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In the context of quantum integrated photonics, this work investigates the quantum proper-
ties of multimode light generated by silicon and silicon nitride micro-resonators pumped in pulsed
regime. The developed theoretical model, performed in terms of the morphing supermodes, pro-
vides a comprehensive description of the generated quantum states. Remarkably, it shows that a
full measurement of states carrying optimal squeezing levels is not accessible to standard homodyne
detection, thus leaving hidden part of generated quantum features. By presenting and discussing
this behaviour, as well as possible strategies to amend it, this work proves itself essential to future
quantum applications exploiting micro-resonators as sources of multimode states.

Silicon (Si) and Silicon Nitride (SiN) quantum photon-
ics offer a precious possibility to propel practical quan-
tum optical technologies thanks to high density integra-
tion of high-performance functions over small footprint
chips [1]. In recent years, a particular interest has been
driven by the possibility of exploiting their optical non-
linearities to generate on-chip highly multimode entan-
glement among frequency-time modes. Four-wave mix-
ing (FWM) in silicon-based rings or disk-shaped micro-
resonators have been used to demonstrate chip-scale
sources of paired-photons [2–4], low-dimension quan-
tum frequency combs [5] and, more recently, two-colour
intensity- [6] and quadrature- [7–9] entanglement in con-
tinuous variable (CV) regime.

Most of realisations and reported theoretical models
refer to Si and SiN resonators pumped in continuous
wave regime [10, 11]. This theoretical paper rather
focuses on the study of multipartite states produced
by micro-resonators pumped by optical pulses, as a
successive natural step toward more complex architec-
tures. Beside lower oscillation threshold, this regime
offers multimode entangled states that exhibit a way
richer structure [12] as well as the possibility of tailoring
their features [13, 14]. This works focuses in particular
on CV frequency-time entanglement [15, 16], due to
its important applications in quantum metrology [12],
quantum communication [17] and measurement-based
quantum computing [18]. The presented characterisation
of the non-classical properties of micro-resonators is
performed in terms of morphing supermodes, mapping
the full dynamics of multipartite states into that of
independent single-mode squeezed states whose spectral
shape depends on a continuous parameter [19]. Such
an analysis reveals that in standard working conditions,
a full characterisation of CV quantum properties out
of micro-resonators is not accessible to traditional
quadrature homodyne detection, thus leaving optimal
squeezing features hidden. This aspect is analogous to
what observed for quantum states whose noise spectra

are asymmetrical with respect to the carrier [20, 21] and
produced, e.g., by resonant phenomena such as atomic
emission. Nevertheless, it has never been high-lightened
by former works on silicon-based micro-resonators.
By showing and discussing it, this work anticipates
difficulties that may occur in experiments involving
micro-resonators as sources of multipartite squeezing. In
addition, it identifies possible system engineering strate-
gies leading to configurations where the problem is less
severe. Its impact is, thus, essential for the conception
and future experimental realisations of quantum tech-
nologies applications exploiting pulsed multimode states.

Synchronously pumped microrings. As shown
in Fig. 1, without loosing in generality, the system
here investigated is a micro-resonator coupled to a sin-
gle straight injection waveguide (single-bus device) and
pumped by an infinite train of optical pulses. Pump
pulses are taken to have a duration τp and a repetition
rate Ωp, corresponding, in frequency domain, to a comb
of equally spaced spectral components ω̄p,m = ωp +mΩp

(m being an integer), spanning over a range σp ∝ 2π/τp
around the optical carrier at frequency ωp. In order to
address a particularly common experimental situation, a
type-0 FWM process is considered for squeezing genera-
tion. This choice of phase-matching condition gives ac-
cess to high nonlinear conversion efficiency and it is thus
particularly well compatible with the CV regime [7–9].

In the frequency domain, the FWM interaction modes
are determined by frequencies corresponding to the cav-
ity resonances [10]:

ωm = ω0 +
∑

k≥1

Ωk
k!
mk. (1)

The reference label m = 0 indicates the resonance
whose frequency approximately matches the pump car-
rier, ω0 ≈ ωp (see Fig. 1). The first order parameter
Ω1 = c/(ngReff) gives the average cavity free spectral
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FIG. 1. Schematic of the considered nonlinear interaction.
The pump is taken to be a frequency comb with carrier fre-
quency ωp, pulse duration τp and repetition rate Ωp approx-
imately equal to the double of the cavity FSR. This means
that the spectral components of the pump match one cavity
resonance out of two, each with a possible detuning ∆. Fre-
quency entangled modes are emitted in the micro-resonator
resonances free from the pump spectral components.

