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Abstract—The objective of this paper is to present a general
methodology for storm risk assessment and prediction based on
several physical criteria thanks to the belief functions framework
to deal with conflicting meteorological information. For this, we
adapt the Soft ELECTRE TRI (SET) approach to this storm
context and we show how to use it on outputs of atmospheric
forecast model, given an estimate of the state of the atmosphere
in a future time. This work could also serve as a benchmark
for other methods dealing with multi-criteria decision-making
(MCDM) support and conflicting information fusion.
Keywords: storm risk assessment, information fusion,

belief functions, decision-making, Soft ELECTRE TRI.

I. INTRODUCTION

In the context of storm prediction, many sources of obser-
vations of the atmosphere may be used. The aim of storm
risk assessment is to exploit as best as possible some of
these available data to evaluate the risk of thunderstorm at
a given location in the surveillance area under concern in
a close future. Each type of data is associated to a given
source of information called a criterion in our context. In the
present paper, the data used are coming from a numerical
weather prediction model. These kinds of models allow to
simulate the evolution of the state of the atmosphere by solving
dynamical and thermodynamical equations, by including data
assimilation of observations of the atmosphere (from satellite,
rawinsonde or buoys, for instance) and by adding physical
parametrization for unresolved processes as convection. The
outputs of the Global Forecast System (GFS), developed by
the Centers for Environmental Prediction (NCEP) have been
used for our study [1]. The estimation of storm risk level is of
prime importance for many applications (aeronautical safety,
air traffic management, ...). In this work we present a general
methodology showing how to use belief functions [2] coupled
with the Soft ELECTRE TRI (SET) outranking method [3] to
manage efficiently the conflicting sources of information in a
multi-criteria decision-making context.

This paper is organized as follows. After a short presentation
of the Soft ELECTRE TRI outranking method in Section
IT for Multi-Criteria Decision-Making (MCDM) support we
introduce the storm risk assessment problematic in Section
III, and we show how it can fit well with the Soft ELECTRE
TRI framework. We also provide an example of our storm
assessment methodology based on data set coming from the
atmospheric forecast supplied by GFS, and we show the

performances of SET approach with respect to “ground truth”
obtained by the World Wide Lightning Location Network
(WWLLN) [4]. Conclusions are given in section IV with some
perspectives.

II. SorT ELECTRE TRI FOR MCDM

A. A short presentation of SET

The Soft ELECTRE TRI method (SET) proposed in [3] is
an evolution of the ELECTRE TRI (ET)' method proposed
by Roy in [5] for making the outranking of alternatives with
respect to profiles of categories. The SET method is based on
belief functions calculus [2] (see appendix) and improves the
classical ET method because it does not require an arbitrary
choice of A-cut strategy for making the outranking of alter-
natives with respect to profiles of categories, nor an ad-hoc
choice of decisional attitude for making the final assignment.
Actually, the SET method solves the assignment problem in
a soft manner. The Fig. 1 shows the general MCDM problem
that can be addressed by the SET method. More precisely,
SET solves an assignment problem in complex situations
where a (or several) given alternative has to be assigned to
predetermined categories based on multiple criteria values.
Each criterion G; (j = 1,...,n¢) is evaluated quantitatively.
Each profile is defined by the green points limiting the bounds
of each category with respect to each criterion. The red chain
represents a “multi-criteria value” (i.e. an alternative a) that
one wants to assign to a predefined category.
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Gy

Figure 1: How to assign a category to an alternative?

" The acronym ELECTRE stands for “ELimination Et Choix Traduisant la
REalité” (Elimination and Choice Expressing the Reality) [7], [8].



