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Propagation of classical and low booms through kinematic turbulence with uncertain parameters

The propagation of sonic boom through kinematic turbulence is known to have an important impact on the noise perceived at the ground. In this work, a recent numerical method called FLHOWARD3D based on a one-way approach is used to simulate the propagation of classical and low-boom waveforms. Kinematic turbulence is synthesized following a von Kármán energy spectrum. 2D and 3D simulations are compared to experimental measurements, and 2D simulations are found to be slightly less accurate than 3D ones, but still consistent with experimental levels around 98% of the time. A stochastic study is carried out on the 2D simulation using the generalized polynomial chaos method with parameters of the von Kármán spectrum as uncertain parameters. Differences between the propagation of a classical N-wave and low-booms are observed: the classical N-wave shows higher peak pressure and variations than low-boom signatures. The standard deviation for the peak pressure, the D -SEL and the P LdB metrics all show a linear increase with the distance, with a faster increase for the classical N-wave for the peak pressure and D -SEL, and a similar increase between the different booms for P LdB. In general, it is found that low-boom waveforms show less sensitivity to turbulence. 1 JASA/Propagation of classical and low booms through kinematic turbulence with uncertain parameters I.

INTRODUCTION

Sonic boom mitigation is known to be one of the main challenges to face in order to develop a new generation of supersonic vehicle. Two main strategies exist to mitigate sonic booms: either avoiding the presence of sonic boom at ground by controlling the trajectory of the aircraft (overseas flights or weakly supersonic flights below Mach cut-off), or shaping the plane design in order to modify the waveform and its characteristics leading to what is called a low-boom. For both cases, it is important to quantify the impact of the propagation throughout the atmosphere which may change drastically the waveform and so the way it is perceived.

Several metrics have been selected for quantifying the sonic boom perception. Among them, six have been preselected by ICAO (International Civil Aviation Organisation) as the most promising ones: Sound Exposure Level (SEL) with A, B, D and E weighting, Stevens Mark VII Perceived Level (PL) and ISBAP which is a combination of PL, A -SEL and C -SEL [START_REF] Jasa ; Loubeau | Propagation of classical and low booms through kinematic turbulence with uncertain parameters[END_REF][START_REF] Stevens | JASA/Propagation of classical and low booms through kinematic turbulence with uncertain parameters[END_REF]. Each of these metrics can be affected differently during the propagation and it is important to see the impact of the atmosphere on them.

There are two main kinds of fluctuations of the atmosphere: large scale fluctuations associated with its mostly vertical stratification, and small-scale fluctuations due to temperature and kinematic turbulence. The latter occurs especially in the Planetary Boundary Layer (PBL) above the ground up to a height of roughly one kilometer. Sonic boom propagation through the PBL when the level of turbulence is not negligible strongly affects the pressure signature [START_REF] Maglieri | Sonic boom: Six decades of research[END_REF]. In particular the wind fluctuations have a larger effect than the thermal turbulence [START_REF] Blanc-Benon | Propagation of finite amplitude sound through turbulence: Modeling with geometrical acoustics and the parabolic approximation[END_REF]. A large variety of waveforms have been observed during flight tests campaigns [START_REF] Garrick | A summary of results on sonic boom pressure signature variations associated with atmospheric conditions[END_REF][START_REF] Hilton | Sonic-boom measurements during bomber training operations in the Chicago area[END_REF][START_REF] Lee | Sonic booms produced by United States Air Force and United States Navy aircraft: Measured data[END_REF][START_REF] Maglieri | Variability in Sonic Boom Signatures Measured Along an 8000-foot Linear Array[END_REF][START_REF] Willshire | Preliminary results from the White Sands missile range sonic boom propagation experiment[END_REF], showing N-waves more or less rounded or peaked with significant differences for the amplitude and the rise-time. These observations have been reproduced with laboratory scale experiments (Averiyanov, 2008;Averiyanov et al., 2011;[START_REF] Bauer | Sonic boom modeling investigation of topographical and atmospheric effects[END_REF][START_REF] Davy | Measurements of the refraction and diffraction of a short N wave by a gas-filled soap bubble[END_REF][START_REF] Ganjehi | Evidence of wave front folding of sonic booms by a laboratory-scale deterministic experiment of shock waves in a heterogeneous medium[END_REF][START_REF] Lipkens | Model experiment to study sonic boom propagation through turbulence. part ii. effect of turbulence intensity and propagation distance through turbulence[END_REF][START_REF] Ribner | Laboratory simulation of development of superbooms by atmospheric turbulence[END_REF][START_REF] Tubb | Measured effects of turbulence on the rise time of a weak shock[END_REF]).

Yet, there are only few numerical predicting tools able to simulate the propagation of classical and low sonic booms through turbulence.

Classical methods based on geometrical acoustics fail to provide good predictions because they rely on a high frequency approximation and do not take diffraction effects into account [START_REF] Blanc-Benon | Propagation of finite amplitude sound through turbulence: Modeling with geometrical acoustics and the parabolic approximation[END_REF]. A more sophisticated method is the nonlinear parabolic approximation, either the "nonlinear progressive equation" (NPE) [START_REF] Mcdonald | Time-domain solution of the parabolic equation including nonlinearity[END_REF] or the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation [START_REF] Kuznetsov | Equations of nonlinear acoustics[END_REF]. This method is one way (the back-scattered field is neglected) and has an angular limitation which makes it valid only for small angles of propagation (< 15 • ). Its application to sonic boom propagation [START_REF] Blanc-Benon | Propagation of finite amplitude sound through turbulence: Modeling with geometrical acoustics and the parabolic approximation[END_REF] has been extended to take into account flows [START_REF] Jasa ; Averiyanov | Propagation of classical and low booms through kinematic turbulence with uncertain parameters[END_REF][START_REF] Stout | Evaluation of numerical predictions of sonic boom level variability due to atmospheric turbulence[END_REF][START_REF] Stout | Nonlinear propagation of shaped supersonic signatures through turbulence[END_REF].A recent model based on the generalized 2D KZK equation [START_REF] Stout | Evaluation of numerical predictions of sonic boom level variability due to atmospheric turbulence[END_REF] uses the atmospheric model of [START_REF] Ostashev | Acoustics in Moving Inhomogeneous Media[END_REF] with height-dependent turbulence parameters. Another approach, so-called FLHOWARD3D method [START_REF] Gallin | One-way approximation for the simulation of weak shock wave propagation in atmospheric flows[END_REF], [START_REF] Luquet | Long range numerical simulation of acoustical shock waves in a 3D moving heterogeneous and absorbing medium[END_REF] developed for both 2D and 3D simulations with a reasonable computational cost, does not suffer from this narrow angle limitation, and can take into account a random 3D turbulent velocity field superimposed to the atmospheric vertical stratification. It is an extension of HOWARD method [START_REF] Dagrau | Acoustic shock wave propagation in a heterogeneous medium: A numerical simulation beyond the parabolic approximation[END_REF] which has been recently used for the numerical evaluation of sonic boom deformation due to atmospheric turbulence [START_REF] Kanamori | Numerical evaluation of sonic boom deformation due to atmospheric turbulence[END_REF]. Nevertheless, it remains a one way approximation. Finally, high fidelity models, directly solving the Euler equations [START_REF] Sabatini | Numerical algorithm for computing acoustic and vortical spatial instability waves[END_REF], have been applied to 3D boom simulations from the aircraft down to the ground [START_REF] Yamashita | Full-field simulation for sonic boom cutoff phenomena[END_REF]. However, their high computational cost makes it difficult to perform a high number of runs, and thus to achieve the statistical approach required for propagation in a turbulent medium. Therefore, despite recent progresses, efficient and reliable simulations of a sonic boom through a turbulent atmosphere are still an open issue, especially with the aim to obtain reliable statistics.