range (FSR) as a function of the speed of light in vac-
uum c, the group index ng, and of the ring effective ra-
dius Reff [22]. In order to have distinct signal and pump
modes and guarantee a synchronous pumping regime,
the pump repetition rate is taken to be Ωp ≈ 2Ω1 (i.e.
ω̄p,m ≈ ωp + 2mΩ1). Note that, in general, the pump
injection components approximately match one cavity
resonance out of two. Their detuning with respect to
cavity resonances ∆p,m = ω2m − ω̄p,m changes with m
due to dispersion. Its effect is included in the parameter
Ω2 = −(n′gc

2)/(n3
gR

2
eff) that accounts for second-order

dispersion effects via the frequency derivative n′g together
with higher-order dispersion terms Ωk>2. As depicted in
the Fig. 1, frequency entangled signal modes are gener-

ated by FWM at frequencies ω̄s,m = ωp+(2m+1)
Ωp

2 (“s”
stands for “signal”) and can thus be unequivocally dis-
tinguished from the pump. They are in general detuned
by ∆s,m with respect to the odd cavity resonances.

Multimode linear quantum Langevin equations.
Quantum properties of multimode light out of the micro-
resonator are obtained by solving a system of coupled
Langevin equations [15, 16]. These describe the evolu-
tion of bosonic operators associated to the pump (p̂m)
and signal (ŝm) intra-cavity modes (“m” being the mode
label) and can be derived from the system Hamiltonian
by following the prescriptions for fields quantization in
dispersive dielectric materials [23–25]. All the details on
the derivation of Langevin equations and of their ele-
ments are reported in the Appendix.

Langevin equations are linearized around a stable clas-
sical stationary solution where the pump modes are
macroscopically populated, 〈p̂m〉 6= 0, and the signal
modes are empty, 〈ŝm〉 = 0. This corresponds to micro-
resonators below their oscillation threshold. Note that,

the 〈p̂m〉 depend on the injected pump power P , on
the detuning ∆p,0, and on the FSR-mismatch ∆Ω =
Ω1 − Ωp/2. Linear Langevin equations can be conve-
niently expressed in terms of the amplitude and phase
quadratures of the signal modes, x̂m = (1/

√
2)(ŝ†m + ŝm)

ŷm = (i/
√

2)(ŝ†m − ŝm). In a compact matricial form:

dR̂(t)

dt
= (−Γ +M)R̂(t) +

√
2Γ R̂in(t), (2)

where R̂(t) = (x̂(t)|ŷ(t))T is the column
vector of the intracavity mode quadratures
x̂(t) = (. . . , x̂−1, x̂0, x̂+1, . . .)

T and ŷ(t) =

(. . . , ŷ−1, ŷ0, ŷ+1, . . .)
T while R̂in(t) the quadratures

of the input signal modes, here set in the vacuum states
to describe a spontaneous interaction. The diagonal
matrix Γ describes mode-dependent coupling losses of
the single-bus cavity. Propagation losses can be included
in Γ (see Appendix and [26]). The interaction matrix
M is expressed as

M =

(
Im [G+ F ] Re [G− F ]

−Re [G+ F ] −Im [G+ F ]
T

)
, (3)

in terms of the complex matrices G and F (with G = G†

and F = FT[27]). Matrix G contains mode-dependent
detunings and all terms accounting for self- and cross-
phase modulation (referred here as nonlinear dispersion
terms), while F accounts for parametric amplification
processes. For the micro-resonator systems considered
in this work, their elements are:

Fm,n =g
∑

l

〈p̂m−l+n+1〉〈p̂l〉, (4)

Gm,n =∆s,mδ[m−n] + g
∑

l

2〈p̂m+l−n〉〈p̂l〉∗. (5)

The elements of both matrices explicitly depend on
the pump stable steady states. In the previous ex-
pressions, δ[m−n] is the Kronecker delta and g is the

nonlinear strength. The quadratures R̂out of modes
at the micro-resonator output can be obtained via
input-output relations R̂in + R̂out =

√
2Γ R̂ [28]. In

the Fourier space, the quadratures of input and output
modes are connected via the transfer function that solves
eqs. (2), S(ω), as R̂out(ω) = S(ω)R̂in(ω) [19] where
ω ∈ R. They are conjugate symmetric with respect to
the transformation ω ↔ −ω, R̂†(ω) = R̂(−ω), so as to
ensure their Hermiticity in time domain [29]. S(ω) is an
ω-symplectic matrix-valued function of the ω [30] (see
Eq. (54) in the Appendix).