In the context of our storm risk assessment application each
category ('}, corresponds to a level of risk (low, moderate,
strong, very strong, or extreme), and it is defined by its profile
lower and upper bounds denoted respectively by bj_; and
b;, (see vertical green plots in Fig. 1). The profiles bounds
define ad-hoc categories for the values of each criterion G
corresponding to a meteorological parameter which is either a
direct measure of a meteorological parameter, or an estimation
of the parameter resulting from a sophisticate meteorological
forecast model. These meteorological parameters (i.e. criteria)
will be described in details in section III. Any alternative
corresponds to a multi-criteria value a = (a1,...,a;,...an;)
whose component a; is nothing but the instance of the param-
eter (i.e. criterion) G; for this alternative a. Each alternative
a is associated with a (2D) cell of the area of interest on the
surface of the Earth.

The SET method allows to take into account the weight of
importance of each criterion entering this assignment problem
and to give a soft (i.e. probabilistic) assignment solution
to commit any multi-criteria value a to a category. More
precisely, SET calculates the probability that a chosen alter-
native a belongs to a predetermined category C', based on all
information available (the criteria values, the importances of
the criteria, and the bounds of each predetermined category).

B. SET principle

We present briefly the principle and the steps of the Soft
ELECTRE TRI (SET) outranking method developed originally
in [3]. SET makes a soft assignment of n, > 1 alternatives
a; in predefined ordered categories Cj, (h = 1,...,np)
according to criteria’> measure g;(.), j € J = {1,...,ng}.
Each category C}, is delimited by the set of its lower and
upper limits b | and b) with respect to each criterion G;
measured by g;(-). By convention, bg < b{ o < b%h,-
by = (B,..., b%, ...,b0¢) is the lower (minimal) profile
bound and b, = (b} ,...,b} ,...,b1S) is the upper (max-
imal) profile bound. The overall profile by, is defined by
(91(bn), 92(bn)s - -, gne (br)), and it is represented by the
vertical plot joining the green dots in Fig. 1.

The outranking relations used in SET are based on the cal-
culation of partial concordance and discordance indices from
which global concordance and credibility indices are derived
based on Basic Belief Assignment (BBA) modeling [2], and on
an advanced fusion technique based on Proportional Conflict
Redistribution rule no. 6 (PCR6) [9]-[11]. A soft assignment
of each alternative a; in a predetermined category is obtained
by the calculation of the probabilized outranking relations,
from which a final hard assignment can be drawn (if needed)
for some action. In the storm risk assessment context, an action
for instance could be the broadcast of an alert message to the
air traffic management organisms or airports.

The Soft ELECTRE TRI method requires the following four
steps:

2In our context, a criteria is a meteorological parameter.

SET-Step 1: Calculation of partial (local) concordance indices
¢;j(a;, by), partial discordances indices d;(a;, by), and also
partial uncertainty indices u;(a;, by) between an alternative a;
and a profile by, thanks to a smooth sigmoidal model [12]. The
partial indices are encapsulated in BBAs m7, (.) for alternative
a; versus profile by, (i.e. a; vs. by,) as follows:

cj(a;,bp) = mzh(c) (local concordance)

d;(a;, by) £ ml, (¢)

1 (local discordance) (1)

uj(a;, by) 2 m!, (cUE) (local uncertainty).

where mzh( -) is a Basic Belief Assignment (BBA) defined on
the frame of discernement © = {c, ¢}, where ¢ means that the
alternative a; is concordant (i.e. it agrees) with the assertion
‘a; is at least as good as profile by,”, and ¢ means that the
alternative a; is opposed to this assertion (i.e. it is discordant,
or it disagrees with this assertion). For each criterion G},
a BBA m], defined on the power-set of © is obtained by
the fusion of two simple BBAs m7(.) and mJ(.) based on
the following sigmoid models, see [12] for justification and
details. Similarly, we compute also partial (local) concordance
indices ¢;(by, a;), partial discordances indices d,; (by,, a;), and
partial uncertainty indices u;(by,, a;) between a profile by, and
an alternative a;. This partial indices are encapsulated in BBAs
mj .(.) for profile by, versus alternative a; (i.e. by, vs. a;).