In this paper, we propose to use the FLHOWARD3D method to study the impact of kinematic turbulence on different kinds of sonic booms. First of all, we present the whole chain of simulation. Three signals computed or measured just above the PBL are considered.

These signals are then used as an input to the 3D propagation code and are propagated through a turbulent atmosphere. Only wind fluctuations, which are obtained with the random field generation method [START_REF] Frehlich | Simulation of Three-Dimensional Turbulent Velocity Fields[END_REF] using a von Kármán energy spectrum [START_REF] Wilson | A turbulence spectral model for sound propagation in the atmosphere that incorporates shear and buoyancy forcings[END_REF], are taken into account. The turbulent velocity field is here assumed isotropic and homogeneous. Convergence studies for the mesh and for the turbulence grid size are proposed in order to assess the quality of the simulations. Two dimensional and three dimensional simulations are then compared. Results prove that it is reasonable to use the 2D simulation to make a statistical study. The resulting tremendous reduction of the numerical cost allows an extensive statistical analysis, combining the influence of the three main parameters characterizing the turbulent field: its intensity, its integral scale and the state of its frozen turbulence. Such a study combining a quantification of uncertainty for turbulence main parameters, and statistics for turbulence field realizations, is proposed to quantify the impact of kinematic turbulence on the different sonic booms. Concorde, but with a lower amplitude. The second signature is a boom measured from an F-18 aircraft doing a dive. This dive makes its shape closer to a low-boom one [START_REF] Haering | Flight demonstration of low overpressure n-wave sonic booms and evanescent waves[END_REF]. Its rise time is around 9.2 ms, higher that the N-wave one. These first two signals have been used in the AIAA sonic boom prediction Workshop in 2014. The third boom is a simulation coming from the propagation of the low-boom configuration "NASA C25D". The near field has been provided by the NASA [START_REF] Park | Nearfield summary and statistical analysis of the second AIAA sonic boom prediction workshop[END_REF]. It was calculated as a preliminary design for a NASA low-boom demonstrator aimed at reproducing low-booms for community surveys. The C25D near-field pressure has then been propagated through ICAO standard atmosphere with humidity by means of a non-linear ray tracing boom propagation code [START_REF] Loubeau | Effects of meteorological variability on sonic boom propagation from hypersonic aircraft[END_REF]. Its rise time is around 13.7 ms, which is comparable but higher than the F-18 dive one. Its initial peak pressure is around 19 Pa. However for the purpose of comparison, The C25D boom has been rescaled to around 25 Pa to have a peak overpressure comparable to the other signatures. It should be noted that the rise time of sonic boom is known to be inversely proportional to the pressure jump [START_REF] Cleveland | Effect of stratification and geometrical spreading on sonic boom rise time[END_REF]. However, the rescaling on C25D is here done to have a comparable 

B. Generation of kinematic turbulence

The time scale of propagation is much shorter than that of turbulence [START_REF] Wilson | A turbulence spectral model for sound propagation in the atmosphere that incorporates shear and buoyancy forcings[END_REF].

For this reason, wind speed fluctuations are considered frozen. Regarding the influence of the ground (the propagation in the last meters of the PBL called the surface layer), Maglieri [START_REF] Maglieri | Sonic boom flight research: Some effects of airplane operations and the atmosphere on sonic boom[END_REF] observed that signals on the ground are close to those at 75 m, which means the distortions in the surface layer are weak. So it is a reasonable assumption to consider first a homogeneous and isotropic turbulence to describe the wind fluctuations in the PBL.

The influence of turbulence stratification is discussed in [START_REF] Stout | Simulation of N-wave and shaped supersonic signature turbulent variations[END_REF].

There exist different ways for generating the wind fluctuations of the Planetary Boundary Layer, either by using high fidelity methods such as Large Eddy Simulation (LES) [START_REF] Wilson | Simulation of sound propagation through high-resolution atmospheric boundary layer turbulence fields[END_REF] or Reynolds Averaged Navier-Stokes (RANS) models [START_REF] Del Campo | Estimation of loads on a horizontal axis wind turbine operating in yawed flow conditions[END_REF] or the kinematic turbulence generation methods [START_REF] Wilson | Performance bounds for acoustic direction-of-arrival arrays operating in atmospheric turbulence[END_REF]. LES and RANS provide accurate results but require large computational resources. On the contrary, the synthetic methods are computationally efficient, and provide field realizations quickly and at a much higher resolution that the LES methods. As a counterpart, the resulting flow is not a so-JASA/Propagation of classical and low booms through kinematic turbulence with uncertain parameters lution of the Navier-Stokes equations, which may cause accuracy problems. These methods consist in synthesizing random fields that obey a prescribed set of statistics, which are here the spectrum of the turbulence. [START_REF] Wilson | Simulation of sound propagation through high-resolution atmospheric boundary layer turbulence fields[END_REF]) observe that these methods do not realistically capture turbulent dynamics, but are nevertheless useful for testing theories for wave propagation. They can be used to calculate either the temperature or the wind fluctuations turbulence. In [START_REF] Wilson | A turbulence spectral model for sound propagation in the atmosphere that incorporates shear and buoyancy forcings[END_REF], Wilson considers only the turbulent wind velocity spectrum, because its effect is usually more important than that of temperature fluctuations. In [START_REF] Blanc-Benon | Propagation of finite amplitude sound through turbulence: Modeling with geometrical acoustics and the parabolic approximation[END_REF], both temperature and wind velocity are considered, and it is found that the effect of wind velocity turbulence is larger. Therefore, only the a wind turbulent field is considered in this study. Several spectra are available, the main ones being the Gaussian spectrum, the Kolmogorov spectrum and the von Kármán spectrum. This last one is considered the only one which can be applied to the full turbulence spectrum without obtaining unrealistic results [START_REF] Wilson | Acoustic scattering and the spectrum of atmospheric turbulence[END_REF]. It decreases as a power -5/3 for high spatial frequencies, which matches with experimental observations, and it also presents a decrease at low spatial frequencies below the characteristic length scale. So it can be used both in the energy-containing subrange and in the inertial subrange. Three dimensional turbulent wind fluctuations are computed by the random field generation method [START_REF] Frehlich | Simulation of Three-Dimensional Turbulent Velocity Fields[END_REF] as described below, and 2D ones are obtained by taking a slice of a 3D map. The key idea of the method is to start from the energy spectrum of the turbulence. The energy corresponds to û2 , with û the Fourier transform of the velocity field. It is a scalar: a phase is needed to obtain a vectorial field. Thus, in this method, the phase is randomly drawn and the wind velocity field u is obtained.