Morphing supermodes analysis. As demonstrated
in [19], in the general case of a system presenting both
linear and nonlinear dispersion (in G) and parametric
amplification (in F ), squeezing properties need to be de-
scribed in terms of morphing supermodes. These are
coherent superpositions of the original frequency modes
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that evolve with a continuous parameter (here ω). They
allow mapping multimode CV entangled states into a col-
lection of N independent squeezed states. The explicit
shape of morphing supermodes is obtained by perform-
ing an analytic Bloch-Messiah decomposition (ABMD)
of the transfer function S(ω) = U(ω)D(ω)V †(ω). In this
expression, U(ω) and V (ω) are unitary and ω-symplectic
matrix-valued functions that characterise the supermode
structure. Correspondingly, the output quadratures of
morphing supermodes read as

R̂′out(ω) = U†(ω)R̂out(ω). (6)

These linear combinations of cavity modes
change smoothly with ω but lead to the op-
timally (anti-)squeezed quadratures. The ac-
tual value of their noise levels is given by
the elements of the diagonal matrix D(ω) =
diag{d1(ω), . . . , dN (ω)| d−1

1 (ω), . . . , d−1
N (ω)}, where

d−1
i (ω) is the squeezing of supermode “i” and di(ω) its

anti-squeezing (with di(ω) ≥ 1 for all ω). Remarkably,
these values correspond to the optimal (anti-)squeezing
provided by the system.

In the time domain, assuming input vacuum state,
the stationary Gaussian quantum state at the micro-
resonator output is entirely characterised by the
covariance matrix σout(t) = 1

2 〈Rout(0)RT
out(t) +

(Rout(t)R
T
out(0))

T〉 [31]. In Fourier domain it corre-
sponds to the spectral covariance matrix,

σout(ω) =
1

2
√

2π
U(ω)D2(ω)U†(ω). (7)

Note that, in general, σout(ω) is hermitian since D(ω) is
real.

The morphing supermode analysis allows describing
in details the squeezing features of the synchronously
pumped micro-resonator. In this regard, note that due
to the extremely general form of equations describing its
linearized dynamics, the analysis derived here apply to
an extremely broad class of multimode gaussian states,
all characterised by a hermitian covariance matrix as in
Eq. (7). Discussed results can thus easily be extended
to many other situations.

Multimode squeezing from a micro-resonator.
As a representative example, it will be considered the
case of a pump frequency comb of spectral amplitudes Em
with Gaussian distribution E0 exp

(
−m2/(2σp)

)
, resonant

with the central cavity mode m = 0 i.e. ∆0 = 0 (Fig. 2-
top). Its repetition rate matches the double of the cavity
average FSR (∆Ω = 0). In the numerical simulations,
the spectral width is σp = 20, and E0 is set so that the
system is 1% below its threshold. Cavity losses are equal
γm = γ for all m and second order anomalous dispersion
is set to Ω2 = −0.01γ.

As illustrated in Fig. 2, the initially real Gaussian in-
jection profile (top) results into a complex intracavity
steady state (bottom). Its non-trivial amplitude and
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FIG. 2. (Top) Normalized amplitude and phase profiles of

the injection
√
γ3/g Em (see Appendices) and (bottom) intra-

cavity steady state solutions
√
γ/g 〈p̂m〉. Parameters: Em

has a Gaussian spectral distribution E0 exp
{
−m2/(2σp)

}
with

σp = 20 and E0 is chosen so that the system is 1% below its
threshold; ∆0/γ = 0, ∆Ω/γ = 0, Ω2/γ = −0.01 and losses
equal to γ for all m. The stable steady state solution 〈p̂m〉
(Fig. 2-bottom) is obtained by solving the classical part of
the nonlinear equations (44) and (45) for a space of N = 101
pump modes.

phase spectral profiles enter the systems dynamics via
eqs. (4) and (5). Correspondingly, Fig. 3 shows, for
i = {1, . . . , N}, optimal squeezing (d−1

i (ω)) and anti-
squeezing (di(ω)) levels as functions of ω, as obtained by
ABMD. At ω = 0, the highest value of squeezing is ob-
tained for first supermode (i = 1) and the highest value
of anti-squeezing corresponds to the N+1-th supermode.
The frequency mode combination that gives the squeezed
quadrature of the first morphing supermode is obtained
by U1(ω), i.e. by the first column of U(ω), and it is rep-
resented in Fig. 4-top. Similar curves are also observed
for higher order supermodes (see Appendices). As it can
be seen, the ABMD returns supermodes whose structure
smoothly depends on ω and have a real and an imaginary
parts both non null. As a consequence, the multimode
quantum state produced by the micro-resonator is char-
acterised by a spectral covariance matrix (7) that, con-
trarily to what was assumed in previous studies, is not
real. This formally reflects the presence of an imbalance
between the fluctuations of the noise spectral components
at ω and −ω [20, 21]. Such an effect is characteristic of
a dynamics in a χ(3) medium and of a mode dependent
dispersion. It is not present in dispersion-compensated
nonlinear cavities with χ(2) media whose interaction ma-
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FIG. 3. Frequency-dependent singular values d2i (ω) and
d−2
i (ω). They quantify the degree of anti-squeezing di(ω)