SET-Step 2: Calculation of the global (overall) concordance
indices c(a;,by), c¢(bp,a;), discordance indices d(a;, by,),
d(by, a;), and uncertainty indices u(a;, by), u(bp,a;) by the
fusion of local indices. More precisely, one must calculate

{mm.) = [miy &md, & & m]() ®

mia() = [mh; & mi, & em)()

where @ denotes symbolically a chosen fusion operator.
To take into account the weight of importance w; € [0, 1]
of each criterion G'j, we propose two fusion methods:

1) Fusion method 1: we use the weighting averaging (WA)
fusion rule because it is a very simple rule, and it can
be processed very quickly. This is of prime importance
in our storm risk assessment context because one can
have millions of cells (depending the resolution cell we
want to work with) in a wide surveillance areas.

2) Fusion method 2: we use a more sophisticate PCR6
fusion rule adapted with importance discounting pre-
sented in details in [13] if more computational power
is available?.

Once the BBAs m;,(.) and my,(.) are obtained, the global
indices are defined by

c(ai, bp) £ min(c)a(ai, by)
d(a;, bp) £ min(€)B(a;, b) &)
u(a;, by) 21— c(a;, by,) — d(a;, by).

3Due to the complexity of this fusion rule and computational burden, only

problems of relatively small dimensions, say for ng < 6 , can be addressed
by this second method.



The discounting factors «(a;, by) and S(a;,by) in (3) are
defined in [3]. They are not given here due to space limitation
restraints. c¢(by,a;), d(bp,a;) and u(by,a;) are similarly
computed using the dual formula of (3).

The belief and plausibility of the outranking propositions
X = “a; > by” (a; outranks by), and Y = “b;, > a;” (by,
outranks a;) are then given by

Bel(X) = ¢(a;, by,) and Bel(Y') = ¢(bp, a;) 4)
PI(X) =1—d(a;,bp) and P(Y) =1 — d(bp,a;)  (5)

SET-Step 3: Calculation of the probabilized outranking rela-
tions. In SET-Step 2 we have characterized the outrankings
X = “a; > by” and Y = “b, > a;” by their im-
precise probabilities P(X) € [Bel(X);PI(X)] and P(Y) €
[Bel(Y); PI(Y)]. Solving the outranking problem consists in
choosing (deciding) if finally X dominates Y (in such case
we must decide X as being the valid outranking), or if
Y dominates X (in such case we decide Y as being the
valid outranking). This hard assignment problem is difficult
in general because P(X) in [Bel(X);P1(X)] and P(Y) in
[Bel(Y); PI(Y)] and these belief intervals can partially over-
lap. Fortunately, a soft (probabilized) outranking solution is
possible by computing the probability that X dominates Y
(or that Y dominates X)) by assuming uniform distribution of
unknown probabilities between their lower and upper bounds.
To get the probabilized outrankings, we have to calculate
Pxsy 2 P(P(X) > P(Y)) and Py-x = P(P(Y) >
P(X)) which are given by the ratio of two polygonal areas, or
can be estimated using sampling techniques, as explained and
illustrated in [3]. The probabilities of outrankings are denoted
P, £ Px~y where X £ “3;, > by and Y £ “b, > a;”.
Reciprocally, we denote P,; = Pysx = 1 — Pj,. This
probabilization of outrankings is directly obtained by this Step
3 of SET, and thus eliminates the arbitrary A-cut strategy used
in classical ELECTRE TRI method.

SET-Step 4: Final soft assignment of a; into a category
C},. From the probabilized outrankings obtained in SET-Step
3, we can make directly the soft assignment of alternatives
a, to categories Cj defined by their profiles by. This is
easily obtained by the combinatorics of all possible sequences
of outrankings taking into account their probabilities Pjp
to calculate all the assignment probabilities P(a; — Cp,).
Moreover, this soft assignment mechanism provides also the
probability §; £ P(a; — () reflecting the impossibility to
make a coherent outranking. This soft assignment procedure
of the SET method does not require an arbitrary choice of
decisional attitude unlike to what is proposed in the classical
ET method. A simple detailed example of this SET-Step 4 is
given in [3] for convenience.

