplished in linear time.

Exact control of non-asymptotic level

An important theoretical result of Gorsky and Ma (2022, Corollary 2.1) is that MultiFIT attains exact control of the level at any finite sample size: this means that the test is always well-calibrated. We emphasize that control of the non-asymptotic level is also guaranteed for kernel tests using permutations, and that this control is exact. Albert et al. (2022, Proposition 1) prove that the quadratic-time HSIC test, which uses permutations for quantile estimation, exactly controls the non-asymptotic level. The proof relies only on the exchangeability under the null of the original test statistic with the permuted test statistics, and the exact control of the level of a permutation-based test can more generally be guaranteed whenever permutation-invariance holds (including for our linear-time kernel tests), as explained by Kim et al. (2022, Section 2.1). We also point out the work of Gretton and Györfi (2010, Sections 2.1 and 3.1) who construct multivariate nonparametric tests of independence based on the L 1 and KL divergences computed on partitioned spaces, with distribution-free thresholds based on finite sample bounds. These thresholds exactly control the non-asymptotic level at any sample size, however, they are shown to be conservative in comparison with asymptotic thresholds for the same statistics. Finally, Kim et al. (2022, Sections 5 & 7) also propose a binning-based independence test: a permutation-based multinomial test is performed on the discretized data. Their test exactly controls the non-asymptotic level; it is also shown to be minimax adaptive and optimal over the Hölder class of density functions.

In our experiments, we compare the performance in terms of test power for MultiFIT and for the linear-time HSIC tests presented in Section 2 (code; [START_REF] Jitkrittum | An adaptive test of independence with analytic kernel embeddings[END_REF]. We ran MultiFIT with the resolution-specific approach to multiple testing, with Holm's method on p-values with mid-p correction. This method allows for early stopping when sufficient evidence for rejecting the null has been observed in the first few resolutions, and does not impact the quality of the test. At first we ran the MultiFIT test with its default parameter R = 1; this parameter sets the resolution until which all cuboids are necessarily tested regardless of the test results, after which only cuboids where dependence has been detected are partitioned further to be tested at the next resolution. The parameter R = 1 means that all cuboids in the first two resolutions (0 and 1) are necessarily considered. Having observed low test power in certain cases for MultiFIT with this default parameter, we increased the value to R = 2. This increases the power, but can entail a significant computational cost in high-dimensional settings. This parameter tuning needs to be done a posteriori (after having observed low power), which is a limitation of the MultiFIT method.

For the kernel tests introduced in Section 2 with Gaussian kernel, we used: NyHSIC with 10 randomly chosen inducing points, FoHSIC with 10 random Fourier features, NFSIC with 10 selected adaptive features, and QHSIC which is the original quadratic-time HSIC test proposed by [START_REF] Gretton | Measuring statistical dependence with Hilbert-Schmidt norms[END_REF]. For NyHSIC and FoHSIC, the null is simulated by sampling 2000 points from the estimated asymptotic distribution. For NFSIC and QHSIC, we use 500 permutations. The adaptive NFSIC test requires a held-out sample for feature adaptation: thus, we used n/2 of the available samples for this purpose, and tested on the remaining n/2 samples (in other words, NFSIC tested on half the samples of the remaining tests). All tests have well-calibrated levels [START_REF] Jitkrittum | An adaptive test of independence with analytic kernel embeddings[END_REF]. The run times of the kernel tests vary depending on the parameter choices.

We reproduce three experiments proposed by [START_REF] Jitkrittum | An adaptive test of independence with analytic kernel embeddings[END_REF], namely the Sinusoid, Gaussian Sign and Million Song Dataset experiments. To evaluate the test power, we repeat each experiment 200 times and plot the averages. For time complexity, we average the run times over 10 runs performed on an AMD Ryzen Threadripper 3960X 24 Cores 128Gb RAM CPU at 3.8GHz.