The von Kármán energy spectrum E is:

E(k) = 4Γ (17/6) 3 √ πΓ (1/3) σ 2 k 4 L 5 0 (1 + k 2 L 2 0 ) 17/6 . (1) 
This spectrum depends solely on two parameters: the amplitude of the turbulence σ and the characteristic size of the turbulence L 0 . Γ is the Gamma function and k is the norm of the wave-vector k.

A discretized velocity field is reconstructed from the energy spectrum by:

u 0j (x, y, z) = Nx-1 mx=0 Ny-1 my=0 Nz-1 mz=0 w j k mx , k my , k mz exp i xk mx + yk my + zk mz , (2) 
with j = {x, y, z}, k mp = m p ∆k p , with p ∈ {x, y, z} the discrete wave-vector components and ∆k p = 2π Np∆p . N p is the number of sampling points in the p direction and ∆ p is the step in the p direction. x, y and z are also discretized such as x = l x ∆x, y = l y ∆y and z = l z ∆z, with 0 ≤ l x ≤ N x -1, 0 ≤ l y ≤ N y -1 and 0 ≤ l z ≤ N z -1. Vector w is defined as follows:

           w 1 w 2 w 3            =            H 11 0 0 H 12 H 22 0 H 13 H 23 H 33            ×            R 1 R 2 R 3            , (3) 
with R 1 , R 2 and R 3 the components of the random vector R, which is related to the frozen state of turbulence:

R j (m x , m y , m z ) = a j (m x , m y , m z ) + ib j (m x , m y , m z ) . (4) 
Here the real a j (m x , m y , m z ) and imaginary b j (m x , m y , m z ) parts of the complex random vector R(m x , m y , m z ) are realizations of two uncorrelated random Gaussian variables satis-JASA/Propagation of classical and low booms through kinematic turbulence with uncertain parameters fying the properties:

a 2 j (m x , m y , m z ) = b 2 j (m x , m y , m z ) = 1, ⟨a j (m x , m y , m z ) b j (m x , m y , m z )⟩ = 0,
where <> is the mean of the variable inside.

The lower triangular matrix H(m x , m y , m z ) is given by:

H 11 (m x , m y , m z ) = ϕ 11 (k mx , k my , k mz )∆k x ∆k y ∆k z , (5) 
H 12 (m x , m y , m z ) = ϕ 12 (k mx , k my , k mz ) ∆k x ∆k y ∆k z ϕ 11 (k x , k y , k z ) , (6) 
H 13 (m x , m y , m z ) = ϕ 13 (k mx , k my , k mz ) ∆k x ∆k y ∆k z ϕ 11 (k x , k y , k z ) , (7) 
H 22 (m x , m y , m z ) = ϕ 22 (k mx , k my , k mz )∆k x ∆k y ∆k z -H 2 12 (m x , m y , m z ), (8) 
H 23 (m x , m y , m z ) = ϕ 23 (k mx , k my , k mz )∆k x ∆k y ∆k z -H 12 (m x , m y , m z )H 13 (m x , m y , m z ) ϕ 22 (k mx , k my , k mz )∆k x ∆k y ∆k z , (9) 
H 33 = 0, (10) 
and 

ϕ ij (k) = 3E(k) 4πk 4 δ ij k 2 -k i k j . (11 

C. Propagation model: FLHOWARD3D

In the present work, the propagation of sonic booms through homogeneous and isotropic kinematic turbulence is computed with FLHOWARD3D software [START_REF] Luquet | Long range numerical simulation of acoustical shock waves in a 3D moving heterogeneous and absorbing medium[END_REF].

This software is dedicated to the 3D simulation of acoustical weak shock waves propagating through a heterogeneous medium both with scalar (temperature and density) and vectorial (wind) heterogeneities. It is based on a one-way equation [START_REF] Coulouvrat | New equations for nonlinear acoustics in a low Mach number and weakly heterogeneous atmosphere[END_REF] including diffraction without any angle restriction, non-linearity, wide-angle propagation through scalar and vectorial heterogeneous media, absorption and dispersion by thermoviscosity and molecular relaxation. It has been already validated using comparisons with analytical solutions [START_REF] Luquet | Long range numerical simulation of acoustical shock waves in a 3D moving heterogeneous and absorbing medium[END_REF]. This method also allows for two-dimensional simulations.

Here, a sonic boom propagates in the air, of density ρ 0 = 1.2 kg/m 3 and constant speed We investigate propagation in a cube of 1 km side, with x-axis the main direction of propagation (parallel to the ground), y-axis the altitude from the ground, and z-axis the lateral dimension (for 2D simulations, only x and y are considered) (see figure 3). The delayed time is noted τ = t -x/c 0 . Rigid boundary conditions are chosen on the ground (y = 0 m), periodic boundary conditions are chosen in the temporal domain (τ -axis)

and Absorbing Boundary Conditions (ABC) are chosen at the upper limit of the domain L = y max and also laterally at L = z min and L = z max . Beyond the physical boundaries of the computational domain and over a layer of thickness a chosen large enough to have no reflection, here a = 100 m, a numerical absorption coefficient, independent of frequency is added to the physical one, chosen as ζ(h) = 20 × c 0 × h 2 /a 3 , with h the penetration distance inside the absorbing layer h = y-L. Assuming that the pressure is known in the initial plane p(x = 0, y, z, τ ), the numerical evolution is made in space computing p(x, y, z, τ ) advancing with a step ∆x in the x-direction, as usual for one-way equations.

The convergence of the numerical model has been assessed regarding the temporal and spatial samplings, in order to optimize the computation cost for a sufficient accuracy (see appendix). Best numerical parameters are found to be: f s = 2048 Hz the sampling frequency, ∆x ≈ 4 m the spatial sampling in the x -direction, and ∆y = ∆z ≈ 0.66 m the spatial samplings in the y-direction and z -direction.