III. APPLICATION OF SET TO STORM RISK ASSESSMENT

A. Surveillance zone and data set

We apply the SET method briefly presented in the previous
section to storm risk assessment problematic. For this, we con-
sider in this study five meteorological parameters (i.e. criteria)

drawn from GFS (Global Forecast System) open data available
on the web [1]. We have used GFS data for the 9th May 2016
at 3h UTC. The GFS data used in this study are available
in [22]. The wide surveillance area covers Atlantic ocean
from [—1,70.5] degrees in latitude, and [—100, 10.5] degrees
in longitude. We have 21592 cells of size 0.5 x 0.5deg?
to evaluate. Each cell corresponds to an alternative a; that
must be assigned to a storm risk category Cj, by the SET
method. The table I shows the five (ng = 5) meteorological
parameters (i.e. criteria) used in our study, their units, their
preference ordering, and their qualitative importance chosen
for this problematic.

Criteria Units Preference ordering | Importance weight
G1 =PConv | kg/m? | increasing very high

Go =1LI °K decreasing very high

G3 = CAPE | J/kg increasing high

G4 = DivB s~ decreasing low

G5 = DivS s71 increasing low

Table I: Criteria used for SET method.

where

o PConv is the 3-h accumulated precipitation induced by
convective process (in kg/ m?) [24];

o LI is the lifted index which characterizes the instability
of the atmosphere (in °K). This parameter, developed
by Galway [25], is the gap between the environmental
temperature and the temperature of a parcel lifted dry-
adiabatically to saturation then moist-adiabatically to 500
hPa;

o CAPE is the convective available potential energy (in
J/kg). This parameter is the potential energy available to
the parcel to lift up beyond the level of free convection.
As the lifted index, this parameter relies on the difference
between the environmental temperature and the tempera-
ture of a parcel lifts adiabatically [26];

o DivB is the low-level wind divergence if there is convec-
tive clouds in the cell (in s~1). This parameter is derived
from horizontal wind component and the pressure level
of the bottom of convective cloud [27];

e DivS is the divergence of the wind above the top of
the convective clouds (in s~!). Indeed, isolated storm
cloud is associated with low-level wind convergence and
divergence near the top of the cloud [27];

PConv has an increasing preference order which means that
bigger the PConv value is, higher is the storm risk. LI has a
decreasing preference order meaning that lower the LI value is,
higher is the storm risk. To work with quantitative importance
weights, we need to transform qualitative labels (low, high,
very high) into numerical values. For this we use the following
mapping: Low importance — 1, Moderate importance — 2,
High importance — 3 and Very high importance > 4. This
mapping is quite ad-hoc, and could be changed/adapted for
reflecting a better subjective interpretation of the importance
level expressed by the expert who provides these qualitative
importance factors. This mapping is specific of the fusion



system design. After the normalization of the numerical im-
portance factors, we get the following normalized weights
of importance of each criterion*: w; = 4/12, wy = 4/12,
wg = 2/12, wy = 1/12, and wy = 1/12.

In our study, we consider five (n, = 5) levels of risk
defined qualitatively as: Low, Moderate, Strong, Very strong
and Extreme which respectively correspond quantitatively to
the levels 1, 2, 3, 4 and 5 that will be shown in on the
followings figures. The profile bounds for each category of
risk and each criterion are given in Table II.

Criteria\Bounds of categories | b; bo b3 by
G1 = PConv 0 1.5 7 10
Go =11 0 2 -6 -10
G3 = CAPE 0 | 1000 | 2000 | 4000
G4 = DivB 0 -0.1 -0.5 -1
G5 = DivS 0 0.1 0.5 1

Table II: Bounds of categories of risk.