(shades of red) and squeezing d−1
i (ω) (shades of blue) re-

spectively. The zero level represents the standard quantum
limit. The function d−1

1 (ω) corresponds to the optimal level
of squeezing associated to the morphing supermode U1(ω) in
Fig. 4. Parameters: Em has a Gaussian spectral distribution
E0 exp

{
−m2/(2σp)

}
with σp = 20 and E0 is chosen so that

the system is 1% below its threshold; ∆0/γ = 0, ∆Ω/γ = 0,
Ω2/γ = −0.01 and losses equal to γ for all m.

trix leads to G = 0 and, correspondingly, to supermodes
that are frequency independent and real in the quadra-
ture representation [14, 16].

Homodyne detection and measurable squeez-
ing. In experiments, the spectral covariance matrix of
Eq. (7) can be reconstructed via frequency homodyning:
a reference beam, called “local oscillator” (LO), beats
with the micro-resonator output and the Fourier trans-
form of its photodetection signal is performed. Such
a projective measurement allows retrieving the field
quadratures and, in particular, the measured noise spec-
trum:

ΣQ(ω) = QTσout(ω)Q. (8)

In this context, ω is indicated as the so-called analysis fre-
quency as it directly identifies a given noise component
of the photocurrent signal. Its value can be experimen-
tally set depending on the specific practical situation.
In Eq. (8), the normalised column vector Q corresponds
to the spectral profile of the LO in the quadrature rep-
resentation. Note that Q must be a real vector so as
to guarantee that, in time domain, LO quadratures and
their linear combinations are hermitian operators.
Fig. 4-bottom illustrates how to practically obtain, at a

given ω̄, the first supermode quadrature from the matrix
U(ω). From (6) and the property U†(ω) = U(−ω) [19],
the quadrature operator can be expressed in terms of real
and complex linear combinations

R′out,1(ω̄) =
(
Re[UT

1 (ω̄)]− i Im[UT
1 (ω̄)]

)
Rout(ω). (9)

Changing the analysis frequency thus implies changing
the linear combination. Such a morphing behaviour

FIG. 4. (Top) real and imaginary part of the first output
morphing supermode for the case of a micro-resonator. (Bot-
tom) for a given frequency ω̄, the colum vectors of the real
and imaginary part of U1(ω) give the coefficients of the super-
mode quadrature R′out,1(ω̄) according to expression (9). They
also define the profile a LO should have in order to detect the
optimal level of squeezing d−1

1 (ω̄) (see Fig. 3). Parameters:
Em has a Gaussian spectral distribution E0 exp

{
−m2/(2σp)

}
with σp = 20 and E0 is chosen so that the system is 1% below
its threshold; ∆0/γ = 0, ∆Ω/γ = 0, Ω2/γ = −0.01 and losses
equal to γ for all m.

has a strong practical impact on the way squeezing
outside the micro-resonator should be experimentally
measured. By inserting eq. (7) in (8), it is evident that
optimal squeezing d−1

i (ω) (anti-squeezing di(ω)) can be
measured only if Q matches the i-th column of U(ω) for
all ω (i.e. U(ω) projects optimally on the LO). However,
in general, this is not possible for two reasons: (i) Q
should depend on ω and (ii) Q is real while U(ω) can be
complex. In the case U(ω) is real and Q constant, the
homodyne detection can detect optimal squeezing only
at the frequency ω̄ for which the local oscillator matches
the supermode profile (QT U1(ω̄) = 1). Reconstructing
the squeezing profile demands being able to reshape
Q for each choice of ω̄. On the other hand, since in
general U(ω) is not real and the spectral profile of the
LO can only be real, homodyne detection can measure
only the real part of the supermode quadratures. In
other words, when U(ω) is complex the homodyne
measure is suboptimal for all values of ω and part of the
quantum properties of the output state remains hidden.
To retrieve the optimal squeezing, the LO profile should
be a complex-valued smooth function of ω. As discussed
in [19], this cannot be implemented with a standard
detection scheme and rather requires an interferometer
with memory effect. The description of such a device is
beyond the scope of this work and will be the subject of
a subsequent publication.
Complex morphing supermodes are obtained for a vast

majority of sets of micro-resonator parameters. From a
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FIG. 5. Case of Gaussian intracavity steady state solution 〈p̂m〉 = A exp
(
−m2/2σ