D. Deterministic propagation in a turbulent wind field

Illustration of the propagation results

The three selected sonic boom signatures are propagated in a three-dimensional, 1 km side, cubic domain with a turbulent medium characterized by its intensity σ = 2 m.s -1 and its scale L 0 = 100 m. The direction of propagation x is parallel to the ground. The initial wavefront makes a 10 • angle with the vertical y-axis (as sketched figure 3). Geometrical the peak overpressure has doubled, presenting a N+U shape characteristic for the vicinity of a random caustic [START_REF] Karweit | Simulation of the propagation of an acoustic wave through a turbulent velocity field: A study of phase variance[END_REF], while the peak of the U-wave is splitted in two. This transformation also affects the two other waveforms, but it is less pronounced because of a lesser content of their spectrum in the high frequencies more sensitive to turbulence. The U-shape of the N-wave at 1000 m can be observed in flight tests (for example in [START_REF] Maglieri | Variability in Sonic Boom Signatures Measured Along an 8000-foot Linear Array[END_REF]) and this range of overpressure amplification is reported in several flight data:

for instance, variations from 0.6 to 2.6 psf in [START_REF] Willshire | Preliminary results from the White Sands missile range sonic boom propagation experiment[END_REF], from 0.8 to 2 psf in [START_REF] Maglieri | Variability in Sonic Boom Signatures Measured Along an 8000-foot Linear Array[END_REF], from 1.36 to 2.57 psf in [START_REF] Hilton | Sonic-boom measurements during bomber training operations in the Chicago area[END_REF]. Many numerical simulations also reproduce this kind of waveforms (Averiyanov et al., 2011[START_REF] Jasa ; Averiyanov | Propagation of classical and low booms through kinematic turbulence with uncertain parameters[END_REF][START_REF] Blanc-Benon | Propagation of finite amplitude sound through turbulence: Modeling with geometrical acoustics and the parabolic approximation[END_REF][START_REF] Bradley | Sonic booms in atmospheric turbulence (SONICBAT): The influence of turbulence on shaped sonic booms[END_REF][START_REF] Luquet | Long range numerical simulation of acoustical shock waves in a 3D moving heterogeneous and absorbing medium[END_REF][START_REF] Stout | Nonlinear propagation of shaped supersonic signatures through turbulence[END_REF].

Corresponding values of p max , of SEL values (with various weightings) and of rise time on the ground for the same cases (same turbulent realization, same propagation distances) are shown in Tab.I. The rise time is the time needed to go from 10 % to 90 % of the peak pressure. It should be noted that with this definition, the rise time of the N-wave at 1 km is one order of magnitude higher than at 196 m, while A -SEL is the same. This can be explained by looking at the waveform at 1 km: this rise time includes two shocks with rise times comparable to the one at 196 m. For all metrics, the N-wave turns out more sensitive to turbulence than the rescaled C25D boom. This will be quantified more systematically in the last section. Multiple booms were measured (around 2000 in each site) at different distances from the flight path. When aggregating all data and normalizing the peak amplitude by the median one for a given distance from flight path, cumulative probabilities turn out insensitive to measurement distance from flight track. A dry atmosphere induces a higher variability, but the effect is not dramatic : in both cases, about 99% of booms keep a peak overpressure below twice the median value, and the probability to have a peak overpressure less than half the median value is between 0.1% (AFRC) and 1% (KSC). This last difference may be due to erratic clouds appearing in KSC, that are known to further reduce boom amplitude [START_REF] Baudoin | Sound, infrasound, and sonic boom absorption by atmospheric clouds[END_REF]. Only very rare events (probability around 0.1%) reach three times the median value.

Such typical values are clearly reproduced by our simulations for the N-wave, either at 2D or 3D. For cumulative probabilities between 1% and 99%, the 2D and 3D curves can hardly be told from one another. Differences appear only for the rarest events, either at very low or very high amplitudes. Two-dimensional simulations tends to underestimate the probability of very low amplitude booms, maybe because it cannot handle scattering of energy amplitude in the lateral direction. Note also that our simulated behavior of these rare, low amplitude events, is closer to what was observed in AFRC than in KSC, maybe again because the present simulations do not include random occurrence of clouds. High amplitude events are also underpredicted at 2D. One possible reason is that random 2D caustics that are associated to pressure amplification, do not show the the richness of 3D ones, as shown by catastrophe theory [START_REF] Berry | Waves and Thom's theorem[END_REF]. However, for 98% of boom events, 2D and 3D simulations are statistically consistent, and also reproduce the SonicBAT experimental data. In terms of loudness, the same conclusions can be drawn. Only booms with a rare (less than 1% probability) increase of PL level more than 5 PLdB are underestimated by 2D simulations.

Booms with a PL level increasing more than 8 dB have a probability less than 0.1% at 3D.

Again, these results are similar to those observed for SonicBAT (figure 5) and for recent numerical simulations.

For the rescaled C25D boom, the cumulative probability shows a behavior quite similar to the N-wave for boom levels lower than the reference value, at either 2D or 3D. Differences however appear for cases of pressure amplification, with factors larger than 1.5 having a probability less than 1% and factors above 2 extremely rare (at 3D). This is explained by the smoother shocks of the input boom waveform, that contain much less high frequencies, those which are indeed most amplified near caustics. In terms of boom metrics, this difference with N-wave is also observed, but to a lesser extent, only for boom amplifications larger than +10 PLdB which are anyway very rare events. The comparison between 2D and 3D again shows that the 98% most frequent events can be reasonably predicted at 2D. The main difference is observed for cases of "large" peak pressure amplification, which are found to be rarer at 3D than at 2D. Very spiky U waves are extremely unlikely in case of low booms.

Nevertheless, in terms of PL, the trend is very similar to N-waves, with 2D simulations underestimating amplifications more than +5 PLdB.

To conclude this section, one summarizes the above results by noting that 2D simulations provide satisfactory results compared to 3D ones, with mostly rare most amplified events (one in a hundred) underestimated. Given the huge differences in computational cost (about 8 hr for 32 processors in 3D, versus 40 min for 1 processor in 2D) , only 2D simulations will be performed in the rest of this study. 

III. SONIC BOOM ANALYSIS UNDER WIND FLUCTUATIONS UNCERTAIN-

TIES

The possibility to compute the propagation of different sonic boom signatures through a medium with turbulent wind fluctuations using a high-fidelity solver which accounts for diffraction, nonlinear effects, absorption, relaxation and heterogeneous effects has been demonstrated. Nevertheless, the results strongly depend on the medium itself and lead to the question: How to quantify the effect of the turbulence on the sonic boom propagation ? In the following parts of this study, this issue is investigated by coupling an uncertainty quantification method of the physical parameters governing the turbulence with a statistical approach for the intrinsic randomness of turbulence. The study has been conducted with two-dimensional simulations.