For convenience, the figure 2 presents the flow chart of the
proposed method related to our storm application.

Input value of i-th cell

a; = [a‘lv"'7a5]
Gy = PC G =Ll Gy=CAPE G;=DiB G5 =Divs | Criteria
a1 J[az [[ as ][ a2 ][ a5
v v
for a; vs. by, for by, vs. a; SET-Step 1
cj(ai, by) £ mf,(c) ¢;(bp.a;) £ mi(c) local concordances
d;(a; 2 ml,(e) d;(by,a;) 2 mj (2) local discordances
uj(ai,by) 2 ml,(cUc) . uj(by,a;) £ mj(cUd) | local uncertainties
Fusion of m,, j = 1,....5 Fusion of mf,, j=1.....5 | SET-Step 2
My =my, ®...O&mY, My = mh; & ... &mj;
for a; vs. by, for by, vs. a;
global concordances
global discordances
( global uncertainties
beliefs and plausibilities of outrankings X and Y’
Bel(X) = c(a;, by) . Bel(Y) = c(by. a;)
PI(X) = 1 - d(a;, by) PIY) = 1 — d(by, a;)
where X = “a; > b,” |  where Y = “b; > a,”
Geometrical caleulation of probabilized outrankings
from intervals [Bel(X), PI(X)] and [Bel(Y), PL(Y)] SET-Step 3
a a
Py = Px>y and Py = Pysx =1— Py,
Proba of assignmnent of a; to a category C},
SET-Step 4
Calculation of P(a; — C,)

SET output values
Decision €' = arg maxc, P(a; = Cj)
Decision probability P(a; — C')

Figure 2: Flow chart of the method related to the application.

The bounds for LI and CAPE criteria are those defined
by Wesoleck in [23]. The bounds for PConv criteria have
been deduced from the different thresholds used to distinguish
light, moderate and heavy rainfall [28] and adapted to our
geographical area. Heavy rain, correspondings to accumulated
precipitation above 10-30 mm/h, is associated to severe storm

“4In this work and for simplicity, the importance factor w; of each criteria
G used to make the importance discounting of BBAs in the SET method is
chosen independently of the profile bound values.

risk [29]. The bounds for low-level convergence wind and
high-level divergence wind have been chosen larger than usual
threshold [30], because the most important information is the
sign of the divergence merge with the presence of convective
cloud in the cell. Hence, if the PConv value for the cell under
analysis is greater than bffl = 20, then the storm risk for
this cell is considered as extreme (risk=5). If the PConv value
belongs to (b5=",5,="] = (10, 20] then the storm risk for this
cell is considered as very high (risk=4), etc. If the LI value
is lower than bi:s = —10 then the storm risk for this cell is
considered as extreme (risk=5), but if the LI value is between
b= = —10 and b= = —6 the storm risk for this cell is
considered only as very high (risk=4).

The figures 3—7 show the risk levels (1, 2, 3, 4 and 5)
corresponding to each criterion for the 21592 cells covering
the Atlantic ocean surveillance area for each criterion consid-
ered separately. The Dark blue cells with values -1 correspond
to ground cells which are not taken into account in this
study. One clearly sees the difference of risks drawn from the
five meteorological parameters and the conflicting information
between these five maps of risks of storm that illustrate the
input data we have to process by the SET method to get the
global risk assessment.

80 Storm risk level based on PConv criterion 5
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Figure 3: Storm risk levels based on PConv criterion. 0 means

no risk; 1, low level of risk; 2, moderate level of risk; 3, strong

level of risk; 4, very strong level of risk and 5, extreme risk.

Risk are not calculated over earth, fixed to -1 value (dark blue).
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Figure 4: Storm risk levels based on LI criterion.



Storm risk level based on CAPE criterion
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Figure 5: Storm risk levels based on CAPE criterion.
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Figure 6: Storm risk levels based on DivB criterion.

Storm risk level based on DivS criterion
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Figure 7: Storm risk levels based on DivS criterion.