)
: real (a) (resp. (d)) and imaginary (b)

(resp. (e)) part of the first morphing supermode and spectrum of the frequency-dependent singular values (c) (resp. (f)) d2i (ω)
and d−2

i (ω) in the case of micro-ring without dispersion (resp. with dispersion). Parameters: A = 0.12, σ = 10, ∆0/γ = −2,
∆Ω/γ = 0, and (a)-(c) Ω2/γ = −0.01, (d)-(f) Ω2/γ = 0, with losses equal to γ for all m.

physical point of view, this behaviour is to be associated
with the presence of self- and cross-phase modulation
due to FWM and of dispersion-dependent detuning
(both included in matrix G), that scramble the quantum
correlations generated through the parametric amplifi-
cation processes (in F ). These combined factors heavily
affects the pump intracavity steady states 〈p̂m〉, leading
to strong deformation of both its amplitude and phase
profiles (see Fig. 2). As a consequence, it is pertinent to
consider the case of a pump beam whose spectrum has
been engineered before the micro-resonator as a possible
strategy to make squeezing detectable with a standard
homodyne measurement. Figure 5-top shows the first
morphing supermode as obtained when the input pump
profile {Em} is engineered so as to obtain a Gaussian real
intracavity steady state centred in m = 0 as a solution
of the classical part of the non-linear Langevin equations
(eqs. (44) in Appendix), i.e. 〈p̂m〉 = A exp

(
−m2/2σ

)
.

All the other parameters are kept as in the previous
case. Although less complicated, the first morphing
supermode shows a non trivial imaginary part, a simpler
frequency dependence but a somehow reduced level of
squeezing due to an increased distance to the threshold.
Better results are obtained when considering, in addition
to the pump engineering, a microring with negligible
dispersion (Ω2 = 0). In experiment, such a condition can
be implemented thanks to specially tailored waveguide

geometries [32]. As shown in Figure 5-bottom, in this
case, the morphing behaviour is strongly amended and,
remarkably, the supermode profile is weakly depending
on ω. This makes the real part of the covariance matrix
detectable with a standard homodyne measurement.

Conclusions. This work provides a complete char-
acterisation of the multimode quantum properties of
silicon-based resonators operating in pulsed regime (syn-
chronously pumped). The analysis is done in terms
of squeezed morphing supermodes [19]. The treatment
shows that, since the spectral profiles of supermodes are
in general a complex function of the analysis frequency
ω, a full experimental characterisation of their quantum
properties is beyond the possibility of standard homo-
dyne detection. This behaviour, enlightened here for the
first time, shows the need for carefully engineered exper-
imental configurations, including the spectral profile of
the pump and of the resonator itself (dispersion), con-
ceived to obtain supermodes with a weak dependence
on ω. A further development of the presented super-
mode investigation is to identify, on the base of a spe-
cific micro-resonator architecture and optical properties,
working conditions under which the covariance matrix is
real and thus fully detectable.
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APPENDICES

A. The Hamiltonian

In order to establish the system Hamiltonian, first we
identify the pertinent cavity resonances that are involved
in the FWM process. Under the hypothesis that central
frequency of the injection ωp is close to the cavity res-
onance ωm0 , the pump will excite one cavity resonance
every two as depicted in figure 1. Thus we can define the
injection reference comb of frequencies

ω̄m = ωp +
Ωp

2
(m−m0) (10)

and, without loss of generality, we can set m0 = 0.
Among these frequencies, we can distinguish the refer-
ence pump comb ω̄p,m and the reference signal comb ω̄s,m

such that

ω̄p,m = ωp + 2m
Ωp

2
, (11)

ω̄s,m = ωp + (2m+ 1)
Ωp

2
. (12)

We label with ωp,m (ωs,m) the cavity resonances ωm (see
eq. (1)) of even (odd) order, that are the closest to the
pump reference frequencies ω̄p,m (signal reference fre-
quencies ω̄s,m).