A. Uncertainty quantification using polynomial chaos method

The model of wind fluctuations uncertainties depends on three parameters: the magnitude of the turbulence σ, the characteristic length scale L 0 and the state of the frozen turbulence, with σ and L 0 containing physical parameters of the turbulence and the state of the frozen turbulence being related to the randomness. The PBL thickness can also have an effect, but is here fixed at 1 km. The value range of the physical parameters is determined by a literature review ( To quantify how the propagation of sonic booms is affected when these parameters are modified, a study of uncertainty quantification is conducted, and a statistical method is needed.

JASA/Propagation of classical and low booms through kinematic turbulence with uncertain parameters A well known statistical method is the Monte Carlo method [START_REF] West | Sonic boom pressure signature uncertainty calculation and propagation to ground noise[END_REF]. It relies on repeated random sampling to obtain numerical results. It consists in defining the model of the possibles inputs, generating the inputs randomly from a probability distribution over the domain, performing a deterministic computation on the inputs and finally aggregating the outputs. This method is used in a wide range of applications. Despite the convergence of this method being independent of the number of random variables, it is very slow (O 1/ √ N simulations ), which means that a large number of computations of the direct solver is required. Thus, the computational cost becomes unaffordable in the current framework. One alternative to increase the efficiency of the statistical method is to employ variance reduction techniques, like for example Quasi Monte Carlo (QMC) [START_REF] Morokoff | Quasi-Monte Carlo integration[END_REF] based on pseudo random generators or the Latin Hypercube Sampling (LHS) based on stratified sampling [START_REF] Jasa ; Mckay | A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF]. With this sampling method, each sample is the only one in each axis-aligned hyperplane containing it. The convergence is faster

(nearly O (1/N simulations ))
, but the number of needed computations is still consequent. Because around 40 min are needed for a 2D simulation in this work, this method is still difficult to use.

Therefore, other methods has been developed to further reduce the computational cost of the stochastic study. One of them is the generalized polynomial chaos method (gPC method) [START_REF] Xiu | Numerical methods for stochastic computations: a spectral method approach[END_REF], which is used in this study. This method is very efficient to deal with multidimensional distributions compared to Monte-Carlo or Latin Hypercube Sampling methods.

From a methodological point of view, the state of the frozen turbulence is fixed after a first random draw and only the impacts of σ and L 0 are studied. This approach allows access to the level of pressure on the ground (and so all the metrics) and its moments (average, standard deviation and probability density) for a predetermined continuous range of values of σ and L 0 by calculating a meta-model p(x, t, σ, L 0 ) with the help of discrete values for which simulations have been run. In a second stage, different realizations of the state of the frozen turbulence are computed and a gPC study is made for each one of them. This approach made it possible to establish a large database for different sonic boom signatures on the ground with good statistics.

In the gPC method, the output random variable p(x, t, σ, L 0 ) is represented with a polynomials series expansion.

p(x, t, σ, L 0 ) = ∞ n=0 pn (x, t)Φ n (σ, L 0 ), (12) 
with (σ, L 0 ) the random variables, pn the coefficients of the expansion and Φ n (σ, L 0 ) polynomials of degree n. The random variables σ and L 0 are assumed to have a uniform distribution, with σ ∈ [1, 3] m.s -1 and L 0 ∈ [50, 150] m. This assumption fixes the kind of polynomials: Φ n (σ, L 0 ) are Legendre polynomials. In practice, the polynomial order is truncated at an order N .

p(x, t, σ, L 0 ) = N -1 n=0 pn (x, t)Φ n (σ, L 0 ). ( 13 
)
coefficients pn (x, t) are calculated thanks to the orthogonality property:

pn (x, t) =< p(x, t, σ, L 0 ), Φ n (σ, L 0 ) > P (σ,L 0 ) = σ L 0 p(x, t, σ, L 0 )Φ n (σ, L 0 )P (σ, L 0 )dσdL 0 , (14) 
where P (σ, L 0 ) is the probability distribution. The integral can be calculated with quadrature rules:

pn (x, t) = K-1 k=0 p(x, t, σ k , L 0k )Φ n (σ k , L 0k )w k , (15) 
With K the number of quadrature points, (σ k , L 0k ) the random variables and w k the weights at each of these points. Both quadrature points and weights are determined according to the probability distribution of the input random variables. The number of quadrature points K has been determined by performing a convergence study. An polynomial order of 5 has been chosen, which means that the number of required FLHOWARD3D simulations is equal to K = (5 + 1) × (5 + 1) = 36. This is much less than for the LHS or the Monte Carlo method.

To summarize, gPC method consists in the following steps:

• set the sonic boom signal (N, F18 or C25D),

• choose the number of quadrature points K,

• for each quadrature point :

set the values of the random variables σ k and L 0k , compute the turbulent wind fluctuations (code synthetic turbulence): u k , compute the pressure (code FLHOWARD3D): p k (x, y, t),

extract the ground pressure p(x, t, σ k , L 0k ),

• compute the coefficients pn (x, t) by using quadrature rules at points k (gPC method),

• compute the meta-model p(x, t, σ, L 0 ) with the series expansion.

• apply the Monte Carlo method to the metamodel by running it a huge number of time (1 million) with random parameters, and use the results to obtain the mean, the standard deviation and the probability distribution of the propagation. Because the metamodel requires only purely algebraic operations, this step is not time-consuming.

With this method, the quadrature points are tensorized. This means that the number of quadrature points correspond to (N + 1) d , with N the order of the method and d the dimension (the number of variables). Thus, the computational time is also proportional to (N + 1) d . In this study, d = 2, and the method is thus very effective. However, in cases where d is high, this method may become very expensive thanks to the corresponding curse of dimensionality. To overcome this problem, sparse grid-based polynomial chaos methods can be employed [START_REF] Wu | Sparse grid-based polynomial chaos expansion for aerodynamics of an airfoil with uncertainties[END_REF]. These methods select sample points based on Smolyak algorithm [START_REF] Bungartz | Sparse grids[END_REF] and thus can significantly reduce the number of quadrature points for high polynomial order. By construction, gPC methods will be very efficient when the response surface is smooth, but they are less accurate if there are sudden changes in the surface, like discontinuities with the random space. For this case, adaptive methods [START_REF] Le Meitour | Prediction of stochastic limit cycle oscillations using an adaptive polynomial chaos method[END_REF] where the random space is partitioned can be employed in order to circumvent the lack of accuracy.

B. Impacts of the magnitude and the characteristic length scale of the turbulence for a fixed random vector

The meta-model of the propagation in a 2D atmosphere with σ and L 0 variable and a fixed state of the frozen turbulence for the three different input signals described previously (N-wave, the F-18 dive signature and the rescaled C25D boom) has been obtained. In figure 7, different metrics according to the distance of propagation are presented. For each one, the green curve corresponds to nominal deterministic parameters (σ = 2 m.s -1 and L 0 = 100 m

), the black curve corresponds to the mean value and the red shades represent the probability density function. This is the result for 1 random atmosphere (1 random vector R 1 , see figure 2).