To estimate the variability (randomness) of GFS data in each
cell, we estimate for each category C}, of risk the probability
P(C},) by counting the number of criteria associated with C},
divided by ng = 5. This level of randomness is characterized
by Shannon’s entropy. Hence, for the cell #i, if we have the
probability measure p; = (p1,p2,-..,Pn, ), the normalized
Shannon entropy? is given by

1 M h

H(p;) = > pnlogypr (6)
h=1

- logy

One takes py, logy pp, = 0 if pj, = 0.

H(p;) = 0 when all meteorological parameters agree with
the same storm risk category, and H(p;) is maximum if p;
is the uniform pmf. One defines the mean entropy H of the
GFS data by averaging the entropy values of the N = 21592
cells of the surveillance area by

= ZH (ps) (7

Figure 8 shows the normalized entropies of the meteorolog-
ical GFS data we have used in this study. The mean entropy of
these GFS data is H = 0.2989, and only 32% of the data are
totally in agreement on the same risk level (shown in green
color on Fig 8). As we observe on this figure most of the data
are conflicting because the entropies values are much bigger
than zero. The high level of randomness of these data justifies
a sophisticate MCDM method able to deal efficiently with
conflicting sources of information. This motivates the use of
SET approach proposed in this work.

Normalized Shannon entropy of data based on 5 criteria
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Figure 8: Normalized Shannon entropy of GFS data.

B. Results based on the weighted averaging rule

The figure 9 shows the storm risk levels based on the
weighted average® of risk levels shown figures 3—7, with the
weights of importance wy = 4/12, we = 4/12, ws = 2/12,
wyg = 1/12, and ws = 1/12.

Storm risk level based on weighted averaging fusion rule
:—t" ' L 4 .

2

Latitude (deg)

. . . . . s
-120 100 80 -60 -40 -20 0 20
Longitude (deg)

Figure 9: Storm risk levels based on weighted average of risks.

SFor representation convenience and comparison with SET results, the risk
values of Fig. 9 have been rounded to their closest integer value.



Based on this simple fusion rule one observes that the
strong (and higher) risks of thunderstorms are located mainly
in the intertropical convergence zone (around the equatorial
line), on the Caribbean Sea, and aside the Portugal coast.
However the method of fusion does not provide a measure
of the trustfulness (confidence) of this result, and it does not
manage precisely the level of conflict between the different
sets of data.

C. Results based on the SET approach

The figure 10 shows the map of storm risk levels based on
weighted averaging fusion rule used in SET-step 2, whereas
the figure 11 shows the result when the PCR6 fusion rule’ is
used in SET-step 2. These two resulting maps of risk levels
can be interpreted as the SET-combination of maps shown in
figures taking into account the importance and contradiction
of the five meteorological criteria.

Risk levels - SET method (weighted averaging) - 5 criteria

Latitude (deg)

-120 -100 -80 -60 -40 -20 0 20
Longitude (deg)

Figure 10: Storm risk levels based on SET (averaging rule).

Risk levels - SET method (with PCR6) - 5 criteria
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Figure 11: Storm risk levels based on SET (PCR6 rule).

The confidence in the resulting storm risk maps of figures
10 and 11 are shown in figures 12 and 13 respectively.
D. Performances analysis

To measure the performance of our method of storm risk
assessment we need to compare our SET results with some
ground truth. For this, we consider as ground truth the

Twith importance discounting of BBAs, as explained in [13].

4o Confidence of assignment - SET method (weighted averaging) - 5 criteria
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Figure 12: Confidence in decision (SET with averaging rule).

Confidence of assignment - SET method (with PCR6) - 5 criteria
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Figure 13: Confidence in decision (SET with PCR6 rule).

information of location of strokes supplied by the World
Wide Lightning Location Network (WWLLN) [4]. WWLLN
archival data are copyrighted by the University of Washington
and are available to the public at nominal cost. For a given
date, at a time T, all cells where strokes impacts have been
detected by WWLLN network, in the time interval [T +/-
1h30], have been tagged. These data consist of the Ny = 223
locations of all the detected lightnings on May 9th, 2016 in
the time interval [1h30 - 4h30 UTC] which are shown as red
dots in Fig 14.