Field quantification is performed with respect to the
quadratic part of the system Hamiltonian and later we
will treat the higher order terms as a perturbation. In
order to correctly keep into account dispersion we chose
the displacement field D̂ and the magnetic field B̂ as
the fundamental entities [23–25] (bold designate vector
quantities). Then, in order to distinguish the intracav-
ity modes that are populated by the external pump and
those that are not, we decompose the displacement field
as

D̂(r, t) =
[
D̂p(r, t) + D̂s(r, t)

]
(13)

where, in the Schrödinger picture,

D̂p(r, t) = i
∑

m

Dp,m

(
p̂mdp,m(r) + p̂†md∗p,m(r)

)
, (14)

D̂s(r, t) = i
∑

m

Ds,m

(
ŝmds,m(r) + ŝ†md∗s,m(r)

)
. (15)

The spatial modes df,m(r) (with f ∈ {p, s}) are found by
solving the following equations

∇∧
(

1

n2(r, ωm)
∇∧ bf ,m(r)

)
=
ω2
m

c2
bf ,m(r) (16)

df,m(r) =
i c

ωf,m
∇∧ bf,m(r) (17)

they are normalized such as

∫
d3r

d∗f,m(r) · df,m(r)

ε0n2(r, ωf,m)

vφ(ωf,m)

vg(ωf,m)
= 1 (18)

where vφ(ωf,m) and vg(ωf,m) are the phase and group
velocities, respectively. The operators p̂m(t) and ŝm(t)
are the slowly-varying annihilation field amplitudes for
pump and signal fields. They destroy one elemental ex-
citation in the pump (respectively signal) mode dp,m(r)
(resp. ds,m(r)) and verify the standard boson commuta-
tion rules

[
p̂m, p̂

†
n

]
= δm,n, (19)

[p̂m, p̂n] = 0, (20)
[
ŝm, ŝ

†
n

]
= δm,n, (21)

[ŝm, ŝn] = 0. (22)

The quantities Df,m (with f ∈ {p, s}) are given by

Df,m =

√
ε0~ωf,m

2
(23)

and can be interpreted as the single polariton field am-
plitudes in the mode df,m(r). They have the form
df,m(r) = R(r, z)Yf,m(θ)u and u ≈ ur.

Since we are in the context of a scalar theory, the non-
linear polarization is also along the radial vector ur and
its component takes the form

P̂nl(r, t) = −ε0η(3)D3(r, t), (24)

where η(3) is the inverse permittivity tensor and assum-
ing a medium with null second order susceptibility. The
nonlinear interaction Hamiltonian is then

Ĥint =
η(3)

4

∫
D̂4 d3r. (25)

The application of the rotating-wave approximation
to (25), after using expressions eqs. (14) and (15), allows
to keep only three kind of processes (and their recipro-
cal) that conserve the energy: the first process converts
two pump photons into two other pump photons such
that ωp,m + ωp,n = ωp,l + ωp,k; the second converts two
pump photons into two signal/idler photons such that
ωp,m + ωp,n = ωs,l + ωs,k; the third converts one pump
photon and one signal/idler photon to another couple of
pump and signal/idler photons such that ωp,m + ωs,n =
ωp,l + ωs,k. The processes ωs,m + ωs,n = ωs,l + ωs,k are
neglected because, in the semi-classical approximation,
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they are mediated by amplitudes that have null mean
value (〈ŝm〉=0). As a consequence the nonlinear interac-
tion term takes the form

Ĥint ≈Ĥp,p + Ĥp,s, (26)

with

Ĥp,p =
g0

6

∑

k,l,m,n

Am,nk,l

(
δ[k+l−m−n] p̂kp̂lp̂

†
mp̂
†
n+

+ δ[k−l+m−n] p̂kp̂
†
l p̂mp̂

†
n + δ[k−l−m+n] p̂kp̂

†
l p̂
†
mp̂n

)
+

+ H.c., (27)

and

Ĥp,s =g0

∑

k,l,m,n

Bm,nk,l

(
δ[k+l−m−n−1] p̂kp̂lŝ

†
mŝ
†
n+

+ δ[k−l+m−n] p̂kp̂
†
l ŝmŝ

†
n + δ[k−l−m+n] p̂kp̂

†
l ŝ
†
mŝn

)
+

+ H.c. (28)

where “H.c.” stands for “Hermitian conjugate”. In these
expressions, δ[·] is the usual Kronecker symbol (equal to
1 when [·] = 0 and to 0 otherwise), g0 is the nonlinear
coupling constant

g0 =
3~2ε20η

(3)Λ

8
(29)

and

Λ =

∫ +∞

0

∫ +∞

−∞
dr dz r |R(r, z)|4 , (30)

Am,nk,l =
√
ωp,kωp,lωp,mωp,n, (31)

Bm,nk,l =
√
ωp,kωp,lωs,mωs,n. (32)

In the following we will assume, for all k, l,m, n, Am,nk,l ≈
ω2

0 and Bm,nk,l ≈ ω2
0 .