Depending on the propagation distance, the mean propagation and the nominal propagation can be different, showing that the effects of the atmosphere on the propagation are nonlinear. Moreover, the probability density function is not symmetric and sometimes the most probable values (dark shade) are different from the nominal and mean ones (for example around 600 m for the N-wave, for p max ).

Concerning the propagation, for the peak pressure p max , a focusing can be seen around 200 m, followed by a defocusing around 500 m and finally another focusing after 700 m.

These effect are particularly present for the N-wave, where the mean of p max reaches 44 Pa around 900 m. The focusing are less visible for the F-18 dive signature, whose mean only attain 39 Pa at 900 m. Finally, the rescaled C25D boom seems to be the less affected by the propagation, its value of the mean of p max is the lowest of the 3 booms, with a value of rescaled C25D boom, the variability is the lowest between around 28 and 37 Pa. This boom is the more predictable of the three, and do not reach values of pressure too high.

For the metrics A -SEL and P LdB, The propagation shows additional zones of local focusing, with supplementary focusing at 100 m and 400 m. Except for the initial value, the three booms have evolution of A -SEL and P LdB comparable between them, with similar values range and probability density.

For D -SEL, more differences can be seen between the 3 booms than for A -SEL and P LdB: The extra focusing observed on A -SEL and P LdB are only visible for the N-wave, and there is more variability for the N-wave than for the low-booms. Furthermore, between the low-booms, there is more variability for the F-18 dive signature. The probability density function follows the same trend, it is the largest for the N-wave, and the lowest for the rescaled C25D boom.

Therefore, for this random realization of the wind velocity fluctuation, low booms, though still affected by turbulence, tend to show a smaller variability when propagating in a turbulent atmosphere, compared to classical N-wave. The quantification of this variability for low booms is however strongly dependent on the choice of the boom metric, some metrics being less sensitive than other ones. For each study, the signals on the ground have been computed, extracted and collected to make a database with 50 × 3 × 36 = 5400 signals at 256 different distances (ranging from 0 km to 1 km), so the database contains 1382400 signatures.

Figure 9 shows the evolution of the mean, the nominal and the probability density function values of different metrics depending on the distance of propagation. This figure is similar to figure 7 but it is plotted for a different random vector (referenced as R 2 , see figure 2).

As previously, depending on the distance of propagation, the mean propagation and the nominal propagation can be different, showing the importance of the parameters σ and L 0 and the interest to consider them as uncertain. Nevertheless, we can also see that the regions of amplification and the regions where the amplitude drops are different from figure 7. Here the focusing is important at x = 400 m and the main defocusing zone is located at x = 600 m. Therefore, the role of the random vector is major and it is responsible for the global shape and in particular for the position of focus areas. Common tendencies are also visible between figure 7 and figure 9 : (i) at the beginning all curves are close together showing that there is no effect of the variations of σ and L 0 , (ii) the width of the possible events increases with the distance of propagation showing that the effect of the turbulent fluctuations on the propagation is cumulative.

Figure 10 presents the signatures of the three booms with different couples of parameters (σ, L 0 ), chosen in order to have the most variations in the peak pressure, at 400 m and 843 m. As seen before, the wave-forms show that there are more variations for the N-wave than for the low-boom configurations. to small σ and the high pressure to high σ. With the same frozen turbulence, the maps are close to each other, except that the N-wave shows higher values and variations, as seen before.

In conclusion, the parameter with the most influence on the variations of the propagation is the state of the frozen turbulence, which determines the position of the focusing and 

D. Sensitivity analysis

The stochastic study is done with the parameters σ and L 0 as variables. How each of these parameters contribute to the propagation can be determined by a sensitivity analysis.

It consists in studying how the uncertainty in the output of a mathematical model or system can be divided or allocated to different sources of uncertainty in its inputs. The method used is the variance-based sensitivity analysis (Sobol method) [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF]. The variance of the but that the influence of the characteristic length of turbulence L 0 cannot be ignored. Both parameters, though of unequal importance, have to be considered. classical boom is more likely to reach high values of peak pressure, and is therefore more sensitive to the wind velocity fluctuations. For the other metrics, D -SEL has a tendency close to the peak pressure, while the results for P LdB are the same between the 3 booms.

This shows once more that the metrics are not affected the same way by the propagation.

IV. CONCLUSION

The propagations in 2D and 3D atmospheres have been compared to experimental flight tests and 2D simulation, thought slightly less accurate that 3D ones, are still consistent with the experimental levels around 98% of the time, and only slightly underestimate the rarest events of highest amplification. Therefore, 2D simulation are relevant to perform a stochastic study. In order to quantify the effects of the turbulent wind fluctuations on the propagation of sonic booms, a quantification of uncertainty has been coupled with a statistical analysis.

The turbulent wind fluctuations are generated using synthetic turbulence with a von Kármán energy spectrum. The magnitude of the turbulence and the characteristic length scale are the two physical parameters controlling this description of the atmosphere, they are considered uncertain variables, while a random vector is associated with the inherent randomness of the turbulence. For a fixed random vector, a generalized polynomials chaos method is used to obtain a meta-model of the pressure field at the ground. This meta-model allows access

to the pressure at the ground for all values of σ and L 0 but also to its statistical moments (mean, standard deviation) and to its probability density function. The assumption that parameters σ and L 0 are uncertain is valid since the relationship between these parameters and the propagation is not linear: we observe distances where results are not sensitive to the values σ and L 0 but also regions where the sensitivity is important. Both σ and L 0 have influence on the propagation. The effects of σ and L 0 are located near the shocks while the global randomness (state of the frozen turbulence R) changes the waveform. We observe that the standard deviation increases with the distance (cumulative effects) and this result depends on the wave-forms (the N-wave is more sensitive than the low-booms) and also on the metrics. This means that low-booms should be less disturbing for the population, and that future civil supersonic aviation could be possible. This study paves the way to a full 3D study, in order to explore the most extreme cases (2 %) not well represented by the 2D titative criterion. Figure 15 displays the values of the peak over-pressure (denoted p max ) and of the sound exposure level with A-weighting (A -SEL) as a function of the sampling frequency of the N-wave, chosen as the waveform with sharpest shocks and therefore the most demanding one in terms of convergence. One can see that a sampling frequency f s of at least 1600 Hz is required to have variations less than 0.1 Pa for p max and less than 1 dBA for A -SEL metric. A similar or a lower sampling frequency would be obtained using PL or other metrics. Note this result does not depend on the numerical solver itself.