WWLLN Lightning Locations

Latitude

Figure 14: WWLLN lightning detections.

The performance of the method are evaluated by the esti-
mation of the detection probability Py = P(C > Ci|dw = 1)



of lightnings, and the false alarm probability Pfa = P(C’ >
C1|dw = 0), where C' denotes the decision (i.e. the category
of the risk) taken for a chosen confidence threshold, dy = 1
indicates that a lightning flash has been detected by the
WWLLN for the cell under analysis, and dy = 0 indicates
no detection. These probabilities are empirically estimated by

C’>Cl,dW:1)

Py=P(C>Cldw =1) ~ n

n(dw = 1) ®
R . C>Cy,dw =0
Pra = PIC > Cildy =0 ~ MEZ LD )

where n(C' > Cy,dy = 1) is the number of cells for which
the joint event C > Ch and dw = 1 has occurred, and
n(dw = 1) is the number of cells for which one has got
a WWLLN detection dy, = 1. Similarly, n(C' > Cy, dy = 0)
is the number of cells where events C' > Ciand dyy =0
have occurred, and n(dy = 0) is the number of cells having
no WWLLN detection (i.e. dyy = 0).

The tables III indicates the estimations of the detection
probability Py of lightnings, and of the false alarm probability
Pfa obtained by the three methods tested based on WWLLN
set of detections.

Methods Py Pt

Weighted Averaging Rule | 0.9775 | 0.3601
SET with averaging rule 0.9462 | 0.2945
SET with PCR6 rule 0.9507 | 0.2954

Table III: Pd and Pfa performances.

Our results show that SET approach (with averaging rule, or
with PCR6 rule) provides interesting results because it allows
to identify and predict the areas with high risk of storm that are
coherent with the real location of lightnings detected by the
WWLLN. One sees that the direct weighted averaging fusion
of the risk maps of the five criteria shown in Fig. 9 produces
notably more false alarms than with SET method, and only
a little increase detection probability. In this work there is
no clear advantage of using the PCR6 rule with respect the
weighted averaging rule in step 2 of SET method because
the performances in term of probability of detection and false
alarms are very close. In terms of computational time, the
direct weighted averaging fusion of the risk maps is the fastest
method which takes few seconds® with MatLab (R2108a
version) running with a MacBookPro laptop computer (2.8
GHz Intel Core i7), then the second fastest method is the
SET method using weighted averaging rule taking 1mnl2sec,
and the slowest (and most complicate) method is the SET
method based on PCR6 rule which takes approximately 26mn
to produce the results. One important avantage of the SET
method (aside its aforementioned performances) is its ability
to provide the confidence map of the solutions obtained by
SET (i.e. the predicted risk levels) as shown in Fig. 12 and
13. These confidence maps are useful to identify areas of risks

80nce the five maps of risks have been computed.

where the confidences are low and thus very uncertain if some
important decision but be taken based on these solutions (for
instance the diverting of the flight of an aircraft, etc). Such
type of useful confidence map cannot be drawn form the direct
weighted averaging fusion of the risk maps. Due to space
restraint, we did not include the decision inconsistency maps’
(i.e. the map of the probabilities) P(a; — () reflecting the
impossibility to make a coherent outranking (see SET step 4),
but these maps obtained by SET (with weighted averaging or
with PCR6 rule) reveal actually only very few cells located
mainly at the west of Panama. This very small number of
cells yielding decision inconsistency indicates that SET has
provided solutions in good decision-making conditions in
general.