The system total Hamiltonian is then

Htot = H0 +Hint +Hinj (33)

where

Ĥ0 =
∑

m

~ωp,mp̂
†
mp̂m +

∑

m

~ωs,mŝ
†
mŝm (34)

is the Hamiltonian of the free fields and

Ĥinj = i~
∑

m

(
Emp̂†me−iω̄p,mt + E∗mp̂meiω̄p,mt

)
(35)

describes the injection of a frequency comb (synchronous
pumping) with spectral amplitudes Em at frequencies
ω̄p,m.

B. Multimode quantum Langevin equations

The Heisenberg equations for pump and signal fields
are:

i~
dp̂j
dt

=~ωp,j p̂j + i~Eje−iω̄p,jt+

+
2g0ω

2
0

3

∑

m,n

(
p̂†m+n−j p̂mp̂n + p̂†m+n−j+1ŝmŝn+

+ p̂j−m+n

(
p̂mp̂

†
n + p̂†np̂m + ŝmŝ

†
n + ŝ†nŝm

) )
,

(36)

i~
dŝj
dt

=~ωs,j ŝj + 2g0ω
2
0

∑

m,n

(
p̂j−m+n+1p̂mŝ

†
n+

+ p̂j+m−np̂
†
mŝn + p̂†m+n−j p̂mŝn

)
(37)

The explicit time dependence in (36) can be removed by
moving to the reference frame of the injection. Hence we
define new fields such that

p̂m → p̂me−iω̄p,mt, (38)

ŝm → ŝme−iω̄s,mt (39)

and write eqs. (36) and (37) as

dp̂j
dt

=− i∆p,j p̂j + Ej+

− i
g

3

∑

m,n

(
p̂†m+n−j p̂mp̂n + p̂†m+n−j+1ŝmŝn+

+ p̂j−m+n

(
p̂mp̂

†
n + p̂†np̂m + ŝmŝ

†
n + ŝ†nŝm

) )
,

(40)

dŝj
dt

=− i∆s,j ŝj − ig
∑

m,n

(
p̂j−m+n+1p̂mŝ

†
n+

+
(
p̂j+m−np̂

†
m + p̂†m+n−j p̂m

)
ŝn

)
(41)

with g = (2g0ω
2
0)/(~), ∆p,j = ωp,j − ω̄p,j and ∆s,j =

ωs,j−ω̄s,j . They are frequency dependent detunings that,
after using eq. (1), can be expressed as

∆p,j ≈ ∆0 +∆Ω (2j) +
Ω2

2!
(2j)2, (42)

∆s,j ≈ ∆0 +∆Ω (2j + 1) +
Ω2

2!
(2j + 1)2, (43)

where ∆0 = ω0 − ω̄p is the detuning between the cen-
tral cavity resonance (of order j = 0) and the external
injection centered at frequency ωp, ∆Ω = Ω1 − Ωp/2 is
the mismatch between the average FSR and the half of
the spacing of the external frequency comb. Langevin
equations also include the effect of propagation losses
inside the microring, that couples the pump and signal
modes with the input vacuum modes q̂in,m and r̂in,m via
the coefficients κp,m and κs,m, respectively. In a simi-
lar way, losses due to the microring coupling with the
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straight guide introduce p̂in,j and ŝin,m via the coefficients
γp,m and γs,m. The explicit expression of the quantum
Langevin equations reads as [28]:

dp̂j
dt

=−
(
γp,j + κp,j + i∆p,j

)
p̂j + Ej+

+
√

2γp,j p̂in,j +
√

2κp,j q̂in,j+

− i
g

3

∑

m,n

(
p̂†m+n−j p̂mp̂n + p̂†m+n−j+1ŝmŝn+

+ p̂j−m+n

(
p̂mp̂

†
n + p̂†np̂m + ŝmŝ

†
n + ŝ†nŝm

) )
,

(44)

dŝj
dt

=−
(
γs,j + κs,j + i∆s,j

)
ŝj+

+
√

2γs,j ŝin,j +
√

2κs,j r̂in,j+

− ig
∑

m,n

(
p̂j−m+n+1p̂mŝ

†
n+

+
(
p̂j+m−np̂

†
m + p̂†m+n−j p̂m

)
ŝn

)
. (45)