To assess the sampling effect of the numerical solver, an N-wave is propagated inside a square of 1 km side, in a quiescent two-dimensional homogeneous medium, with an angle of 10 • with the ground. The spatial sampling is high enough to discard any influence. Results are shown on the right of figure 15 for p max and A -SEL, which are the slowest metrics to converge. While a sampling frequency f s = 512 Hz is clearly insufficient, differences between the reference case (here f s = 4096 Hz) are below 2 dBAfor f s = 1024 Hz, and below 0.5 dBA for f s = 2048 Hz. This last value will therefore be chosen here after.

Spatial sampling for propagation

The assessment of the spatial sampling is achieved in two steps. The first one consists in determining the values of spatial steps ∆x and ∆y best suited for the propagation of an N-wave in a two-dimensional quiescent and homogeneous medium (without turbulence), with an angle of 10 • with the ground. One-way methods are known to be efficient concerning the advancement in the x-direction and the convergence is reached for ∆x = 7.8 m. In the vertical direction, convergence results of the ground pressure for the same two metrics are less than ∆ = 6 m. This is satisfied using ∆y = 0.66 m, but the horizontal discretization has to be increased, and a value ∆x = 3.9 m is finally chosen. Averiyanov, M., Blanc-Benon, P., Cleveland, R. O., and Khokhlova, V. (2011). "Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media," The Journal of the Acoustical Society of America 129(4), 1760-1772.

  boom signals The objective of the paper is to quantify the effects of kinematic turbulence on classical and low booms occurring in the last kilometer of propagation. Therefore, we are not considering sonic boom signals in the near field of the aircraft but directly above the PBL in order to have signals not yet affected by turbulence, but with a shape close to the final one. Three signals have been selected for this study. The first signature is an N-wave with a rise time of around 1.5 ms. It is considered to be a classical boom, like the booms produced by the

  amplitude between the signals. Because the nonlinear effects are weak, this rescaling should not affect too much the validity of the signature. Signatures at the top of the PBL and their corresponding spectra are shown on figure 1. The spectrum of the N-wave peaks at 4.4 Hz, the F-18 dive signature at 3.8 Hz and the rescaled C25D signature at 7.6 Hz, according to their duration. Above 2000 Hz, there is nearly no signal. The levels expressed in different metrics are given in Table I (initial stage at distance 0 m). Metrics are computed with a package developed during the Rumble project and provided by Dassault-Aviation.
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 1 FIG. 1. Studied waveforms at the top of the PBL (top) and their spectra (bottom): classical

  FIG. 2. 2D velocity fields u 0x in m.s -1 (in color level) (top) and along the horizontal red line

of sound c 0

 0 = 340 m.s -1 with a nonlinear parameter β = 1.2. Only turbulent fluctuations of the velocity fields are taken into account. For the relaxation and absorption, the ISO 9613-1 norm (1993) is chosen, with a relative humidity of h r = 43% on the ground, a reference pressure of p ref = 101325 Pa and a reference temperature of T ref = 293.15 K.

  FIG.3. Sketch of the propagation (left), and 3D numerical simulation of a sonic boom (prop-
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  FIG. 4.Ground signatures obtained with 2D simulations, for the same state of turbulence.
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 5 FIG. 5.Cumulative probability of the ratio of measured to median overpressure, with the
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 6 FIG.6. Cumulative probability for the normalized peak pressure (left) and the normalized P LdB

  FIG. 8. Deterministic Wave-forms for the N-wave (top), the F-18 dive signature (middle) and
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 11 Figure 11 presents maps of p max (σ, L 0 ) for the 3 sonic booms at 843 m, for the 2 different
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 10 FIG. 10. Deterministic wave-forms for the N-wave (top), the F-18 dive signature (middle) and
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 12 FIG.12. Sensitivity for one realization of the frozen turbulence (top) and mean sensitivity (for
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 14 FIG. 14. Probability distribution of the maximum of the peak pressure (top), the maximum of
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 16 FIG. 16. Spatial convergence of metrics p max (top line) and A -SEL (bottom line) at the ground
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TABLE I .

 I Values of the peak pressure, sound level in dBX for X-weighted Sound Exposure Level

	Distance	p max (Pa)	A-SEL	B-SEL	D-SEL	Rise time (ms)
	m	23.9	77.6	88.3	88.0	1.5
	196 m	31.8	81.9	91.1	90.7	1.5
	N-wave					
	392 m	21.8	77.3	87.3	87.0	0.98
	1000 m	43.3	82.8	92.0	91.5	14.7
	m	24.7	68.1	82.8	83.7	9.2
	196 m	25.7	71.0	84.4	84.8	9.3
	F-18 dive					
	392 m	22.4	67.2	81.1	82.2	10.7
	1000 m	28.3	72.0	84.8	85.3	15.1
	m	24.7	63.2	78.1	81.1	13.7
	196 m	25.3	66.2	79.7	81.9	14.2
	Rescaled C25D					
	392 m	23.4	62.3	76.5	80.3	15.1
	1000 m	28.5	66.5	80.0	83.0	21.0

  Table II), and σ ∈ [1, 3] m.s -1 and L 0 ∈ [50, 150] m are chosen. The objective is to have values close to the measured ones, and close to those used in previous

	JASA/Propagation of classical and low booms through kinematic turbulence with uncertain parameters
	σ	L 0	Measured Condition	Reference
	0.6 m.s -1	30 m	no	Kolmogorov spectrum Plotkin (1992)
	1.87 m.s -1	160 m	yes		Yamashita and Obayashi (2009)
	3 m.s -1	4λ = 150 -200 m yes		Averiyanov (2008)
	0 -2.5 m.s -1	100 -200 m	yes	experimental values Lipkens and Blackstock (1998)
	0.48 m.s -1	1.5z	yes	near the ground	Wilson (2000)
	2 m.s -1	0.1 m, 50 -100 m	yes	laboratory scale	Karweit et al. (1991)
		after re-scaling			
	0.5 and 2 m.s -1 100 m	no		Luquet (2016)
	0.3 -3.3 m.s -1 5λ = 200 -250 m no		Wilson (1998)
	0.07 m.s -1	1 m	yes	near the ground	Ostashev et al. (2001)
	0.6 -1.6 m.s -1 100 -200 m	yes		Wilson and Ostashev (1998)
	simulations.				
				22	

TABLE II .