IV. CONCLUSIONS

In this paper we have presented an application of belief
functions for storm prediction based on multi-criteria analysis
and the Soft Electre Tri (SET) methodology. We have shown
that SET allows to reduce notably the false alarms rate with
respect to a simple weighted averaging fusion method without
sacrificing much the detection of lightnings, and to provide the
confidence map of the solutions obtained. The SET method
based on PCR6 rule of combination performs well but it
has a high computational burden which prevent it to use it
for quasi-real time applications, and for working with multi-
criteria problems involving many more criteria. This work, we
hope, could serve as a benchmark problem for testing many
MCDM methods in future. More investigations are currently
done to apply this type of new methodology using more
meteorological criteria on other type of real data sets, and more
refined parameter settings that will be reported if possible in
a forthcoming publication.
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APPENDIX
Basic definitions of belief functions

In this appendix we provide basics of belief functions (BF)
introduced by Shafer [2] to model epistemic uncertainty to
reason about uncertainty. We assume that the answer of the
problem under concern belongs to a known finite discrete
frame of discernement (FoD) © = {64,0,,...,0,}, with
n > 1, and where all elements of © are exhaustive and
exclusive. The set of all subsets of © (including empty set (),
and ©) is the power-set of © denoted by 2°. The number of
elements (i.e. the cardinality) of 2© is 2!®/. A (normal) basic

9They have been included with the data set files in [22] for convenience.



belief assignment (BBA) associated with a given source of
evidence is a mapping m(-) : 2© — [0, 1] satisfying m()) = 0
and ) 4 .oe m(A) = 1. The number m(A) is called the mass
of A committed by the source of evidence. The subset A € 2°
is called a focal element (FE) of the BBA m(-) if and only if
m(A) > 0. The set of all the focal elements of the BBA m(-)
is noted by Fo(m) = {X € 2°|m(X) > 0}. The belief of A
denoted Bel(A) and the plausibility of A denoted PI(A) are
usually interpreted respectively as lower and upper bounds of
an unknown (subjective) probability measure P(A). They are
respectively defined for any A € 2° from the BBA m(-) by

Bel(A)= > m(X) (10)
Xe29|XCA
and
Pl(A)= Y m(X)=1-Bel(4). (1)

X€e29|ANX#0

where A represents the complement of A in ©, thatis A = ©—
{A} ={X|X € © and X ¢ A}. The symbol £ means equal
by definition, and the minus symbol denotes the set difference
operator. The vacuous BBA (VBBA for short) representing a
totally ignorant source is defined as m,(©) = 1.

PCR6 rule of combination

The PCR6 rule proposed in [10], [11] is an interesting
alternative of original PCR rule of combination no. 5 (PCRY)
proposed in [9], [19]. PCR6 and PCRS rules coincide if we
combine only two BBAs defined on the same FoD. The PCR6
fusion of S > 2 BBAs is obtained by m{3® () = 0, and

for all A € 29\ {0} by

mia!.s(A) =miy  s(4)

+ )y

FE{L,.., FHAEX ; Am;(0)

> mx)

i€{1,...,S}| X, =A

m;(0)

X€X; ie{l,..,S}|X;, =X

where mfoznf)S(A) = ijef(ml,.“,ms) HiS:I m1<X31) is
XjN.NX g =A

the conjunctive fusion rule, and where 7;(X;, N X;, N...N
X;o) 2 TI2, mi(X;,), and m;(0) in (12) is the concise
notation of 7;(X;, NX;,N...NX,,) when X; NX;,N...N
X ;s = 0. The z/Ay is the logical conjunction operator meaning
that conditions x and y must be satisfied. PCR6 rule is quasi-
associative and it offers a more precise conflict redistribution
than DS rule but it requires a higher computational burden.
PCR6 does not preserve the neutrality of the vacuous BBA
however. PCR6 is simpler to implement than PCRS5. Very
basic Matlab™ codes of PCRS and PCR6 rules can be found
in [13], [20], and also from the BFAS (Belief Functions and

Applications Society) repository [21].
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