In Figure 1, we consider the Sinusoid problem where the variables (X, Y ) have joint density p xy ∝ 1 + sin(ωx) sin(ωy) on (-π, π) 2 for some frequency ω > 0. For sample size n = 4000, we observe in Figure 1 (a) that the power of all kernel tests decreases as the frequency w increases, which is expected since the departure from the null occurs at higher Discussion of MultiFIT June 23, 2022 frequencies, becoming harder to detect. For MultiFIT R = 1, we observe that the test has lower power for the frequencies 2 and 4 than for the frequencies 3 and 5, which is at first surprising. The same pattern is observed for MultiFIT R = 2 with higher power for frequency 5 than for frequency 4. We see in Figure 1 (b) that, for MultiFIT R = 1 and ω = 4, the test power remains close to zero as the sample size increases, and that for frequency ω = 2, increasing the sample size actually decreases test power. This disparity is confirmed in Figures 1 (b) & (c) where for ω = 4 increasing the sample size does not increase test power for MultiFIT with R ∈ {1, 2}, while it does for frequency 5. For ω = 5, we even observe that MultiFIT R = 2 outperforms all other tests, however, it has almost zero power for ω = 4. The reason for the low power of MultiFIT R = 1 at ω ∈ {2, 4} is that the Fisher tests fail to detect dependence in coarse resolution, and so, finer resolutions are not considered. For even frequencies ω, the quadrants of (-π, π) 2 contain exactly full oscillations, and so the number of samples in the cuboid drawn uniformly and drawn from the joint p xy have the same distribution. Hence, MultiFIT R = 1 cannot detect dependence at any sample sizes for even frequencies. Increasing R to 2 only shifts the problem to higher resolutions/frequencies, as observed with ω = 4 for MultiFIT R = 2. In fact, for any choice of R ∈ N \ {0}, MultiFIT cannot detect dependence of the Sinusoid problem with frequency ω = 2 R at any sample size (the same holds for the cos function). This toy experiment reveals a more fundamental limitation of MultiFIT: the test will be 'blind' to certain frequencies in the characteristic function of the joint density, and will not accumulate evidence at these frequencies in deciding whether to reject the null.

In Figure 2, for the Gaussian Sign experiment, the task is to detect the dependence between a d-dimensional Gaussian X ∼ N (0, I d ) and its noisy product of signs Y = |Z| d i=1 sgn(X i ) with noise Z ∼ N (0, 1), where sgn is the sign function. In this setting, Y depends on a combination of all the features of X, but this dependence cannot be detected from any subset of the features of X. For fixed sample size n = 4000, we observe in Figure 2 (a) that MultiFIT R = 1 suffers a significant loss of power from dimension 3 onwards, while all other tests retain high power. MultiFIT R = 2 performs better than NyHSIC and FoHSIC and as well as QHSIC, however NFSIC performs best, with power close to one even in dimension 4. In Figure 2 (b), we see that increasing the sample size for MultiFIT R = 1 does not necessarily increase the power. This observation is confirmed in Figures 2 (c) & (d) for d = 3 and d = 4, where MultiFIT R = 1 has persistently low power. In Figure 2 (d), we see that the power of MultiFIT R = 2 also does not increase with sample size, and remains at approximately 0.5. By contrast, the power of all kernel tests increases with the sample size, as expected. 

Figure 1 :

 1 Figure1: Sinusoid experiment with joint density p xy ∝ 1 + sin(ωx) sin(ωy) on (-π, π) 2 for some frequency ω > 0.

Figure 2 :

 2 Figure 2: Gaussian Sign experiment where X ∼ N (0, I d ) and Y = |Z| d i=1 sgn(X i ) with noise Z ∼ N (0, 1).
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In Figure 3 (a), we use the Million Song Dataset [START_REF] Bertin-Mahieux | The million song dataset[END_REF] with the aim to capture the dependence between a song X ∈ R 90 and its release year Y ∈ N \ {0}. A song is represented by 90 standardized features consisting of 12 timbre averages and 78 timbre covariances. In this real-world setting, we observe that MultiFIT R = 1 performs well: it outperforms NyHSIC and matches the power of FoHSIC which is only slightly below that of NFSIC. QHSIC performs even better, and MultiFIT R = 2 has power 1 for all considered sample sizes. The strong performance of MultiFIT R = 2 comes at a computational cost, however, as observed in Figure 3 (b). For sample size n = 250, MultiFIT R = 2 takes almost two orders of magnitude more to run (in seconds) compared to MultiFIT R = 1, and is much more expensive than all kernel tests. As shown in Figure 3 (b), the computational complexity of MultiFIT in this experiment is much higher than O(n log n), this corresponds to the setting described by Gorsky and Ma (2022, Section 2.4) with alternatives which are 'pervasive over the sample space and involve a large number of cuboids.' As pointed out in their discussion, these large-scale global alternatives can often be detected in coarse resolutions, and the run times can be reduced significantly using early stopping, which is indeed what we observe. It is interesting to see that, as the sample size increases, the problem becomes easier to solve, so MultiFIT can detect the dependence at coarser resolutions and stop the process early: thus, MultiFIT tests with early stopping have computational times which decrease with the sample size. For the Sinusoid experiment (see Figure 3 (c)), MultiFIT runs the fastest and early stopping only slightly improves the run times; the computational times of the MultiFIT tests increase faster than those of the linear-time kernel tests. As seen in Figure 3 (d) for the Gaussian Sign experiment, the computational complexity of MultiFIT (shown for R = 1) grows quadratically with the number of dimensions, while there is no notable increase in execution time for the kernel tests (whose only dimension-dependent cost is in computing a dot product: linear with an extremely small constant). The run times of MultiFIT R = 2 explode with dimension: for d = 100 it runs in roughly 4 minutes while all other linear-time tests run in less than 10 seconds.