C. Linearized quantum Langevin equations

Quantum Langevin equations equations (44) and (45)
are, now, linearized around the system stable steady state
solutions, 〈p̂m〉 and 〈ŝm〉. This work focuses on the be-
low threshold regime where the steady state solutions
for the signal exhibit null mean values, therfore we set
〈ŝm〉 = 0,∀m. On the other hand, the 〈p̂m〉 are found
as solutions of the system of nonlinear (cubic) algebraic
equations obtained from the classical part of eq. (44).
This operation leads to a set of linear quantum Langevin
equations for the signal modes expressed in terms of the
quadrature column vector R̂(t) = (x̂(t)|ŷ(t))T:

dR̂(t)

dt
= (−Γ ′ −K +M)R̂(t)+

+
√

2Γ ′ R̂
(γ)
in (t) +

√
2K R̂

(κ)
in (t) (46)

where the matrices Γ ′ = diag{γ|γ} and K =
diag{κ|κ} are diagonal matrices containing the mode-
dependent cavity losses due to the microring cou-
pling γ = diag{. . . , γs,−1, γs,0, γs,1, . . .} and propaga-
tion losses κ = diag{. . . , κs,−1, κs,0, κs,1, . . .}. The input
mode quadratures are collected in the column vectors

R̂
(γ)
in (t) = (. . . , ŝin,−1, ŝin,0, ŝin,+1 . . .)

T and R̂
(κ)
in (t) =

(. . . , r̂in,−1, r̂in,0, r̂in,+1 . . .)
T and we suppose they are

both in vacuum state. The intermodal coupling matrix
M can be expressed as

M =

(
Im [G+ F ] Re [G− F ]

−Re [G+ F ] −Im [G+ F ]
T

)
, (47)

where the matrices G and F are such that

Fj,n =g
∑

m

〈p̂j−m+n+1〉〈p̂m〉, (48)

Gj,n =∆s,jδ[j−n] + g
∑

m

2〈p̂j+m−n〉〈p̂m〉∗. (49)

Hence G = G† is an Hermitian complex matrix and
F = FT is symmetric. These properties make M an
Hamiltonian matrix, that is (ΩM)T = ΩM, with Ω the
symplectic form.

D. From double-bus to single-bus cavity Langeving
equations

In order to apply the theory we developed in [19], we
map eqs. (46) to the linear quantum Langevin equation
of a single-bus cavity. This is obtained by defining [26]

R̂in(t) =

√
2Γ ′R̂

(γ)
in (t) +

√
2KR̂(κ)

in (t)√
2(Γ ′ +K)

. (50)

Hence we get the quantum Langevin equation consid-
ered in the main text, eq. (2)

dR̂(t)

dt
= (−Γ +M)R̂(t) +

√
2Γ R̂in(t) (51)

with Γ = Γ ′ +K. Then, by using the input-output rela-

tion R̂
(γ)
out =

√
Γ ′R̂ − R̂

(γ)
in , the field quadratures at the

output coupler R̂
(γ)
in (t) are given by

R̂
(γ)
out =

√
Γ ′

Γ
R̂out +

√
Γ ′K
Γ 2

R̂
(κ)
in −

(
1− Γ ′

Γ

)
R̂

(γ)
in ,

(52)

were the definition of R̂out is given by (50) after replacing
“in” by “out” everywhere. This column vector contains
the quadratures of field operators at the output of a vir-
tual system having only one source of losses (single-bus
model).

E. The omega-symplectic transfer function

The solution of the linear quantum Langevin equation
eq. (2) (or (51)) can be obtained in the Fourier domain
by means of the transfer function S(ω)

R̂out(ω) = S(ω)R̂in(ω) (53)

after using the in-out relation R̂out(t) =
√

2Γ R̂(t) −
R̂in(t), where S(ω) is the matrix-valued function

S(ω) =
√

2Γ (iωI + Γ −M)
−1
√

2Γ − I. (54)

Since M is Hamiltonian and Γ is skew-Hamiltonian, we
can prove [19] that S(ω) is ω-symplectic [30], so that

R̂out(ω) are the Fourier transform of bona fide boson
quadrature operators.
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F. Higher-order morphing supermodes

In the main text we illustrated only the first morphing
supermodes. In this section we report the structure of
the 2nd, 3rd and 4th morphing supermodes for the dif-
ferent configurations discussed in the main text. Note
that real and part imaginary part of Um(ω) are respec-
tively symmetric and anti-symmetric with respect to ω
as expected due to Rout(ω) symmetry properties.

FIG. 6. Real and imaginary part of the second, third and
fourth morphing supermodes corresponding to the configura-
tion of Fig. 4.

FIG. 7. Real and imaginary part of the second, third and
fourth morphing supermodes corresponding to the configura-
tion of Fig. 5-top, without dispersion.
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FIG. 8. Real and imaginary part of the second, third and
fourth morphing supermodes corresponding to the configura-
tion of Fig. 5-bottom, with dispersion.
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