 II Values of the amplitude of turbulence σ and their characteristic length L 0 in different articles.
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35 Pa at 900 m. The first focusing is also nearly unnoticeable, with a increase of only a few Pa. The probability density function shows that there are also differences in the uncertainty of the variables. For the N-wave, for the last focusing, the values of p max vary between 30 and 60 Pa. This variability is large, and show that huge values of pressure (which are not welcome) can be attained. For the F-18 dive signature, at the same distance, the values are between 30 and 45 Pa. This means that this boom is more predictable. Finally, for the and x = 843 m for 3 couples of values (σ,L 0 ) corresponding to the values given the extremal values of the pressure for the N-wave at these distances. As seen on figure 7, signatures are very close at x = 400 m and have significant differences at x = 843 m. The differences are mainly concentrated around the shocks. Indeed, the overall waveform is quite similar but we can observe that the level of the shocks can be significantly different: at 843 m, for (σ = 1.06 m.s -1 , L 0 = 53 m) the waveform looks like the classic N-wave while for (σ = 2 m.s -1 , L 0 = 100 m ) and (σ = 2.23 m.s -1 , L 0 = 146 m) the shape is more a U-wave with an amplification close to 1.6. However, lower values of p max can be found for larger values of (σ, L 0 ) (for example, for the N-wave at 843 m, the amplitude for σ = 2.23 m is higher than the one for σ = 2.93 m).

In conclusion, for each variable, the classical boom presents higher variability and uncertainty than the low-booms, and can reach higher values. The low-booms have similar propagation for the A -SEL and P LdB metrics (with the exception of the initial value), and for p max and the metric D -SEL, the classical boom has more variability and uncertainty than the low-booms.

C. Influence of the state of the frozen turbulence

The previous observations are based on a study with the same realization of the state of the frozen turbulence, with σ and L 0 modeled as random variables. In order to confirm the results, there is a need to study the propagation with other states of the frozen turbulence.

To this end, the previous gPC analysis has been done for 50 different atmospheres (50 random states of the frozen turbulence) and for the three input signals described previously. output of the model is split in fractions which can be attributed to inputs or sets of inputs.

In this case, the variance of the output (p max or P LdB) is decomposed and attributed to σ, L 0 or to the interaction of the two.

The sensitivity of the propagation of the rescaled C25D boom in one atmosphere (one state of the frozen turbulence) to the two input parameters σ and L 0 , for p max and P LdB is shown at the top of figure 12. The blue curve is the fraction of the variance caused by σ, the red curve is the fraction caused by L 0 and the violet curve is the fraction caused by the interaction of the two. For p max , σ is nearly always predominant, except around 180 m, 500 m and 600 m. For P LdB, σ is predominant nearly everywhere. The interaction between σ and L 0 is always low, but globally not negligible. L 0 is predominant when σ is not.

The variations of the maximum of pressure and of the metrics are mostly due to the amplitude σ. However, at some distances (here for 180 m, 500 m and 600 m) the propagation become more sensitive to L 0 . Thus, even if σ has more influence on the variations, the two parameters have to be taken into account to reflect the complexity of the propagation. This study has been done on the N-wave and the F-18 dive signature with similar results.

To further this study, the average of the sensitivity has been calculated for the 50 states of the frozen turbulence in order to evaluate the influence of physical parameters independently of this parameter. The result is shown at the bottom of figure 12. It is shown that the variance is still mainly caused by σ along the propagation, but there is still 30% that is caused by L 0 , and the coupling increases with the propagation distance, especially for the P LdB. This confirms that the amplitude of turbulence σ is the most sensitive parameter JASA/Propagation of classical and low booms through kinematic turbulence with uncertain parameters This figure shows that for each of the 3 studied booms, the standard deviation of p max increases with the propagation distance. This means that, as seen previously, the importance of the turbulent fluctuations on the propagation is cumulative. Furthermore, the increase is more important for the N-wave, which is in agreement with previous results: The N-wave is more affected by the propagation than the low-booms. The increase is globally linear, especially for the two low-booms. The same tendencies are found for D -SEL, where the increase of the standard deviation is faster for the N-wave (1.6 dB/km) than the F-18 dive signature (1.2 dB/km) and the rescaled C25D boom (1 dB/km). However, for P LdB, the increase of the standard deviation is the same for the 3 booms. Overall, the variance of boom level tends to increase more or less linearly with propagation distance in a turbulent atmosphere. Note that the curves could be smoothed by computing a larger number of realizations of the frozen state of turbulence. Depending on the choice of the metric, this increase rate may or may not differ between an N-wave or a low boom signal. For PLdB, the standard deviation is the same between classical and low booms, which means that the sensitivity to turbulence is equivalent. r 2 is the coefficient of determination.

of 60 Pa and the N-wave a maximum of 75 Pa, thrice its initial value. Thus, the extreme values of pressure are higher for the classical boom than for the low-boom . Furthermore, the rescaled C25D boom have a probability of less than 50% to exceed 30 Pa and of around 5% to exceed 40 Pa during the propagation, while the peak pressure of the N-wave will exceed 30 Pa more than 95% of the time, an 40 Pa more than 70% of the time. The F-18 dive signature has results higher, but close to the rescaled C25D boom. This shows the the simulations. Other effects such as thermal turbulence and large-scale gradient could also be added to the propagation model to have more realistic propagation.

V.

APPENDIX: CONVERGENCE STUDIES 1. Temporal sampling

The temporal sampling must provide a fine discretization of the signals and, in particular, a sufficient resolution of the shocks. The convergence of various metrics is used as a quan-shown on the left of figure 16. The two higher values ∆y = 1.95 m and ∆y = 0.98 m induce too large oscillations and deviations, while the two lower ones ∆y = 0.99 m and ∆y = 0.49 m show a much smoother evolution and differences always less than 1 dBA.

Therefore the value ∆y = 0.66 m is chosen in what follows, and for 3D simulations, the value ∆z = 0.66 m is also selected. 

Spatial sampling for turbulence

The second step consists in examining the spatial sampling of the turbulent field: it is also necessary to determine the required minimal size of the turbulence discretization ∆. Indeed, depending on the smallest wavelength of the propagating signals (here 340 m.s -1 /2000 Hz ≈ 16 cm), there should be a size of the turbulent field below which its smaller structures will hardly affect the propagation. This will determine the minimal sampling of the turbulence.

Among the two samplings, the finest one will prevail. To determine this second spatial sampling, the von Kármán spectrum (with physical parameters σ = 3 m.s shows deviations of the peak pressure higher than 1 Pa, and deviations of the sound level higher than 1 dBA.

On the contrary for k c = 1 m -1 , these variations are lower than respectively 0.5 Pa and 0.5 dBA, which is consistent with convergence criteria considered previously. This last value is therefore chosen, corresponding to a spatial sampling of ∆ = 6 m. Note that this result is consistent with laboratory-scale experiments, showing that heterogeneities below about ∆ = c 0 T /5 with T the typical signal duration (here about 100 ms), only weakly affect the signal [START_REF] Ganjehi | Evidence of wave front folding of sonic booms by a laboratory-scale deterministic experiment of shock waves in a heterogeneous medium[END_REF]. For a size of 1 km, this means that the spatial step should be 327-336.

845